JP4959223B2 - 断層撮影装置 - Google Patents

断層撮影装置 Download PDF

Info

Publication number
JP4959223B2
JP4959223B2 JP2006136646A JP2006136646A JP4959223B2 JP 4959223 B2 JP4959223 B2 JP 4959223B2 JP 2006136646 A JP2006136646 A JP 2006136646A JP 2006136646 A JP2006136646 A JP 2006136646A JP 4959223 B2 JP4959223 B2 JP 4959223B2
Authority
JP
Japan
Prior art keywords
mark
image data
table member
subject
shake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006136646A
Other languages
English (en)
Other versions
JP2007309687A (ja
Inventor
喜一郎 宇山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba IT and Control Systems Corp
Original Assignee
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba IT and Control Systems Corp filed Critical Toshiba IT and Control Systems Corp
Priority to JP2006136646A priority Critical patent/JP4959223B2/ja
Publication of JP2007309687A publication Critical patent/JP2007309687A/ja
Application granted granted Critical
Publication of JP4959223B2 publication Critical patent/JP4959223B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、放射線源と被検体とを相対的に回転させ、予め設定された回転角度毎に放射線の透過画像データを取り込み、その透過画像データから断層像データを作成する断層撮影装置に関し、例えば、被検体の形状に依存せずに回転振れの影響を除去した断層像データを作成し得る断層撮影装置に関する。
従来から、被検体の断層像を得るために、断層撮影装置が用いられている。例えば、ラミノグラフ(Laminograph)[トモシンセシス(Tomosynthesis)装置ともいう]、あるいはCT(ComputerTomograpy)装置等の断層撮影装置が用いられる。
円錐軌道タイプの断層撮影装置は、放射線源から発生する放射線を被検体に照射する。それから、その被検体を透過した放射線を2次元分解能の放射線検出器で検出する。放射線を照射する際に、放射線の光軸に対し傾斜した角度の回転軸を中心として、放射線源および放射線検出器と被検体とを相対的に回転させる。そして、設定された角度を回転する毎に、放射線検出器から透過画像データを得る。それから、透過画像データを再構成処理して、被検体の断層像データおよび3次元画像データを作成する。なお、放射線と被検体とを相対的に回転させるには、放射線源および放射線検出器に対して被検体を回転させてもよいし、被検体に対して放射線源および放射線検出器を回転させてもよい。
しかしながら、上述した断層撮影装置において、回転軸を中心として放射線と被検体とを回転させる際、回転軸が振れてしまい、断層象データがぼやけてしまうことがある。
そこで、断層撮影装置における回転軸の振れ(以下、「回転振れ」ともいう。)の影響を除去した断層像データを作成する方法が検討されている。
例えば、特許文献1には、X線検出器で得られた透過画像から回転振れの大きさを求め、この振れを打ち消すように回転機構を移動させる断層撮影装置について記載されている。また、画像から回転振れの大きさを求める代わりに、特定部分の位置を検出して回転振れの大きさを求める方法についても記載されている。具体的には、回転テーブルの外周面を真円に仕上げ、この外周面の1箇所の位置を、接触式もしくは非接触式のセンサを用いて検知することにより回転振れの大きさを求めている。
特開2005−106515号公報
しかしながら、上述したような特許文献1に記載されている断層撮影装置では、以下の問題が生じる。
(1)被検体の透過画像において、特徴点が明瞭に現われるケースはまれであるという問題がある。すなわち、X線検出器で得られた被検体の透過画像データから回転軸の振れの大きさを求めるためには、透過画像上に基準となる特徴点が必要とされる。さらに、被検体を回転させて透過方向が変わったときでも、常に被検体上の1点にこの特徴点が固定されている必要がある。そのため、透過画像上に被検体の特徴点が明瞭に、かつ被検体に固定して現われない場合には、回転振れの大きさを算出できない場合が生じる。
(2)回転テーブルの外周面を正確に真円に加工することは容易ではないという問題がある。また、外周面の傷・加重時のテーブルの歪み・外部の熱環境等の影響により、外周面を真円の状態とすることは困難である。それゆえ、真円に対する回転テーブルの外周のズレの大きさが回転軸の振れの大きさより大きくなると、回転振れの大きさを算出できなくなる。すなわち、回転振れを正確に補正できない場合が生じる。
本発明は、上記実情を鑑みてなされたものであり、被検体の形状に依存せずに回転振れの影響を除去した断層像データを作成し得る断層撮影装置を提供することを目的とする。
本発明は上記課題を解決するために以下の手段を講じる。
請求項1に対応する発明は、被検体が載置される表面部と、前記表面部の反対側にマークが形成された裏面部とを備えたテーブル部材と、前記テーブル部材に載置された前記被検体に放射線を照射する放射線源と、前記被検体を透過した放射線を検出する放射線検出手段と、前記放射線源および前記放射線検出手段と前記テーブル部材とを、該テーブル部材の表面部に垂直な回転軸に沿って相対的に回転させる回転機構と、前記被検体が前記テーブル部材に載置された場合、前記回転の複数の回転位置で前記放射線検出手段により検出された放射線量から前記被検体の透過画像データを収集するためのデータ収集手段と、前記マークの画像裏面側から撮影するためのTVカメラと、前記複数の回転位置における透過画像データの収集に対応させて前記TVカメラにより得られたマーク画像に基づいて、前記データ収集手段により収集された透過画像データを回転振れの無い透過画像データに補正する軸振れ補正手段と、前記軸振れ補正手段により補正された複数の透過画像データを再構成処理して断層像データを作成するための再構成手段とを備えた断層撮影装置である。
請求項2に対応する発明は、被検体が載置される表面部を有するテーブル部材と、前記テーブル部材に載置された前記被検体に放射線を照射する放射線源と、前記被検体を透過した放射線を検出する放射線検出手段と、前記放射線源および前記放射線検出手段と前記テーブル部材とを、該テーブル部材の表面部に垂直な回転軸に沿って相対的に回転させる回転機構と、前記テーブル部材を支持するとともに、前記表面部に沿って該テーブル部材を平行移動させる平行移動機構と、前記テーブル部材の表面部の反対側に該表面部と平行になるように前記平行移動機構に固定され、マークが形成された表面部を有するマークプレートと、前記テーブル部材の表面部に前記被検体が載置された場合、前記放射線検出手段により検出された放射線量から前記被検体の透過画像データを収集するためのデータ収集手段と、前記マークの位置を検出するためのマーク位置検出手段と、前記マーク位置検出手段により得られたマーク位置データに基づいて、前記データ収集手段により収集された透過画像データを回転振れの無い透過画像データに補正する軸振れ補正手段と、前記軸振れ補正手段により補正された複数の透過画像データを再構成処理して断層像データを作成するための再構成手段とを備えた断層撮影装置である。
請求項3に対応する発明は、請求項2に対応する断層撮影装置において、前記軸振れ補正手段は、前記マーク位置データを、予め設定された基準位置に一致させることにより回転振れの無い透過画像データを得る断層撮影装置である。
請求項4に対応する発明は、請求項に対応する断層撮影装置において、前記軸振れ補正手段は、基準の回転位置での前記マーク画像と各回転位置での前記マーク画像との回転とずらしによるマッチングを取ることでマッチングが最もよくなるずらし量を求め、該ずらし量に基づき各回転位置での透過画像データを補正する断層撮影装置である。
請求項に対応する発明は、請求項2に対応する断層撮影装置において、前記軸振れ補正手段は、前記マーク位置検出手段により得られたマーク位置データと、予め設定された回転振れの無い基準マーク位置データとに基づいて回転振れ量を算出し、算出した回転振れ量に対応する距離を移動するように前記平行移動機構を制御する断層撮影装置である。
<作用>
従って、本発明は以上のような手段を講じたことにより、以下の作用を有する。
請求項1に対応する発明は、被検体が載置される表面部と、表面部の反対側にマークが形成された裏面部とを備えたテーブル部材と、マークの画像裏面側から撮影するためのTVカメラと、TVカメラにより得られたマーク画像に基づいて、透過画像データを回転振れの無い透過画像データに補正する軸振れ補正手段とを備えた構成により、マークMcの位置を検出して回転振れ量を求めることができる。
請求項2に対応する発明は、テーブル部材を支持するとともに、表面部に沿って当該テーブル部材を平行移動させる平行移動機構と、テーブル部材の表面部の反対側に表面部と平行になるように平行移動機構に固定され、マークが形成された表面部を有するマークプレートと、マークの位置を検出するためのマーク位置検出手段と、マーク位置検出手段により得られたマーク位置データに基づいて、透過画像データを回転振れの無い透過画像データに補正する軸振れ補正手段とを備えた構成により、3次元的にマークMcの位置を検出して回転振れ量を3次元的に求めることができる。
請求項3に対応する発明は、請求項2に対応する作用に加え、軸振れ補正手段は、マーク位置データと、予め設定された基準位置とに基づいて、回転振れが生じた場合に、その回転振れの大きさを求めることができる。それゆえ、回転振れの無い透過画像データを得ることができる。
請求項4に対応する発明は、請求項に対応する作用に加え、基準の回転位置でのマーク画像と各回転位置でのマーク画像との回転とずらしによるマッチングを取ることでマッチングが最もよくなるずらし量を求め、各回転位置での回転振れの大きさを求めることができる。それゆえ、回転軸の振れを補正できる。
請求項に対応する発明は、請求項2に対応する作用に加え、軸振れ補正手段は、マーク位置検出手段により得られたマーク位置データと、予め設定された回転振れの無い基準マーク位置データとに基づいて回転振れ量を算出するので、回転振れが生じた場合に、その回転振れの大きさを求め、平行移動機構を制御して回転振れを打ち消すことができる。それゆえ、回転振れの無い透過画像データを得ることができる。
本発明によれば、被検体の形状に依存せずに回転振れの影響を除去した断層像データを作成できる。
以下、図面を参照して本発明の実施形態を説明する。
<第1の実施形態>
(1−1.構成)
図1は本発明の第1の実施形態に係る断層撮影装置10の構成を示す模式図である。
断層撮影装置10は、被検体5の断層像データを作成するものであり、被検体載置部20・X線照射部30・マーク位置検出部40・データ処理部50とを備える。
被検体載置部20は、被検体5を載置するテーブル部材21とXY機構(平行移動機構)22・回転機構23・昇降機構24・機構制御部25とを備える。この被検体載置部20において、昇降機構24が支持部材等(図示せず)によりフロアに固定され、その上に、回転機構23・XY機構22・テーブル部材21の順に設置される。
テーブル部材21は、被検体5が載置される載置面(表面部)21Aと、載置面21Aの反対側に位置し、多数の点状のマークMが形成されたマーク面(裏面部)21Bとを備えている。また、テーブル部材21は、XY機構22により支持される。このテーブル部材21が平行移動や昇降・回転することにより、載置面21Aに載置された被検体5の任意の部位にX線を照射できるようになる。また、テーブル部材21は、X線を透過し易い材質で作成される。これにより、X線ビームBの無駄な減衰を無くしている。なお、マークMは、格子状に規則正しく形成してもよく、図2に示すように不規則に形成してもよい。
XY機構22は、機構制御部25の制御信号に応じて、テーブル部材21を載置面21Aに沿って移動させるものである。また、XY機構22は、回転機構23により支持される。便宜上、図1において、左から右に向かう方向をX方向とし、手前から奥に向かう方向をY方向とし、載置面21AはXY平面に平行であるとする。
回転機構23は、機構制御部25からの制御信号に応じて、XY機構22を回転させるものである。詳しくは、回転機構23は中空の軸部材を有する大口径のベアリングによりXY機構22を支持しており、XY平面と直交するZ方向にXY機構22を回転させる。また、ベアリングの中空部を、X線ビームB1が通過できるようにしている。これにより、X線管31およびX線検出器32とテーブル部材21とを、回転機構23の回転軸Rに対して相対的に回転させている。また、回転機構23は、昇降機構24により支持される。なお、回転機構23自身は回転するものではない。以下の説明において、このような回転しない構成の総称を「非回転側」と記載する場合がある。
昇降機構24は、回転機構23を、回転軸Rの方向であるZ方向に昇降させるものである。この昇降機構24は、図示してない支持部材によりフロアから支持される。また、昇降機構24は、X線ビームB1を遮らないように配置される。
機構制御部25は、データ処理部50から制御信号を受け取ると、XY機構22・回転機構23・昇降機構24を駆動する制御を実行する。すなわち、機構制御部25は、XY機構22・回転機構23・昇降機構24に制御信号を送出して、テーブル部材21の位置を調整することができる。
X線照射部30は、X線管31とX線検出器32とを備える。X線照射部30において、X線管31とX線検出器32とは、テーブル部材21を挟み、そのテーブル部材21の回転軸R上の撮影領域中心点Cに対して対向するように配置される。なお、X線管31とX線検出器32とは、図示していない支持部材によりフロアから支持される。その他にも図示していないが、X線照射部30には、X線管31に高電圧を供給する高圧発生器や管電圧・管電流を制御するX線管制御部が備えられている。
X線管31は、テーブル部材21に載置された被検体5にX線ビームBを照射するものである。詳しくは、X線管31のX線焦点Fから放射状に放射されるX線ビームBは、被検体5およびテーブル部材21を透過する。そして、X線ビームBのうちの一部B1が、X線検出器32で検出される。なお、X線の中心線(以下、光軸ともいう)Bcと回転機構23の回転軸Rとは、20°〜70°の範囲内のいずれかの角度αで交わるようにする。X線管31には、焦点サイズが1μm程度のマイクロフォーカスX線管を用いることができる。なお、「X線焦点」とは、照射されるX線ビームを逆に辿った時の収束点のことをいう。
X線検出器32は、被検体5を透過したX線を2次元分解能で検出するものであり、検出した信号を「透過画像データ」としてデータ収集部51に送出する機能を有する。このようなX線検出器32には、FPD(フラットパネルディテクタ)を用いることができる。FPDは、X線検出素子をマトリックス状に並べたものである。この他、FPDを用いる代わりにX線I.I.(X線イメージインテンシファイア)とTVカメラ(テレビカメラ)とを用いることもできる。本実施形態に係るX線検出器32には、デジタル出力のものを用いるが、アナログ出力のものでもADコンバータを備えれば使用可能である。
マーク位置検出部40は、マークMの位置を検出するためのものであり、マーク面21Bの画像を「マーク画像データ」として軸振れ補正部52に送出する。本実施形態ではマーク位置検出部40は、TVカメラ41と距離計42との組み合わせにより構成される。なお、マーク位置検出部40において、TVカメラ41と距離計42とには、X線ビームBの照射による劣化を起こさないように、X線の遮蔽が行なわれるが、図1では省略している。X線の遮蔽は、例えば、TVカメラ41と距離計42との前面に鉛ガラスを設置したり、本体の周囲を鉛で覆ったりすることにより行なわれる。遮蔽物を設置した場合には、鏡等により測定光を折り曲げて検出する。
TVカメラ41は、支持フレーム43を介して回転機構23(非回転側:回転しない構成)に支持されている。また、TVカメラ41は、その光軸が回転軸Rに一致するように調整される。すなわち、TVカメラ41の視野中心である中心点Oは(設置誤差内で)回転軸Rと一致する。TVカメラ41は、マーク面21Bにおける回転軸R上の点Rcに一番近いマークMcを撮影する。それゆえ、視野の範囲を狭くすることができ、高拡大率で撮影することができる。TV力メラ41により検出されるマーク面21Bのマーク画像データは、軸振れ補正部52に送出される。なお、マーク画像データには、マークMcの位置を示す「マーク位置データ」のX成分およびY成分の値が含まれる。
また、TVカメラ41は、顕微鏡の光学系に、動画が撮影できるCCDなどの撮像素子を組み合わせたものである。ここでは、デジタル出力のものを用いるが、アナログ出力のものにADコンバータを設けて使用することもできる。また、被写界深度の深い光学系を有するものを用いると、マーク面21Bの高さが振れたときに画像がぼやけないようにすることができる。
距離計42は、TVカメラ41の近傍に支持フレーム43を介して回転機構23(非回転側:回転しない構成)に支持されている。距離計42は、マーク面21Bまでの距離を計測する。すなわち、マーク面21Bの法線方向(Z方向)の位置を検出するものであり、マークMcまでの高さhを非接触で検出する。このような距離計42としては、例えばレーザ変位計などの光を用いた非接触の距離計を用いることができる。また、距離計42により検出されるマークMcまでの高さを示すデータは、「マーク距離データ」として、軸振れ補正部52に送られる。なお、マーク距離データは、マーク位置データのZ成分の値となる。
データ処理部50は、データ収集部51・軸振れ補正部52・再構成部53を備える。具体的には、データ処理部50は、CPU・主メモリ・ハードディスク・キーボード・マウス・プリンタ・表示部・各種インターフェース等を備えた一般的な計算機により構成される。データ処理部50は、透過画像データを記憶したり、順次送られてきた透過画像データをそのまま動画像として表示部に表示したりする。また、透過画像データを再構成処理して作成した断層像データや3次元画像データを記憶したり表示したりする。また、各インターフェースからの入力に基づき、機構制御部25に制御信号を送出し、断層撮影のスキャン動作を行なわせたりする。
また、データ処理部50は、データ収集部51や軸振れ補正部52・再構成部53などのソフトウェアの機能ブロックをハードディスクに記憶しており、これらのソフトウェアをハードディスクから主メモリに読み込ませて機能を発揮させている。
データ収集部51は、被検体5がテーブル部材21に載置された場合、X線検出部32により検出された被検体5の透過画像データを収集するためのものである。また、データ収集部51は、収集した透過画像データを、軸振れ補正部52に送出する。
軸振れ補正部52は、TVカメラ41からマーク面21Bのマーク画像データを取得し、距離計42からマークMcまでのマーク距離データを取得する。そして、軸振れ補正部52は、これらのデータに基づき、データ収集部51から送出された透過画像データを、回転振れの無い透過画像データに補正する。具体的には、軸振れ補正部52は、マーク面21Bのマーク画像データから、マークMcの位置を示すマーク位置データのX成分およびY成分を算出する。そして、回転機構23がテーブル部材21を回転させる度に、マークMcの位置と、予め設定された基準位置とに基づいて回転振れ量を算出する。ここでは、基準位置は、データ収集部51が透過画像データを収集する際の中心点である。このように、回転機構23によりテーブル部材21を回転して、被検体5の透過画像データを撮影する度に、TVカメラ41により撮影されるマーク画像の中心点Oと選択したマークMcの位置とに基づいて回転振れ量を算出している。具体的には、図3に示すマーク画像において、マーク画像の中心点Oからマーク位置Mcまでの距離(ΔX,ΔY)を回転振れ量として求める。ここで求める回転振れ量(ΔX,ΔY)は、正確に言えば、実際の回転軸Rの振れた量と振れが無い場合のマークMcの円運動による移動量とが加算された値であるが、この回転振れ量を用いて、後述するステップS7〜S11の処理により、回転振れの無い透過画像データを得ることができる。また、補正された回転振れの無い透過画像データは、再構成部53に送出される。
再構成部53は、複数の透過画像データを再構成処理するためのものであり、断層像データを作成する機能を有している。ここでは、再構成部53は、軸振れ補正部52から透過画像データを受け取り、被検体5の断層像データを作成する。
なお、上述したもの以外の構成として、断層撮影装置10は、マーク面21Bを照らす照明やX線を遮蔽する遮蔽箱(図示せず)等を備えている。遮蔽箱は、被検体5・被検体載置部20・X線照射部30・マーク位置検出部40を格納して外部にX線をもらさないようにするとともに、それらの部材を支持する筐体の役目を果たすものである。
(1−2.動作)
次に、本実施形態に係る断層撮影装置10の動作を図4のフローチャートを用いて説明する。
(断層撮影のスキャン)
始めに、操作者により、被検体5がテーブル部材21に載置される(ステップS1)。この際、リアルタイムあるいはそれに準じたフレームレートの動画像の透過画像データがディスプレイ等の表示部に表示される。そこで、操作者は、ディスプレイに表示される透過画像を観察しながら、XY機構22・回転機構23・昇降機構24を手動操作する。そして、被検体5の所望の部位と撮影領域中心Cとが一致するようにする(ステップS2)。
次に、X線の照射条件や1回転あたりの収集点数などの撮影条件、さらにスライス幅・スライスピッチ・スライス枚数などの再構成条件等が操作者によりデータ処理部50に入力される。そして、これらの条件に基づき、1回転の走査の間に多数点でデータ収集を行なう断層撮影のスキャンが開始される(ステップS3)。
断層撮影のスキャンが開始されると、入力された撮影条件に従って回転機構23を回転させる制御信号がデータ処理部50から機構制御部25へ送出される。そして、機構制御部25が回転機構23を回転させ、1回転あたりの収集点数で決まる回転ピッチ毎にX線検出器32から透過画像データがデータ収集部51へ送出される(ステップS4)。また、透過画像データが収集される回転ピッチに対応して、TVカメラ41・距離計42から、マーク画像データおよびマーク距離データが軸振れ補正部52にそれぞれ送出される(ステップS5)。
なお、断層撮影のスキャンは、連続回転で行なうことも、回転ピッチごとに停止させて行なうことも可能である。また、データ処理部50に収集される透過画像データ、マーク画像データおよびマーク距離データは、データ容量が多く、主メモリだけでは記憶できない。そのため、ハードディスクに一旦記憶して、処理を行なうときに主メモリに読み込まれるようにしている。すなわち、処理途中のデータあるいは処理終了後のデータは主メモリ上にあるが、データ量が多い場合や不揮発記憶したい場合は適時ハードディスクに記憶されるようにしている。以下、メモリの記載は省略する。
以上説明したようなデータ収集の実行後に、マークMcの位置がマーク画像の中心点Oに存在し、かつ、マーク高さhが1回目のデータ収集点でのマーク高さh0と同じ場合、テーブル部材21の回転軸Rが振れていないとして、回転振れの補正は実行されずに、次のデータ収集が実行される(ステップS6−Yes,ステップS12)。
一方、データ収集の実行後に、マークMcの位置がマーク画像の中心点Oから外れた場合、あるいは、マーク高さhが1回目のマーク高さh0と同じでない場合、回転振れが生じたものとして、回転振れの補正処理が実行される(ステップS6−No)。
(回転振れの補正)
回転振れの補正は、以下の手順により行なわれる。
まず、マーク位置データに基づいて、「第1振れベクトルS」が軸振れ補正部52により算出される(ステップS7)。
具体的には、マークMcの位置とマーク画像の中心点Oとの距離(ΔX,ΔY)が求められる。すなわち、図3に示すようなマーク画像データがマーク位置検出部40から軸振れ補正部52に送出される。実際にはマーク画像には多数のマークが写ることになるが、図3においては測定対象のマークMcのみを模式的に示している。軸振れ補正部52は、多数のマークのうち、マーク画像の中心Oに一番近いマークMcを選び、このマークを追跡して測定の対象とする。そこで、軸振れ補正部52では、このマークMcの重心のマーク画像の中心から計ったX方向およびY方向のずれの実長(mm)を△X,△Yとして算出する。この際、マーク画像の1画素がマーク面21Bの何mmに相当するかを予め較正しておくことでΔX,ΔYを求めることができる。
また、軸振れ補正部52では、マークMcまでの高さhと、1回目のデータ収集の際に測定されたマークの高さh0との差ΔZを、式、
ΔZ=h−h0 ……(1)
により求める。
以上説明した手順により、マーク面21Bにおける第1振れベクトルS(ΔX,ΔY,ΔZ)が軸振れ補正部52により算出される。
続いて、第1振れベクトルに基づいて、「第2振れベクトルSd」が軸振れ補正部52により算出される(ステップS8)。
前提として、直交座標XYZを角度αだけ傾斜させた直交座標ξ,η,ζを、図5に示すように規定する。ζは光軸Bc方向、ηはY方向とする。また、検出面32A上の直交座標ξd,ηdを図5のようにする。ξd,ηdは画素の方向で、それぞれξ,η方向と一致する。
このようなξ,η,ζ座標への、第1振れベクトルS(ΔX,ΔY,ΔZ)の変換は、式、
Δξ=△X・cos(α)+△Z・sin(α) ……(2)
Δη=△Y ……(3)
Δζ=−△X・sin(α)+△Z・cos(α) ……(4)
により算出することができる。
これらの値を用いると、第1振れベクトルの検出面32Aへの射影である第2ベクトルSd(△ξd,△ηd)は、式、
mag'=FDD/(FCD−△ζ) ……(5)
Δξd=mag'・△ξ ……(6)
Δηd=mag'・△η ……(7)
により算出することができる。
但し、FDDはFとDとの距離、FCDはFとCとの距離を表わす。また、mag'は振れが生じたときの幾何拡大率を表わす。
以上説明した手順により、検出面32Aにおける第2振れベクトルSd(Δξd,△ηd)が軸振れ補正部52により算出される。
続いて、第2振れベクトルに基づいて、「第3振れベクトルSg」が軸振れ補正部52により算出される(ステップS9)。
具体的には、検出面32A上での1画素サイズは既知の値であるので、検出面32A上での第2振れベクトルSd(△ξd,△ηd)から、式、
△i=△ξd/検出面上での1画素サイズ ……(8)
△j=△ηd/検出面上での1画素サイズ ……(9)
に基づいて透過データが作る透過画像上における第3振れベクトルSg(△i,△j)を求めることができる。
また、振れが生じたときの画像は、振れが生じなかったときの画像に比して、第3振れベクトルSgだけ画像がずれているとともに、ファクタfmだけ拡大率が変化している。この拡大率ファクタfmは、式、
fm=mag'/(△ζ=0のmag')=FCD/(FCD−△ζ) ……(10)
のように表わされる。
以上説明した手順により、第3振れベクトルSg(△i,△j)と拡大率変化ファクタfmとが軸振れ補正部52によりデータ収集する度に求められる。
続いて、第3振れベクトルSgに基づき、データ収集部51が収集する透過画像データに対して回転軸Rの振れの補正が実行される。
具体的には、データ収集部51が収集した透過画像データを、第3振れベクトルSgだけ逆方向に移動する(すなわち−Sgだけずらす)処理が行なわれる(ステップS10)。それから、透過画像の画面中心を固定点とし、1/fmの拡大処理が行なわれる(ステップS11)。これにより、回転振れによる画像のずれと拡大率変化の補正が行われ、回転軸Rの振れが無い場合の透過画像データが得られる。
なお、この補正では、マーク画像上で、マークMcが常に中心点Oにくるように補正される。これにより、透過画像は、マークMcを中心として理想的な回転がおこなわれた時の透過画像に補正される。
(再構成処理)
そして、断層撮影のスキャンが終了すると(S12−Yes)、補正された透過画像データが再構成部53により再構成処理されて、断層像データが作成される(ステップS13)。一方、スキャンが終了していなければ(S12−No)、回転機構23が予め設定された角度だけ回転し、次のデータ収集が実行される。
なお、透過画像データから断層像データを再構成するには、FeldkampのコーンビームCT再構成アルゴリズム(L.A.Feldkamp,L.C.Davis and J.W.Kress,Practical cone-beam algorithm,J.Opt.Soc.Am.A/Vo1.1,No.6/June1984)等の方法を用いることができる。図6に概念図を示して補足すると、まず、収集した多数の透過画像データD1を対数変換し、複数の投影画像データD2を得る。それから、これらの投影画像データD2のそれぞれに対して空間フィルタ処理を行なう。空間フィルタ処理は、検出器傾動面Gに沿ったGX方向にハイカット処理を行ない、GX方向に直交するGY方向に高域強調処理(CTにおけるRamachandran & Lakshminarayananフィルタ処理等に相当)を行なう。次に、空間フィルタ処理をした投影画像データD2を、被検体5に固定した仮想の断面マトリックスCSMに、X線焦点Fに向けて3次元的に逆投影する。そして、逆投影したデータを積算すると、断層像データが得られる。逆投影する際には、傾斜角αが大きいほどGX方向へのハイカット処理におけるカットオフ周波数を大きくする。
以上説明した手順で断層像データを作成することができる。また、断層像データを1枚だけでなく、等間隔に並んだ多数枚の断層像データも作成できる。この結果、3次元画像データを得ることもできる。なお、一般的には、断層像データは載置面21Aに沿った面で再構成するが、他の面であっても再構成することができる。
(1−3.効果)
以上説明したように本実施形態に係る断層撮影装置10によれば、マークMcが形成されたマーク面21Bを備えたテーブル部材21と、マークMcの位置を検出するためのTVカメラ41および距離計42と、TVカメラ41および距離計42により得られたマークMcの位置データに基づいて、透過画像データを回転振れの無い透過画像データに補正する軸振れ補正部52とを備えた構成により、3次元的にマークMcの位置を検出して回転振れ量を3次元的に求めることができる。そして、この回転振れ量から、透過画像データの収集点毎に、第3振れベクトルSgと、拡大率変化ファクタfmとを求めることができる。それゆえ、透過画像データに対し正確な回転振れの補正をすることができる。
補足すると、TVカメラ41により、回転軸R上あるいは回転軸Rに一番近いマークMcを可視光で検出するので、撮影するTVカメラ41の視野を狭くできるとともに、高拡大率にできる。それゆえ、高精度でマークMcの位置を検出することができる。この結果、透過画像データに対し正確な回転振れの補正が可能となる。
さらに、被検体5を載置したテーブル部材21の回転振れ量を求めているので、XY機構22のガタつきによるテーブル部材21の振れや、テーブル部材21の回転中の反りの変化による振れなども補正できる。
なお、マークMcを撮影して回転振れ量を求めているので、テーブル部材21の外周面を真円に仕上げるような機械加工が不要となる。補足すると、直径が1m程度のテーブル部材21を真円加工して、数μmの回転軸Rの振れを高精度に検出するのは極めて困難である。これに対し、本実施形態に係る断層撮影装置10を用いれば、マークMの位置を高拡大率で検出することができるので、回転軸Rの振れを高精度に検出することができる。
また、本実施形態に係る断層撮影装置10は、円錐軌道タイプの断層撮影装置であるので、平板状の被検体であっても短いX線透過経路で断層撮影ができる。また、平板状の被検体であっても撮影領域中心点CをX線焦点に近づけて高拡大率の断層撮影ができる。特に、部品が実装された基板等の検査を好適に実施することができる。
なお、本実施形態においては、テーブル部材21には多数のマークが形成されており、マーク画像の中心点Oに一番近いマークMcの位置を追跡して測定している。ここで、「追跡」とは、前回のスキャンで得たマーク面21Bの画像におけるマークMcの位置に最も近いマークを新たなマークMcとすることであり、1データ収集ごとのマークの移動距離が隣接するマークとの距離の1/2以下であれば、1つのマークを追跡し続けることができる。
<第2の実施形態>
図7は本発明の第2の実施形態に係る断層撮影装置10Sの概念図である。なお、既に説明した部分と同一部分には同一符号を付し、重複した説明を省略する。また、以下の各実施形態も同様にして重複した説明を省略する。
本実施形態に係る断層撮影装置10Sは、テーブル部材21の裏面側にはマークMを形成せずに、テーブル部材21の表面部と平行にXY機構22(XY非移動側)に固定されたマークプレート26を備えている。このマークプレート26の表面部には、点状のマークMが形成される。このマークMは回転軸Rに合わせるようにするが、完全に合わなくてもよい。また、1個でなく複数個であってもよい。なお、マークMを1個だけ形成した場合は、マーク画像の視野中心(中心点O)に一番近いマークMの選択と、選んだマークMの追跡が不要となる。なお、マークプレート26は、X線を透過し易い部材で形成される。
上述したように本実施形態に係る断層撮影装置10Sは、テーブル部材21にマークMを形成せずに、マークプレート26を備えているので、 第1の実施形態に係る断層撮影装置10に比して、広い面積に多数のマークを付ける必要がなくなる。
<本発明の実施形態の変形例>
以下、本発明の実施形態の変形例について説明する。
(変形例1)
第1及び第2の実施形態では、第1振れベクトルSをマーク画像の視野中心を基準に測定している。そして、データ収集の度に、マークMcをマーク画像の中心点Oに戻すようにして回転軸Rの振れの補正を行なう。すなわち、マークMcを基準点として、マークMcがあたかも回転中心であるかのように透過画像を補正している。これに対し、基準点をマークMc以外に設定することもできる。
例えば、1回目のデータ収集点での視野中心を基準点として回転軸Rの振れを補正することができる。図8は変形例1における振れベクトルSの求め方の説明図である。ここで、1回目のデータ収集におけるマークMの位置を点M0で表わす。そうすると、回転軸Rに振れが無い場合、角度φ回転したときのマークMの位置は、点M0とマーク画像の中心点Oとを半径とする円周上の点Mφ0で表わされることになる。これは、角度φ回転したときに、回転軸Rの振れが無かった場合のマークMの位置を意味する。そこで、実際に測定したマークMの位置を示す点Mφと、この点Mφ0との差を振れベクトルSとして求めることができる。これにより、1回目のデータ収集の際のマーク画像の視野中心を基準点として透過画像データの補正ができるようになる。
(変形例2)
第1及び第2の実施形態では、マーク位置検出部40は、TVカメラ41と距離計42とを用いたが、TVカメラ41のみとすることもできる。この場合、TVカメラ41として、オートフォーカス型のものを用いる。すなわち、自動的にマーク面21Bにピントを合わせてマーク画像を撮影するので、オートフォーカスの作動量からマーク高さhを求めることができる。オートフォーカスの原理の一例を図9に示す。TVカメラ41は、光学系91・撮像部92・制御部93・機構部94よりなる。撮像部92は画像を制御部93に出力し、制御部93はこの画像の高周波成分の大きさを求め、この大きさが大きくなる方向に機構部94を制御し、機構部94は光軸95に沿って光学系91、あるいは光学系91と撮像部92とを移動させる。これにより、ピントを合わせが自動で行われるとともに機構部94の移動量からマークMまでの高さhを算出することができる。なお、オートフォーカスの方式には、他にも色々な方式があるが、そのいずれであっても使用可能である。
また、オートフォーカス型のTVカメラ41と距離計42とを併用してもよい。併用する場合、マークMまでの高さhを距離計42で求め、TVカメラ41のオートフォーカス機能を単にピント合わせにのみ用いる。
また、距離計42は、レーザ変位計により距離を測るものでも、通常光を用いた三角測量方式で距離を測るものでも、オートフォーカシングの作動により距離を測るものでもよい。
(変形例3)
第1及び第2の実施形態では、昇降機構24の上に回転機構23およびXY機構22を設けているが、昇降機構24を、テーブル部材21とXY機構22との間に設けてもよいし、XY機構22と回転機構23との間に設けてもよい。ただし、XY機構22と回転機構23との間に設ける場合、昇降によりTVカメラ41とマーク面との距離が大きく変化する場合に、ピントの合わせ直し(オートフォーカス)が必要となる。また、距離の変化が大きい場合には、マーク画像の拡大率が変化するので、これを補正する必要も生じる。すなわち、マーク画像の1画素がマーク面の何mmに相当するかの値を距離に応じて変更する必要がある。
(変形例4)
第1及び第2の実施形態において、TVカメラ41と距離計42とは非回転側(回転しない構成)から支持すればよく、フロア側から支持してもよい。ただし、昇降によりTVカメラ41とマーク面との距離が大きく変化する場合には、ピントの合わせなおし(オートフォーカス)が必要である。また、距離の変化が大きい場合、マーク画像の拡大率が変化するので、これを補正する必要が生じる。
(変形例5)
第1の実施形態では、被検体5を回転させているが、X線管31とX線検出器32とを備えるX線照射部30を回転させてもよい。この場合、マーク位置検出部40(TVカメラ41および距離計42)をX線照射部30に固定して一緒に回転させるようにする。
図10(A)〜図10(C)は、変形例5における断層撮影装置10A〜10Cの模式図である。第1及び第2の実施形態と同一の構成要素には同一の番号を付し、その説明を省略する。変形例5における断層撮影装置10は、回転フレーム44を備えている。回転フレーム44は、X線照射部30(X線管31とX線検出器32)とマーク位置検出部40(TVカメラ41と距離計42)とを一体で回転させるように互いを固定する部材である。また、図10(A)〜図10(C)において、“FL.”はフロア側から支持されていることを意味する。
図10(A)に示す断層撮影装置10Aは、第1の実施形態の変形例であり、X線管31とX線検出器32・マーク位置検出部40・回転フレーム44とが一体で回転するものである。また、XY機構22がテーブル部材21を移動させて撮影領域を変更する。
図10(B)に示す断層撮影装置10Bは、断層撮影装置10AにおいてXY機構22を回転機構23とフロアとの間に配置換えしたものである。この断層撮影装置10Bでは、撮影領域の変更はX線照射部30を移動することで行なう。
図10(C)に示す断層撮影装置10Cは、第2の実施形態の変形例であり、X線管31とX線検出器32・マーク位置検出部40・回転フレーム44とが一体で回転するものである。
なお、図10(A)〜図10(C)においては、昇降機構24は図示を省略している。昇降機構24は色々な位置に配置することが可能である。例えば、図10(A)および図10(C)に示す断層撮影装置10A・10Cでは、テーブル部材21とXY機構22との間、XY機構22とフロアとの間、回転フレーム44と回転機構23との間、もしくは回転機構23とフロアとの間に配置できる。また、図10(B)では、テーブル部材21とフロアとの間、回転フレーム44と回転機構23との間、回転機構23とXY機構22との間、XY機構22とフロアとの間に配置できる。
(変形例6)
第1及び第2の実施形態では、X線焦点Fと検出面32Aの中心Dとの距離FDD,X線焦点Fと撮影領域中心Cとの距離FCD,撮影領域中心Cと検出面32Aの中心Dとの距離CDDは、それぞれ、連続的あるいはステップ的に可変にして調整することができる。これにより幾何拡大率が可変となる。これは、回転機構23・X線管31・X線検出器32のうちの任意の2つ、あるいはすべてを平行移動および/または傾斜をふくむ位置変動させる機構を設けることで可能である。
また、この位置変動させる機構により、回転軸Rと光軸Bcとの交差角αを、連続的あるいはステップ的に可変とすることができる。交差角αが90°に近づくにつれ、断面像データのZ方向の分解能が大きくなる。一方、交差角αが、0°になるとZ方向の分解能がなくなる。交差角αが90°に近づくと、被検体5(基板などの板状物体)のX線吸収が大きくなり断層像の画質が低下する。そこで、交差角αを0°から90°の範囲で可変とすると、さまざまな被検体5に対応できる装置となる。
(変形例7)
第1及び第2の実施形態は、断層像データを作成する断層撮影装置に係るものであるが、透視装置としても用いることができる。変形例6で説明したように、距離FDD・FCD・CDDのそれぞれを可変とする機能をつければ、幾何拡大率を可変にでき、交差角αを可変にする機能をつければ透視角度を変えることができる。交差角αが可変のときに、α=0°付近とした場合には、マーク位置検出部40(TVカメラ41および距離計42)とX線ビームB1とが干渉してしまう。そこで、透視装置として使用する時は、マーク位置検出部40を退避する機構を設ける。
(変形例8)
第1及び第2の実施形熊と他の変形例とにおいて、回転軸Rと光軸Bcとの交差角αを90°とすると、一般的なコーンビームCT装置として使用できる。図11は変形例8における断層撮影装置10Dの模式図である。図11において、第1の実施形態に係る断層撮影装置10と同一の構成要素には同一の番号を付し、その説明は省略する。また、マーク位置検出部40は、第1の実施形態のTVカメラ41と距離計42とを合わせたものである。FL.はフロア側から支持されていることを示す。断層撮影装置10Dは第1の実施形態に係る断層撮影装置10を変形したものであるが、第2の実施形態に係る断層撮影装置10Sに対しても同じ変形をすることができる。
また、変形例5に係る断層撮影装置に対しても同様の変形が可能である。この場合には、X線照射部30が回転するコーンビームCT装置となる。
さらに、X線検出器32を1次元検出器に置き換えると、X線ビームBのうち、回転軸Rに垂直な面内に照射されるものだけを検出するシングルスライスのCT装置となる。
このように、本発明はコーンビームCT装置やシシグルスライスのCT装置にも適用できる。
(変形例9)
第1及び第2の実施形態では、点状のマークMをマーク面に形成しているが、マークの形成には色々な方法を用いることができる。例えば、印刷やレーザマーカやエッチングを用いることができる。また、吹き付け塗装で点状マークをランダムに形成することもできる。テーブル部材21またはマークプレート26の素材の模様をマークとして用いてもよい。また、マーク自体の形は円形でなくてもよい。
また、マーク画像におけるマークMの位置の測定も、必ずしも重心を求めて測定する必要はなく、パターンマッチングのような方法を用いてもよい。例えば、1回目のスキャンの際のマーク画像(φ=0°)を記憶して、この1回目のマーク画像を(所定の点、たとえば中心点Oなどに対して)角度φだけ回転させ、さらにずらして回転角度φにおけるマーク画像とマッチングを取ることで2回目以降のズレを測定してもよい。ここで、マッチングが最もよくなるずらし量が振れベクトルとなる。さらに、このマッチングの方法を用いる場合は、個々のマークを識別する必要はなく、マーク画像全体を一つのパターンとしてあつかえばよい。これにより、マークは1つ1つが分離したマークである必要はなく、(たとえば唐草文様のような)繋がったマークであってもよい。
(変形例10)
第1及び第2の実施形態では、軸振れ補正部52は、マーク位置検出部40が出力したマーク位置データより、回転振れ量を求め、この回転振れ量から透過画像データを補正している。これに対し、透過画像データを補正する代わりに、テーブル部材21とX線照射部30とを相対的に移動させることで回転軸の振れを補正してもよい。具体的には、軸振れ補正部52は、テーブル部材21とX線照射部30とを回転振れ量に相当する距離だけ相対的に移動することで回転軸Rの振れを補正できる。この場合、テーブル部材21とX線照射部30とを相対的に移動させる移動機構としては、既存の機構を流用することもできるし、新たな機構を追加することもできる。なお、軸振れ補正部52は、機構制御部25を介して、この移動機構を制御する。
また、第1及び第2の実施の形態に係るXY機構22を流用してX・Y方向の移動を制御し、昇降機構24を流用してZ方向の移動を制御することができる。なお、断層撮影中(回転中)はXY機構22と昇降機構24とは静止しているので流用しても問題はない。また、これらを流用せずに追加してもよい。また、相対的な移動であればよいので、X線照射部30を逆方向に移動させてもよい。
変形例5でも、既存のXY機構22を流用してX・Y方向の移動を制御し、昇降機構24を流用してZ方向の移動を制御することができる。同様に、断層撮影中(回転中)はXY機構22と昇降機構24とは静止しているので流用しても問題はない。また、これらを流用せずに追加してもよい。また、相対的な移動であればよいので、X線照射部30を逆方向に移動させてもよい。
(変形例11)
第1及び第2の実施形態において、断層像データを求める際、いわゆる「横割り方式」であっても「縦割り方式」であってもよい。ここで、「横割り方式」とは、全ての透過画像データに対して回転振れ量を求めてから、その全ての透過画像データについてそれぞれ補正し、その後に再構成処理を実行して断層像データを作成する方式である。また、「縦割り方式」とは、1つのデータ収集点毎に、回転振れ量を求めて透過画像データの補正および再構成処理を実行する方式である。この縦割り方式では、再構成処理により作成される断層像データに、次のデータ収集点において再構成処理した断層像データを積算する。また、横割り方式と縦割り方式とを組み合わせた方法により断層像データを作成してもよい。
また、第1及び第2の実施形態で、断層像データを作成する方法として、ART(Algebraic Reconstruction Technique)のような公知のアルゴリズムを用いてもよい。
(変形例12)
第1及び第2の実施形態では、X線検出器32により検出された透過画像データや、それを処理した断層像データおよび3次元画像データ、TVカメラ41で撮影されたマーク画像データは、表示部に表示される。この際、表示部に表示されたデータを、プリンタにより印刷したり、デジタルデータとして記録したり、回線を通じて送信したりすることも可能である。
(変形例13)
第1及び第2の実施形態では、テーブル部材21の上方にX線管31を配置しているが、下方にX線管31を配置しても良い。この場合、X線検出器32を上方に配置して、上下を逆にした構成にする。また、装置はどの方向に向けて設置してもよい。例えば載置面21Bは水平面でも、垂直面でも、傾斜面でもよい。
(変形例14)
第1及び第2の実施形態では、放射線としてX線を用いているが、透過性の放射線なら他の放射線を用いることもできる。たとえばγ線、中性子線、マイクロ波、透明物体に対する可視光線等を用いることもできる。
(変形例15)
第1及び第2の実施形態に、変形例1〜変形例14の構成および処理方法を組み合わせて用いてもよい。
<その他>
なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に構成要素を適宜組み合わせてもよい。
本発明の第1の実施形態に係る断層撮影装置10の構成を示す模式図である。 同実施形態に係るマーク面21Bの概念を示す図である。 同実施形態に係るマーク画像の概念を示す図である。 同実施形態に係る断層撮影装置10の動作を説明するためのフローチャートである。 同実施形態における回転振れの補正処理を説明するための図である。 同実施形態における断層像データの再構成処理を説明するための図である。 本発明の第2の実施形態に係る断層撮影装置10Sの概念図である。 変形例1における振れベクトルSの求め方の説明図である。 一般的なオートフォーカスの原理の一例を示す図である。 変形例5における断層撮影装置10A〜10Cの模式図である。 変形例8における断層撮影装置10Dの模式図である。
符号の説明
5…被検体、10,10S,10A,10B,10C,10D…断層撮影装置、
20…被検体載置部、21…テーブル部材、21A…載置面、21B…マーク面、
22…XY機構、23…回転機構、24…昇降機構、25…機構制御部、
26…マークプレート、30…X線照射部、31…X線管、32…X線検出器、
40…マーク位置検出部、41…TVカメラ、42…距離計、43…支持フレーム、
44…回転フレーム、50…データ処理部、51…データ収集部、52…軸振れ補正部、
53…再構成部、91…光学系、92…撮像部、93…制御部、94…機構部、
B…X線ビーム、C・・・撮影領域中心点、O…マーク画像の中心点、
M…マーク、R…回転軸。

Claims (5)

  1. 被検体が載置される表面部と、前記表面部の反対側にマークが形成された裏面部とを備えたテーブル部材と、
    前記テーブル部材に載置された前記被検体に放射線を照射する放射線源と、
    前記被検体を透過した放射線を検出する放射線検出手段と、
    前記放射線源および前記放射線検出手段と前記テーブル部材とを、該テーブル部材の表面部に垂直な回転軸に沿って相対的に回転させる回転機構と、
    前記被検体が前記テーブル部材に載置された場合、前記回転の複数の回転位置で前記放射線検出手段により検出された放射線量から前記被検体の透過画像データを収集するためのデータ収集手段と、
    前記マークの画像裏面側から撮影するためのTVカメラと、
    前記複数の回転位置における透過画像データの収集に対応させて前記TVカメラにより得られたマーク画像に基づいて、前記データ収集手段により収集された透過画像データを回転振れの無い透過画像データに補正する軸振れ補正手段と、
    前記軸振れ補正手段により補正された複数の透過画像データを再構成処理して断層像データを作成するための再構成手段と
    を備えたことを特徴とする断層撮影装置。
  2. 被検体が載置される表面部を有するテーブル部材と、
    前記テーブル部材に載置された前記被検体に放射線を照射する放射線源と、
    前記被検体を透過した放射線を検出する放射線検出手段と、
    前記放射線源および前記放射線検出手段と前記テーブル部材とを、該テーブル部材の表面部に垂直な回転軸に沿って相対的に回転させる回転機構と、
    前記テーブル部材を支持するとともに、前記表面部に沿って該テーブル部材を平行移動させる平行移動機構と、
    前記テーブル部材の表面部の反対側に該表面部と平行になるように前記平行移動機構に固定され、マークが形成された表面部を有するマークプレートと、
    前記テーブル部材の表面部に前記被検体が載置された場合、前記放射線検出手段により検出された放射線量から前記被検体の透過画像データを収集するためのデータ収集手段と、
    前記マークの位置を検出するためのマーク位置検出手段と、
    前記マーク位置検出手段により得られたマーク位置データに基づいて、前記データ収集手段により収集された透過画像データを回転振れの無い透過画像データに補正する軸振れ補正手段と、
    前記軸振れ補正手段により補正された複数の透過画像データを再構成処理して断層像データを作成するための再構成手段と
    を備えたことを特徴とする断層撮影装置。
  3. 求項2に記載の断層撮影装置において、
    前記軸振れ補正手段は、前記マーク位置データと、予め設定された基準位置とに基づいて回転振れ量を算出し、算出した回転振れ量に応じて、回転振れの無い透過画像データに補正する
    ことを特徴とする断層撮影装置。
  4. 請求項1記載の断層撮影装置において、
    前記軸振れ補正手段は、基準の回転位置での前記マーク画像と各回転位置での前記マーク画像との回転とずらしによるマッチングを取ることでマッチングが最もよくなるずらし量を求め、該ずらし量に基づき各回転位置での透過画像データを補正する
    ことを特徴とする断層撮影装置。
  5. 請求項2に記載の断層撮影装置において、
    前記軸振れ補正手段は、前記マーク位置検出手段により得られたマーク位置データと、予め設定された回転振れの無い基準マーク位置データとに基づいて回転振れ量を算出し、算出した回転振れ量に対応する距離を移動するように前記平行移動機構を制御する
    ことを特徴とする断層撮影装置。
JP2006136646A 2006-05-16 2006-05-16 断層撮影装置 Active JP4959223B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006136646A JP4959223B2 (ja) 2006-05-16 2006-05-16 断層撮影装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006136646A JP4959223B2 (ja) 2006-05-16 2006-05-16 断層撮影装置

Publications (2)

Publication Number Publication Date
JP2007309687A JP2007309687A (ja) 2007-11-29
JP4959223B2 true JP4959223B2 (ja) 2012-06-20

Family

ID=38842688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006136646A Active JP4959223B2 (ja) 2006-05-16 2006-05-16 断層撮影装置

Country Status (1)

Country Link
JP (1) JP4959223B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926645B2 (ja) * 2006-10-24 2012-05-09 名古屋電機工業株式会社 放射線検査装置、放射線検査方法および放射線検査プログラム
JP5222582B2 (ja) * 2008-02-14 2013-06-26 東芝Itコントロールシステム株式会社 断層撮影装置
JP4598880B1 (ja) * 2010-04-23 2010-12-15 東芝Itコントロールシステム株式会社 Ct装置およびct装置の撮影方法
JP5555653B2 (ja) * 2011-03-29 2014-07-23 日本電子株式会社 電子顕微鏡および3次元像構築方法
JP5714401B2 (ja) * 2011-04-21 2015-05-07 株式会社 ダイン X線検査装置
KR101181845B1 (ko) * 2011-12-22 2012-09-11 주식회사 쎄크 Smt 인라인용 자동 엑스선 검사장치
JP5881006B2 (ja) * 2011-12-27 2016-03-09 東芝Itコントロールシステム株式会社 断層撮影装置
EP2927945B1 (en) * 2014-04-04 2023-05-31 Nordson Corporation X-ray inspection apparatus for inspecting semiconductor wafers
US10571412B2 (en) 2014-08-07 2020-02-25 Nikon Corporation X-ray apparatus and structure production method
JP6930932B2 (ja) * 2018-01-26 2021-09-01 東芝Itコントロールシステム株式会社 傾斜型ct撮影装置
JP7286485B2 (ja) * 2019-09-06 2023-06-05 株式会社ミツトヨ 計測用x線ct装置
KR20230056623A (ko) * 2020-08-26 2023-04-27 하마마츠 포토닉스 가부시키가이샤 이물 검사 장치
JP2023001428A (ja) * 2021-06-21 2023-01-06 日本装置開発株式会社 Ct画像生成方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274337A (ja) * 1985-09-28 1987-04-06 株式会社東芝 Ctスキヤナ
JPS6275772A (ja) * 1985-09-30 1987-04-07 Toshiba Corp Ctスキヤナ
DE4335300C1 (de) * 1993-10-15 1994-10-27 Siemens Ag Computertomograph mit Fächerstrahl
JP2005106493A (ja) * 2003-09-29 2005-04-21 Rigaku Corp X線装置の試料面内回転中心設定方法、及び、それを利用した面内回転ぶれ補償方法、並びに、x線装置
JP4420186B2 (ja) * 2003-09-29 2010-02-24 株式会社島津製作所 X線ct装置
JP4537090B2 (ja) * 2004-02-19 2010-09-01 東芝Itコントロールシステム株式会社 トモシンセシス装置

Also Published As

Publication number Publication date
JP2007309687A (ja) 2007-11-29

Similar Documents

Publication Publication Date Title
JP4959223B2 (ja) 断層撮影装置
EP2257793B1 (en) Rotational x-ray device for phase contrast imaging comprising a ring-shaped grating
US9625257B2 (en) Coordinate measuring apparatus and method for measuring an object
US10410341B2 (en) X-ray diagnostic apparatus and medical image processing method
US9453803B2 (en) X-ray radiography system for differential phase contrast imaging of an object under investigation using phase-stepping
JP6187298B2 (ja) X線撮影システム及び画像処理方法
JP5783987B2 (ja) 放射線撮影装置
JPWO2008102685A1 (ja) 放射線画像撮影装置及び放射線画像撮影システム
JP5687618B2 (ja) コンピュータ断層撮像用スキャナ及びスキャン方法
KR20040111005A (ko) 단층촬영장치
JP2012090945A (ja) 放射線検出装置、放射線撮影装置、放射線撮影システム
JP2005021675A (ja) 断層撮影装置
JP5060862B2 (ja) 断層撮影装置
WO2020246220A1 (ja) 放射線撮影システム及び拡大吸収コントラスト画像生成方法
US20160363544A1 (en) Radiation inspecting apparatus
JP4732886B2 (ja) X線透視検査装置
JP4894359B2 (ja) X線断層撮像装置及びx線断層撮像方法
JP2011064662A (ja) 透視用テーブル付ct装置
JP2009276142A (ja) 放射線検査システム及び放射線検査の撮像方法
JP6365746B2 (ja) 画像処理装置、x線撮影システム及び画像処理方法
JP2008309705A (ja) コンピュータ断層撮影装置
JP2004340630A (ja) コンピュータ断層撮像方法及び装置
JP4264079B2 (ja) コンピュータ断層撮影方法および装置
JP2002333408A (ja) 産業用x線ct装置
WO2013084659A1 (ja) 放射線撮影装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4959223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250