JP4958370B2 - Metalized film for electronic parts - Google Patents

Metalized film for electronic parts Download PDF

Info

Publication number
JP4958370B2
JP4958370B2 JP2002379508A JP2002379508A JP4958370B2 JP 4958370 B2 JP4958370 B2 JP 4958370B2 JP 2002379508 A JP2002379508 A JP 2002379508A JP 2002379508 A JP2002379508 A JP 2002379508A JP 4958370 B2 JP4958370 B2 JP 4958370B2
Authority
JP
Japan
Prior art keywords
film
layer
release layer
thickness
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002379508A
Other languages
Japanese (ja)
Other versions
JP2004214278A (en
Inventor
範夫 田中
麻衣子 小河原
拓也 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Advanced Film Co Ltd
Original Assignee
Toray Advanced Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Advanced Film Co Ltd filed Critical Toray Advanced Film Co Ltd
Priority to JP2002379508A priority Critical patent/JP4958370B2/en
Publication of JP2004214278A publication Critical patent/JP2004214278A/en
Application granted granted Critical
Publication of JP4958370B2 publication Critical patent/JP4958370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、プリントコイル等の電子部品を製造するために好適な電子部品用金属化フィルムに関するものである。
【0002】
【従来の技術】
近年、電子部品は小型化が進み、電子機器の小型化に大きく貢献している。これらの電子部品は、一般的に電極と絶縁体を有しており、電極には低抵抗特性を、絶縁体には高い耐電圧特性、誘電率特性あるいは誘電正接特性を電子部品の諸特性に基づき要求される場合が多い。特にフィルム状の絶縁体においては、絶縁体の多くが樹脂化合物のため電子部品を実装する際の熱に耐えることが難しく、また、既にフィルム化されたものに電極金属を付与した金属化フィルムを用いるため、フィルムメーカーに依存した材質のなかで選択せざるえないため、限定された材質の中から選定された電子部品とならざるを得ない。
【0003】
例えば、ラミネートコイルなどの電子部品では、特許文献1で以下の提案がされている。即ち、まず、支持体のポリエチレンテレフタレート(PET)フィルムを製膜する際の押出機の口金内で、支持体フィルムとなる溶融PETの両側にポリフェニレンスルフィド(PPS)の溶融ポリマーを重ね、PPS/PET/PPSの3層複合フィルムを2軸配向製膜し、積層フィルムを作成する。この積層フィルムの片側にコロナ放電処理を施し、接着剤を塗布後、圧延銅箔箔を貼り合わせ、加熱プレスロールを通して複合金属積層シートを得る。この後、複合金属積層シートの金属箔側にエポキシ系接着剤を塗布、乾燥し、PET層と残る片側のPPSを剥離して除去しながら、接着剤を塗布した金属積層シートを円柱状の巻き芯に巻き取り、接着剤を硬化させた後巻き芯を抜き取り、巻回軸方向と垂直の方向にスライスして1μmのPPSフィルムからなるラミネートコイルを作製する提案である。
【0004】
この提案にあるように、電子部品の絶縁体としては可能な限り薄いものが電子部品の小型化の観点から好ましいのであるが、接着剤を塗布、乾燥し、PET層と残る片側のPPSを剥離する際、PPS層の厚みによってはPET層とPPS層との接着力でPPS層が破れるため、実用上1μm程度が下限の厚さとなっており、より薄膜の絶縁層を作成することは困難である。
【0005】
さらに、これらの絶縁体である樹脂フィルムの材質はフィルムメーカーで製造される材質や厚みに限定され、例えば、良好な特性を持つ高耐熱性樹脂であるポリイミドなどでは、フィルム厚みが12μmより薄いものは量産されておらず、部品の小型化が図れていない
【0006】
【特許文献1】
特許第2780380号公報(特許請求の範囲)
【0007】
【発明が解決しようとする課題】
そこで本発明の課題は、上述の問題に鑑み、例えばラミネートコイル等の電子部品の小型化を図るため、極力薄い絶縁体を有する電子部品用金属化フィルムを提供することにある。また、本発明の他の課題は、この金属化フィルムを用いた、超小型の電子部品を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る電子部品用金属化フィルムは、基材となるフィルムの片面に離型層を設けて離型層付きの基材フィルムとし、離型層の上に少なくとも蒸着された金属膜からなる金属電極層を設け、金属電極層の上に厚みが200nm〜2000nmの耐熱性かつ絶縁性樹脂層からなる接着剤層を設けた金属化フィルムで、かつ、前記離型層付き基材フィルムと金属電極層との間で、前記離型層付き基材フィルムを剥離、除去可能に構成し、さらに、前記耐熱性かつ絶縁性樹脂からなる接着剤層が電子部品の耐熱性かつ絶縁性樹脂からなる絶縁体層または誘電体層を構成する、電子部品を製造するための金属化フィルムであって、金属電極層の厚みが100オングストローム以上で且つ5μm以下であることを特徴とするものからなる。
【0009】
この金属化フィルムにおいては、さらに、上記離型層と金属電極層間であって離型層の上に、金属電極層を設けることが可能な剥離層が設けられている構成とすることもできる。剥離層としては、厚みが100nm〜2000nmの耐熱性樹脂層からなることが好ましい。また絶縁層の機械的強度を向上させるために接着剤層および剥離層の少なくとも一方が、セラミック素材の微細粒子を重量比で5%以上もつ樹脂層からなることが好ましい。
【0010】
また、金属電極層としては、パターン化された電極からなることが好ましい。
金属電極層のパターンとしては、特に限定されず、作成する電子部品にもよるが、たとえば後述の実施態様に示すような、電極が千鳥状に配置されたパターンを採用できる。このような千鳥状電極が配置されたパターンは、特にフィルムチップコンデンサ等の電子部品の作成に好ましい。
【0011】
離型層としては、70℃以上の温度で溶融する樹脂からなるものが好ましい。また、基材となるフィルムとしては、耐熱性や機械特性等の面から、とくにポリエステルフィルムからなることが好ましい。
【0012】
本発明における電子部品は、上記のような金属化フィルムを用いて作成したものであり、とくに薄膜絶縁体を有した小型の電子部品を構成することが可能である。
【0013】
【発明の実施の形態】
以下に、本発明について、望ましい実施の形態とともに、図面を参照しながら詳細に説明する。
本発明の金属化フィルムの1つは、基材となるフィルム、例えばポリエステルフィルムに離型層を設けて離型層付きの基材フィルムとし、離型層の上に厚みが100オングストローム以上で且つ5μm以下の、少なくとも蒸着された金属膜からなる金属電極層を設け、電極層の上に厚みが200nmから2000nmの耐熱性かつ絶縁性樹脂層からなり、電子部品の絶縁体層または誘電体層を構成する接着剤層を設けたことを特徴とする金属化フィルムである。
【0014】
本発明の金属化フィルムの2つ目は、基材となるフィルムに離型層を設け、離型層の上に剥離層を設けて離型層付きの基材フィルムとし、剥離層の上にパターン化した、少なくとも蒸着された金属膜からなる金属電極層を設け、電極層の上に上記の如き接着剤層を設けた金属化フィルムであって、接着剤層が耐熱性樹脂であり、厚みが200nmから2000nmの絶縁性樹脂層である金属化フィルムである。
【0015】
以下、本発明に係る金属化フィルムについて、図面を参照しながら詳細に説明する。
図1は、本発明の一実施態様に係る金属化フィルムとしてのラミネートコイル用蒸着フィルムの断面図である。図1には、基材となるプラスチックフィルム(1)の片面に離型層(2)を設けて基材フィルムとなし、その離型層(2)上に金属膜(3)(金属電極層)を蒸着し、更にその上に誘電体樹脂(4)がコーティングされている金属化フィルムが例示されている。
【0016】
図2は、本発明の他の実施態様に係る金属化フィルムとしての回路基板用金属化フィルムの断面図であって、図1における離型層(2)と、その上に形成される金属膜(3)(金属電極層)の間に剥離層(5)の耐熱樹脂がコーティングされている金属化フィルムを示している。金属膜(3)はここではパターン化されている。
【0017】
図3は、本発明の更に他の実施態様に係る金属化フィルムとしてのチップコンデンサ用金属化フィルムの平面図であって、図2におけるパターンの金属膜(3)(金属電極層)の他の形態を示す一例であって、金属膜(3)(金属電極層)の上には耐熱樹脂がコーティングされている金属化フィルムを示している。
【0018】
本発明において用いられる基材フィルム(1)としては、特にポリエステルフィルムが好ましく、ポリエステルフィルムであれば、特に限定するものではないが、ポリエチレンテレフタレート、ポリエチレンナフタレート等からなるフィルムが好適である。この基材フィルム(1)の厚さは、加工の難易性から好適には12〜150μm程度であり、更に好ましくは15〜50μmである。この基材フィルムの片面には、離型層(2)がコーティングやその他の常套手段により設けられている。
【0019】
離型層(2)の材質は、通常シリコーン系の離型層やフッ素系の離型層、あるいはこれらの変性樹脂が用いられるが、特に材質を限定するものではなく、離型層の上に金属を設けることが可能なものであればよい。この離型層(2)の厚さは、好ましくは0.05〜0.5μm程度である。
【0020】
また、基材フィルムの片面に離型層(2)を設け、その上にコーティング等の常套手段により剥離層(5)を設けてもよい。
【0021】
剥離層(5)の材質は、耐熱性の樹脂であれば、特に材質を限定するものではないが、剥離層の上に金属を設けることが可能なことが必須要件である。この剥離層(5)の厚さは、好ましくは100〜2000nm程度である。
【0022】
金属電極層を成す金属膜(3)の材質としては、通常電極として用いられる金属であれば特に限定されず、例えば、アルミニウム、亜鉛、金、銀、銅、ニッケル、クロム等の単一金属または合金が好適である。
【0023】
金属膜(3)の厚さは、通常100オングストローム以上が必要であり、電子部品の許容電流によっても異なるが、例えばラミネートコイルの電極とする場合は、200オングストローム以上が必要であり、また5μmを超える厚みでは、金属箔厚みにラミネートコイルの大きさが左右されるため実用的ではない。
【0024】
また金属膜の形成方法としては、金属膜の厚さが200オングストローム程度であれば、たとえば、蒸発源が高周波加熱方式、EB方式、抵抗加熱方式等の一般的な蒸着法や、スパッタリング、イオンプレーティング等の蒸着も可能である。金属膜の厚さが3000オングストロームを超えるような厚膜の場合は、この蒸着加工後に、電解メッキ法や無電解メッキ法で金属膜を厚膜化することも可能である。
【0025】
なお、金属膜は最終的に電子部品の機能を満たすために、目的に応じたパターン化処理を施すことが可能である。パターン化処理の方法については、フォトリソ法などの常套手段や他の公知の方法を用いればよい。
【0026】
本発明では、電極となる金属膜(3)上に接着剤層となる絶縁樹脂層(4)が設けられる。絶縁樹脂層(4)は、印刷法やコーティング法などの常套の方法で形成できるが、好適にはコーティングで形成する。接着剤層となる絶縁樹脂層(4)の材質は、電子部品に使用可能な樹脂であれば特に限定されないが、半田付けする際の受熱に耐える耐熱性樹脂であることが必要であり、且つ絶縁抵抗及び絶縁破壊電圧が高いポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリフェニレンスルフィド(PPS)、ポリイミド、ポリアセタールなどのポリマー系樹脂や、メラミン樹脂、アクリル樹脂、あるいはポリ四フッ化エチレン等のフッ素系樹脂等、更にはこれらの変性樹脂が好適であり、中でも、ポリフェニレンスルフィドやポリイミドあるいはこれらの変性樹脂が好適である。また、この絶縁樹脂層(4)の厚さは200〜2000nmであり、好ましくは500〜2000nm程度である。
【0027】
【実施例】
実施例1
厚さ25μmのポエステルフィルムの片面に、乾燥後の塗膜厚さが200nmになるようにグラビアコート法でポリエチレンワックスを塗布し、離型層付きの基材フィルムを作成した。この基材フィルムのポリエチレンワックスの上に、高周波加熱方式の蒸発源を持つ真空蒸着機で銅を100nmの厚さに蒸着し、その後電解メッキ法にて電極金属層の銅厚みを4μmまで厚膜化した。さらに電極金属膜をフォトリソ法にて電極金属部が、図3に示したのと同様に、多数の直線(幅 0.5mm)状にに配置されるように、エッチングを施した。このように離型層付きの基材フィルム(10)と多数の直線状の電極金属からなるシートの金属電極膜(3)の上に、さらに絶縁性樹脂として、固形分20%のシリコーン変性したポリイミド樹脂をシクロヘキサノンにて5%に希釈し、乾燥厚みが0.7μmとなるように再びバーコート法でコーティングした。絶縁体樹脂であるシリコーン変性ポリイミド樹脂の乾燥は、温度を140℃で1分間行い、金属化フィルムを作成した。
【0028】
[ラミネートコイルの作成]
実施例1で作成した金属化フィルムを幅50mmにスリットし、直径1mmの円柱状の鉄心に基材フィルムを温度120℃のローラーにタッチさせて剥離、除去しながら100回転巻き取り、その状態で180℃で3時間硬化せしめた。その後鉄心を抜き去り、巻回軸と垂直の方向に1mmの厚さにスライスして絶縁フィルムの厚さが、わずか0.7μmのポリイミドフィルムで、電極層が極めて薄い4μmの銅箔からなるラミネートコイルを作成した。このラミネートコイルの作成の際、基材フィルムと金属箔の剥離は極めてスムーズで、箔切れ、フィルム破れは全く発生しなかった。またラミネート工程、及びスライス工程でもシワや挫屈などのトラブルは無かった。
【0029】
実施例2
[回路基板の作成]
厚さ25μmのポエステルフィルムの片面に、乾燥後の塗膜厚さが200nmになるようにグラビアコート法で、シリコン変性アクリル樹脂(固形分28%)とメラミン樹脂(固形分50%)の混合塗剤を塗布し、離型層付きの基材フィルムを作成した。この基材フィルムの離型層であるポリイミド層を、乾燥後の塗膜厚さが100nmになるようにグラビアコート法で塗布し、乾燥した。さらにこの剥離層の上に高周波加熱方式の蒸発源を持つ真空蒸着機で銅を100nmの厚さに蒸着し、その後は実施例1と同じく電解メッキを施し、銅電極を回路パターン状に処理処理した後、絶縁樹脂を乾燥後の厚みが1μmとるように塗布、乾燥して金属化フィルムを得た。この金属化フィルムを所望の寸法に断裁し、カバーレイ付きの基材フィルム付き回路基板を得、後に基材フィルムを剥離することで、基体層がわずか1μm、カバーレイフィルムがポリイミド層であるわずか100nmの回路基板を得た。
【0030】
なお、ここまでの工程において実施例1、実施例2では同様のラミネートコイルや回路基板の作成にこれまで使用していた極薄フィルムを基体として作成していたものでのシワ等の種々の問題の発生は一切無かった。
【0031】
実施例3
厚さ25μmのポリエステルフィルムの片面に、乾燥後の塗膜厚さが200nmになるようにグラビアコート法でシリコーン変成アクリル樹脂を塗布し、離型層付きの基材フィルムとし、この基材フィルムのシリコーン変性アクリル樹脂の上に、更にグラビアコート法で固形分20%のビフェニルテトラカルボン酸二無水物(BPDA)を主成分とする変性ポリイミド樹脂をシクロヘキサノンにて5%に希釈し、乾燥後の塗布厚さが200nmとなるように塗布した。変性ポリイミド樹脂の乾燥は、温度を140℃で1分間行い、その後更に180℃1分間のエージングを施した。この変性ポリイミドの上に高周波加熱方式の蒸発源を持つ真空蒸着機で銅を100nmの厚さに蒸着し、その後蒸着金属膜をフォトリソ法にて蒸着金属部が、図3に示すように、多数の長方形(6mm×1.4mm)が千鳥状に配置されるように、エッチングを施した。このように離型層付きの基材フィルム(10)上に多数の長方形状の蒸着金属からなる電極金属膜(3)が形成された蒸着フィルムの上に、更に絶縁性樹脂として前述の変性ポリイミド樹脂を同様の方法で、乾燥厚みが500nmとなるように再びグラビアコート法でコーティングし、温度を140℃で1分間乾燥して、金属化フィルムを作成した。
【0032】
[外装フィルムの作成]
厚さ12μmのポリイミドフィルムに、固形分20%のビフェニルテトラカルボン酸二無水物(BPDA)を主成分とする変性ポリイミド樹脂をシクロヘキサノンにて5%に希釈し、乾燥厚みが0.2μmとなるように再びバーコート法でコーティングし、温度を140℃で1分間行って接着層を持つポリイミドフィルムを作成した。
【0033】
[コンデンサの作成]
上記の外装フィルムと、実施例3で得られた金属化フィルムを同一寸法にシート状にカッティングし、図4に示すように外装フィルム(8)の接着剤層と金属化フィルム(7)の接着剤層を、図3に示した積層用の位置合わせマーク(6)を使用して重ね合わせ、温度180℃、圧力5kg/cm2 で10秒間ヒートプレス板(9)で加熱プレスした。その後基材フィルムを剥がし、外装フィルムに電極層を転写させ、銅電極をもつポリイミドフィルムを作成した。この銅電極を持つポリイミドフィルムの電極層に再び金属化フィルムの接着剤面を電極層が重なるように重ね合わせ、温度180℃、圧力5kg/cm2 で10秒間プレスした。その後基材フィルムを剥がした。こうして電極層と接着層が交互に100層を重ね合わせたのち、最後に重ねた電極層に外装フィルムの接着剤層を重ね、同じく温度180℃、圧力5kg/cm2 で10秒間プレスして積層体を得た。このようにして、図5に示すような積層体が得られ、得られた積層体を所定の切断線の沿って切断し、誘電体厚さがわずか0.7μmで基板占有寸法が3.2mm×1.6mmの所謂チップサイズのポリイミドフィルムを誘電体とするコンデンサを得た。
【0034】
ここまでの工程において実施例3では、同様の0.7μm厚の蒸着フィルムを用いたチップコンデンサを作成する際に問題となるフィルムの巻回時、積層時に問題となるシワ等の発生は一切なく、またフィルム同士の密着も極めて良好なものであった。
【0035】
【発明の効果】
以上説明したように、本発明に係る電子部品用金属化フィルムによれば、とくに小型の電子部品を作成する際に、従来極薄のフィルムを基体層とする金属化フィルムを用いて作成していた場合のシワ等の種々の問題の発生を皆無にすることが可能となり、従来にない極薄フィルムを基体層とできるため電子部品の小型化に大きく貢献できる。さらに本発明の金属化フィルムを用いて作成された回路基板は、そのままでは基体層の強度が極めて低く、可動部分の使用には極めて良好である。また、金属板などの熱伝導率の高いベースに貼れば、放熱性の優れた回路基板となる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態における金属化フィルムの構造を示す断面図である。
【図2】本発明の第2の実施形態における金属化フィルムの構造を示す断面図である。
【図3】実施例3における金属電極層のパターンを示す平面図である。
【図4】フィルムコンデンサの作成における金属電極層を重ね合わせ、接着の様子を示した断面図である。
【図5】金属電極層を重ね、接着したコンデンサ素子の断面図である。
【符号の説明】
1 基材となるプラスチックフィルム
2 離型層
3 金属電極膜(金属電極層)
4 誘電体となる接着剤樹脂層
5 誘電体となる剥離層
6 積層用の位置合わせマーク
7 図2の構成を持つ図3のパターン化金属化フィルム
8 接着剤付き外装フィルム
9 ヒートプレス板
10 離型層を持つ基材フィルム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metallized film for electronic parts suitable for producing electronic parts such as printed coils.
[0002]
[Prior art]
In recent years, electronic components have been miniaturized and have greatly contributed to miniaturization of electronic devices. These electronic components generally have an electrode and an insulator. The electrode has low resistance characteristics, and the insulator has high withstand voltage characteristics, dielectric constant characteristics, or dielectric loss tangent characteristics. Is often required. Especially for film-like insulators, since most of the insulators are resin compounds, it is difficult to withstand the heat when mounting electronic components. In order to use it, it must be selected from among the materials depending on the film manufacturer, so it must be an electronic component selected from the limited materials.
[0003]
For example, for electronic components such as a laminate coil, Patent Document 1 proposes the following. That is, first, a polyphenylene sulfide (PPS) molten polymer is laminated on both sides of molten PET serving as a support film in a die of an extruder when forming a polyethylene terephthalate (PET) film as a support, and PPS / PET A biaxially oriented / PPS three-layer composite film is formed to form a laminated film. One side of this laminated film is subjected to corona discharge treatment, and after applying an adhesive, a rolled copper foil foil is bonded together, and a composite metal laminated sheet is obtained through a heated press roll. Thereafter, an epoxy adhesive is applied to the metal foil side of the composite metal laminate sheet, dried, and the metal laminate sheet coated with the adhesive is rolled into a cylindrical shape while peeling and removing the PET layer and the remaining PPS on one side. This is a proposal to produce a laminated coil made of a 1 μm PPS film by winding it around a core and curing the adhesive, then pulling out the core and slicing it in a direction perpendicular to the winding axis direction.
[0004]
As suggested in this proposal, the thinnest possible insulator for electronic parts is preferable from the viewpoint of miniaturization of electronic parts, but adhesive is applied and dried, and the PET layer and the remaining PPS on one side are peeled off. In this case, depending on the thickness of the PPS layer, the PPS layer is broken due to the adhesive force between the PET layer and the PPS layer. Therefore, the practical thickness is about 1 μm, and it is difficult to form a thinner insulating layer. is there.
[0005]
Furthermore, the material of the resin film as the insulator is limited to the material and thickness produced by the film manufacturer. For example, in the case of polyimide, which is a high heat resistance resin having good characteristics, the film thickness is less than 12 μm. Is not mass-produced, and parts are not miniaturized .
[0006]
[Patent Document 1]
Japanese Patent No. 2780380 (Claims)
[0007]
[Problems to be solved by the invention]
Therefore, in view of the above-described problems, an object of the present invention is to provide a metallized film for an electronic component having a thin insulator as much as possible in order to reduce the size of the electronic component such as a laminated coil. Another object of the present invention is to provide an ultra-small electronic component using this metallized film.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the metallized film for electronic parts according to the present invention is a base film with a release layer by providing a release layer on one side of the film to be a base, and on the release layer. A metallized film comprising at least a metal electrode layer comprising a deposited metal film , and an adhesive layer comprising a heat-resistant and insulating resin layer having a thickness of 200 nm to 2000 nm provided on the metal electrode layer; The base film with a release layer is configured to be peelable and removable between the base film with a mold layer and the metal electrode layer, and the adhesive layer made of the heat-resistant and insulating resin is an electronic component. A metallized film for manufacturing an electronic component constituting an insulating layer or dielectric layer made of a heat-resistant and insulating resin , wherein the metal electrode layer has a thickness of 100 Å or more and 5 μm or less. Features and Consisting of shall.
[0009]
The metallized film may further have a configuration in which a release layer capable of providing a metal electrode layer is provided on the release layer between the release layer and the metal electrode layer. The release layer is preferably composed of a heat resistant resin layer having a thickness of 100 nm to 2000 nm. Further , in order to improve the mechanical strength of the insulating layer, it is preferable that at least one of the adhesive layer and the release layer is made of a resin layer having 5% or more by weight of fine ceramic material particles.
[0010]
The metal electrode layer is preferably composed of a patterned electrode.
Although it does not specifically limit as a pattern of a metal electrode layer, Although it depends also on the electronic component to produce, the pattern by which the electrode is arrange | positioned, for example as shown in the below-mentioned embodiment is employable. Such a pattern in which staggered electrodes are arranged is particularly preferable for producing an electronic component such as a film chip capacitor.
[0011]
The release layer is preferably made of a resin that melts at a temperature of 70 ° C. or higher. Moreover, as a film used as a base material, it is preferable to consist especially of a polyester film from surfaces, such as heat resistance and a mechanical characteristic.
[0012]
The electronic component according to the present invention is prepared using the metallized film as described above, and in particular, it is possible to constitute a small electronic component having a thin film insulator.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail together with preferred embodiments with reference to the drawings.
One of the metallized films of the present invention is a base film, for example, a polyester film having a release layer provided with a release layer, and a thickness of 100 angstroms or more on the release layer. the following 5 [mu] m, providing a metal electrode layer made of a metal film which is at least deposited, Ri Do from 2000nm heat resistance and insulating resin layer having a thickness of from 200nm on the electrode layer, the insulator layer or dielectric layer of the electronic component It is the metallized film characterized by providing the adhesive bond layer which comprises .
[0014]
The 2nd of the metallized film of this invention provides a release layer in the film used as a base material, provides a peeling layer on a release layer, and makes it a base film with a release layer, on a peeling layer A metallized film provided with a patterned metal electrode layer comprising at least a deposited metal film, and an adhesive layer as described above provided on the electrode layer, wherein the adhesive layer is a heat resistant resin and has a thickness Is a metallized film which is an insulating resin layer of 200 nm to 2000 nm.
[0015]
Hereinafter, the metallized film according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view of a laminated coil vapor deposition film as a metallized film according to an embodiment of the present invention. In FIG. 1, a release layer (2) is provided on one side of a plastic film (1) as a base material to form a base film, and a metal film (3) (metal electrode layer) is formed on the release layer (2). ) Is vapor-deposited and a dielectric resin (4) is further coated thereon.
[0016]
FIG. 2 is a cross-sectional view of a metallized film for a circuit board as a metallized film according to another embodiment of the present invention, and a release layer (2) in FIG. 1 and a metal film formed thereon (3) A metallized film in which the heat-resistant resin of the release layer (5) is coated between (metal electrode layers) is shown. The metal film (3) is patterned here.
[0017]
FIG. 3 is a plan view of a metallized film for a chip capacitor as a metallized film according to still another embodiment of the present invention, and shows another pattern of the metal film (3) (metal electrode layer) of the pattern in FIG. It is an example which shows a form, Comprising: The metallized film by which the heat resistant resin is coated on the metal film (3) (metal electrode layer) is shown.
[0018]
The substrate film (1) used in the present invention is particularly preferably a polyester film, and is not particularly limited as long as it is a polyester film, but a film made of polyethylene terephthalate, polyethylene naphthalate, or the like is suitable. The thickness of the base film (1) is preferably about 12 to 150 μm, more preferably 15 to 50 μm, from the difficulty of processing. A release layer (2) is provided on one side of the base film by coating or other conventional means.
[0019]
As the material of the release layer (2), a silicone release layer, a fluorine release layer, or a modified resin thereof is usually used, but the material is not particularly limited, and the release layer (2) is formed on the release layer. What is necessary is just to be able to provide a metal. The thickness of the release layer (2) is preferably about 0.05 to 0.5 μm.
[0020]
Alternatively, the release layer (2) may be provided on one side of the base film, and the release layer (5) may be provided thereon by a conventional means such as coating.
[0021]
The material of the release layer (5) is not particularly limited as long as it is a heat resistant resin, but it is essential that a metal can be provided on the release layer. The thickness of the release layer (5) is preferably about 100 to 2000 nm.
[0022]
The material of the metal film (3) forming the metal electrode layer is not particularly limited as long as it is a metal that is usually used as an electrode. For example, a single metal such as aluminum, zinc, gold, silver, copper, nickel, chromium, or the like Alloys are preferred.
[0023]
The thickness of the metal film (3) usually needs to be 100 angstroms or more, and varies depending on the allowable current of the electronic component. For example, in the case of a laminated coil electrode, 200 angstroms or more is necessary, and 5 μm A thickness exceeding this is not practical because the size of the laminate coil depends on the thickness of the metal foil.
[0024]
As a method for forming the metal film, if the thickness of the metal film is about 200 angstroms, for example, the evaporation source may be a general vapor deposition method such as a high frequency heating method, an EB method, a resistance heating method, sputtering, ion plating, or the like. Vapor deposition such as coating is also possible. In the case where the thickness of the metal film exceeds 3000 angstroms, the metal film can be thickened by electrolytic plating or electroless plating after the vapor deposition.
[0025]
The metal film can be subjected to a patterning process according to the purpose in order to finally satisfy the function of the electronic component. As for the patterning method, conventional means such as photolithography or other known methods may be used.
[0026]
In this invention, the insulating resin layer (4) used as an adhesive bond layer is provided on the metal film (3) used as an electrode. The insulating resin layer (4) can be formed by a conventional method such as a printing method or a coating method, but is preferably formed by coating. The material of the insulating resin layer (4) serving as the adhesive layer is not particularly limited as long as it is a resin that can be used for electronic components, but it is necessary to be a heat-resistant resin that can withstand heat reception during soldering, and Polymer resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyphenylene sulfide (PPS), polyimide, polyacetal, etc. with high insulation resistance and breakdown voltage, melamine resin, acrylic resin, polytetrafluoroethylene, etc. These modified resins are preferred, and among them, polyphenylene sulfide, polyimide, or modified resins thereof are preferred. The thickness of the insulating resin layer (4) is a 200 to 2000 nm, and preferably about 500-2000 nm.
[0027]
【Example】
Example 1
Polyethylene wax was applied to one side of a 25 μm thick polyester film by a gravure coating method so that the coating thickness after drying was 200 nm, to prepare a base film with a release layer. On the polyethylene wax of this base film, copper is deposited to a thickness of 100 nm with a vacuum deposition machine having a high frequency heating type evaporation source, and then the electrode metal layer is thickened to 4 μm by electrolytic plating. Turned into. Further, the electrode metal film was etched by photolithography so that the electrode metal portions were arranged in a number of straight lines (width 0.5 mm) in the same manner as shown in FIG. In this way, on the base film (10) with a release layer and the metal electrode film (3) of a sheet made of a large number of linear electrode metals, silicone modification with a solid content of 20% was further performed as an insulating resin. The polyimide resin was diluted to 5% with cyclohexanone and coated again by the bar coating method so that the dry thickness became 0.7 μm. The silicone-modified polyimide resin, which is an insulating resin, was dried at a temperature of 140 ° C. for 1 minute to prepare a metallized film.
[0028]
[Create laminate coil]
The metallized film created in Example 1 was slit to a width of 50 mm, and the substrate film was touched on a roller having a temperature of 120 ° C. on a cylindrical iron core having a diameter of 1 mm, and the film was wound 100 turns while being peeled and removed. Curing was performed at 180 ° C. for 3 hours. After that, the iron core is removed, sliced into a thickness of 1 mm in the direction perpendicular to the winding axis, and a laminate made of a 4 μm copper foil with a very thin electrode layer made of a polyimide film with a thickness of only 0.7 μm. A coil was created. During the production of this laminated coil, the base film and the metal foil peeled off very smoothly, and no foil breakage or film breakage occurred. In addition, there were no problems such as wrinkles and cramping in the laminating process and the slicing process.
[0029]
Example 2
[Creation of circuit board]
Mixing silicon modified acrylic resin (solid content 28%) and melamine resin (solid content 50%) on one side of a 25μm thick polyester film by gravure coating so that the coating thickness after drying is 200 nm The coating agent was apply | coated and the base film with a release layer was created. The polyimide layer which is a release layer of this base film was applied by a gravure coating method so that the coating thickness after drying was 100 nm and dried. Further, copper is deposited to a thickness of 100 nm on this release layer with a vacuum deposition machine having a high-frequency heating type evaporation source, and thereafter, electrolytic plating is performed in the same manner as in Example 1 to process the copper electrode into a circuit pattern. Then, the insulating resin was applied and dried so that the thickness after drying was 1 μm to obtain a metallized film. This metallized film is cut to a desired size to obtain a circuit board with a base film with a cover lay, and then the base film is peeled off, so that the base layer is only 1 μm and the cover lay film is a polyimide layer. A 100 nm circuit board was obtained.
[0030]
In the steps up to here, in Examples 1 and 2, various problems such as wrinkles in the case where the ultrathin film which has been used for the production of the same laminated coil or circuit board is used as a substrate. There was no outbreak.
[0031]
Example 3
A silicone-modified acrylic resin is applied to one side of a polyester film having a thickness of 25 μm by a gravure coating method so that the coating thickness after drying becomes 200 nm, to form a base film with a release layer. On the silicone-modified acrylic resin, a modified polyimide resin containing 20% solid content of biphenyltetracarboxylic dianhydride (BPDA) as a main component is further diluted with cyclohexanone to 5% by gravure coating, and dried. The coating was applied so that the thickness was 200 nm. The modified polyimide resin was dried at 140 ° C. for 1 minute, and then further subjected to aging at 180 ° C. for 1 minute. On this modified polyimide, copper is deposited to a thickness of 100 nm with a vacuum deposition machine having a high-frequency heating type evaporation source, and then a deposited metal film is formed by a photolithographic method, as shown in FIG. Etching was performed so that the rectangular shapes (6 mm × 1.4 mm) were arranged in a staggered pattern. On the deposited film in which the electrode metal film (3) made of a large number of rectangular deposited metals is formed on the base film (10) with a release layer as described above, the above modified polyimide is further used as an insulating resin. The resin was coated again by the gravure coating method in the same manner so that the dry thickness was 500 nm, and dried at 140 ° C. for 1 minute to prepare a metallized film.
[0032]
[Creation of exterior film]
To a polyimide film having a thickness of 12 μm, a modified polyimide resin mainly composed of biphenyltetracarboxylic dianhydride (BPDA) having a solid content of 20% is diluted to 5% with cyclohexanone so that the dry thickness becomes 0.2 μm. A polyimide film having an adhesive layer was prepared by coating again with the bar coating method and at a temperature of 140 ° C. for 1 minute.
[0033]
[Create capacitor]
The above exterior film and the metallized film obtained in Example 3 are cut into a sheet shape with the same dimensions, and the adhesive layer of the exterior film (8) and the metallized film (7) are bonded as shown in FIG. The agent layer was superposed using the alignment mark (6) for lamination shown in FIG. 3, and heated and pressed with a heat press plate (9) at a temperature of 180 ° C. and a pressure of 5 kg / cm 2 for 10 seconds. Thereafter, the base film was peeled off, the electrode layer was transferred to the exterior film, and a polyimide film having a copper electrode was created. The adhesive layer of the metallized film was again superimposed on the electrode layer of the polyimide film having the copper electrode so that the electrode layer overlapped, and pressed at a temperature of 180 ° C. and a pressure of 5 kg / cm 2 for 10 seconds. Thereafter, the base film was peeled off. After 100 layers of electrode layers and adhesive layers were alternately stacked in this way, the adhesive layer of the exterior film was stacked on the last stacked electrode layer, and then pressed and laminated at a temperature of 180 ° C. and a pressure of 5 kg / cm 2 for 10 seconds. Got the body. In this way, a laminate as shown in FIG. 5 is obtained, and the obtained laminate is cut along a predetermined cutting line. The dielectric thickness is only 0.7 μm and the substrate occupation dimension is 3.2 mm. A capacitor having a so-called chip size polyimide film of × 1.6 mm as a dielectric was obtained.
[0034]
In the process up to this point, in Example 3, there is no generation of wrinkles or the like that are problematic when winding or laminating a film that is a problem when producing a chip capacitor using the same 0.7 μm thick deposited film. Also, the adhesion between the films was very good.
[0035]
【Effect of the invention】
As described above, according to the metallized film for electronic parts according to the present invention, when producing a small electronic part in particular, it has been conventionally produced using a metallized film having a very thin film as a base layer. In this case, it is possible to eliminate various problems such as wrinkles in the case of a thin film, and it is possible to make an unprecedented ultra-thin film as a base layer, which can greatly contribute to downsizing of electronic parts. Furthermore, the circuit board produced using the metallized film of the present invention has a very low strength of the base layer as it is, and is very good for the use of movable parts. Moreover, if it affixes on a base with high heat conductivity, such as a metal plate, it will become a circuit board excellent in heat dissipation.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a structure of a metallized film according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a structure of a metallized film according to a second embodiment of the present invention.
3 is a plan view showing a pattern of a metal electrode layer in Example 3. FIG.
FIG. 4 is a cross-sectional view showing a state of bonding by overlapping metal electrode layers in the production of a film capacitor.
FIG. 5 is a cross-sectional view of a capacitor element in which metal electrode layers are stacked and bonded.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plastic film used as a base material 2 Release layer 3 Metal electrode film (metal electrode layer)
4 Adhesive Resin Layer 5 as a Dielectric 5 Release Layer 6 as a Dielectric 7 Lamination Alignment Mark 7 Patterned Metallized Film 8 of FIG. 3 with the Configuration of FIG. 2 Adhesive Exterior Film 9 Heat Press Plate 10 Release Base film with mold layer

Claims (5)

基材となるフィルムの片面に離型層を設けて離型層付きの基材フィルムとし、離型層の上に少なくとも蒸着された金属膜からなる金属電極層を設け、金属電極層の上に厚みが200nm〜2000nmの耐熱性かつ絶縁性樹脂層からなる接着剤層を設けた金属化フィルムで、かつ、前記離型層付き基材フィルムと金属電極層との間で、前記離型層付き基材フィルムを剥離、除去可能に構成し、さらに、前記耐熱性かつ絶縁性樹脂からなる接着剤層が電子部品の耐熱性かつ絶縁性樹脂からなる絶縁体層または誘電体層を構成する、電子部品を製造するための金属化フィルムであって、金属電極層の厚みが100オングストローム以上で且つ5μm以下であることを特徴とする電子部品用金属化フィルム。A release layer is provided on one side of a film to be a base material to form a base film with a release layer, a metal electrode layer made of at least a deposited metal film is provided on the release layer, and a metal electrode layer is provided on the metal electrode layer. A metallized film provided with an adhesive layer composed of a heat-resistant and insulating resin layer having a thickness of 200 nm to 2000 nm, and between the substrate film with the release layer and the metal electrode layer, with the release layer The base film is configured to be peelable and removable , and the adhesive layer made of the heat-resistant and insulating resin constitutes an insulating layer or dielectric layer made of the heat-resistant and insulating resin of the electronic component. A metallized film for electronic parts, wherein the metal electrode layer has a thickness of 100 Å or more and 5 μm or less. 離型層と金属電極層間であって離型層の上に、金属電極層を設けることが可能な剥離層が設けられている、請求項1に記載の電子部品用金属化フィルム。  The metallized film for electronic components according to claim 1, wherein a release layer capable of providing a metal electrode layer is provided between the release layer and the metal electrode layer and on the release layer. 剥離層が、厚みが100nm〜2000nmの耐熱性かつ絶縁性樹脂層からなる、請求項2に記載の電子部品用金属化フィルム。  The metallized film for electronic components according to claim 2, wherein the release layer comprises a heat-resistant and insulating resin layer having a thickness of 100 nm to 2000 nm. 金属電極層がパターン化された電極からなる、請求項1〜のいずれかに記載の電子部品用金属化フィルム。The metallized film for electronic components according to any one of claims 1 to 3 , wherein the metal electrode layer comprises a patterned electrode. 離型層が70℃以上の温度で溶融する樹脂からなる、請求項1〜のいずれかに記載の電子部品用金属化フィルム。The metallized film for electronic parts according to any one of claims 1 to 4 , wherein the release layer is made of a resin that melts at a temperature of 70 ° C or higher.
JP2002379508A 2002-12-27 2002-12-27 Metalized film for electronic parts Expired - Fee Related JP4958370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002379508A JP4958370B2 (en) 2002-12-27 2002-12-27 Metalized film for electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002379508A JP4958370B2 (en) 2002-12-27 2002-12-27 Metalized film for electronic parts

Publications (2)

Publication Number Publication Date
JP2004214278A JP2004214278A (en) 2004-07-29
JP4958370B2 true JP4958370B2 (en) 2012-06-20

Family

ID=32815994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002379508A Expired - Fee Related JP4958370B2 (en) 2002-12-27 2002-12-27 Metalized film for electronic parts

Country Status (1)

Country Link
JP (1) JP4958370B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006264317A (en) * 2005-02-22 2006-10-05 Toray Ind Inc Metalized film, film for capacitor and film capacitor using it
JP5079369B2 (en) * 2007-03-30 2012-11-21 藤森工業株式会社 Frequency selective shielding type electromagnetic shielding laminate
JP2017013247A (en) * 2015-06-26 2017-01-19 凸版印刷株式会社 Electrode release film, color filter substrate with electrode, and production method of them
JP2017078993A (en) * 2015-10-21 2017-04-27 凸版印刷株式会社 Electrode release film, color filter substrate with electrode and method for manufacturing the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185500A (en) * 1987-01-29 1988-08-01 Shinichiro Katabuchi Formation of sludge cake
JP2912383B2 (en) * 1989-06-13 1999-06-28 大日本印刷株式会社 Transfer sheet
JP2780380B2 (en) * 1989-09-26 1998-07-30 東レ株式会社 Composite metal laminate sheet and method of using the same
JP3218886B2 (en) * 1994-10-13 2001-10-15 株式会社村田製作所 Method for producing metal film for transfer and ceramic laminated electronic component
JPH08118830A (en) * 1994-10-20 1996-05-14 Fujicopian Co Ltd Thermal transfer recording medium
JP2883555B2 (en) * 1995-02-07 1999-04-19 大日本印刷株式会社 Transfer sheet
JPH11238646A (en) * 1997-12-03 1999-08-31 Tdk Corp Laminated ceramic electronic part and manufacture thereof
JP3829526B2 (en) * 1998-04-24 2006-10-04 凸版印刷株式会社 Barrier laminate, packaging material using the same, and packaging body using the same
JP2000141926A (en) * 1998-11-16 2000-05-23 Dainippon Printing Co Ltd Heat-transfer sheet
JP2000272258A (en) * 1999-03-26 2000-10-03 Dainippon Printing Co Ltd Heat transfer sheet and integral type heat transfer sheet
JP3355312B2 (en) * 1999-05-21 2002-12-09 ティーディーケイ株式会社 Method for manufacturing multilayer ceramic electronic component, member for transferring metal film used therefor, and method for manufacturing the same
JP3419364B2 (en) * 1999-10-07 2003-06-23 松下電器産業株式会社 Manufacturing method of ceramic electronic components
JP2003086456A (en) * 2001-09-14 2003-03-20 Dainippon Printing Co Ltd Internal electrode transfer foil for laminated ceramic capacitor, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2004214278A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
US6195249B1 (en) Electronic component having gaps between conductive thin films
JP4224190B2 (en) Printed wiring board manufacturing method and printed wiring board
US20070146980A1 (en) Printed circuit board including embedded capacitor having high dielectric constant and method of fabricating same
US20060098386A1 (en) Embedded capacitor and method for manufacturing the same
CN110400671B (en) Coil component
WO2017085849A1 (en) Production method for printed wiring board having dielectric layer
TW200833190A (en) Adhesive sheet for capacitor and method for manufacturing printed circuit board having built-in capacitor using the same
JPH1126943A (en) Multilayer wiring board and manufacture of the same
JP4958370B2 (en) Metalized film for electronic parts
JP4207517B2 (en) Embedded substrate
JPH04314876A (en) Thin metal film having superior transferability and production thereof
US11456108B2 (en) Multilayer board and manufacturing method thereof
JP2000331865A (en) Laminated ceramic capacitor and manufacture of it
JP4289365B2 (en) Printed wiring board manufacturing method and printed wiring board
JP2780380B2 (en) Composite metal laminate sheet and method of using the same
JP3927562B2 (en) Method for manufacturing a substrate with a built-in capacitor
JP2004214277A (en) Film capacitor
JP2006253710A (en) Printed wiring board and method for manufacturing the same
JP3218886B2 (en) Method for producing metal film for transfer and ceramic laminated electronic component
JP2000183526A (en) Multilayer wiring board and manufacture of the same
JP2003332707A (en) Circuit board and its manufacturing method
US20220141965A1 (en) Multilayer substrate and method of manufacturing multilayer substrate
JPH0265194A (en) Manufacture of printed wiring board with thick film element
US20220172883A1 (en) Coil component
JP3564709B2 (en) Method for producing metal pattern film with excellent transferability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100209

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100304

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees