JP4950534B2 - クロックデータリカバリ制御回路 - Google Patents

クロックデータリカバリ制御回路 Download PDF

Info

Publication number
JP4950534B2
JP4950534B2 JP2006087642A JP2006087642A JP4950534B2 JP 4950534 B2 JP4950534 B2 JP 4950534B2 JP 2006087642 A JP2006087642 A JP 2006087642A JP 2006087642 A JP2006087642 A JP 2006087642A JP 4950534 B2 JP4950534 B2 JP 4950534B2
Authority
JP
Japan
Prior art keywords
clock
counter
data recovery
circuit
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006087642A
Other languages
English (en)
Other versions
JP2007266871A (ja
Inventor
勇 宮西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006087642A priority Critical patent/JP4950534B2/ja
Publication of JP2007266871A publication Critical patent/JP2007266871A/ja
Application granted granted Critical
Publication of JP4950534B2 publication Critical patent/JP4950534B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

本発明は、受信シリアルデータの周波数検知を行うクロックデータリカバリ制御回路に関する。
従来、ホストとデバイス間のバスや、チップセット間の内部バスなどにおけるインターフェースとして、ATAやPCIのようなパラレルインターフェースが利用されてきた。しかし、近年、これらに代わり、信号の干渉やノイズ混入等の問題が起こりにくいSerial−ATAやPCI−Express等の高速シリアルインターフェースが主流となってきている。また、より高速な転送速度を実現するための高速化が進みつつある。
Serial−ATAでは、第一世代と呼ばれる1.5Gbpsの転送レートのハードディスクドライブ(以下HDD)と第二世代と呼ばれる3Gbpsの転送レートのHDDが市場に混在している。更に、(コネクタ形状が異なるかもしれないが)次世代(第三世代)の6Gbpsの転送レートのHDDも、ロードマップ上に挙げられている。
ところで、インターフェースとして上位互換を維持する必要があるため、どの世代のデバイスに対しても、ホストが対応する転送レートで接続できなくてはならない。
また、シリアルインターフェース通信は、パラレルインターフェース通信のようにデータとクロックを使って転送するのではなく、差動のシリアル信号だけで通信を行う。シリアルインターフェース通信では、このシリアル信号にデータとクロックが埋め込まれているため、受信シリアルデータからデータとクロックを抽出する必要がある。
一般的に高速シリアルインターフェース通信では、クロックデータリカバリ回路(以下、CDRと言う。)により、受信シリアルデータからデータとクロックが抽出される。そして、Serial−ATAのように、ネゴシエーション時の受信データレートから転送レートを決定するようなインターフェースでは、各世代の転送レート(周波数)を検知してホストとデバイスが対応している世代の転送レートで通信の確立をする必要がある。
Serial−ATAのようにネゴシエーション時の受信データレートから転送レートを決定するようなインターフェースでは、特にPLL(Phase Locked Loop;位相ロックループ)構成のCDRにおいて、PLLのキャプチャレンジ外の周波数でデータが入力された場合、ホストは入力データが動作許容範囲外であると判定して入力データへの追従動作を停止しなければならない。
特許文献1に開示されるCDRでは、クロックを抽出する手段としてPLL回路を用い、参照クロックにロックしたことを検出する第1のロック検出器と、データに対して非ロック状態を検出する第2の検出器を設け、制御ループを切り替える構成になっている。この第2の検出器と呼ばれている位相ロック検出器内の遅延は、入力周波数が大きくなったときやプロセスのばらつきが大きいときにフリップフロップ間がよりクリティカルになるため、その制御が難しくなる。また、入力データのレートが参照クロックの整数倍であった場合、データと非同期な再生クロックでデータを受信するため、タイミングによっては位相ロックエラーとみなしたりみなさなかったりする可能性があり、精度良い位相ロック検出回路とならない。更に、Serial−ATAにこの回路を適用する場合、ホスト及びデバイスの世代を検出するシーケンスでのみ動作すればよく、常に動作する必要はない。
特開平11−317729号公報
そこで、以上の点に鑑みて、本発明は、PLL回路を用いたクロックデータリカバリ制御回路において、高速なシリアルインターフェースであっても、周波数比較動作と位相比較動作の制御をより簡単にし、不必要な時は停止させることができる周波数検知回路を搭載することを目的とする。
本発明は、上記の目的を達成するためになされたものである。本発明に係る請求項1に記載のクロックデータリカバリ制御回路は、
クロックデータリカバリ回路を制御するクロックデータリカバリ制御回路であって、
上記クロックデータリカバリ回路は、
第1のリファレンスクロックに追従して電圧又は電流制御発振器から出力するクロックの周波数を制御する周波数制御系と、受信するシリアルデータに追従して電圧又は電流制御発振器から出力するクロックの位相を制御する位相制御系とを有し、シリアル信号を用いて通信を行うインターフェースを利用して受信するシリアルデータからデータとクロックを抽出するものであり、
上記クロックデータリカバリ制御回路は、
上記周波数制御系と上記位相制御系とを一定周期で切り替える切り替え制御手段と、
上記位相制御系が動作しているときに、受信シリアルデータがクロックデータリカバリ回路の動作範囲内であることを検知する周波数検知回路と
を備え、
上記周波数検知回路が、上記位相制御系が動作しているときに、受信データから抽出したクロックを基に動作する第1のカウンタと、第2のリファレンスクロックを基に動作する第2のカウンタを含み、
上記位相制御系が動作しているときに、上記第1のカウンタのカウンタ値が、上記第2のカウンタのカウンタ値の所定のウィンドウ幅の内にあるか否かを判断して、周波数検知を行うことを特徴とする。
本発明に係る請求項2に記載のクロックデータリカバリ制御回路は、
上記第1のカウンタが、上記位相制御系が動作しているときに、上記第2のカウンタから遅延されてカウントを開始することを特徴とする請求項1に記載のクロックデータリカバリ制御回路である。
本発明に係る請求項3に記載のクロックデータリカバリ制御回路は、
上記周波数検知回路が、連続する複数の上記位相制御系の動作時に、上記第1のカウンタのカウンタ値が、上記第2のカウンタのカウンタ値の所定のウィンドウ内にあるか否かを判断して、周波数検知を行うことを特徴とする請求項1又は2に記載のクロックデータリカバリ制御回路である。
本発明に係る請求項4に記載のクロックデータリカバリ制御回路は、
上記周波数検知回路が、上記ウィンドウ幅を設定する比較部を備えることを特徴とする請求項1〜3のうちのいずれか一に記載のクロックデータリカバリ制御回路である。
本発明に係る請求項5に記載のクロックデータリカバリ制御回路は、
上記第1のリファレンスクロックが上記第2のリファレンスクロックに同期するものであることを特徴とする請求項1に記載のクロックデータリカバリ制御回路である。
本発明を利用することにより、高速なシリアルインターフェースに対しても、周波数比較動作と位相比較動作の制御をより簡単に行うクロックデータリカバリ制御回路であって、周波数検知を正確に行う周波数検知回路を備えるクロックデータリカバリ制御回路を、提供できる。
以下、図面を参照して本発明に係る好適な実施形態を説明する。
ネゴシエーション時の受信データレートから転送レートを決定する高速シリアルインターフェースとして、Serial−ATAを取り上げる。この高速シリアルインターフェースの例は、本発明を限定するものではない。
図1は、Serial−ATAインターフェースの構造の模式図である。Serial−ATAインターフェースは、アプリケーション層(12、20)、トランスポート層(10、18)、リンク層(8、16)、物理層(PHY)(6、14)という階層構造となっている。アプリケーション層12は、パラレルATAのホストアダプタと等しいレジスタインターフェースを通してトランスポート層10とのやり取りを行う。トランスポート層10とリンク層8は、全体のオペレーションをコントロールするコアサブモジュールとなる。そして、物理層6は、ネットワークの物理的な接続・伝送方式や電気的特性を規定している層であり、高速シリアル信号を送受信することになる。特に、物理層6では、接続先との通信を確立させるためにOOB(Out of Band)というネゴシエーション動作が行われる。
図2は、一般的なホストコントローラ2における物理層6の構成図である。まず、送信側について以下に記す。リンク層8から送られてきたパラレルデータ(DATAIN)がシリアライザ(SER)22でシリアル化され、ドライバ24によって差動(TX+,TX−)で出力される。ここでFPS32とは固定パターン源であり、コントロールブロック(Control Block)32により制御される。
次に、受信側について以下に記す。RX+、RX−から差動信号が入力され、レシーバ38でシリアル化される。一方、スケルチレシーバ40では、差動信号の電圧レベルを検知し、ある閾値を超えればデータを検出したとみなして、コントロールブロック32にスケルチ信号を出力する。そして、レシーバ38にてシリアル化された信号は、CDR42に入力されてデータとクロックが抽出される。抽出されたデータの一方は、デシリアライザ(DES)44によってパラレル化されてリンク層8に出力され、もう一方は、FPD(固定パターン検出器)46によってコントロールキャラクタの検出を受ける。コントロールキャラクタとは、4バイトで構成されるプリミティブの先頭バイトのことであり、プリミティブとは、シリアルラインの制御やステータスの提供のためのDword(Double Word;ダブルワード)エンティティである。
コントロールブロック32は、主として物理層6の送受信に関係した制御をステートマシン構成で行っている。
SYSCLK48は、PLL50の基準クロックを示す。また、PHYRESET52は、物理層6のリセット信号である。PHYREADY54は、通信を示す信号である。SLUMBER56、PARTIAL58は、低消費電力状態に移行するための信号である。RXCLOCK60は、受信信号である。TXCLOCK62は、送信信号である。更に、COMMA64は、リンク層8に出力するコントロールキャラクタ検出信号である。その他のリンク層とのインターフェース信号は省略している。なお、一点破線は受信クロック系を示し、二点破線は送信クロック系を示している。
図3は、OOBシーケンスを説明するための模式図である。OOBとは、ホスト−デバイス間のネゴシエーション動作のことであり、ホスト又はデバイスから一定のアイドル(コモンモードレベル)間隔でALIGNプリミティブのバースト転送を行い、ネゴシエーションを行うというものである。ここで、ALIGNプリミティブとは、イニシャライズや受信データと同期をとるために用いるプリミティブであって、K28.5コントロールキャラクタが先頭バイトにあるプリミティブである。
まず、物理層6は電源が入るとバスアイドル状態(ニュートラル)になり、ホスト2はCOMRESETを発行する。次に、デバイス4はCOMRESETを検出するとCOMINITを発行する。そして、ホスト2がデバイス4からのCOMINITを検出するとCOMWAKEを発行する。デバイス4はこのCOMWAKEを検出した後COMWAKEを送信し、その後連続してALIGNプリミティブを継続的に送信する。デバイス4が54.6μsALIGNを送信するまでにホスト2から応答がなければ、スピードを落として再試行し、一番遅いスピードでも応答がなければエラー状態となる。
また、ホスト2はCOMWAKE発行後、D10.2データキャラクタを送信し、ホスト2は受信したALIGNをロックし、同じスピードで連続してALIGNを送信する。デバイス4がこのALIGNを検出した後にNon−ALIGNプリミティブを送信し、これをホスト2が検出すればPHYREADY=Hをリンク層8に通知し、通信確立状態となる。
ホスト2とデバイス4は、ステートマシンによりOOB制御が行われる。通信確立までに、ホスト2はHP1〜HP8のステート遷移があり、デバイス4はDP1〜DP7のステート遷移がある。
通信確立までのホスト2の状態遷移について、以下の表1に記す。
Figure 0004950534
また、通信確立までのデバイス4の状態遷移について、以下の表2に記す。
Figure 0004950534
ところで、図3に示す状態遷移は、ホスト2とデバイス4の対応している転送レートが同じ、又はデバイス4の対応している転送レートがホスト2のものより低い場合である。一方、図4に示す状態遷移は、ホスト2の対応している転送レートよりデバイス4の対応している転送レートが高い場合である。例えば、ホスト2が第一世代の転送レートのみに対応し、デバイス4が第二世代対応のHDDである場合である。このような場合、図4に示すように、デバイス4がCOMWAKE送信後、デバイス4は3GbpsでALIGNをホスト2に54.6μs送信するが、このときホスト2は第一世代しか対応していないので、この3GbpsのALIGNには応答しないように設定されなければならない。
デバイス4は、ALIGNを54.6μs送信した後、DP6からDP10へ遷移し、スピードを落として再度DP6へ遷移しスピードダウンした転送レート(この場合1.5Gbps)でALIGNを送信する。ここでのDP10は“DR_ReduceSpeedステート”と呼ばれるステート(状態)であり、インターフェースを休止しスピードを一世代落とす動作を行うステートである。
デバイス4が第二世代に対応していてホスト2が第一世代までに対応している場合に、本発明の好適な実施形態において、上記のようにデバイス4がDP10でスピードを一世代落とす動作をするとき、ホスト2の物理層6内のCDR43と周波数検知回路94の動作を、図5、図6、及び図7で説明する。この周波数検知回路94は、本発明により新たに設定する回路である。
図5は、CDR43の回路図である。図6は、本発明の好適な実施形態に係る物理層6内の一部回路図であり、CDR43及び周波数検知回路94を主として示す回路図である。図7は、本発明の好適な実施形態において、デバイス4がスピードを一世代落とす動作をするときのホスト状態、デバイス状態、及び各種信号の推移を示す図である。
まず、デバイス4が第二世代に対応しているので、図7に示すように、デバイス4はCOMWAKE送信後3GbpsでALIGNを54.6μsの間ホスト2に送信する(デバイス状態・DP6)。このとき、ホスト状態(ステート)はHP6である。
ここで、図5のCDR43の構成を以下に示す。
図5に示すCDR43では、FLOCK、SQO、Fr、及び、シリアルデータInDataが入力され、CK、及び、復元データOutDataが出力される。CDR43は、位相比較器PD、位相周波数比較器PFD、チャージポンプ(CP1、CP2)、ループフィルタLPF、電圧制御発振器VCO、及び2分周器を含んでいる。ここで、FLOCKは、図6に示す(後述する)FLOCK生成回路96の生成する信号であり、CDR43の周波数比較動作と位相比較動作の切替を指示する信号である。SQOは、スケルチレシーバ40がシリアルデータの電圧レベルを検知した結果、データであると検知すればLとなり、アイドルであると検知すればHとなる信号である。Frはリファレンスクロックであり、ここでは750MHzの周波数である。シリアルデータInDataは、レシーバ38にて2値化されたシリアルデータである。CKは、出力クロック(出力CK)である。
図5に示すCDR43では、まずFLOCK信号が“FLOCK=L”となってPDEN=Lとなり、リファレンスクロックFrに追従する周波数比較動作が位相周波数比較器PFDを介して行われる。(750MHzのリファレンスクロックFr及び2分周器の作用により)CDR43の出力CKが1.5GHzにロックすると、CDR43は周波数比較動作を一旦終える。そして、CDR43を制御している周波数検知回路94内のFLOCK生成回路96がFLOCK信号を“H”とする。これによりCDR43及び周波数検知回路94は位相比較器PDを介する位相比較動作に移行する(図7・F1)。FLOCK生成回路96については後述する。
位相比較動作に移行すると、CDR43は(3Gbpsである)入力データ(InData)に追従するように動作するので、CDR43の出力CKの周波数は上昇してしまう。なお、出力CKがキャプチャレンジを外れることがあるとその時点で誤ロック動作に陥ることになるが、この誤動作は後述のカウンタイネーブル信号のトルグにより抑えられる。
転送レートの検知のために、本発明の好適な実施形態では、周波数検知回路94内部にて、位相比較動作時(FLOCK=H)にCDR43の出力CKとPLLクロックとをカウントする2つのカウンタ(RXカウンタ100、TXカウンタ102)を設定する。これらのカウンタは、カウンタイネーブル生成回路104によりイネーブル信号が供給され動作し、HP6以外ではリセットされるカウンタである。
まず、3Gbpsの転送レート受信時のCDR43の周波数比較動作から位相比較動作への移行直後は、CDR43の出力CKの周波数が1.5GHz付近にある。この状態をRXカウンタ100がカウントしてしまうのを避けるために、第1のシフトレジスタ106と第1のAND回路108によってRXカウンタ100のイネーブル信号が遅延されている(図7・R1)。
RX、TXカウンタ(100、102)の動作クロックは、N(Nは整数)分周して周波数を落としてもよい。また、カウンタイネーブル生成回路104、FLOCK生成回路96、及びステートマシン112は、PLLクロック50を使用する。これらの信号もM(Mは整数)分周してもよい。カウンタイネーブル生成回路は、カウンタイネーブル信号を、HP6のときに一定周期で生成し、各カウンタの精度、上記N、Mを考慮した周期でトグルさせる。図7の例では、54.6μs÷8=6.825μsでトグルさせている。また、FLOCK生成回路96は、カウンタイネーブル信号がHであるとき、又はステート(状態)がHP6以降HP8までのとき、FLOCK=Hとなる回路である。
そして、ある時点(図7・N1)でのRXカウンタ100のカウンタ値が、TXカウンタ102の所定のウィンドウ内にあれば、1.5Gbpsの転送レートが受信されているとみなされ、上記所定のウィンドウ外にあれば、1.5Gbps以外の転送レートが受信されている(例えば、デバイス4が第二世代対応である)とみなされる。ここでのウィンドウ幅は、非同期信号を吸収するための誤差や入力データのジッタなどを考慮した値に設定される。更にウィンドウ幅の設定では、RXカウンタ100のイネーブル信号生成時に設けられる遅延も考慮される必要がある。図6に示す回路では、ウィンドウ幅は比較部118に設定される。
今、3Gbpsの転送レートのALIGNが、デバイス4から送信されているので、その間のある時点(N1、N2、N3、N4)でのRXカウンタ100のカウント値は、TXカウンタ102のウィンドウ外となり、周波数検知回路94では「1.5Gbpsが検出されない」と判断される。図7に示す例では、3Gbpsの転送レートのALIGNがデバイス4から送信される54.6μsの間に、4回、周波数検知動作が行われることになる。
デバイス4は次に1.5Gbpsの転送レートのALIGNを、最大54.6μsの間送信する。図7のF5にて、1.5Gbpsの転送レートによる位相比較動作が開始され、T5でTXカウンタ102がイネーブル状態に、R5でRXカウンタ100がイネーブル状態になる。ここで、周波数検知回路94は、N5にて、RXカウンタ100のカウント値がTXカウンタ102のウィンドウ内にあることを確認するものとする。そうすると周波数検知回路94は、転送レートが1.5Gbpsであることを検知することになる。
また、周波数検知回路94が、検知を複数回連続したときのみ検知を確定するようにしてもよい。図7の例では、連続2回検知が必要な設定となっている(N5、N6)。この連続回数は、図6に示す第2のシフトレジスタ116で設定される。
図6に示すALIGN検出回路120は、HP6で常に動作しているので、N6で連続2回1.5Gbpsを検知すると、このALIGN検出結果は正しいとして第2のAND回路122に入力しているALIGN検出信号を有効とする。これを受けたステートマシン112が、次のステートHP7へ移行する。よって、3Gbpsの転送レートのALIGN受信時に、ALIGNを誤検出(図7のG1、G2)したとしても、ステートマシン112はHP6を維持する。ここで、図6に示すALIGN検出回路120は、図2に示すFPD46を意味する。なお図6では、図2に示すDES44を示していない。また、FLOCKは、HP6から次のステートへ移行するとHP8までHに固定される。
ホスト2は、HP7へ移行するとデバイス4に1.5Gbpsの転送レートでALIGNを送信し、それに応答したデバイス4は、Non−ALIGNプリミティブを送信した後、DP7へ移行し通信を確立する(PHYREADY=H)。ホスト2は、Non−ALIGNプリミティブを受信した後、HP8へ移行し通信を確立する(PHYREADY=H)。
従来のSerial−ATAインターフェースの構造の模式図である。 一般的なホストコントローラにおける物理層の構成図である。 一般的なOOBシーケンスを説明するための模式図である。ここで示す状態遷移は、ホストとデバイスの対応している転送レートが同じ、又はデバイスの対応している転送レートがホストのものより低い場合である。 一般的なOOBシーケンスを説明するための模式図である。ここで示す状態遷移は、ホストの対応している転送レートよりデバイスの対応している転送レートが高い場合である。 CDRの回路図である。 本発明の好適な実施形態に係る物理層内の一部回路図であり、CDR及び周波数検知回路を主として示す回路図である。 本発明の好適な実施形態において、デバイスがスピードを一世代落とす動作をするときのホスト状態、デバイス状態、及び各種信号の推移を示す図である。
符号の説明
2・・・ホスト(コントローラ)、4・・・デバイス、6、14・・・物理層、8、16・・・リンク層、38・・・レシーバ、40・・・スケルチレシーバ、42、43・・・CDR(クロックデータリカバリ)、50・・・PLL、94・・・周波数検知回路、96・・・FLOCK生成回路、100・・・RXカウンタ、102・・・TXカウンタ、104・・・カウンタイネーブル生成回路、112・・・ステートマシン。

Claims (5)

  1. クロックデータリカバリ回路を制御するクロックデータリカバリ制御回路であって、
    上記クロックデータリカバリ回路は、
    第1のリファレンスクロックに追従して電圧又は電流制御発振器から出力するクロックの周波数を制御する周波数制御系と、受信するシリアルデータに追従して電圧又は電流制御発振器から出力するクロックの位相を制御する位相制御系とを有し、シリアル信号を用いて通信を行うインターフェースを利用して受信するシリアルデータからデータとクロックを抽出するものであり、
    上記クロックデータリカバリ制御回路は、
    上記周波数制御系と上記位相制御系とを一定周期で切り替える切り替え制御手段と、
    上記位相制御系が動作しているときに、受信シリアルデータがクロックデータリカバリ回路の動作範囲内であることを検知する周波数検知回路と
    を備え、
    上記周波数検知回路が、上記位相制御系が動作しているときに、受信データから抽出したクロックを基に動作する第1のカウンタと、第2のリファレンスクロックを基に動作する第2のカウンタを含み、
    上記位相制御系が動作しているときに、上記第1のカウンタのカウンタ値が、上記第2のカウンタのカウンタ値の所定のウィンドウ幅の内にあるか否かを判断して、周波数検知を行うことを特徴とするクロックデータリカバリ制御回路。
  2. 上記第1のカウンタが、上記位相制御系が動作しているときに、上記第2のカウンタから遅延されてカウントを開始することを特徴とする請求項1に記載のクロックデータリカバリ制御回路。
  3. 上記周波数検知回路が、連続する複数の上記位相制御系の動作時に、上記第1のカウンタのカウンタ値が、上記第2のカウンタのカウンタ値の所定のウィンドウ内にあるか否かを判断して、周波数検知を行うことを特徴とする請求項1又は2に記載のクロックデータリカバリ制御回路。
  4. 上記周波数検知回路が、上記ウィンドウ幅を設定する比較部を備えることを特徴とする請求項1〜3のうちのいずれか一に記載のクロックデータリカバリ制御回路。
  5. 上記第1のリファレンスクロックが上記第2のリファレンスクロックに同期するものであることを特徴とする請求項1に記載のクロックデータリカバリ制御回路。
JP2006087642A 2006-03-28 2006-03-28 クロックデータリカバリ制御回路 Expired - Fee Related JP4950534B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006087642A JP4950534B2 (ja) 2006-03-28 2006-03-28 クロックデータリカバリ制御回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006087642A JP4950534B2 (ja) 2006-03-28 2006-03-28 クロックデータリカバリ制御回路

Publications (2)

Publication Number Publication Date
JP2007266871A JP2007266871A (ja) 2007-10-11
JP4950534B2 true JP4950534B2 (ja) 2012-06-13

Family

ID=38639444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006087642A Expired - Fee Related JP4950534B2 (ja) 2006-03-28 2006-03-28 クロックデータリカバリ制御回路

Country Status (1)

Country Link
JP (1) JP4950534B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100894486B1 (ko) * 2007-11-02 2009-04-22 주식회사 하이닉스반도체 디지털 필터, 클록 데이터 복구 회로 및 그 동작방법, 반도체 메모리 장치 및 그의 동작방법
GB2456517A (en) * 2008-01-15 2009-07-22 Andrzej Radecki Serial data communication circuit for use with transmission lines using both data and clock to enable recovery of data synchronously

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141222A (ja) * 1997-07-23 1999-02-12 Hitachi Ltd 非同期データ復調回路
JPH11317729A (ja) * 1998-05-06 1999-11-16 Sony Corp クロックデータリカバリ回路
JP4484629B2 (ja) * 2004-08-24 2010-06-16 株式会社リコー クロックデータリカバリ回路及び電圧制御発振回路

Also Published As

Publication number Publication date
JP2007266871A (ja) 2007-10-11

Similar Documents

Publication Publication Date Title
EP2433195B1 (en) Jitter reduction method and apparatus for distributed synchronised clock architecture
CN106796563B (zh) 用于芯片到芯片通信的***和方法
US10291241B2 (en) Referenceless clock and data recovery circuits
US7746971B2 (en) Data recovery method, data recovery circuit, data transmitting/receiving apparatus and information processing apparatus
US8582708B2 (en) Clock and data recovery circuit
US10484164B2 (en) Clock and data recovery for pulse based multi-wire link
JP2008236738A (ja) プログラマブルロジックデバイスにおける高速シリアルインターフェースのためのプロトコル非依存の自動レートネゴシエーション
CN110741358B (zh) 用于恢复设备上的设备参考时钟的方法和设备
CN104753750A (zh) 数据信号的同步
JP4950534B2 (ja) クロックデータリカバリ制御回路
US11144088B2 (en) Clocking synchronization method and apparatus
EP3289471B1 (en) Communication between integrated circuits
TWI279114B (en) A system and method for generating de-serializing timing signals
WO2021150653A1 (en) Eusb2 to usb 2.0 data transmission with surplus sync bits
JP5704988B2 (ja) 通信装置
JP2001045083A (ja) Psk信号のキャリア同期型復調装置
KR20220138245A (ko) PCIe 인터페이스 및 인터페이스 시스템
US9246497B1 (en) Integrated circuit (IC) clocking techniques
JP2005160025A (ja) 専用クロックマスターのない通信システムが許容可能な範囲外のクロック周波数をつくることを防止するための回路と、システムと、その方法
JP2006203338A (ja) スケルチ検出回路及びスケルチ検出方法
US9100168B2 (en) Serial communication circuit, semiconductor device, and serial communication controlling method
JP2008236178A (ja) シリアルデータ受信回路
KR101585063B1 (ko) 외부 클락신호를 사용하지 않는 직렬 데이터 통신용 디바이스 phy
US11321265B2 (en) Asynchronous communication
CN115967408A (zh) 信号接收方法、装置、电子设备和存储介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4950534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees