JP4950004B2 - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP4950004B2
JP4950004B2 JP2007292854A JP2007292854A JP4950004B2 JP 4950004 B2 JP4950004 B2 JP 4950004B2 JP 2007292854 A JP2007292854 A JP 2007292854A JP 2007292854 A JP2007292854 A JP 2007292854A JP 4950004 B2 JP4950004 B2 JP 4950004B2
Authority
JP
Japan
Prior art keywords
temperature
hot water
refrigerant
heat exchanger
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007292854A
Other languages
Japanese (ja)
Other versions
JP2009121704A (en
Inventor
基 阿部
元泰 佐藤
俊昭 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2007292854A priority Critical patent/JP4950004B2/en
Publication of JP2009121704A publication Critical patent/JP2009121704A/en
Application granted granted Critical
Publication of JP4950004B2 publication Critical patent/JP4950004B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、貯湯タンクの湯水をヒートポンプで加熱するヒートポンプ式給湯装置に関する。   The present invention relates to a heat pump hot water supply apparatus that heats hot water in a hot water storage tank with a heat pump.

従来よりこの種のヒートポンプ式給湯装置においては、下部に給水管が接続され、上部に出湯管が接続された貯湯タンクと、圧縮機、凝縮器としての水−冷媒熱交換器、減圧手段としての電子膨張弁、蒸発器としての空気熱交換器を冷媒配管で環状に接続したヒートポンプ回路を有したヒートポンプ式加熱手段と、貯湯タンク下部から取り出した湯水を水−冷媒熱交換器の水側に流通させ貯湯タンク上部に戻す循環ポンプを有した加熱循環回路とを備え、貯湯タンク内の湯水をヒートポンプ式加熱手段で沸き上げるようにしたものであった。   Conventionally, in this type of heat pump hot water supply apparatus, a hot water storage tank having a water supply pipe connected to the lower part and a hot water discharge pipe connected to the upper part, a compressor, a water-refrigerant heat exchanger as a condenser, Heat pump type heating means with a heat pump circuit in which an air heat exchanger as an electronic expansion valve and an evaporator are connected in an annular shape with refrigerant piping, and hot water taken out from the lower part of the hot water storage tank is distributed to the water side of the water-refrigerant heat exchanger And a heating circulation circuit having a circulation pump for returning to the upper part of the hot water storage tank, and hot water in the hot water storage tank is boiled by a heat pump heating means.

このヒートポンプ式加熱手段は、圧縮機から吐出される冷媒の吐出温度が所定の目標吐出温度になるように電子膨張弁の開度が制御されるとともに、水−冷媒熱交換器で加熱される湯の温度が目標沸き上げ温度になるように循環ポンプの回転数が制御される。   This heat pump type heating means controls the opening of the electronic expansion valve so that the discharge temperature of the refrigerant discharged from the compressor becomes a predetermined target discharge temperature, and hot water heated by the water-refrigerant heat exchanger. The rotational speed of the circulation pump is controlled so that the temperature of the circulating pump becomes the target boiling temperature.

ここで、所定の目標吐出温度は外気温度によって補正することにより、外気温度の高低に応じた空気熱交換器での蒸発能力の変化に対応することができ、一定の沸き上げ温度・加熱能力を保った状態において最大効率の運転を可能としていたものであった(特許文献1の実施例10参照)。   Here, by correcting the predetermined target discharge temperature according to the outside air temperature, it is possible to cope with changes in the evaporation capacity in the air heat exchanger according to the level of the outside air temperature, and to maintain a constant boiling temperature and heating capacity. In this state, the maximum efficiency operation was enabled (see Example 10 of Patent Document 1).

また、所定の目標吐出温度を目標沸き上げ温度の高低に応じて補正し、効率の良い運転を可能としていたものであった(特許文献1の実施例12参照)。
特開2002−188860号公報(実施例10、実施例12参照)
Moreover, the predetermined target discharge temperature was corrected according to the level of the target boiling temperature, and efficient operation was enabled (see Example 12 of Patent Document 1).
JP 2002-188860 A (see Example 10 and Example 12)

このような従来のヒートポンプ式給湯装置においては、沸き終い時に貯湯タンクの沸き上げ運転開始時の残湯部分まで沸き上げ運転が進み、水−冷媒熱交換器に入水する入水温度が上昇してくる場合は、入水温度の上昇に伴って水−冷媒熱交換器の冷媒流出温度も上昇することとなり、冷媒吐出温度と冷媒流出温度の温度差が小さくなって熱交換効率が低下する。しかし、一定の沸き上げ温度・加熱能力を保つためには冷媒の循環量を増やす必要があるが、冷媒の循環量を増やすには圧縮機の運転周波数を増加させなければならず、加熱効率が低下するという課題があった。   In such a conventional heat pump type hot water supply apparatus, the boiling operation proceeds to the remaining hot water portion at the start of the boiling operation of the hot water storage tank at the end of boiling, and the incoming water temperature entering the water-refrigerant heat exchanger increases. When the incoming water temperature rises, the refrigerant outflow temperature of the water-refrigerant heat exchanger also rises as the incoming water temperature rises, and the temperature difference between the refrigerant discharge temperature and the refrigerant outflow temperature becomes smaller, and the heat exchange efficiency decreases. However, in order to maintain a constant boiling temperature and heating capacity, it is necessary to increase the circulation rate of the refrigerant. To increase the circulation rate of the refrigerant, the operating frequency of the compressor must be increased, and the heating efficiency is increased. There was a problem of a decrease.

また、目標沸き上げ温度が低いために目標吐出温度も低い場合、沸き終い時の入水温度が上昇してくる際において、よりいっそう吐出温度と入水温度の差が小さくなり、熱交換効率が低下するため、さらに加熱効率が低下するという課題があった。   Also, if the target discharge temperature is low because the target boiling temperature is low, the difference between the discharge temperature and the incoming water temperature becomes even smaller when the incoming water temperature at the end of boiling rises, and the heat exchange efficiency decreases. Therefore, there is a problem that the heating efficiency is further reduced.

そこで、本発明は上記課題を解決するため、請求項1では、貯湯タンクと、圧縮機と、水−冷媒熱交換器と、減圧器と、蒸発器と、前記圧縮機から吐出され前記水−冷媒熱交換器に流入する冷媒の温度を目標吐出温度TDに制御し、前記貯湯タンクからの湯水を前記水−冷媒熱交換器にて目標沸き上げ温度Tsetに加熱制御する制御手段とを備えたヒートポンプ式給湯装置において、前記制御手段は、外気温度Taと目標沸き上げ温度Tsetの両方あるいは何れか一方の温度に基づいて目標吐出温度TDを設定すると共に、この目標吐出温度TDと前記水−冷媒熱交換器の水側の入水温度Twiとの温度差ΔTに応じて前記目標吐出温度TDを補正するようにした。   Therefore, in order to solve the above-described problems, the present invention provides a hot water storage tank, a compressor, a water-refrigerant heat exchanger, a decompressor, an evaporator, and the water discharged from the compressor. Control means for controlling the temperature of the refrigerant flowing into the refrigerant heat exchanger to the target discharge temperature TD, and controlling the hot water from the hot water storage tank to the target boiling temperature Tset in the water-refrigerant heat exchanger. In the heat pump type hot water supply apparatus, the control means sets a target discharge temperature TD based on one or both of the outside air temperature Ta and the target boiling temperature Tset, and the target discharge temperature TD and the water-refrigerant. The target discharge temperature TD is corrected in accordance with the temperature difference ΔT with the incoming water temperature Twi on the water side of the heat exchanger.

また、請求項2では、貯湯タンクと、圧縮機と、水−冷媒熱交換器と、減圧器と、蒸発器と、前記圧縮機から吐出され前記水−冷媒熱交換器に流入する冷媒の温度を目標吐出温度TDに制御し、前記貯湯タンクからの湯水を前記水−冷媒熱交換器にて目標沸き上げ温度Tsetに加熱制御する制御手段とを備えたヒートポンプ式給湯装置において、前記制御手段は、外気温度Taと目標沸き上げ温度Tsetの両方あるいは何れか一方の温度に基づいて目標吐出温度TDを設定すると共に、この目標吐出温度TDと前記水−冷媒熱交換器の冷媒側の流出温度Troとの温度差ΔTに応じて前記目標吐出温度TDを補正するようにした。   Moreover, in Claim 2, the temperature of the refrigerant | coolant discharged from the said hot water storage tank, a compressor, a water-refrigerant heat exchanger, a decompressor, an evaporator, and the said compressor flows into the said water-refrigerant heat exchanger. In a heat pump type hot water supply apparatus comprising: a control means for controlling the hot water from the hot water storage tank to a target boiling temperature Tset by the water-refrigerant heat exchanger. The target discharge temperature TD is set based on the outside air temperature Ta and / or the target boiling temperature Tset, and the target discharge temperature TD and the outflow temperature Tro on the refrigerant side of the water-refrigerant heat exchanger are set. The target discharge temperature TD is corrected according to the temperature difference ΔT.

また、請求項3では、請求項1または2に記載のヒートポンプ式給湯装置において、前記制御手段は、前記温度差ΔTが小さいほど補正量を大きくし、前記温度差ΔTが大きいほど補正量を小さくした。   Further, in claim 3, in the heat pump hot water supply apparatus according to claim 1 or 2, the control means increases the correction amount as the temperature difference ΔT is smaller, and decreases the correction amount as the temperature difference ΔT is larger. did.

また、請求項4では、請求項3に記載のヒートポンプ式給湯装置において、前記制御手段は、前記目標吐出温度TDが低い場合は、前記温度差ΔTの値が同じであっても前記目標吐出温度TDが高い場合より補正量を大きくするようにした   Further, in claim 4, in the heat pump hot water supply apparatus according to claim 3, when the target discharge temperature TD is low, the control means has the target discharge temperature even if the value of the temperature difference ΔT is the same. Increased the amount of correction than when TD is high

また、請求項5では、請求項1〜4の何れかに記載のヒートポンプ式給湯装置において、前記制御手段は、前記目標吐出温度TDが所定温度以上であると、前記補正を行わないようにした。   Further, in claim 5, in the heat pump hot water supply apparatus according to any one of claims 1 to 4, the control means does not perform the correction when the target discharge temperature TD is equal to or higher than a predetermined temperature. .

また、請求項5では、請求項1〜4の何れかに記載のヒートポンプ式給湯装置において、前記外気温度Taが所定外気温度以上であると、前記補正を行わないようにした。   Further, in claim 5, in the heat pump hot water supply apparatus according to any one of claims 1 to 4, the correction is not performed when the outside air temperature Ta is equal to or higher than a predetermined outside air temperature.

また、請求項6では、請求項1〜4の何れかに記載のヒートポンプ式給湯装置において、前記制御手段は、前記入水温度Twiが所定入水温度以上であると、前記補正を行わないようにした。   Moreover, in Claim 6, in the heat pump hot water supply apparatus according to any one of Claims 1 to 4, the control means does not perform the correction when the incoming water temperature Twi is equal to or higher than a predetermined incoming water temperature. did.

この発明によれば、沸き終い時などにより水−冷媒熱交換器への入水温度が上昇してくる場合に、目標吐出温度TDと入水温度Twiあるいは冷媒流出温度Troとの温度差ΔTに応じて目標吐出温度TDを補正することで、一定の加熱能力を保持しつつ熱交換効率の低下を抑制し、加熱効率を向上が図れるものである。   According to this invention, when the incoming water temperature to the water-refrigerant heat exchanger rises, for example, at the end of boiling, the temperature difference ΔT depends on the target discharge temperature TD and the incoming water temperature Twi or the refrigerant outflow temperature Tro. By correcting the target discharge temperature TD, a decrease in heat exchange efficiency can be suppressed while maintaining a certain heating capacity, and the heating efficiency can be improved.

また、目標吐出温度TDが低い場合は、前記温度差ΔTの値が同じであっても前記目標吐出温度TDが高い場合より補正量を大きくするようにしたので、一定の加熱能力を各日に保持しつつ熱交換効率の低下を抑制し、加熱効率を向上が図れるものである。   In addition, when the target discharge temperature TD is low, the correction amount is made larger than when the target discharge temperature TD is high even if the temperature difference ΔT is the same. While maintaining, the reduction of the heat exchange efficiency can be suppressed and the heating efficiency can be improved.

また、目標吐出温度TD、外気温度Ta、入水温度Twiが所定の温度以上であると、補正を行わないようにすることで、目標吐出温度TDの過度な上昇を抑えて機具の耐久性を十分に確保することができるものである。   Further, if the target discharge temperature TD, the outside air temperature Ta, and the incoming water temperature Twi are equal to or higher than the predetermined temperature, the correction is not performed, so that excessive increase of the target discharge temperature TD is suppressed and the durability of the equipment is sufficient. Can be secured.

次に、本発明の一実施形態について図面に基づいて説明する。
図1に示すように、1は湯水を貯湯する貯湯タンク2を有した貯湯タンクユニット、3は貯湯タンク2内の湯水を加熱するヒートポンプ式加熱手段、4は前記貯湯タンク2の下部に接続された加熱往き管5および前記貯湯タンク2の上部に接続された加熱戻り管6よりなる加熱循環回路、7は前記貯湯タンク2の下部に接続され貯湯タンク2に水を給水する給水管、8は前記貯湯タンク2の上部に接続され貯湯されている高温水を出湯する出湯管である。
Next, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, 1 is a hot water storage tank unit having a hot water storage tank 2 for storing hot water, 3 is a heat pump heating means for heating hot water in the hot water storage tank 2, and 4 is connected to the lower part of the hot water storage tank 2. A heating circulation circuit comprising a heating return pipe 5 and a heating return pipe 6 connected to the upper part of the hot water storage tank 2; 7 a water supply pipe connected to the lower part of the hot water storage tank 2 for supplying water to the hot water storage tank 2; A hot water discharge pipe connected to the upper part of the hot water storage tank 2 for discharging hot water stored in the hot water.

9は給水管7から分岐された給水バイパス管、10は出湯管8からの湯と給水バイパス管9からの水を混合して給湯設定温度の湯とする混合弁、11は混合弁10で混合後の給湯温度を検出する給湯温度センサ、12は貯湯タンク2の側面上下にわたり複数設けられ、貯湯タンク2内の湯の温度を検出する貯湯温度センサ、13は前記貯湯タンクユニット1内の各センサの出力を受けて各機器の作動を制御する貯湯制御手段である。   9 is a water supply bypass pipe branched from the water supply pipe 7, 10 is a mixing valve that mixes hot water from the hot water discharge pipe 8 and water from the water supply bypass pipe 9 to make hot water at a hot water supply set temperature, and 11 is mixed by the mixing valve 10 A plurality of hot water supply temperature sensors 12 for detecting a hot water supply temperature later, a plurality of hot water storage temperature sensors 12 for detecting the temperature of hot water in the hot water storage tank 2, and a plurality of sensors 12 in the hot water storage tank unit 1. Is a hot water storage control means for controlling the operation of each device.

前記ヒートポンプ式加熱手段3は、冷媒を圧縮する圧縮機14と、高温高圧の冷媒と貯湯タンク2内の湯水とを熱交換する水−冷媒熱交換器15と、冷媒−水熱交換器15通過後の冷媒を減圧させる減圧器としての電子膨張弁16と、電子膨張弁16からの低温低圧の冷媒を蒸発させる蒸発器としての空気熱交換器17とを冷媒配管で環状に接続したヒートポンプサイクル18と、水−冷媒熱交換器15の水側の加熱循環回路4途中に設けられて貯湯タンク2の湯水を循環させる加熱循環ポンプ19とから構成されている。ここで、前記水−冷媒熱交換器15は冷媒の流動方向と被加熱水の流動方向が対向する対向流式の熱交換器である。   The heat pump heating means 3 includes a compressor 14 that compresses refrigerant, a water-refrigerant heat exchanger 15 that exchanges heat between the high-temperature and high-pressure refrigerant and hot water in the hot water storage tank 2, and the refrigerant-water heat exchanger 15 passage. A heat pump cycle 18 in which an electronic expansion valve 16 as a pressure reducer for reducing the pressure of the subsequent refrigerant and an air heat exchanger 17 as an evaporator for evaporating the low-temperature and low-pressure refrigerant from the electronic expansion valve 16 are connected in an annular shape by a refrigerant pipe. And a heating circulation pump 19 provided in the middle of the heating circulation circuit 4 on the water side of the water-refrigerant heat exchanger 15 to circulate hot water in the hot water storage tank 2. Here, the water-refrigerant heat exchanger 15 is a counter-flow heat exchanger in which the flow direction of the refrigerant and the flow direction of the water to be heated are opposed to each other.

20は圧縮機14と水−冷媒熱交換器15との間に設けられ、冷媒の吐出温度を検出する冷媒吐出温度センサ、21は水−冷媒熱交換器15と電子膨張弁16との間に設けられ、冷媒の水−冷媒熱交換器15からの流出温度を検出する流出温度センサ、22は空気熱交換器17の空気入口側に設けられ、外気温度を検出する外気温度センサ、23は水−冷媒熱交換器15の水側の入水温度を検出する入水温度センサ、24は水−冷媒熱交換器15の水側の沸き上げ温度を検出する沸き上げ温度センサである。   A refrigerant discharge temperature sensor 20 is provided between the compressor 14 and the water-refrigerant heat exchanger 15 to detect the refrigerant discharge temperature, and 21 is provided between the water-refrigerant heat exchanger 15 and the electronic expansion valve 16. An outflow temperature sensor for detecting the outflow temperature of the refrigerant from the water-refrigerant heat exchanger 15, 22 is provided on the air inlet side of the air heat exchanger 17, an outside air temperature sensor for detecting the outside air temperature, and 23 is water. A water temperature sensor for detecting the water temperature on the water side of the refrigerant heat exchanger 15, and a water temperature sensor 24 for detecting the water temperature on the water side of the water-refrigerant heat exchanger 15.

25は前記ヒートポンプ式加熱手段3内の各センサの出力を受けて各機器の作動を制御する加熱制御手段で、貯湯制御手段13と通信可能に接続され、貯湯制御手段13と連携して作動するものである。   Reference numeral 25 denotes a heating control means for receiving the output of each sensor in the heat pump type heating means 3 and controlling the operation of each device. Is.

次に、この一実施形態の作動について説明する。
給湯を行う際は、ユーザーが蛇口(図示せず)を開くと、貯湯タンク2の下部の給水管7から市水が流入し、貯湯タンク2上部から深夜時間帯に沸き上げられて貯湯されている高温の湯が出湯管8へ出湯される。そして、出湯管8からの高温の湯と給水バイパス管9からの市水とが混合弁10で混合される。このとき、給湯温度センサ11で検出する混合後の給湯温度がリモートコントローラ(図示せず)等で設定された給湯設定温度になるように混合弁10の混合比率が調整され、給湯設定温度の湯が蛇口から給湯される。
Next, the operation of this embodiment will be described.
When hot water is supplied, when a user opens a faucet (not shown), city water flows from the water supply pipe 7 at the bottom of the hot water tank 2 and is boiled from the upper part of the hot water tank 2 and stored in the midnight hours. The hot water that is present is poured into the tap pipe 8. Then, hot water from the hot water discharge pipe 8 and city water from the feed water bypass pipe 9 are mixed by the mixing valve 10. At this time, the mixing ratio of the mixing valve 10 is adjusted so that the hot water temperature after mixing detected by the hot water temperature sensor 11 becomes the hot water set temperature set by a remote controller (not shown) or the like. Hot water is supplied from the faucet.

深夜時間帯となると、貯湯制御手段13は貯湯タンク2内の湯水が所定の目標沸き上げ温度Tsetになるように沸き上げ運転を開始するよう加熱制御手段25へ沸き上げ開始命令を指示する。そして、加熱制御手段25は、外気温度センサ22で検出した外気温度Taに応じた圧縮機14の運転周波数で圧縮機14を制御すると共に、目標沸き上げ温度Tset+一定値を外気温度Taの高低に応じて微調整するようにして目標吐出温度TDを設定し、冷媒吐出温度センサ20で検出する冷媒の吐出温度が目標吐出温度TDになるように電子膨張弁16の開度を制御する。同時に、加熱制御手段25は沸き上げ温度センサ24で検出する水−冷媒熱交換器15で加熱された湯が目標沸き上げ温度Tsetになるように加熱循環ポンプ19の回転数を制御する。   In the midnight time zone, the hot water storage control means 13 instructs the heating control means 25 to start a boiling operation so as to start the boiling operation so that the hot water in the hot water storage tank 2 reaches a predetermined target boiling temperature Tset. The heating control means 25 controls the compressor 14 at the operating frequency of the compressor 14 corresponding to the outside air temperature Ta detected by the outside air temperature sensor 22, and makes the target boiling temperature Tset + a constant value higher or lower than the outside air temperature Ta. The target discharge temperature TD is set so as to be finely adjusted accordingly, and the opening degree of the electronic expansion valve 16 is controlled so that the refrigerant discharge temperature detected by the refrigerant discharge temperature sensor 20 becomes the target discharge temperature TD. At the same time, the heating control means 25 controls the rotation speed of the heating circulation pump 19 so that the hot water heated by the water-refrigerant heat exchanger 15 detected by the boiling temperature sensor 24 becomes the target boiling temperature Tset.

ここで、前記所定の目標沸き上げ温度Tsetは、過去の給湯量の最大値や平均値等の給湯実績から翌日の給湯量の予測量を確保できるように貯湯制御手段13によって算出されるもので、65℃から90℃の範囲で決定されるものである。   Here, the predetermined target boiling temperature Tset is calculated by the hot water storage control means 13 so as to ensure the predicted amount of the hot water supply amount on the next day from the actual hot water supply results such as the maximum value and the average value of the past hot water supply amount. The temperature is determined in the range of 65 ° C to 90 ° C.

そして、沸き上げ運転が進行していくと、貯湯タンク2の下部の水がヒートポンプ式加熱手段3へ循環され、貯湯タンク2の上部から目標沸き上げ温度Tsetに加熱された湯が積層状態に貯湯される。貯湯タンク2内に必要な湯量が沸き上げられたことを貯湯温度センサ12で検出するか、ヒートポンプ式加熱手段3の入水温度センサ23で検出する入水温度Twiが沸き上げし難い所定の高温度以上を検出するか、あるいは電力料金単価の安い深夜時間帯が終了した時点で、貯湯制御手段13は沸き上げ運転を停止するべく加熱制御手段25に停止指示を出し、加熱制御手段25は圧縮機14と加熱循環ポンプ19の運転を停止して、沸き上げ運転を終了する。   Then, as the boiling operation proceeds, the water in the lower part of the hot water storage tank 2 is circulated to the heat pump type heating means 3, and the hot water heated from the upper part of the hot water storage tank 2 to the target boiling temperature Tset is stored in a stacked state. Is done. The hot water storage temperature sensor 12 detects that the required amount of hot water has been boiled in the hot water storage tank 2, or the incoming water temperature Twi detected by the incoming water temperature sensor 23 of the heat pump heating means 3 is higher than a predetermined high temperature that is difficult to boil up. Or the hot water storage control means 13 issues a stop instruction to the heating control means 25 to stop the boiling operation, and the heating control means 25 And the operation of the heating circulation pump 19 is stopped, and the boiling operation is finished.

この沸き上げ運転の終了直前の沸き終い時においては、貯湯タンク2内の湯層と水層との間の混合層の湯水がヒートポンプ式加熱手段3へ流入する。このとき、入水温度Twiが徐々に上昇してくるので、加熱制御手段25が目標吐出温度TDを、目標吐出温度TDと入水温度Twiとの温度差ΔTに応じて補正する。   At the end of boiling just before the end of the boiling operation, the hot water in the mixed layer between the hot water layer and the water layer in the hot water storage tank 2 flows into the heat pump heating means 3. At this time, since the incoming water temperature Twi gradually increases, the heating control means 25 corrects the target discharge temperature TD according to the temperature difference ΔT between the target discharge temperature TD and the incoming water temperature Twi.

ここで、入水温度Twiの上昇に従って水−冷媒熱交換器15の冷媒流出温度Troが上昇することにより水−冷媒熱交換器15での熱交換量が低下しようとするが、図2に示すように、温度差ΔTが小さいほど補正量を大きくし、温度差ΔTが大きいほど補正量を小さく設定されているため、温度差ΔTが小さくなるほど目標吐出温度TDを高くなるように補正して温度差ΔTの大きさを確保しようとするため、冷媒循環量をあまり増やさずとも加熱能力を確保して、熱交換効率の低下を抑制し、加熱効率を向上が図れるものである。   Here, the amount of heat exchange in the water-refrigerant heat exchanger 15 tends to decrease as the refrigerant outflow temperature Tro of the water-refrigerant heat exchanger 15 increases as the incoming water temperature Twi increases, but as shown in FIG. In addition, the smaller the temperature difference ΔT, the larger the correction amount, and the larger the temperature difference ΔT, the smaller the correction amount. Therefore, the smaller the temperature difference ΔT is, the higher the target discharge temperature TD is corrected. Since it is going to secure the magnitude | size of (DELTA) T, even if it does not increase refrigerant | coolant circulation amount very much, a heating capability is ensured, the fall of heat exchange efficiency is suppressed, and a heating efficiency can be aimed at.

図2に示したように、加熱制御手段25は、温度差ΔTの値に応じて補正値を決定しているため、同じ入水温度Twiまで上昇したとしても、温度差ΔTが大きいときは補正しないあるいは補正値が小さく、温度差ΔTが小さいときは補正値が大きくなるため、入水温度Twiの高低ではなく熱交換効率の低下度合いに応じた最適な補正を行うことができるものである。   As shown in FIG. 2, since the heating control means 25 determines a correction value according to the value of the temperature difference ΔT, even if the temperature rises to the same incoming water temperature Twi, it is not corrected when the temperature difference ΔT is large. Alternatively, when the correction value is small and the temperature difference ΔT is small, the correction value becomes large. Therefore, it is possible to perform optimal correction according to the degree of decrease in the heat exchange efficiency rather than the level of the incoming water temperature Twi.

また、加熱制御手段25は、図3に示すように、同じ温度差ΔTにおいても、目標吐出温度TDが低い場合は、目標吐出温度TDが高い場合に比べて補正値を大きくなるようにすれば、目標吐出温度TDが低く沸き終い時の入水温度の上昇に伴う加熱能力の低下傾向が顕著な場合においても、一定の加熱能力を各日に保持しつつ熱交換効率の低下を抑制し、加熱効率を向上が図れるものである。   Further, as shown in FIG. 3, the heating control means 25 can increase the correction value when the target discharge temperature TD is low even when the target discharge temperature TD is low, even when the temperature difference ΔT is the same. In addition, even when the target discharge temperature TD is low and the tendency to decrease the heating capacity accompanying the increase in the incoming water temperature at the end of boiling is remarkable, the decrease in heat exchange efficiency is suppressed while maintaining a constant heating capacity each day, The heating efficiency can be improved.

また、水−冷媒熱交換器15に入る前の湯水の温度である入水温度Twiを用いて温度差ΔTを算出しているので、水−冷媒熱交換器15での熱交換効率が低下してしまう前に熱交換効率の低下度合いを知ることができ、制御遅れの少ない最適な補正を行うことができるものである。   Further, since the temperature difference ΔT is calculated using the incoming water temperature Twi that is the temperature of hot water before entering the water-refrigerant heat exchanger 15, the heat exchange efficiency in the water-refrigerant heat exchanger 15 is reduced. Therefore, it is possible to know the degree of decrease in heat exchange efficiency, and to perform optimal correction with little control delay.

また、加熱制御手段25は、目標吐出温度TD、外気温度Ta、入水温度Twiがそれぞれ所定の温度以上であると補正を行わないようにしているため、目標吐出温度TDの過度な上昇を抑えて機具の耐久性を十分に確保することができるものである。   Further, since the heating control means 25 does not perform correction when the target discharge temperature TD, the outside air temperature Ta, and the incoming water temperature Twi are each equal to or higher than a predetermined temperature, it suppresses an excessive increase in the target discharge temperature TD. The durability of the equipment can be sufficiently ensured.

次に、本発明の別の一実施形態について、先の一実施形態と同一の点はその説明を省略し、先の一実施形態と異なる点を説明する。
この実施形態においては、先の一実施形態において目標吐出温度TDと入水温度Twiの温度差ΔTの値に応じて補正値を決定していたことに替わり、加熱制御手段25が目標吐出温度TDと流出温度センサ21で検出する冷媒流出温度Troとの温度差ΔTの値に応じて補正値を決定するようにしたものである。
Next, in another embodiment of the present invention, the description of the same points as in the previous embodiment will be omitted, and different points from the previous embodiment will be described.
In this embodiment, instead of determining the correction value in accordance with the value of the temperature difference ΔT between the target discharge temperature TD and the incoming water temperature Twi in the previous embodiment, the heating control means 25 is set to the target discharge temperature TD. The correction value is determined according to the value of the temperature difference ΔT with respect to the refrigerant outflow temperature Tro detected by the outflow temperature sensor 21.

ここで、入水温度Twiの上昇に従って水−冷媒熱交換器15の冷媒流出温度Troが上昇することにより水−冷媒熱交換器15での熱交換量が低下しようとするが、図2に示すように、温度差ΔTが小さいほど補正量を大きくし、温度差ΔTが大きいほど補正量を小さく設定されているため、温度差ΔTが小さくなるほど目標吐出温度TDを高くなるように補正して温度差ΔTの大きさを確保しようとするため、冷媒循環量をあまり増やさずとも加熱能力を確保して、熱交換効率の低下を抑制し、加熱効率を向上が図れるものである。   Here, the amount of heat exchange in the water-refrigerant heat exchanger 15 tends to decrease as the refrigerant outflow temperature Tro of the water-refrigerant heat exchanger 15 increases as the incoming water temperature Twi increases, but as shown in FIG. In addition, the smaller the temperature difference ΔT, the larger the correction amount, and the larger the temperature difference ΔT, the smaller the correction amount. Therefore, the smaller the temperature difference ΔT is, the higher the target discharge temperature TD is corrected. Since it is going to secure the magnitude | size of (DELTA) T, even if it does not increase refrigerant | coolant circulation amount very much, a heating capability is ensured, the fall of heat exchange efficiency is suppressed, and a heating efficiency can be aimed at.

このように、目標吐出温度TDと冷媒流出温度Troとの温度差ΔTの値に応じて目標吐出温度TDを補正するようにしたので、熱交換効率の低下度合いに応じた最適な補正を行うことができる。   As described above, the target discharge temperature TD is corrected according to the value of the temperature difference ΔT between the target discharge temperature TD and the refrigerant outflow temperature Tro, so that the optimum correction according to the degree of decrease in the heat exchange efficiency is performed. Can do.

なお、本発明はこれまで説明してきた一実施形態に限定されることなく、その趣旨を変更しない範囲で適用可能なもので、例えば、ヒートポンプサイクル18は減圧器としてエジェクターを用いたエジェクターサイクルでもよく、また、加熱循環ポンプ19は所定の流量で動作するように制御するようにしてもよい。   The present invention is not limited to the embodiment described so far, and can be applied without changing the gist thereof. For example, the heat pump cycle 18 may be an ejector cycle using an ejector as a decompressor. The heating circulation pump 19 may be controlled to operate at a predetermined flow rate.

また、目標吐出温度TDは、目標沸き上げ温度Tset+一定値を外気温度Taの高低に応じて微調整するようにして加熱制御手段25が決定する例を用いて説明したが、この例に限られず目標沸き上げ温度Tset、外気温度Ta、あるいは外気温度Taに類する市水の平均給水温度等の組合せまたはいずれか一つの値に応じて目標吐出温度TDを決定するようにしてもよいものである。   In addition, the target discharge temperature TD has been described using the example in which the heating control unit 25 determines the target boiling temperature Tset + a constant value according to the level of the outside air temperature Ta, but is not limited thereto. The target discharge temperature TD may be determined according to the target boiling temperature Tset, the outside air temperature Ta, the combination of the average water supply temperature of city water similar to the outside air temperature Ta, or any one value.

また、冷媒吐出温度センサ20は冷媒の吐出温度を検出できればよいもので、圧縮機14で高温高圧にされてから水−冷媒熱交換器15に流入するまでの温度を検出できるものであれば、センサの取付位置は限定されないものである。   The refrigerant discharge temperature sensor 20 only needs to be able to detect the refrigerant discharge temperature, and can detect the temperature from the high temperature and high pressure of the compressor 14 until it flows into the water-refrigerant heat exchanger 15. The mounting position of the sensor is not limited.

また、深夜時間帯に貯湯する深夜貯湯式のヒートポンプ式給湯機を例に説明したが、これに限らず、給湯している間に必要な分量の湯を沸かす瞬間式のヒートポンプ式給湯機のサブタンク内の湯を沸き上げる際にも利用可能で、また、貯湯タンクユニット1とヒートポンプ式加熱手段3とを一体にした構成でもよく、その際には、貯湯制御手段13と加熱制御手段25を一体の制御手段としてもよいものである。   In addition, the explanation was given by taking an example of a midnight hot water storage type heat pump water heater that stores hot water at midnight hours, but not limited to this, a sub-tank of an instantaneous heat pump water heater that boils a required amount of hot water while hot water is being supplied The hot water storage tank unit 1 and the heat pump heating means 3 may be integrated with each other. In this case, the hot water storage control means 13 and the heating control means 25 are integrated. It is good also as a control means.

本発明の一実施形態のヒートポンプ式給湯装置のシステム図。The system diagram of the heat pump type hot water supply apparatus of one Embodiment of this invention. 同一実施形態の温度差ΔTと補正値の関係を示す図。The figure which shows the relationship between the temperature difference (DELTA) T and correction value of the same embodiment. 同一実施形態の温度差ΔTと補正値の別の関係を示す図。The figure which shows another relationship of the temperature difference (DELTA) T and correction value of the same embodiment.

符号の説明Explanation of symbols

2 貯湯タンク
3 ヒートポンプ式加熱手段
14 圧縮機
15 水−冷媒熱交換器
16 電子膨張弁(減圧器)
17 空気熱交換器(蒸発器)
20 冷媒吐出温度センサ
21 流出温度センサ
22 外気温度センサ
23 入水温度センサ
24 沸き上げ温度センサ
25 加熱制御手段(制御手段)
2 Hot water storage tank 3 Heat pump type heating means 14 Compressor 15 Water-refrigerant heat exchanger 16 Electronic expansion valve (pressure reducer)
17 Air heat exchanger (evaporator)
20 Refrigerant discharge temperature sensor 21 Outflow temperature sensor 22 Outside air temperature sensor 23 Incoming water temperature sensor 24 Boil-up temperature sensor 25 Heating control means (control means)

Claims (7)

貯湯タンクと、圧縮機と、水−冷媒熱交換器と、減圧器と、蒸発器と、前記圧縮機から吐出され前記水−冷媒熱交換器に流入する冷媒の温度を目標吐出温度TDに制御し、前記貯湯タンクからの湯水を前記水−冷媒熱交換器にて目標沸き上げ温度Tsetに加熱制御する制御手段とを備えたヒートポンプ式給湯装置において、
前記制御手段は、外気温度Taと目標沸き上げ温度Tsetの両方あるいは何れか一方の温度に基づいて目標吐出温度TDを設定すると共に、この目標吐出温度TDと前記水−冷媒熱交換器の水側の入水温度Twiとの温度差ΔTに応じて前記目標吐出温度TDを補正するようにしたことを特徴とするヒートポンプ式給湯装置。
A hot water storage tank, a compressor, a water-refrigerant heat exchanger, a decompressor, an evaporator, and a refrigerant temperature discharged from the compressor and flowing into the water-refrigerant heat exchanger are controlled to a target discharge temperature TD. And a heat pump type hot water supply apparatus comprising control means for controlling the hot water from the hot water storage tank to a target boiling temperature Tset by the water-refrigerant heat exchanger,
The control means sets a target discharge temperature TD based on both or one of the outside air temperature Ta and the target boiling temperature Tset, and the target discharge temperature TD and the water side of the water-refrigerant heat exchanger. The heat pump type hot water supply apparatus is characterized in that the target discharge temperature TD is corrected in accordance with a temperature difference ΔT from the incoming water temperature Twi.
貯湯タンクと、圧縮機と、水−冷媒熱交換器と、減圧器と、蒸発器と、前記圧縮機から吐出され前記水−冷媒熱交換器に流入する冷媒の温度を目標吐出温度TDに制御し、前記貯湯タンクからの湯水を前記水−冷媒熱交換器にて目標沸き上げ温度Tsetに加熱制御する制御手段とを備えたヒートポンプ式給湯装置において、
前記制御手段は、外気温度Taと目標沸き上げ温度Tsetの両方あるいは何れか一方の温度に基づいて目標吐出温度TDを設定すると共に、この目標吐出温度TDと前記水−冷媒熱交換器の冷媒側の流出温度Troとの温度差ΔTに応じて前記目標吐出温度TDを補正するようにしたことを特徴とするヒートポンプ式給湯装置。
A hot water storage tank, a compressor, a water-refrigerant heat exchanger, a decompressor, an evaporator, and a refrigerant temperature discharged from the compressor and flowing into the water-refrigerant heat exchanger are controlled to a target discharge temperature TD. And a heat pump type hot water supply apparatus comprising control means for controlling the hot water from the hot water storage tank to a target boiling temperature Tset by the water-refrigerant heat exchanger,
The control means sets a target discharge temperature TD based on both or one of the outside air temperature Ta and the target boiling temperature Tset, and the target discharge temperature TD and the refrigerant side of the water-refrigerant heat exchanger A heat pump type hot water supply apparatus characterized in that the target discharge temperature TD is corrected in accordance with a temperature difference ΔT with respect to the outflow temperature Tro.
前記制御手段は、前記温度差ΔTが小さいほど補正量を大きくし、前記温度差ΔTが大きいほど補正量を小さくしたことを特徴とする請求項1または2に記載のヒートポンプ式給湯装置。   The heat pump hot water supply apparatus according to claim 1 or 2, wherein the control means increases the correction amount as the temperature difference ΔT is smaller, and decreases the correction amount as the temperature difference ΔT is larger. 前記制御手段は、前記目標吐出温度TDが低い場合は、前記温度差ΔTの値が同じであっても前記目標吐出温度TDが高い場合より補正量を大きくするようにしたことを特徴とする請求項3記載のヒートポンプ式給湯装置。   The control means is configured such that when the target discharge temperature TD is low, the correction amount is set larger than when the target discharge temperature TD is high even if the value of the temperature difference ΔT is the same. Item 4. A heat pump hot water supply apparatus according to Item 3. 前記制御手段は、前記目標吐出温度TDが所定温度以上であると、前記補正を行わないようにしたことを特徴とする請求項1〜4の何れかに記載のヒートポンプ式給湯装置。   The heat pump type hot water supply apparatus according to any one of claims 1 to 4, wherein the control means does not perform the correction when the target discharge temperature TD is equal to or higher than a predetermined temperature. 前記制御手段は、前記外気温度Taが所定外気温度以上であると、前記補正を行わないようにしたことを特徴とする請求項1〜4の何れかに記載のヒートポンプ式給湯装置。   The heat pump type hot water supply apparatus according to any one of claims 1 to 4, wherein the control means does not perform the correction when the outside air temperature Ta is equal to or higher than a predetermined outside air temperature. 前記制御手段は、前記入水温度Twiが所定入水温度以上であると、前記補正を行わないようにしたことを特徴とする請求項1〜4の何れかに記載のヒートポンプ式給湯装置。   The heat pump hot water supply apparatus according to any one of claims 1 to 4, wherein the control means does not perform the correction when the incoming water temperature Twi is equal to or higher than a predetermined incoming water temperature.
JP2007292854A 2007-11-12 2007-11-12 Heat pump type water heater Active JP4950004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292854A JP4950004B2 (en) 2007-11-12 2007-11-12 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292854A JP4950004B2 (en) 2007-11-12 2007-11-12 Heat pump type water heater

Publications (2)

Publication Number Publication Date
JP2009121704A JP2009121704A (en) 2009-06-04
JP4950004B2 true JP4950004B2 (en) 2012-06-13

Family

ID=40814038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292854A Active JP4950004B2 (en) 2007-11-12 2007-11-12 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP4950004B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5558937B2 (en) * 2010-06-30 2014-07-23 株式会社コロナ Heat pump type water heater
JP5940294B2 (en) * 2011-12-22 2016-06-29 中部電力株式会社 Refrigeration equipment
JP6607829B2 (en) * 2016-06-29 2019-11-20 三菱電機株式会社 Hot water heat source machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3227651B2 (en) * 1998-11-18 2001-11-12 株式会社デンソー Water heater
JP3740380B2 (en) * 2000-04-19 2006-02-01 株式会社デンソー Heat pump water heater
JP3632645B2 (en) * 2000-10-13 2005-03-23 松下電器産業株式会社 Heat pump water heater
JP2002340440A (en) * 2001-05-18 2002-11-27 Matsushita Electric Ind Co Ltd Heat pump hot-water supplier
JP4123220B2 (en) * 2004-11-08 2008-07-23 株式会社デンソー Heat pump type heating device

Also Published As

Publication number Publication date
JP2009121704A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
JP5087484B2 (en) Hot water storage hot water heater
JP5161008B2 (en) Heat pump type water heater
JP2010091181A (en) Storage water heater and heat pump water heater
JP5034367B2 (en) Heat pump water heater
JP3901192B2 (en) Heat pump water heater
JP2009150609A (en) Heat pump type water heater
JP5558937B2 (en) Heat pump type water heater
JP4950004B2 (en) Heat pump type water heater
JP5139211B2 (en) Heat pump type water heater
JP2004101134A (en) Hot water storage type hot-water feeder
JP5575049B2 (en) Heat pump water heater
JP5835113B2 (en) Hot water storage water heater
JP5802514B2 (en) Heat pump water heater
JP2009287794A (en) Heat pump type water heater
JP2009063262A (en) Heat pump type water heater
JP2016048125A (en) Supply water heating system
JP5134446B2 (en) Heat pump type water heater
JP2008261557A (en) Heat pump water heater
JP4790538B2 (en) Hot water storage hot water heater
JP2009085476A (en) Heat pump water heater
JP2010133598A (en) Heat pump type water heater
JP5338758B2 (en) Hot water supply apparatus and hot water control method thereof
JP2017198383A (en) Heat pump type water heater
JP4334153B2 (en) Heat pump water heater
JP3840456B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4950004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250