JP5558937B2 - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP5558937B2
JP5558937B2 JP2010148410A JP2010148410A JP5558937B2 JP 5558937 B2 JP5558937 B2 JP 5558937B2 JP 2010148410 A JP2010148410 A JP 2010148410A JP 2010148410 A JP2010148410 A JP 2010148410A JP 5558937 B2 JP5558937 B2 JP 5558937B2
Authority
JP
Japan
Prior art keywords
temperature
hot water
refrigerant
heat pump
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010148410A
Other languages
Japanese (ja)
Other versions
JP2012013267A (en
Inventor
基 阿部
貴幸 阿部
伊藤  隆
元泰 佐藤
豪 宮尾
亮 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2010148410A priority Critical patent/JP5558937B2/en
Publication of JP2012013267A publication Critical patent/JP2012013267A/en
Application granted granted Critical
Publication of JP5558937B2 publication Critical patent/JP5558937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

この発明は、貯湯タンク内の湯水をヒートポンプで加熱するヒートポンプ式給湯装置に関するものである。   The present invention relates to a heat pump hot water supply apparatus for heating hot water in a hot water storage tank with a heat pump.

従来のこの種のヒートポンプ式給湯装置においては、下部に給水管が接続され、上部に出湯管が接続された貯湯タンクと、圧縮機、凝縮器としての水冷媒熱交換器、減圧器としての電子膨張弁、蒸発器としての空気熱交換器を冷媒配管で環状に接続したヒートポンプサイクルを有したヒートポンプ式加熱手段と、貯湯タンク下部から取り出した湯水を水冷媒熱交換器の水側に流通させ貯湯タンク上部に戻す循環ポンプを有した加熱循環回路とを備え、貯湯タンク内の湯水をヒートポンプ式加熱手段に循環させ沸き上げるようにしたものであった。   In this type of conventional heat pump hot water supply apparatus, a hot water storage tank having a water supply pipe connected to the lower part and a hot water discharge pipe connected to the upper part, a water refrigerant heat exchanger as a compressor, a condenser, and an electron as a pressure reducer Heat pump type heating means having a heat pump cycle in which an air heat exchanger as an expansion valve and an evaporator is connected in an annular shape with refrigerant piping, and hot water taken out from the lower part of the hot water storage tank is circulated to the water side of the water refrigerant heat exchanger to store hot water And a heating circulation circuit having a circulation pump for returning to the upper part of the tank, and the hot water in the hot water storage tank is circulated to the heat pump heating means to be boiled up.

ここで、前記ヒートポンプ式加熱手段は、その運転効率が高効率となる状態で運転するように制御されるものであり、その制御方法として、圧縮機から吐出される冷媒の吐出温度が予め設定された目標吐出温度となるように、電子膨張弁の開度を制御するものがあった(例えば、特許文献1参照。)。   Here, the heat pump heating means is controlled so as to operate in a state in which the operation efficiency is high. As a control method, the discharge temperature of the refrigerant discharged from the compressor is set in advance. Some control the opening of the electronic expansion valve so that the target discharge temperature is reached (see, for example, Patent Document 1).

特開2002−188860号公報JP 2002-188860 A

ところで、従来のヒートポンプ給湯装置において、貯湯タンク内の湯水の沸き上げが進み、沸き上げ終了時(沸き終い時)が近づくと、水冷媒熱交換器に流入する湯水の入水温度が上昇してくる。そうすると、ヒートポンプサイクルの状態は、図5の鎖線で示した安定時の状態から実線で示した沸き終い時の状態となる。この沸き終い時には、水冷媒熱交換器に流入する湯水の入水温度が上昇すると共に、水冷媒熱交換器から流出する冷媒温度も上昇していく。その状態で、圧縮機から吐出される冷媒の吐出温度が予め設定された目標吐出温度に保たれるよう電子膨張弁の開度を制御すると、圧縮機の吐出温度と水冷媒熱交換器から流出する冷媒温度との温度差が必要以上に小さくなり、運転効率が最大となる比エンタルピー差を保てず、効率の悪い運転を行ってしまうという問題を有するものであった。   By the way, in the conventional heat pump water heater, when the boiling of hot water in the hot water storage tank proceeds and the boiling end (at the end of boiling) approaches, the incoming temperature of the hot water flowing into the water-refrigerant heat exchanger increases. come. If it does so, the state of a heat pump cycle will be in the state at the time of the end of boiling shown with the continuous line from the state of the stable time shown with the chain line of FIG. At the end of boiling, the incoming temperature of hot water flowing into the water-refrigerant heat exchanger increases, and the temperature of refrigerant flowing out of the water-refrigerant heat exchanger also increases. In this state, if the opening of the electronic expansion valve is controlled so that the discharge temperature of the refrigerant discharged from the compressor is maintained at a preset target discharge temperature, the discharge temperature of the compressor and the water refrigerant heat exchanger will flow out. The temperature difference from the refrigerant temperature to be reduced is unnecessarily small, the specific enthalpy difference that maximizes the operation efficiency cannot be maintained, and the operation is inefficient.

そこで、この発明は上記課題を解決するために、特に請求項1ではその構成を、湯水を貯湯する貯湯タンクと、圧縮機、水冷媒熱交換器、減圧器、蒸発器を備えたヒートポンプ式加熱手段と、該ヒートポンプ式加熱手段の前記水冷媒熱交換器の水側と前記貯湯タンクとを環状に接続する加熱循環回路と、前記貯湯タンク内の湯水を目標沸き上げ温度に加熱するよう前記ヒートポンプ式加熱手段を制御する制御手段とを備えたヒートポンプ式給湯装置において、前記制御手段は、前記圧縮機から吐出される冷媒の吐出温度と前記水冷媒熱交換器から流出する冷媒の流出温度との温度差が、所定の目標温度差となるように前記減圧器の開度を制御し、前記所定の目標温度差は、前記目標沸き上げ温度と外気温度と前記水冷媒熱交換器に流入する湯水の入水温度とに基づいて算出するものとした。
Accordingly, in order to solve the above-mentioned problems, the present invention is particularly configured as claimed in claim 1, a heat pump heating system including a hot water storage tank for storing hot water, a compressor, a water refrigerant heat exchanger, a decompressor, and an evaporator. Means, a heating circulation circuit for annularly connecting the water side of the water-refrigerant heat exchanger of the heat pump heating means and the hot water storage tank, and the heat pump for heating the hot water in the hot water storage tank to a target boiling temperature In the heat pump type hot water supply apparatus comprising a control means for controlling the heating means, the control means is configured to calculate a discharge temperature of the refrigerant discharged from the compressor and an outflow temperature of the refrigerant flowing out of the water refrigerant heat exchanger. hot water temperature difference, and controlling the opening of said decompressor so that a predetermined target temperature difference, the predetermined target temperature difference flowing into the water-refrigerant heat exchanger and the target boiling temperature and outside air temperature And it shall be calculated on the basis of the water inlet temperature.

また、請求項2では、湯水を貯湯する貯湯タンクと、圧縮機、水冷媒熱交換器、減圧器、蒸発器を備えたヒートポンプ式加熱手段と、該ヒートポンプ式加熱手段の前記水冷媒熱交換器の水側と前記貯湯タンクとを環状に接続する加熱循環回路と、前記貯湯タンク内の湯水を目標沸き上げ温度に加熱するよう前記ヒートポンプ式加熱手段を制御する制御手段とを備えたヒートポンプ式給湯装置において、前記制御手段は、前記圧縮機から吐出される冷媒の吐出温度と前記水冷媒熱交換器から流出する冷媒の流出温度との温度差が、所定の目標温度差となるように前記減圧器の開度を制御し、前記所定の目標温度差は、前記目標沸き上げ温度と外気温度と前記水冷媒熱交換器に流入する湯水の入水温度とに基づいて、前記外気温度が高くなる程、前記所定の目標温度差の値が小さくなり、前記入水温度が高くなる程、前記所定の目標温度差の値が小さくなり、前記目標沸き上げ温度が高くなる程、前記所定の目標温度差の値が大きくなるように算出するものとした。
Further, in claim 2, a hot water storage tank for storing hot water, a heat pump type heating means including a compressor, a water refrigerant heat exchanger, a decompressor, and an evaporator, and the water refrigerant heat exchanger of the heat pump type heating means A heat pump hot water supply comprising: a heating circuit that annularly connects the water side of the hot water storage tank and the hot water storage tank; and a control means that controls the heat pump heating means to heat the hot water in the hot water storage tank to a target boiling temperature In the apparatus, the control means reduces the pressure so that a temperature difference between a discharge temperature of the refrigerant discharged from the compressor and an outflow temperature of the refrigerant flowing out of the water refrigerant heat exchanger becomes a predetermined target temperature difference. The predetermined target temperature difference is such that the higher the outside air temperature is, the higher the outside air temperature is based on the target boiling temperature, the outside air temperature, and the incoming water temperature flowing into the water-refrigerant heat exchanger. , The value of the predetermined target temperature difference decreases, the higher the incoming water temperature, the smaller the predetermined target temperature difference value, and the higher the target boiling temperature, the lower the predetermined target temperature difference. The value was calculated so as to increase .

この発明の請求項1によれば、貯湯タンク内の湯水を沸き上げる際に、制御手段は、圧縮機から吐出される冷媒の吐出温度と水冷媒熱交換器から流出する冷媒の流出温度との温度差が、所定の目標温度差となるように減圧器の開度を制御することで、沸き上げ中、運転効率が高効率となる比エンタルピー差を保ちながらヒートポンプ式加熱手段を運転させることができるものである。   According to the first aspect of the present invention, when boiling the hot water in the hot water storage tank, the control means uses the discharge temperature of the refrigerant discharged from the compressor and the outflow temperature of the refrigerant flowing out of the water refrigerant heat exchanger. By controlling the opening of the decompressor so that the temperature difference becomes a predetermined target temperature difference, the heat pump heating means can be operated while maintaining the specific enthalpy difference that makes the operating efficiency high during boiling. It can be done.

さらに、減圧器の開度を制御することで、圧縮機から吐出される冷媒の吐出温度および水冷媒熱交換器から流出する冷媒の流出温度の双方が変化するため、減圧器の開度変化に対する吐出温度と流出温度との温度差の温度変化量が大きく、吐出温度と流出温度との温度差を所定の目標温度差とするまでの制御速度が速く、すばやく高効率で運転させることができ、また、所定の目標温度差を目標沸き上げ温度、外気温度、入水温度に基づき算出するので、外気温度や入水温度といった条件が刻々と変化する沸き上げ時において、その時その時で運転効率が高効率となる所定の目標温度差を確実に求めることができ、ヒートポンプ式加熱手段を高効率で運転させることができるものである。
Furthermore, by controlling the opening of the decompressor, both the discharge temperature of the refrigerant discharged from the compressor and the outflow temperature of the refrigerant flowing out of the water-refrigerant heat exchanger change. The temperature change amount of the temperature difference between the discharge temperature and the outflow temperature is large, the control speed is high until the temperature difference between the discharge temperature and the outflow temperature becomes the predetermined target temperature difference, and it can be operated quickly and efficiently . In addition, since the predetermined target temperature difference is calculated based on the target boiling temperature, outside air temperature, and incoming water temperature, when the boiling temperature changes constantly, such as the outside air temperature and the incoming water temperature, the operating efficiency is high at that time. Thus, the predetermined target temperature difference can be obtained with certainty, and the heat pump heating means can be operated with high efficiency .

また、請求項2によれば、貯湯タンク内の湯水を沸き上げる際に、制御手段は、圧縮機から吐出される冷媒の吐出温度と水冷媒熱交換器から流出する冷媒の流出温度との温度差が、所定の目標温度差となるように減圧器の開度を制御することで、沸き上げ中、運転効率が高効率となる比エンタルピー差を保ちながらヒートポンプ式加熱手段を運転させることができ、さらに、減圧器の開度を制御することで、圧縮機から吐出される冷媒の吐出温度および水冷媒熱交換器から流出する冷媒の流出温度の双方が変化するため、減圧器の開度変化に対する吐出温度と流出温度との温度差の温度変化量が大きく、吐出温度と流出温度との温度差を所定の目標温度差とするまでの制御速度が速く、すばやく高効率で運転させることができ、所定の目標温度差を目標沸き上げ温度、外気温度、入水温度に基づき、外気温度が高くなる程、所定の目標温度差の値が小さくなり、入水温度が高くなる程、所定の目標温度差の値が小さくなり、目標沸き上げ温度が高くなる程、前記所定の目標温度差の値が大きくなるように算出するので、外気温度や入水温度といった条件が刻々と変化する沸き上げ時において、その時その時で運転効率が高効率となる所定の目標温度差を確実に求めることができ、ヒートポンプ式加熱手段を高効率で運転させることができるものである。 According to claim 2, when boiling the hot water in the hot water storage tank, the control means is a temperature between a discharge temperature of the refrigerant discharged from the compressor and an outflow temperature of the refrigerant flowing out of the water refrigerant heat exchanger. By controlling the opening of the decompressor so that the difference becomes a predetermined target temperature difference, the heat pump heating means can be operated while maintaining the specific enthalpy difference that makes the operating efficiency high during boiling. Furthermore, by controlling the opening of the decompressor, both the discharge temperature of the refrigerant discharged from the compressor and the outflow temperature of the refrigerant flowing out of the water-refrigerant heat exchanger change. The temperature change amount of the temperature difference between the discharge temperature and the outflow temperature is large, the control speed is high until the temperature difference between the discharge temperature and the outflow temperature becomes the predetermined target temperature difference, and it can be operated quickly and efficiently. a given target temperature Based difference target boiling temperature, outside air temperature, the incoming water temperature, as the outside air temperature is high, the value of the predetermined target temperature difference becomes smaller, as the incoming water temperature is high, the value of the predetermined target temperature difference is small The higher the target boiling temperature is, the larger the value of the predetermined target temperature difference is calculated.Therefore, when boiling is performed when conditions such as the outside air temperature and the incoming water temperature are constantly changing, the operating efficiency at that time is A predetermined target temperature difference with high efficiency can be obtained reliably, and the heat pump heating means can be operated with high efficiency.

この発明のヒートポンプ式給湯装置の一実施形態の概略構成図。The schematic block diagram of one Embodiment of the heat pump type hot water supply apparatus of this invention. 同一実施形態の電子膨張弁の開度と制御パラメータとの関係を示した図。The figure which showed the relationship between the opening degree of the electronic expansion valve of the same embodiment, and a control parameter. 同一実施形態の沸き終い時のヒートポンプサイクルの状態と従来の沸き終い時のヒートポンプサイクルの状態とを比較した図。The figure which compared the state of the heat pump cycle at the time of the end of boiling of the same embodiment, and the state of the heat pump cycle at the time of the end of the conventional boiling. この発明のヒートポンプ式給湯装置の他の実施形態の概略構成図。The schematic block diagram of other embodiment of the heat pump type hot-water supply apparatus of this invention. 従来のヒートポンプ式給湯装置の沸き上げ運転時のヒートポンプサイクルの状態を示した図。The figure which showed the state of the heat pump cycle at the time of the boiling operation of the conventional heat pump type hot-water supply apparatus.

次に、本発明の一実施形態について図面に基づいて説明する。
1は湯水を貯湯する貯湯タンク2を有した貯湯タンクユニット、3は貯湯タンク2内の湯水を加熱するヒートポンプ式加熱手段、4は前記貯湯タンク2の下部に接続された加熱往き管5および前記貯湯タンク2の上部に接続された加熱戻り管6からなり、貯湯タンク2とヒートポンプ式加熱手段3とを湯水が循環するよう環状に接続する加熱循環回路、7は前記貯湯タンク2の下部に接続され貯湯タンク2に水を給水する給水管、8は前記貯湯タンク2の上部に接続され貯湯されている高温水を出湯する出湯管である。
Next, an embodiment of the present invention will be described with reference to the drawings.
1 is a hot water storage tank unit having a hot water storage tank 2 for storing hot water, 3 is a heat pump heating means for heating the hot water in the hot water storage tank 2, 4 is a heating forward pipe 5 connected to the lower part of the hot water storage tank 2, and A heating circulation circuit comprising a heating return pipe 6 connected to the upper part of the hot water storage tank 2 and connecting the hot water storage tank 2 and the heat pump type heating means 3 in an annular shape so that hot water circulates, and 7 is connected to the lower part of the hot water storage tank 2 A hot water supply pipe 8 for supplying water to the hot water storage tank 2 and a hot water discharge pipe 8 connected to the upper part of the hot water storage tank 2 for discharging hot water stored therein.

9は給水管7から分岐された給水バイパス管、10は出湯管8からの湯と給水バイパス管9からの水を混合して給湯設定温度の湯とする混合弁、11は混合弁10で混合後の給湯温度を検出する給湯温度センサ、12は貯湯タンク2の側面上下にわたり複数設けられ、貯湯タンク2内の湯の温度を検出する貯湯温度センサ、13は前記貯湯タンクユニット1内の各センサの出力を受けて各機器の動作を制御する貯湯制御手段である。   9 is a water supply bypass pipe branched from the water supply pipe 7, 10 is a mixing valve that mixes hot water from the hot water discharge pipe 8 and water from the water supply bypass pipe 9 to make hot water at a hot water supply set temperature, and 11 is mixed by the mixing valve 10 A plurality of hot water supply temperature sensors 12 for detecting a hot water supply temperature later, a plurality of hot water storage temperature sensors 12 for detecting the temperature of hot water in the hot water storage tank 2, and a plurality of sensors 12 in the hot water storage tank unit 1. Is a hot water storage control means for controlling the operation of each device.

前記ヒートポンプ式加熱手段3は、冷媒を圧縮する圧縮機14と、圧縮機14から吐出された冷媒を流通させる冷媒側の流路と加熱往き管5からの湯水を加熱戻り管6に流通させる水側の流路とを有し、高温高圧の冷媒と貯湯タンク2内の湯水とを熱交換する水冷媒熱交換器15と、水冷媒熱交換器15通過後の冷媒を減圧させる減圧器としての電子膨張弁16と、電子膨張弁16からの低温低圧の冷媒を蒸発させる蒸発器としての空気熱交換器17とを冷媒配管で環状に接続したヒートポンプサイクル18と、水冷媒熱交換器15の水側の加熱循環回路4途中に設けられて貯湯タンク2の湯水を循環させる加熱循環ポンプ19とを備えており、ヒートポンプサイクル18内には冷媒として二酸化炭素が用いられて超臨界ヒートポンプサイクルを構成しているものである。   The heat pump type heating means 3 includes a compressor 14 for compressing refrigerant, a refrigerant-side flow path for circulating the refrigerant discharged from the compressor 14, and water for circulating hot water from the heating forward pipe 5 to the heating return pipe 6. A water refrigerant heat exchanger 15 that exchanges heat between the high-temperature and high-pressure refrigerant and the hot water in the hot water storage tank 2, and a decompressor that depressurizes the refrigerant after passing through the water refrigerant heat exchanger 15. A heat pump cycle 18 in which an electronic expansion valve 16 and an air heat exchanger 17 as an evaporator for evaporating the low-temperature and low-pressure refrigerant from the electronic expansion valve 16 are connected in an annular shape by a refrigerant pipe, and water in the water-refrigerant heat exchanger 15 And a heating circulation pump 19 that circulates the hot water in the hot water storage tank 2 provided in the middle of the heating circulation circuit 4 on the side. Carbon dioxide is used as a refrigerant in the heat pump cycle 18 so that it is a supercritical heat pump cycle. Those that make up the.

20は圧縮機14と水冷媒熱交換器15との間に設けられ、圧縮機14から吐出される冷媒の吐出温度を検出する吐出温度センサ、21は水冷媒熱交換器15と電子膨張弁16との間に設けられ、水冷媒熱交換器15の冷媒側から流出し電子膨張弁16に向かう冷媒の温度を検出する流出温度センサ、22は空気熱交換器17の空気入口側に設けられ、外気温度を検出する外気温度センサ、23は水冷媒熱交換器15の水側に流入する入水温度を検出する入水温度センサ、24は水冷媒熱交換器15の水側から貯湯タンク2に向かって流出する沸き上げ温度を検出する沸き上げ温度センサである。   A discharge temperature sensor 20 is provided between the compressor 14 and the water refrigerant heat exchanger 15 to detect the discharge temperature of the refrigerant discharged from the compressor 14, and 21 is a water refrigerant heat exchanger 15 and an electronic expansion valve 16. And an outflow temperature sensor 22 for detecting the temperature of the refrigerant flowing out from the refrigerant side of the water refrigerant heat exchanger 15 toward the electronic expansion valve 16, 22 is provided on the air inlet side of the air heat exchanger 17, An outside air temperature sensor that detects the outside air temperature, 23 is an incoming water temperature sensor that detects the incoming water temperature that flows into the water side of the water refrigerant heat exchanger 15, and 24 is a water side from the water refrigerant heat exchanger 15 toward the hot water storage tank 2. It is a boiling temperature sensor which detects the boiling temperature which flows out.

25は前記ヒートポンプ式加熱手段3内の各センサの出力を受けて各機器の動作を制御する制御手段としての加熱制御手段で、貯湯制御手段13と通信可能に接続され、貯湯制御手段13と連携して作動するものである。   Reference numeral 25 denotes a heating control means as a control means for receiving the output of each sensor in the heat pump type heating means 3 to control the operation of each device. The heating control means 25 is communicably connected to the hot water storage control means 13 and cooperates with the hot water storage control means 13 It operates as follows.

次に、この一実施形態の動作について説明する。
深夜時間帯となると、貯湯制御手段13は貯湯タンク2内の湯水が所定の目標沸き上げ温度になるように沸き上げ運転を開始するよう加熱制御手段25へ沸き上げ開始命令を指示する。そして、加熱制御手段25は、沸き上げ運転において、前記目標沸き上げ温度および外気温度センサ22で検出した外気温度に応じて設定される運転周波数で動作するように圧縮機14を制御すると共に、吐出温度センサ20の検出する冷媒温度と流出温度センサ21の検出する冷媒温度との温度差ΔHが所定の目標温度差ΔHmとなるように電子膨張弁16の開度を所定の周期でフィードバック制御する。同時に、加熱制御手段25は沸き上げ温度センサ24で検出する水冷媒熱交換器15で加熱された湯が目標沸き上げ温度になるように加熱循環ポンプ19の回転数をフィードバック制御する。
Next, the operation of this embodiment will be described.
In the midnight time zone, the hot water storage control means 13 instructs the heating control means 25 to start a boiling operation so as to start the boiling operation so that the hot water in the hot water storage tank 2 reaches a predetermined target boiling temperature. The heating control means 25 controls the compressor 14 to operate at the operation frequency set according to the target boiling temperature and the outside air temperature detected by the outside air temperature sensor 22 in the boiling operation, and discharge The opening degree of the electronic expansion valve 16 is feedback-controlled at a predetermined cycle so that the temperature difference ΔH between the refrigerant temperature detected by the temperature sensor 20 and the refrigerant temperature detected by the outflow temperature sensor 21 becomes a predetermined target temperature difference ΔHm. At the same time, the heating control means 25 feedback-controls the rotational speed of the heating circulation pump 19 so that the hot water heated by the water refrigerant heat exchanger 15 detected by the boiling temperature sensor 24 reaches the target boiling temperature.

なお、前記所定の目標沸き上げ温度は、過去の給湯量の最大値や平均値等の給湯実績から翌日の給湯量の予測量を確保できるように貯湯制御手段13によって算出されるもので、65℃から90℃の範囲で決定されるものである。   The predetermined target boiling temperature is calculated by the hot water storage control means 13 so as to ensure the predicted amount of the hot water supply amount on the next day from the hot water supply results such as the maximum value and the average value of the past hot water supply amount. It is determined in the range from 0C to 90C.

また、加熱制御手段25は、前記所定の目標温度差ΔHmを前記目標沸き上げ温度と、外気温度センサ22の検出する外気温度と、入水温度センサ23の検出する入水温度とに基づいて、次式により算出する。
ΔHm=外気温度×A+入水温度×B+目標沸き上げ温度×C+D
(ここで、A、Bは負の係数、Cは正の係数、Dは固定値である。)
The heating control means 25 determines the predetermined target temperature difference ΔHm based on the target boiling temperature, the outside air temperature detected by the outside air temperature sensor 22, and the incoming water temperature detected by the incoming water temperature sensor 23. Calculated by
ΔHm = Outside air temperature × A + Incoming water temperature × B + Target boiling temperature × C + D
(Here, A and B are negative coefficients, C is a positive coefficient, and D is a fixed value.)

前記所定の目標温度差ΔHmは、上式より外気温度が高くなる程、値が小さくなっていき、入水温度が高くなる程、値が小さくなっていき、目標沸き上げ温度が高くなる程、値が大きくなるものであり、外気温度や入水温度といった条件が刻々と変化する沸き上げ運転中において、その時その時でヒートポンプ式加熱手段3の運転効率が最大効率となる所定の目標温度差ΔHmを確実に求めることができ、ヒートポンプ式加熱手段3を高効率で運転させることができるものである。なお、前記所定の目標温度差ΔHmの算出は沸き上げ運転中常時行われるものであってもよく、電子膨張弁16の開度をフィードバック制御する所定の周期にあわせて行ってもよいものである。   The predetermined target temperature difference ΔHm becomes smaller as the outside air temperature becomes higher than the above formula, and the value becomes smaller as the incoming water temperature becomes higher, and the value becomes higher as the target boiling temperature becomes higher. During the boiling operation in which conditions such as the outside air temperature and the incoming water temperature change every moment, the predetermined target temperature difference ΔHm at which the operating efficiency of the heat pump type heating means 3 becomes the maximum efficiency at that time can be ensured. The heat pump heating means 3 can be operated with high efficiency. The calculation of the predetermined target temperature difference ΔHm may be performed constantly during the boiling operation, or may be performed in accordance with a predetermined cycle for feedback control of the opening degree of the electronic expansion valve 16. .

先に説明したとおり、沸き上げ運転の際、加熱制御手段25は、吐出温度センサ20の検出する冷媒温度と流出温度センサ21の検出する冷媒温度との温度差ΔHが、算出した所定の目標温度差ΔHmとなるように電子膨張弁16の開度を制御しているが、具体的には、ΔH<ΔHmの場合は、電子膨張弁16の開度を閉じる方向に制御し、ΔH>ΔHmの場合は、電子膨張弁16の開度を開く方向に制御するものである。   As described above, during the boiling operation, the heating control unit 25 determines that the temperature difference ΔH between the refrigerant temperature detected by the discharge temperature sensor 20 and the refrigerant temperature detected by the outflow temperature sensor 21 is a predetermined target temperature calculated. The opening degree of the electronic expansion valve 16 is controlled so as to be the difference ΔHm. Specifically, when ΔH <ΔHm, the opening degree of the electronic expansion valve 16 is controlled in the closing direction so that ΔH> ΔHm. In this case, the opening degree of the electronic expansion valve 16 is controlled in the opening direction.

ここで、沸き上げ運転中のある一定条件下での電子膨張弁16の開度に対する制御パラメータの関係について、図2を用いて説明するが、横軸は電子膨張弁16の開度、縦軸は電子膨張弁16の開度制御によって制御される制御パラメータであり、ここでは圧縮機14から吐出され吐出温度センサ20で検出される冷媒の吐出温度と水冷媒熱交換器15から流出し流出温度センサ21の検出する冷媒の流出温度との温度差とする。   Here, the relationship of the control parameter with respect to the opening degree of the electronic expansion valve 16 under a certain condition during the boiling operation will be described with reference to FIG. Is a control parameter controlled by opening degree control of the electronic expansion valve 16. Here, the refrigerant discharge temperature discharged from the compressor 14 and detected by the discharge temperature sensor 20 and the outflow temperature flowing out of the water refrigerant heat exchanger 15 A temperature difference from the refrigerant outflow temperature detected by the sensor 21 is used.

図2に示すように、このものでは、電子膨張弁16開度を変化させると、圧縮機14から吐出される冷媒の吐出温度および水冷媒熱交換器15から流出する冷媒の流出温度の双方が変化するので、図2中の太実線で示されるように電子膨張弁16の開度変化1パルス当たりの温度変化量が大きく、吐出温度と流出温度との温度差を所定の目標温度差とするまでの制御速度が速く、制御性が良く、ヒートポンプ式加熱手段3をすばやく最大効率で運転させることができるものである。   As shown in FIG. 2, in this case, when the opening degree of the electronic expansion valve 16 is changed, both the discharge temperature of the refrigerant discharged from the compressor 14 and the outflow temperature of the refrigerant flowing out of the water refrigerant heat exchanger 15 are obtained. 2, the temperature change amount per pulse of the opening change of the electronic expansion valve 16 is large as shown by a thick solid line in FIG. 2, and the temperature difference between the discharge temperature and the outflow temperature is set as a predetermined target temperature difference. The control speed is fast, the controllability is good, and the heat pump heating means 3 can be operated quickly and with maximum efficiency.

このように、上述のような加熱制御手段25による制御が行われながら、沸き上げ運転が進行していくと、貯湯タンク2の下部の水がヒートポンプ式加熱手段3へ循環され、貯湯タンク2の上部から目標沸き上げ温度に加熱された湯が積層状態に貯湯される。貯湯タンク2内に必要な湯量が沸き上げられたことを貯湯温度センサ12で検出するか、ヒートポンプ式加熱手段3の入水温度センサ23で検出する入水温度が沸き上げし難い所定の高温度以上を検出するか、あるいは電力料金単価の安い深夜時間帯が終了した時点で、貯湯制御手段13は沸き上げ運転を停止するべく加熱制御手段25に停止指示を出し、加熱制御手段25は圧縮機14と加熱循環ポンプ19の運転を停止して、沸き上げ運転を終了する。   As described above, when the boiling operation proceeds while the control by the heating control means 25 as described above is performed, the water in the lower part of the hot water storage tank 2 is circulated to the heat pump heating means 3, and Hot water heated to the target boiling temperature from above is stored in a stacked state. The hot water storage temperature sensor 12 detects that the required amount of hot water has been boiled in the hot water storage tank 2, or the incoming water temperature detected by the incoming water temperature sensor 23 of the heat pump type heating means 3 exceeds a predetermined high temperature that is difficult to boil up. When the detection is completed or the midnight time period when the power unit price is low is over, the hot water storage control means 13 issues a stop instruction to the heating control means 25 to stop the boiling operation, and the heating control means 25 is connected to the compressor 14. The operation of the heating circulation pump 19 is stopped and the boiling operation is finished.

この沸き上げ運転の終了直前の沸き終い時においては、貯湯タンク2内の湯層と水層との間の混合層の湯水がヒートポンプ式加熱手段3へ流入し、このとき、水冷媒熱交換器15の水側に流入する湯水の入水温度が徐々に上昇していくものである。   At the end of boiling just before the end of the boiling operation, the hot water in the mixed layer between the hot water layer and the water layer in the hot water storage tank 2 flows into the heat pump type heating means 3, and at this time, water / refrigerant heat exchange is performed. The incoming temperature of the hot water flowing into the water side of the vessel 15 gradually rises.

ここで、沸き終い時におけるヒートポンプサイクル18の状態を図3を用いて説明するが、本実施形態での沸き上げ運転におけるヒートポンプサイクル18の状態は、図3の鎖線で示した安定時の状態から実線で示した沸き終い時の状態となる。なお、図3中に点線で描かれているのは、図5で示した従来の沸き終い時のヒートポンプサイクル18の状態であり、本実施形態の沸き終い時のヒートポンプサイクル18の状態との比較のためのものである。本実施形態では、吐出温度センサ20の検出する冷媒温度と流出温度センサ21の検出する冷媒温度との温度差ΔHが所定の目標温度差ΔHmとなるように電子膨張弁16の開度を制御するため、水冷媒熱交換器15の水側に流入する湯水の入水温度が高くなっても、それに応じて最適な目標温度差ΔHmを算出することができ、温度差ΔHを算出した最適な目標温度差ΔHmに保つので、沸き上げ運転中、特に、水冷媒熱交換器15の水側に流入する入水温度が高くなる沸き終い時においても、運転効率が最大となる比エンタルピー差を保ちながらヒートポンプ式加熱手段3を運転させることができるものである。   Here, the state of the heat pump cycle 18 at the end of boiling will be described with reference to FIG. 3, but the state of the heat pump cycle 18 in the boiling operation in the present embodiment is the state at the time of stability shown by the chain line in FIG. To the state at the end of boiling shown by the solid line. In addition, what is drawn with a dotted line in FIG. 3 is the state of the heat pump cycle 18 at the end of boiling shown in FIG. 5, and the state of the heat pump cycle 18 at the end of boiling in this embodiment. For comparison. In the present embodiment, the opening degree of the electronic expansion valve 16 is controlled so that the temperature difference ΔH between the refrigerant temperature detected by the discharge temperature sensor 20 and the refrigerant temperature detected by the outflow temperature sensor 21 becomes a predetermined target temperature difference ΔHm. Therefore, even if the incoming temperature of the hot water flowing into the water side of the water-refrigerant heat exchanger 15 increases, the optimum target temperature difference ΔHm can be calculated accordingly, and the optimum target temperature calculated from the temperature difference ΔH can be calculated. Since the difference ΔHm is maintained, the heat pump maintains the specific enthalpy difference that maximizes the operation efficiency even during boiling operation, particularly at the end of boiling when the incoming water temperature flowing into the water side of the water refrigerant heat exchanger 15 becomes high. The type heating means 3 can be operated.

なお、本発明はこれまで説明してきた一実施形態に限定されることなく、その趣旨を変更しない範囲で適用可能なもので、例えば、ヒートポンプサイクル18は減圧器としてエジェクターを用いたエジェクターサイクルでもよいものである。   The present invention is not limited to the embodiment described so far, and can be applied without changing the gist thereof. For example, the heat pump cycle 18 may be an ejector cycle using an ejector as a decompressor. Is.

また、ヒートポンプサイクル18は、図4に示すように、水冷媒熱交換器15を通過した後の高圧冷媒と圧縮機14の吸入側の低圧冷媒との間で熱交換を行う内部熱交換器26を備えた構成としてもよいものであり、この場合、流出温度センサ21は、水冷媒熱交換器15より下流側で、高圧冷媒が通過する内部熱交換器26より上流側の冷媒温度を検出する位置に配設し、吐出温度センサ20の検出する冷媒温度と流出温度センサ21の検出する冷媒温度との温度差ΔHが所定の目標温度差ΔHmとなるように電子膨張弁16の開度を制御することで、先に説明した一実施形態と同様、運転効率が最大となる比エンタルピー差を保ちながらヒートポンプ式加熱手段3を運転させることができるものである。   In addition, as shown in FIG. 4, the heat pump cycle 18 includes an internal heat exchanger 26 that performs heat exchange between the high-pressure refrigerant after passing through the water-refrigerant heat exchanger 15 and the low-pressure refrigerant on the suction side of the compressor 14. In this case, the outflow temperature sensor 21 detects the refrigerant temperature downstream of the water refrigerant heat exchanger 15 and upstream of the internal heat exchanger 26 through which the high-pressure refrigerant passes. The opening of the electronic expansion valve 16 is controlled so that the temperature difference ΔH between the refrigerant temperature detected by the discharge temperature sensor 20 and the refrigerant temperature detected by the outflow temperature sensor 21 becomes a predetermined target temperature difference ΔHm. By doing so, the heat pump heating means 3 can be operated while maintaining the specific enthalpy difference that maximizes the operating efficiency, as in the embodiment described above.

2 貯湯タンク
3 ヒートポンプ式加熱手段
4 加熱循環回路
14 圧縮機
15 水冷媒熱交換器
16 電子膨張弁(減圧器)
17 空気熱交換器(蒸発器)
20 吐出温度センサ
21 流出温度センサ
22 外気温度センサ
23 入水温度センサ
25 加熱制御手段(制御手段)
2 Hot water storage tank 3 Heat pump type heating means 4 Heating circulation circuit 14 Compressor 15 Water refrigerant heat exchanger 16 Electronic expansion valve (pressure reducer)
17 Air heat exchanger (evaporator)
20 Discharge temperature sensor 21 Outflow temperature sensor 22 Outside air temperature sensor 23 Incoming water temperature sensor 25 Heating control means (control means)

Claims (2)

湯水を貯湯する貯湯タンクと、圧縮機、水冷媒熱交換器、減圧器、蒸発器を備えたヒートポンプ式加熱手段と、該ヒートポンプ式加熱手段の前記水冷媒熱交換器の水側と前記貯湯タンクとを環状に接続する加熱循環回路と、前記貯湯タンク内の湯水を目標沸き上げ温度に加熱するよう前記ヒートポンプ式加熱手段を制御する制御手段とを備えたヒートポンプ式給湯装置において、前記制御手段は、前記圧縮機から吐出される冷媒の吐出温度と前記水冷媒熱交換器から流出する冷媒の流出温度との温度差が、所定の目標温度差となるように前記減圧器の開度を制御し、前記所定の目標温度差は、前記目標沸き上げ温度と外気温度と前記水冷媒熱交換器に流入する湯水の入水温度とに基づいて算出するようにしたことを特徴とするヒートポンプ式給湯装置。 A hot water storage tank for storing hot water, a heat pump heating means including a compressor, a water refrigerant heat exchanger, a decompressor, and an evaporator, a water side of the water refrigerant heat exchanger of the heat pump heating means, and the hot water storage tank In the heat pump type hot water supply apparatus, the control means includes: a heating circulation circuit that connects the ring shape and a control means for controlling the heat pump heating means to heat the hot water in the hot water storage tank to a target boiling temperature. , the temperature difference between the outlet temperature of the refrigerant flowing out from the water refrigerant heat exchanger and the discharge temperature of the refrigerant discharged from the compressor, and controlling the opening of said decompressor so that a predetermined target temperature difference , the predetermined target temperature difference, heat pump, characterized in that to calculate on the basis of the hot water in the incoming water temperature flowing into the water-refrigerant heat exchanger and the target boiling temperature and outside air temperature Hot water system. 湯水を貯湯する貯湯タンクと、圧縮機、水冷媒熱交換器、減圧器、蒸発器を備えたヒートポンプ式加熱手段と、該ヒートポンプ式加熱手段の前記水冷媒熱交換器の水側と前記貯湯タンクとを環状に接続する加熱循環回路と、前記貯湯タンク内の湯水を目標沸き上げ温度に加熱するよう前記ヒートポンプ式加熱手段を制御する制御手段とを備えたヒートポンプ式給湯装置において、前記制御手段は、前記圧縮機から吐出される冷媒の吐出温度と前記水冷媒熱交換器から流出する冷媒の流出温度との温度差が、所定の目標温度差となるように前記減圧器の開度を制御し、前記所定の目標温度差は、前記目標沸き上げ温度と外気温度と前記水冷媒熱交換器に流入する湯水の入水温度とに基づいて、前記外気温度が高くなる程、前記所定の目標温度差の値が小さくなり、前記入水温度が高くなる程、前記所定の目標温度差の値が小さくなり、前記目標沸き上げ温度が高くなる程、前記所定の目標温度差の値が大きくなるように算出するようにしたことを特徴とするヒートポンプ式給湯装置。 A hot water storage tank for storing hot water, a heat pump heating means including a compressor, a water refrigerant heat exchanger, a decompressor, and an evaporator, a water side of the water refrigerant heat exchanger of the heat pump heating means, and the hot water storage tank In the heat pump type hot water supply apparatus, the control means includes: a heating circulation circuit that connects the ring shape and a control means for controlling the heat pump heating means to heat the hot water in the hot water storage tank to a target boiling temperature. The opening degree of the decompressor is controlled so that the temperature difference between the discharge temperature of the refrigerant discharged from the compressor and the outflow temperature of the refrigerant flowing out of the water refrigerant heat exchanger becomes a predetermined target temperature difference. , the predetermined target temperature difference, based on the hot water of the incoming water temperature flowing into the water-refrigerant heat exchanger and the target boiling temperature and the outside air temperature, the higher the outside air temperature is high, the predetermined target temperature difference Value decreases, as the entering-water temperature increases, the value of the predetermined target temperature difference becomes smaller, the larger the target boiling temperature is higher, calculated as the value of the predetermined target temperature difference increases A heat pump type hot water supply device characterized in that it is configured to do so.
JP2010148410A 2010-06-30 2010-06-30 Heat pump type water heater Active JP5558937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010148410A JP5558937B2 (en) 2010-06-30 2010-06-30 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010148410A JP5558937B2 (en) 2010-06-30 2010-06-30 Heat pump type water heater

Publications (2)

Publication Number Publication Date
JP2012013267A JP2012013267A (en) 2012-01-19
JP5558937B2 true JP5558937B2 (en) 2014-07-23

Family

ID=45599920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010148410A Active JP5558937B2 (en) 2010-06-30 2010-06-30 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP5558937B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198382A (en) * 2016-04-26 2017-11-02 株式会社コロナ Heat pump type water heater

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6152683B2 (en) * 2013-03-29 2017-06-28 株式会社ノーリツ Hot water storage device
JP6304996B2 (en) * 2013-10-03 2018-04-04 三菱電機株式会社 Water heater
JP6247980B2 (en) * 2014-03-28 2017-12-13 リンナイ株式会社 Heat pump heating device
EP3594587B1 (en) * 2017-03-09 2021-04-21 Mitsubishi Electric Corporation Heat pump hot water supply device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011713B2 (en) * 2005-11-22 2012-08-29 株式会社デンソー Heat pump type water heater
JP2009092258A (en) * 2007-10-04 2009-04-30 Panasonic Corp Refrigerating cycle device
JP4950004B2 (en) * 2007-11-12 2012-06-13 株式会社コロナ Heat pump type water heater
JP4948374B2 (en) * 2007-11-30 2012-06-06 三菱電機株式会社 Refrigeration cycle equipment
JP5071155B2 (en) * 2008-02-28 2012-11-14 株式会社デンソー Heat pump type hot water supply apparatus and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198382A (en) * 2016-04-26 2017-11-02 株式会社コロナ Heat pump type water heater

Also Published As

Publication number Publication date
JP2012013267A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5558937B2 (en) Heat pump type water heater
JP2010091181A (en) Storage water heater and heat pump water heater
JP2010019477A (en) Storage type hot water supplying and heating apparatus
JP5161008B2 (en) Heat pump type water heater
EP2685177B1 (en) Heat pump-type water heater
JP2008002776A (en) Heat pump hot water supply system
JP2013127332A (en) Hydronic heating device
JP5575049B2 (en) Heat pump water heater
JP2011075257A (en) Heat pump type water heater
JP2013079760A (en) Heat pump type liquid supply device
JP6571042B2 (en) Heat pump type water heater
JP4950004B2 (en) Heat pump type water heater
JP2017198383A (en) Heat pump type water heater
JP2005140439A (en) Heat pump water heater
JP2009063262A (en) Heat pump type water heater
JP2009287794A (en) Heat pump type water heater
JP6302725B2 (en) Heat pump type water heater and heat pump unit
JP2015078773A (en) Hot water storage type water heater
JP5856042B2 (en) Heat pump water heater
JP2013253745A (en) Storage type water heater
CN109073273B (en) Hot water supply system
JP2009216335A (en) Heat pump water heater
JP5338758B2 (en) Hot water supply apparatus and hot water control method thereof
JP2011141069A (en) Bath device
JP2017194219A (en) Storage water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140605

R150 Certificate of patent or registration of utility model

Ref document number: 5558937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250