JP4940491B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP4940491B2
JP4940491B2 JP2000253733A JP2000253733A JP4940491B2 JP 4940491 B2 JP4940491 B2 JP 4940491B2 JP 2000253733 A JP2000253733 A JP 2000253733A JP 2000253733 A JP2000253733 A JP 2000253733A JP 4940491 B2 JP4940491 B2 JP 4940491B2
Authority
JP
Japan
Prior art keywords
electrode plate
cylindrical
core space
electrolytic solution
space portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000253733A
Other languages
Japanese (ja)
Other versions
JP2002075434A (en
Inventor
哲郎 南野
洋平 服部
史彦 ▲よし▼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000253733A priority Critical patent/JP4940491B2/en
Publication of JP2002075434A publication Critical patent/JP2002075434A/en
Application granted granted Critical
Publication of JP4940491B2 publication Critical patent/JP4940491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、極板を巻回した極板群を用いた高出力型の二次電池の構造、特に極板群中央の巻芯部の構成に関するものである。
【0002】
【従来の技術】
近年、電動工具や電気自動車用電池として高出力・長寿命型電池の需要が高まっている。中でも電気自動車用電池は10年と言われる車の寿命と同等の電池寿命が求められている。
【0003】
電池が寿命を迎えるモードの1つに電解液の涸渇による電池内部抵抗の上昇がある。その原因は、正極・負極の活物質や芯材が電解液と反応し、セパレータ中に含まれる電解液が減少していくためである。これに対して、例えばペースト式ニッケル正極を用いるニッケル水素蓄電池では、正極に活物質としての水酸化ニッケルの他、酸化亜鉛などを添加することにより、ニッケル層間に結晶水を取り込んだγ型オキシ水酸化ニッケルの生成を抑制し、長寿命化を図ることや、負極に酸化イットリウムを添加することにより、負極合金の酸化を抑制し、電解液涸渇を回避する技術などが提案されている。しかしながら、これらの提案の技術だけでは電池に車と同等の寿命を確保するのは困難である。
【0004】
【発明が解決しようとする課題】
従来から生産されている円筒型二次電池は、ある径をもつ巻芯を用いて、セパレータを間に介在させて正極と負極を巻回して渦巻状極板群を作製し、その両端面に集電体を溶接させるか、または負極をケースと接触させ、正極の一部に溶接されたリードを封口板と溶接し、電解液を注液して封口して電池を密閉するというものであった。そして、正極板の巻き始め側には、巻回時のクラックによる負極との短絡防止のため、通常、セパレータを2枚重ねにして用いられていた。このようにセパレータを二重にして用いた場合、正極・負極の極間距離が他の部分に比べ大きくなりこの部分の極間抵抗が大きくなるため、大電流で充放電する場合には巻芯部のセパレータが二重になっている部分の利用率は低くなっているという問題があり、二次電池の長寿命化を図る上でこの問題点は好ましくないことであった。そこで本発明は上記従来例の問題点を解消して長寿命の二次電池を実現しようとするものである。
【0005】
【課題を解決するための手段】
本発明は上記目的を達成するために極板群の中央に大きな空間を構成することとした。そしてこの空間に多くの電解液を保持できる構造にしたことが特徴である。先述したように、通常、巻芯部にはクラック防止のため、セパレータが2枚重ねで用いられており、この部分の大電流充放電での利用率は低いので、この部分を削除しても、電池の内部抵抗はほとんど変化しない。従って、電池容量ではなく、電池の出力と寿命の長さがより要求されている場合、巻芯部の大電流充放電で利用率の低い部分を削除して電解液溜とすることで、電池の長寿命化を達成することができる。このために本願発明は請求項1記載に係るように、極板群の中央に円筒型巻芯空間部を構成し、円筒型巻芯空間部の内径をdとし、円筒型ケースの内径をDとした時に、0.16≦d/D≦0.32とし、円筒型巻芯空間部には、円筒型巻芯空間部の容積に対して0.1〜20%の容積を占める電解液流出阻止体を設け、電解液流出阻止体は、電解液を含浸して保持することができる対電解液性繊維体とし、円筒型巻芯空間部には電解液を貯溜させたものである。
【0006】
【発明の実施の形態】
極板群を挿入する円筒型ケースの内径をD、円筒型巻芯空間部の内径をdとすると、d/Dが0.16未満であると、円筒型巻芯空間部内に保持できる電解液量が少なくなるため、電池の延命効果は小さい。また、d/Dが0.32を越えると円筒型ケース内に極板群として挿入することが可能な極板全体の長さが短くなり、従って電池容量が小さくなりすぎ内部抵抗も上昇してしまう。そこで、円筒型巻芯空間の内径dは0.16≦d/D≦0.32を満たす範囲内にあることが望ましい。
【0007】
また、円筒型巻芯空間に電解液を保持させるにあたって、流れが自由の、つまりフリーの電解液をそのままにしていたのでは電池の製造工程において電解液が飛散し、電池内に保持される電解液量がばらつき、ひいては電池寿命もばらつきを生じる恐れがある。そこで、円筒型巻芯空間に、その容積全体の0.01〜20%の真体積を有する電解液流出阻止体を挿入することで、製造工程中に電池に対して振動を与えても電解液が飛散しないようにした。この電解液流出阻止体の形態としては、円筒型巻芯空間を上部から対電解液の蓋をするような形態とか、空間内に電解液を含浸保持させる繊維状の不織布等を詰めた形態等が適当である。
【0008】
体的な実施の形態を図1を参照して以下に述べる。なお本実施の形態はニッケル水素蓄電池を例として述べる。
【0009】
作製した電池は直径22mm,高さ42.5mm,公称容量2400mAhである。厚さ0.54mm,長さ280mmの焼結式ニッケル正極板1と、厚さ0.27mm,長さ330mmのペースト式水素吸蔵合金負極板2とを用い、それぞれの極板の長端部の一方は1mmの芯材の露出した部分3,4を設け、それぞれの芯材部が反対向きになるように極板を配設し、さらに互いの極板芯材部が対極板よりも2mm突出するようにして、セパレータ5を間に介在させ、直径6.5mmの巻芯を用いて正極板1,負極板2及びセパレータ5を渦巻状に巻回させ、外径約20mm,高さ約37mmの極板群6を構成した。この極板群6の正極側の芯材部端面に集電体7、負極側の芯材部端面に集電体8をそれぞれ溶接して取り付けた。この、集電体7,8を溶接した極板群6を金属製の円筒型ケース9に挿入し、集電体7の中央部の穴に溶接電極を挿入して導電板10を溶接し、集電体8の中央部と金属製の円筒型ケース9の底部を溶接した。比重1.30の水酸化カリウム水溶液を5.5ミリリットル注液した後、封口板11と円筒型ケース9をかしめて密閉電池Aを作製した。
【0010】
12は極板群6の中央に直径6.5mmの巻芯によって構成された円筒型巻芯空間部である。
【0011】
また、外径6.5mmの巻芯の代わりに外径5mmの巻芯を用いて、極板長さをそれぞれ密閉電池Aに対して10mm長くした以外は密閉電池Aと同様にして作製し、極板群に二つの集電体を溶接して、注液量を5.0ミリリットルにした他は密閉電池Aと同様にして密閉電池Bを作製した。
【0012】
一方、外径6.5mmの巻芯の代わりに外径3.0mmの巻芯を用いて、極板長さをそれぞれ密閉電池Aに対して25mm長くし、正極板の巻芯側に長さ50mmのセパレータを通常のセパレータに重ねて使用した以外は密閉電池Aと同様にして作製し、極板群に二つの集電体を溶接して、注液量を4.5ミリリットルにした他は密閉電池Aと同様にして密閉電池Cを比較例電池として作製した。
【0013】
(評価)
密閉電池A,B及びCを室温にて、1.2Aの電流で2.5時間充電し、1.2Aの電流で電池の端子電圧が1Vになるまで放電する方式で10回充放電を繰り返して電池を活性化させた。次に放電状態の密閉電池A及びBを1.1Aの電流で1時間充電した後、1時間放置して、60Aの放電を10秒間行った。この60A放電前後の電池電圧の差を電流値で除することにより、電池の直流抵抗を求めた。表1に密閉電池A,B及びCの10サイクル目での電池の放電容量と直流抵抗値を示す。
【0014】
【表1】

Figure 0004940491
【0015】
極板の長さが短くなるに従い、放電容量は小さくなる傾向が見られるが、極板の単位長さあたりの容量を比較すると密閉電池C(8.92mAh/mm)<密閉電池B(8.97mAh/mm)<密閉電池A(9.23mAh/mm)となった。これは単位容量あたりの電解液量が増えたことにより、活物質利用率が向上したためと考えられる。また、直流抵抗値は密閉電池A,B,Cともほぼ同様の値を示した。
【0016】
次にこれら三種の電池を45℃雰囲気下、4.8Aにて24分間充電、6分間の休止の後、4.8Aにて0.9Vまで放電、6分間休止する、という方式で充放電を繰り返し、100サイクル毎に直流抵抗の変化を調べた。その結果を図2に示す。
【0017】
図2から、本発明の参考例である密閉電池A及びBは比較例の密閉電池Cに対して、直流抵抗が上昇し始める充放電サイクル数が大幅に大きくなっていることがわかる。これは極板群の巻芯の直径が密閉電池Cよりも密閉電池A,Bが共に大きく、極板群中央に構成される空間が大きく注入される電解液量が多いことにより、長期にわたって電解液が極板間に供給されることによるものである。
【0018】
【発明の効果】
以上のように、本発明によれば、長期間にわたって内部抵抗の低い長寿命型の二次電池を提供することができるものである。
【図面の簡単な説明】
【図1】密閉型電池の構成を示す半截側断面図
【図2】直流抵抗と充放電サイクル数との関係を示した図
【符号の説明】
1 焼結式ニッケルの正極板
2 ペースト式水素吸蔵合金の負極板
3,4 芯材の露出した部分
5 セパレータ
6 極板群
7,8 集電体
9 金属製の円筒型ケース
10 導電板
11 封口板
12 極板群中央に構成された円筒型巻芯空間部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the structure of a high-power secondary battery using an electrode plate group around which an electrode plate is wound, and more particularly to the configuration of a core portion at the center of the electrode plate group.
[0002]
[Prior art]
In recent years, there is an increasing demand for high-power and long-life batteries as power tools and batteries for electric vehicles. In particular, batteries for electric vehicles are required to have a battery life equivalent to that of a car that is said to be 10 years.
[0003]
One mode in which the battery reaches the end of its life is an increase in battery internal resistance due to electrolyte depletion. This is because the positive electrode / negative electrode active material and the core material react with the electrolytic solution, and the electrolytic solution contained in the separator decreases. On the other hand, for example, in a nickel metal hydride storage battery using a paste type nickel positive electrode, γ-type oxywater in which crystal water is taken in between nickel layers by adding zinc oxide or the like to the positive electrode in addition to nickel hydroxide as an active material. Techniques have been proposed in which the production of nickel oxide is suppressed to prolong the life, and the addition of yttrium oxide to the negative electrode suppresses oxidation of the negative electrode alloy and avoids electrolyte depletion. However, it is difficult to ensure a battery with a life equivalent to that of a car only with these proposed technologies.
[0004]
[Problems to be solved by the invention]
Conventionally produced cylindrical secondary batteries use a winding core having a certain diameter, wind a positive electrode and a negative electrode with a separator interposed therebetween, and form a spiral electrode plate group on both end faces. The current collector is welded, or the negative electrode is brought into contact with the case, the lead welded to a part of the positive electrode is welded to the sealing plate, the electrolyte is injected and sealed, and the battery is sealed. It was. In order to prevent a short circuit with the negative electrode due to cracks at the time of winding, two separators are usually used on the winding start side of the positive electrode plate. When double separators are used in this way, the distance between the positive and negative electrodes is greater than that of other parts, and the resistance between these parts is increased. There is a problem that the utilization factor of the part where the separators of the part are doubled is low, and this problem is not preferable for extending the life of the secondary battery. Therefore, the present invention is intended to solve the problems of the conventional example and realize a secondary battery having a long life.
[0005]
[Means for Solving the Problems]
In the present invention, in order to achieve the above object, a large space is formed in the center of the electrode plate group. And it is the characteristic that it was made the structure which can hold | maintain many electrolyte solutions in this space. As described above, normally, two separators are used to prevent cracks in the core part, and since the utilization factor in large current charge / discharge of this part is low, even if this part is deleted The internal resistance of the battery hardly changes. Therefore, if the battery output and the length of the life are more demanded than the battery capacity, the battery portion can be used as an electrolyte reservoir by removing the portion with low utilization due to large current charging / discharging of the core. Longer service life can be achieved. Therefore, according to the present invention , a cylindrical core space portion is formed in the center of the electrode plate group, the inner diameter of the cylindrical core space portion is d, and the inner diameter of the cylindrical case is D. In this case, 0.16 ≦ d / D ≦ 0.32, and the cylindrical core space portion occupies 0.1 to 20% of the volume of the cylindrical core space portion. A blocking body is provided, and the electrolytic solution outflow blocking body is an anti-electrolyte fibrous body that can be impregnated and held by the electrolytic solution, and the electrolytic solution is stored in the cylindrical core space .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Electrolyte that can be held in the cylindrical core space when d / D is less than 0.16, where D is the inner diameter of the cylindrical case into which the electrode plate group is inserted and d is the inner diameter of the cylindrical core space Since the amount is reduced, the life extension effect of the battery is small. Also, if d / D exceeds 0.32, the length of the entire electrode plate that can be inserted into the cylindrical case as a group of electrode plates is shortened, so that the battery capacity becomes too small and the internal resistance increases. End up. Therefore, it is desirable that the inner diameter d of the cylindrical core space is in a range satisfying 0.16 ≦ d / D ≦ 0.32.
[0007]
In addition, when the electrolytic solution is held in the cylindrical core space, if the flow is free, that is, the free electrolytic solution is left as it is, the electrolytic solution is scattered in the battery manufacturing process, and the electrolytic solution held in the battery is retained. There is a possibility that the amount of liquid varies, and the battery life also varies. Therefore, even if vibration is applied to the battery during the manufacturing process by inserting an electrolytic solution outflow prevention body having a true volume of 0.01 to 20% of the entire volume into the cylindrical core space, the electrolytic solution Was not scattered. As a form of this electrolyte outflow prevention body, a form in which a cylindrical core space is covered with an electrolyte solution from the top, a form in which a fibrous nonwoven fabric or the like that impregnates and holds the electrolyte solution is filled in the space, etc. Is appropriate.
[0008]
The concrete embodiments will be described below with reference to FIG. In the present embodiment, a nickel metal hydride storage battery will be described as an example.
[0009]
The produced battery has a diameter of 22 mm, a height of 42.5 mm, and a nominal capacity of 2400 mAh. A sintered nickel positive electrode plate 1 having a thickness of 0.54 mm and a length of 280 mm and a paste-type hydrogen storage alloy negative electrode plate 2 having a thickness of 0.27 mm and a length of 330 mm were used. One is provided with exposed portions 3 and 4 of a 1 mm core material, and electrode plates are arranged so that the core material portions face in opposite directions, and each electrode plate core material portion protrudes 2 mm from the counter electrode plate. In this way, the separator 5 is interposed, and the positive electrode plate 1, the negative electrode plate 2 and the separator 5 are spirally wound using a winding core having a diameter of 6.5 mm, and the outer diameter is about 20 mm and the height is about 37 mm. The electrode plate group 6 was constructed. A current collector 7 was attached to the end surface of the core member on the positive electrode side of the electrode plate group 6 and a current collector 8 was attached to the end surface of the core member portion on the negative electrode side by welding. The electrode plate group 6 to which the current collectors 7 and 8 are welded is inserted into a cylindrical case 9 made of metal, a welding electrode is inserted into a hole in the center of the current collector 7, and the conductive plate 10 is welded. The center part of the current collector 8 and the bottom part of the metal cylindrical case 9 were welded. After injecting 5.5 ml of an aqueous potassium hydroxide solution having a specific gravity of 1.30, the sealing plate 11 and the cylindrical case 9 were caulked to produce a sealed battery A.
[0010]
Reference numeral 12 denotes a cylindrical core space formed by a core having a diameter of 6.5 mm in the center of the electrode plate group 6.
[0011]
Also, using a core with an outer diameter of 5 mm instead of a core with an outer diameter of 6.5 mm, the electrode plate length was made 10 mm longer than that of the sealed battery A, respectively. A sealed battery B was produced in the same manner as the sealed battery A, except that two current collectors were welded to the electrode plate group, and the injection volume was 5.0 ml.
[0012]
On the other hand, instead of using a core with an outer diameter of 6.5 mm, a core with an outer diameter of 3.0 mm is used, and the length of the electrode plate is increased by 25 mm with respect to the sealed battery A. Except that a 50 mm separator was used on top of a normal separator, it was prepared in the same manner as the sealed battery A, and two current collectors were welded to the electrode plate group to make the injection volume 4.5 ml. A sealed battery C was prepared as a comparative battery in the same manner as the sealed battery A.
[0013]
(Evaluation)
Charging sealed batteries A, B and C at room temperature with a current of 1.2 A for 2.5 hours, and charging and discharging 10 times with a method of discharging until the terminal voltage of the battery reaches 1 V with a current of 1.2 A The battery was activated. Next, the sealed batteries A and B in a discharged state were charged with a current of 1.1 A for 1 hour, then left for 1 hour, and discharged at 60 A for 10 seconds. The direct current resistance of the battery was determined by dividing the difference in battery voltage before and after the 60A discharge by the current value. Table 1 shows the discharge capacity and DC resistance value of the sealed batteries A, B and C at the 10th cycle.
[0014]
[Table 1]
Figure 0004940491
[0015]
Although the discharge capacity tends to decrease as the length of the electrode plate becomes shorter, when comparing the capacity per unit length of the electrode plate, the sealed battery C (8.92 mAh / mm) <the sealed battery B (8. 97 mAh / mm) <sealed battery A (9.23 mAh / mm). This is presumably because the utilization rate of the active material was improved by increasing the amount of electrolyte per unit capacity. Further, the DC resistance values were almost the same for the sealed batteries A, B and C.
[0016]
Next, these three types of batteries are charged and discharged in a 45 ° C. atmosphere by charging at 4.8 A for 24 minutes, resting for 6 minutes, discharging to 0.9 V at 4.8 A, and resting for 6 minutes. Repeatedly, the change in DC resistance was examined every 100 cycles. The result is shown in FIG.
[0017]
From FIG. 2, it can be seen that the sealed batteries A and B, which are reference examples of the present invention , have a significantly increased number of charge / discharge cycles in which the DC resistance starts to increase compared to the sealed battery C of the comparative example . This is the electrode plate group of the core diameter dense 閉電 pond C than denser 閉電 pond A, B are both large, that amount of electrolyte solution space formed in the electrode assembly center is injected larger often This is because the electrolyte is supplied between the electrode plates over a long period of time.
[0018]
【Effect of the invention】
As described above, according to the present invention, it is possible to provide a long-life secondary battery having a low internal resistance over a long period of time.
[Brief description of the drawings]
FIG. 1 is a cross-sectional side view showing a configuration of a sealed battery. FIG. 2 is a diagram showing the relationship between DC resistance and the number of charge / discharge cycles.
DESCRIPTION OF SYMBOLS 1 Positive electrode plate of sintered nickel 2 Negative electrode plate 3 of paste type hydrogen storage alloy 3, 4 Exposed part of core material 5 Separator 6 Electrode plate group 7, 8 Current collector 9 Metal cylindrical case 10 Conductive plate 11 Sealing Plate 12 Cylindrical core space configured at the center of the electrode plate group

Claims (4)

正極板と負極板とをセパレータを介して巻回して構成した極板群と、前記極板群を収納する円筒型ケースと、前記円筒型ケースを封口する封口板と、前記封口板と正極板あるいは負極板のうちのいずれか一方の電極板とを電気的に接続する接続端子を備えた二次電池において、前記極板群の中央に円筒型巻芯空間部を構成し、前記円筒型巻芯空間部の内径をdとし、前記円筒型ケースの内径をDとした時に、0.16≦d/D≦0.32とし、前記円筒型巻芯空間部には、前記円筒型巻芯空間部の容積に対して0.1〜20%の容積を占める電解液流出阻止体を設け、前記電解液流出阻止体は、電解液を含浸して保持することができる対電解液性繊維体とし、前記円筒型巻芯空間部には電解液を貯溜させたことを特徴とする二次電池。An electrode plate group configured by winding a positive electrode plate and a negative electrode plate with a separator interposed therebetween, a cylindrical case for housing the electrode plate group, a sealing plate for sealing the cylindrical case, the sealing plate and the positive electrode plate Alternatively, in a secondary battery including a connection terminal for electrically connecting any one of the negative electrode plates, a cylindrical core space portion is formed at the center of the electrode plate group, and the cylindrical winding When the inner diameter of the core space portion is d and the inner diameter of the cylindrical case is D, 0.16 ≦ d / D ≦ 0.32, and the cylindrical core space portion includes the cylindrical core space. An electrolytic solution outflow prevention body occupying a volume of 0.1 to 20% with respect to the volume of the part is provided, and the electrolytic solution outflow prevention body is an anti-electrolytic solution fibrous body that can be impregnated with and retained by the electrolytic solution. A secondary battery in which an electrolytic solution is stored in the cylindrical core space. 前記対電解液性繊維体は不織布であることを特徴とする請求項1記載の二次電池。 The secondary battery according to claim 1, wherein the anti-electrolyte fibrous body is a nonwoven fabric . 正極板と負極板とをセパレータを介して巻回して構成した極板群と、前記極板群を収納する円筒型ケースと、前記円筒型ケースを封口する封口板と、前記封口板と正極板あるいは負極板のうちのいずれか一方の電極板とを電気的に接続する接続端子を備えた二次電池において、前記極板群の中央に円筒型巻芯空間部を構成し、前記円筒型巻芯空間部の内径をdとし、前記円筒型ケースの内径をDとした時に、0.16≦d/D≦0.32とし、前記円筒型巻芯空間部には、前記円筒型巻芯空間部の容積に対して0.1〜20%の容積を占める電解液流出阻止体を設け、前記電解液流出阻止体は、対電解液性蓋体とし、前記円筒型巻芯空間部には電解液を貯溜させたことを特徴とする二次電池。 An electrode plate group configured by winding a positive electrode plate and a negative electrode plate with a separator interposed therebetween, a cylindrical case for housing the electrode plate group, a sealing plate for sealing the cylindrical case, the sealing plate and the positive electrode plate Alternatively, in a secondary battery including a connection terminal for electrically connecting any one of the negative electrode plates, a cylindrical core space portion is formed at the center of the electrode plate group, and the cylindrical winding When the inner diameter of the core space portion is d and the inner diameter of the cylindrical case is D, 0.16 ≦ d / D ≦ 0.32, and the cylindrical core space portion includes the cylindrical core space. An electrolytic solution outflow prevention body occupying a volume of 0.1 to 20% with respect to the volume of the part is provided, the electrolytic solution outflow prevention body is an anti-electrolytic solution lid, and the cylindrical core space portion is electrolyzed. A secondary battery characterized by storing liquid . 正極板と負極板とをセパレータを介して巻回して構成した極板群と、前記極板群を収納する円筒型ケースと、前記円筒型ケースを封口する封口板と、前記封口板と正極板あるいは負極板のうちのいずれか一方の電極板とを電気的に接続する接続端子を備えた二次電池において、前記極板群の中央に円筒型巻芯空間部を構成し、前記円筒型巻芯空間部の内径をdとし、前記円筒型ケースの内径をDとした時に、0.16≦d/D≦0.32とし、前記円筒型巻芯空間部には、前記円筒型巻芯空間部の容積に対して0.1〜20%の容積を占める電解液流出阻止体を設け、前記電解液流出阻止体は、対電解液性繊維体と対電解液性蓋体とからなり、前記円筒型巻芯空間部には電解液を貯溜させたことを特徴とする二次電池。 An electrode plate group configured by winding a positive electrode plate and a negative electrode plate with a separator interposed therebetween, a cylindrical case for housing the electrode plate group, a sealing plate for sealing the cylindrical case, the sealing plate and the positive electrode plate Alternatively, in a secondary battery including a connection terminal for electrically connecting any one of the negative electrode plates, a cylindrical core space portion is formed at the center of the electrode plate group, and the cylindrical winding When the inner diameter of the core space portion is d and the inner diameter of the cylindrical case is D, 0.16 ≦ d / D ≦ 0.32, and the cylindrical core space portion includes the cylindrical core space. An electrolytic solution outflow prevention body occupying a volume of 0.1 to 20% with respect to the volume of the part is provided, and the electrolytic solution outflow prevention body is composed of an antielectrolytic fiber body and an antielectrolytic solution lid, A secondary battery in which an electrolytic solution is stored in a cylindrical core space .
JP2000253733A 2000-08-24 2000-08-24 Secondary battery Expired - Lifetime JP4940491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000253733A JP4940491B2 (en) 2000-08-24 2000-08-24 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000253733A JP4940491B2 (en) 2000-08-24 2000-08-24 Secondary battery

Publications (2)

Publication Number Publication Date
JP2002075434A JP2002075434A (en) 2002-03-15
JP4940491B2 true JP4940491B2 (en) 2012-05-30

Family

ID=18742780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000253733A Expired - Lifetime JP4940491B2 (en) 2000-08-24 2000-08-24 Secondary battery

Country Status (1)

Country Link
JP (1) JP4940491B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4941245B2 (en) 2007-11-19 2012-05-30 三菱電機株式会社 Power storage device cell and power storage device module
CN106784577A (en) * 2016-11-14 2017-05-31 浙江凯恩电池有限公司 The cylindrical battery of disjunctor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109761B2 (en) * 1982-11-25 1995-11-22 松下電器産業株式会社 Injection method for cylindrical batteries
JPH06251799A (en) * 1993-02-25 1994-09-09 Shin Kobe Electric Mach Co Ltd Sealed alkaline storage battery manufacturing method and electrode group winding device used in same method
JP3888590B2 (en) * 1997-01-20 2007-03-07 日立マクセル株式会社 Hydride secondary battery assembled battery
JPH10241723A (en) * 1997-02-27 1998-09-11 Sanyo Electric Co Ltd Cylindrical storage battery
JP2000030688A (en) * 1998-07-08 2000-01-28 Shin Kobe Electric Mach Co Ltd Wound alkaline storage battery and manufacture thereof
JP2000228212A (en) * 1999-02-05 2000-08-15 Matsushita Electric Ind Co Ltd Battery

Also Published As

Publication number Publication date
JP2002075434A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
KR101227779B1 (en) High performance energy storage devices
JP3972804B2 (en) Alkaline storage battery and manufacturing method thereof
JP4031620B2 (en) Nickel metal hydride storage battery and method of using the same
JP6525167B2 (en) Lead storage battery
JP4940491B2 (en) Secondary battery
JP3287367B2 (en) Sealed nickel zinc battery
JPH01187760A (en) Cylindrical alkaline zinc storage battery
JP2002503873A (en) Prismatic electrochemical cell
JP3902330B2 (en) Cylindrical battery
JP3653410B2 (en) Sealed alkaline zinc storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP3504303B2 (en) Cylindrical alkaline secondary battery
JP3071026B2 (en) Metal hydride storage battery
JP2689598B2 (en) Cylindrical sealed nickel-cadmium storage battery and its manufacturing method
JPH05283071A (en) Activation of metal hydride storage battery
JP2988974B2 (en) Prismatic nickel-metal hydride storage battery
JP2994850B2 (en) Paste cadmium negative electrode for alkaline storage batteries
JP3568316B2 (en) Prismatic alkaline storage battery
JP2002075318A (en) Secondary battery
JP2623775B2 (en) Sealed rectangular nickel-cadmium storage battery
JP3071033B2 (en) Hydrogen storage electrode
JP4441191B2 (en) Alkaline storage battery and method for manufacturing the same
JPS63259963A (en) Enclosed type alkaline storage battery
JP2004171978A (en) Alkaline battery
JP2005025964A (en) Charging method of sealed alkaline storage battery, charger, and sealed alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070912

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R151 Written notification of patent or utility model registration

Ref document number: 4940491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

EXPY Cancellation because of completion of term