JP3071033B2 - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JP3071033B2
JP3071033B2 JP4111677A JP11167792A JP3071033B2 JP 3071033 B2 JP3071033 B2 JP 3071033B2 JP 4111677 A JP4111677 A JP 4111677A JP 11167792 A JP11167792 A JP 11167792A JP 3071033 B2 JP3071033 B2 JP 3071033B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
battery
hydrogen
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4111677A
Other languages
Japanese (ja)
Other versions
JPH05314970A (en
Inventor
高士 上田
章史 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4111677A priority Critical patent/JP3071033B2/en
Publication of JPH05314970A publication Critical patent/JPH05314970A/en
Application granted granted Critical
Publication of JP3071033B2 publication Critical patent/JP3071033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素の吸蔵、放出が可
能な水素吸蔵合金を負極材料として用いた水素吸蔵電極
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage electrode using a hydrogen storage alloy capable of storing and releasing hydrogen as a negative electrode material.

【0002】[0002]

【従来の技術】従来から用いられている蓄電池として
は、ニッケル−カドミウム蓄電池、あるいは鉛蓄電池な
どがある。近年、これらの電池より軽量、且つ高容量で
高エネルギー密度となる可能性があるということで、水
素吸蔵合金を負極材料として用いた水素吸蔵電極を備え
たニッケル−水素アルカリ蓄電池が注目されている。
2. Description of the Related Art Conventional storage batteries include nickel-cadmium storage batteries and lead storage batteries. In recent years, nickel-hydrogen alkaline storage batteries equipped with a hydrogen storage electrode using a hydrogen storage alloy as a negative electrode material have attracted attention because they may be lighter, have higher capacity, and have a higher energy density than these batteries. .

【0003】ここで、上記水素吸蔵電極の製造方法とし
ては、特開昭61−66366号公報に示されるよう
に、ポリテトラフルオロエチレンやポリエチレンオキサ
イドなどの結着剤と水素吸蔵合金粉末とを混練したペー
ストを、パンチングメタルやエキスパンドメタル等の芯
体に塗着、乾燥するような方法が一般的に用いられてい
る。
[0003] As a method for producing the hydrogen storage electrode, as disclosed in Japanese Patent Application Laid-Open No. 61-66366, a binder such as polytetrafluoroethylene or polyethylene oxide is mixed with a hydrogen storage alloy powder. A method of applying the dried paste to a core such as a punching metal or an expanded metal and drying the core is generally used.

【0004】ところが、このようにして製造された水素
吸蔵電極中の水素吸蔵合金は、表面が結着剤で被覆され
るために導電性の低下を招く。また、水素吸蔵合金は、
充放電の繰り返しによって亀裂や微細化が進行するた
め、合金粒子の間の密着性が低下し、導電性の低下を引
き起こす。このような、導電性の低下は、水素吸蔵合金
の水素の吸蔵及び放出の効率を大幅に低下させるため、
負極の容量密度も大幅に低下する。
[0004] However, the hydrogen storage alloy in the hydrogen storage electrode manufactured in this manner causes a decrease in conductivity because the surface is coated with a binder. In addition, hydrogen storage alloy
Cracking and miniaturization progress due to repetition of charge and discharge, so that the adhesion between the alloy particles is reduced and the conductivity is reduced. Such a decrease in conductivity significantly reduces the efficiency of hydrogen storage and release of hydrogen in the hydrogen storage alloy,
The capacity density of the negative electrode also drops significantly.

【0005】そこで、上記のような導電性の低下を抑制
するために以下のような方法が提案されている。 結着剤の被覆による導電性の低下に対する対策 特開昭60−172166号公報、及び特開昭63−5
5862号公報に開示されているように、電極中に金属
粉末などの導電剤を添加することにより、導電性を向上
させる方法。 水素吸蔵合金の微細化による導電性の低下に対する対
策 実公昭57−34678号公報に開示されているよう
に、3次元の金属マトリックス中に水素吸蔵合金を充填
することにより、合金が微細化した場合でも合金粒子を
固定する方法。
Therefore, the following method has been proposed to suppress the above-mentioned decrease in conductivity. Countermeasures against a decrease in conductivity due to coating with a binder JP-A-60-172166 and JP-A-63-5
As disclosed in Japanese Patent No. 5862, a method for improving conductivity by adding a conductive agent such as a metal powder to an electrode. Countermeasure against decrease in conductivity due to miniaturization of hydrogen storage alloy As disclosed in Japanese Utility Model Publication No. 57-34678, when a three-dimensional metal matrix is filled with a hydrogen storage alloy, the alloy is miniaturized. But how to fix the alloy particles.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記方
法では以下のような問題点が生じる。 の方法の問題点 即ち、の方法では、十分な導電性を得るためには大量
の導電剤を添加する必要があり、負極の理論容量の大幅
な低下を招き、逆に電極の容量密度が低下するという問
題があった。また、水素吸蔵合金の充放電時の水素の吸
蔵及び放出による微細化に対しては、導電性を維持する
ことができない。 の方法の問題点 即ち、の方法では、水素吸蔵合金が、充放電時の水素
の吸蔵、及び放出によって微細化した場合の導電性の維
持に対しては効果は認められるものの、マトリックスの
分だけ活物質の添加量が減少し、負極の理論容量の低下
を招き、上記と同様に電極の容量密度が低下するという
問題があった。
However, the above method has the following problems. That is, in the method, a large amount of a conductive agent must be added in order to obtain sufficient conductivity, resulting in a large decrease in the theoretical capacity of the negative electrode, and conversely, a decrease in the capacity density of the electrode. There was a problem of doing. In addition, conductivity cannot be maintained with respect to miniaturization by absorbing and releasing hydrogen during charging and discharging of the hydrogen storage alloy. In other words, in the method, the hydrogen storage alloy has an effect on maintaining the conductivity when the hydrogen storage alloy is miniaturized by absorbing and releasing hydrogen during charge and discharge. There has been a problem that the amount of the active material added is reduced, the theoretical capacity of the negative electrode is reduced, and the capacity density of the electrode is reduced as described above.

【0007】本発明は上記問題を解決するものであり、
理論容量を低下させることなく水素吸蔵電極の導電性を
向上させ、水素吸蔵電極の容量密度の大幅な向上を図
り、該水素吸蔵電極を備えた金属水素化物蓄電池のサイ
クル寿命を向上させることを目的とする。
[0007] The present invention is to solve the above problems,
The object is to improve the conductivity of the hydrogen storage electrode without lowering the theoretical capacity, to significantly increase the capacity density of the hydrogen storage electrode, and to improve the cycle life of the metal hydride storage battery provided with the hydrogen storage electrode. And

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、水素の吸蔵、放出が可能な水素吸蔵合金
を主成分とする水素吸蔵電極において、前記水素吸蔵電
極は、水素の吸蔵、放出可能な黒鉛層間化合物繊維から
なる3次元マトリックス中に前記水素吸蔵合金が充填さ
れた構成となっていることを特徴とする。
In order to achieve the above object, the present invention provides a hydrogen storage electrode mainly composed of a hydrogen storage alloy capable of storing and releasing hydrogen. It is characterized in that the hydrogen storage alloy is filled in a three-dimensional matrix made of intercalable graphite intercalation compound fibers.

【0009】[0009]

【作用】上記したような構成であれば以下のような作用
がある。先ず、水素吸蔵合金の粒子間に導電性を有する
黒鉛層間化合物繊維が存在するため、水素吸蔵合金の粒
子間の導電性は大幅に向上する。この合金粒子間の導電
性の向上は、水素吸蔵電極中の水素吸蔵合金が水素を吸
蔵及び放出する効率を大幅に向上させる。
The above-described configuration has the following functions. First, since the graphite intercalation compound fiber having conductivity exists between the particles of the hydrogen storage alloy, the conductivity between the particles of the hydrogen storage alloy is greatly improved. This improvement in the conductivity between the alloy particles greatly improves the efficiency of the hydrogen storage alloy in the hydrogen storage electrode for storing and releasing hydrogen.

【0010】また、黒鉛層間化合物繊維は、それ自身、
水素を吸蔵及び放出することができる(この点、前記従
来のの方法とは異なる)。従って、水素吸蔵合金の充
放電効率を向上させるために必要な量まで黒鉛層間化合
物繊維の量を増加させても、負極の理論容量の低下はほ
とんど生じない。これらのことにより、水素を吸蔵、及
び放出することが可能な黒鉛層間化合物繊維から成る3
次元マトリックス中に水素吸蔵合金を充填したことを特
徴とする水素吸蔵電極は、理論容量の低下をほとんど生
じることなく充放電効率を向上させることができ、負極
容量密度を大幅に向上させることができる。
[0010] The graphite intercalation compound fiber itself is
Hydrogen can be stored and released (this is different from the conventional method). Therefore, even if the amount of the graphite intercalation compound fiber is increased to the amount necessary for improving the charge and discharge efficiency of the hydrogen storage alloy, the theoretical capacity of the negative electrode hardly decreases. Due to these facts, the graphite intercalation compound fiber capable of occluding and releasing hydrogen is made of 3
A hydrogen storage electrode characterized by filling a hydrogen storage alloy in a dimensional matrix can improve charge / discharge efficiency with almost no decrease in theoretical capacity, and can significantly improve negative electrode capacity density .

【0011】さらに、水素吸蔵合金は、黒鉛層間化合物
繊維からなる3次元マトリックス中に充填されているた
め、水素吸蔵合金が充放電時の水素の吸蔵及び放出によ
って微細化した場合にも、黒鉛層間化合物繊維が合金粒
子を確実に固定しているため導電性の低下を生じること
はない。尚、水素を吸蔵及び放出することができる黒鉛
層間化合物繊維としては、黒鉛中に、カリウム、ナトリ
ウム或いはリチウムから選ばれて成る金属をドープした
化合物が、効果的に導電性を向上させると同時に水素の
吸蔵及び放出を行うことができるのでこれらのものを用
いるのが望ましい。
Furthermore, since the hydrogen storage alloy is filled in a three-dimensional matrix composed of graphite intercalated compound fibers, even when the hydrogen storage alloy is miniaturized by absorbing and releasing hydrogen during charge and discharge, the graphite intercalated layer can be used. Since the compound fibers securely fix the alloy particles, the conductivity does not decrease. As a graphite intercalation compound fiber capable of occluding and releasing hydrogen, a compound in which graphite is doped with a metal selected from potassium, sodium or lithium can be used to effectively improve the conductivity and at the same time to increase the hydrogen content. It is preferable to use these because they can perform occlusion and release.

【0012】[0012]

【実施例】【Example】

〔実施例〕図1は本発明の一例に係る円筒密閉型ニッケ
ル−水素電池の断面図であり、焼結式ニッケルからなる
正極1と水素吸蔵合金粉末を有する負極2と、これら正
負両極1・2間に介挿されたセパレータ3とからなる電
極群4は渦巻状に捲回されている。この電極群4は負極
端子兼用の外装缶6内に配置されており、この外装缶6
と上記負極2とは負極用導電タブ5により接続されてい
る。上記外装缶6の上部開口にはパッキング7を介して
封口体8が装着されており、この封口体8の内部にはコ
イルスプリング9が設けられている。このコイルスプリ
ング9は電池内部の内圧が異常上昇したときに矢印A方
向に押圧されて内部のガスが大気中に放出されるように
構成されている。また、上記封口体8と上記正極1とは
正極用導電タブ10にて接続されている。
FIG. 1 is a cross-sectional view of a cylindrical sealed nickel-hydrogen battery according to an embodiment of the present invention, in which a positive electrode 1 made of sintered nickel, a negative electrode 2 having a hydrogen storage alloy powder, and these positive and negative electrodes 1. The electrode group 4 including the separator 3 interposed between the two is spirally wound. The electrode group 4 is disposed in an outer can 6 also serving as a negative electrode terminal.
The negative electrode 2 is connected to the negative electrode 2 by a negative electrode conductive tab 5. A sealing body 8 is attached to the upper opening of the outer can 6 via a packing 7, and a coil spring 9 is provided inside the sealing body 8. The coil spring 9 is configured such that when the internal pressure inside the battery rises abnormally, it is pressed in the direction of arrow A and the gas inside is released to the atmosphere. The sealing body 8 and the positive electrode 1 are connected by a positive electrode conductive tab 10.

【0013】ここで上記構造の円筒密閉型ニッケル−水
素電池を以下のようにして作製した。水素吸蔵合金の原
料としての市販のミッシュメタル(Mm:希土類元素の
混合物)とニッケルとコバルトとアルミニウムとマンガ
ンとを元素比で1.0:3.2:1.0:0.2:0.
6に秤量した後、高周波誘導炉内で溶解、鋳造する。こ
れにより、MmNi3.2 CoAl0.2 Mn0.6という組
成の水素吸蔵合金を得る。
Here, a cylindrical sealed nickel-hydrogen battery having the above structure was manufactured as follows. Commercially available misch metal (Mm: a mixture of rare earth elements), nickel, cobalt, aluminum, and manganese in the element ratio of 1.0: 3.2: 1.0: 0.2: 0.
After weighing to 6, melting and casting in a high frequency induction furnace. As a result, a hydrogen storage alloy having a composition of MmNi 3.2 CoAl 0.2 Mn 0.6 is obtained.

【0014】次いで、この合金塊を機械的に粉砕して平
均粒径が20μmの水素吸蔵合金粉末を作製した後、こ
の水素吸蔵合金粉末に対してポリエチレンオキサイドを
1wt%、および分散媒としての水を上記合金に加えス
ラリーを作製した。更に、このスラリーを天然黒鉛中に
カリウムをドープした黒鉛層間化合物繊維から成る3次
元マトリックス中に充填して、乾燥及び圧延を行い負極
2を得た。但し、黒鉛層間化合物の繊維から成る3次元
マトリックスは、目付重量が130g/m2 のものを使
用し、且つ黒鉛層間化合物量が水素吸蔵合金に対して1
0wt%に成るように水素吸蔵合金を充填した。
Next, this alloy lump is mechanically pulverized to produce a hydrogen storage alloy powder having an average particle diameter of 20 μm. Then, 1 wt% of polyethylene oxide is added to the hydrogen storage alloy powder, and water is used as a dispersion medium. Was added to the above alloy to prepare a slurry. Further, this slurry was filled in a three-dimensional matrix composed of graphite intercalated compound fibers doped with potassium in natural graphite, and dried and rolled to obtain a negative electrode 2. However, a three-dimensional matrix composed of fibers of the graphite intercalation compound has a basis weight of 130 g / m 2 , and the amount of the graphite intercalation compound is 1 to the hydrogen storage alloy
The hydrogen storage alloy was filled so as to be 0 wt%.

【0015】このようにして作製した負極2と正極1と
しての焼結式ニッケル極とを、ナイロン不織布から成る
セパレータ3を介して捲回させ、渦巻状の電極群4を得
た。そして、この渦巻状の電極群4を外装缶6に挿入
し、30重量%の水酸化カリウム水溶液を電解液として
注液した後、封口して公称容量1000mAhの密閉型
ニッケル−水素電池を組み立てた。
The thus prepared negative electrode 2 and a sintered nickel electrode as the positive electrode 1 were wound via a separator 3 made of a non-woven nylon fabric to obtain a spiral electrode group 4. Then, the spiral electrode group 4 was inserted into the outer can 6, and a 30% by weight aqueous solution of potassium hydroxide was injected as an electrolyte, and then sealed to assemble a sealed nickel-hydrogen battery with a nominal capacity of 1000 mAh. .

【0016】このように作製した電池を、以下(A)電
池と称する。 〔比較例1〕上記実施例で得られたスラリーをパンチン
グメタルからなる導電性支持体の両面に塗着した後、乾
燥及び圧延を行って負極を作製した以外は、上記実施例
と同様に電池を作製した。
The battery fabricated in this manner is hereinafter referred to as (A) battery. Comparative Example 1 A battery was prepared in the same manner as in the above example, except that the slurry obtained in the above example was applied to both surfaces of a conductive support made of punching metal, and then dried and rolled to produce a negative electrode. Was prepared.

【0017】このように作製した電池を、以下(X1
電池と称する。 〔比較例2〕上記実施例で得られた水素吸蔵合金粉末に
対して、重量比で5wt%のニッケル粉末、1wt%の
ポリエチレンオキサイド、及び分散媒としての水を加え
てスラリーを作製し、パンチングメタルから成る導電性
支持体の両面に塗着した後、乾燥及び圧延を行って負極
を作製した以外は、上記実施例と同様に電池を作製し
た。
The battery fabricated in this manner is represented by the following formula (X 1 )
It is called a battery. [Comparative Example 2] A slurry was prepared by adding 5 wt% of nickel powder, 1 wt% of polyethylene oxide, and water as a dispersion medium to the hydrogen-absorbing alloy powder obtained in the above example by weight, and punching. A battery was fabricated in the same manner as in the above example, except that the negative electrode was fabricated by applying the coating on both sides of a metal-made conductive support, followed by drying and rolling.

【0018】このように作製した電池を、以下(X2
電池と称する。 〔比較例3〕上記実施例で得られたスラリーを3次元の
ニッケルマトリックス中に充填した後、乾燥及び圧延を
行い負極を作製した以外は、上記実施例と同様に電池を
作製した。
The battery fabricated in this manner is represented by the following formula (X 2 )
It is called a battery. Comparative Example 3 A battery was fabricated in the same manner as in the above example, except that the slurry obtained in the above example was filled in a three-dimensional nickel matrix, and then dried and rolled to produce a negative electrode.

【0019】このように作製した電池を、以下(X3
電池と称する。 〔実験1〕本発明の(A)電池、比較例(X1 )電池〜
(X3 )電池に使用されている負極を用いて、電極の負
極容量を測定し、容量密度を求めたので、表1にその結
果を示す。
The battery fabricated in this manner was designated as (X 3 )
It is called a battery. [Experiment 1] (A) Battery of the Present Invention, Comparative Example (X 1 ) Battery
(X 3 ) The negative electrode capacity of the electrode was measured using the negative electrode used in the battery, and the capacity density was determined. Table 1 shows the results.

【0020】尚、(A)電池、比較例(X1 )電池〜
(X3 )電池にそれぞれ使用されている負極を、以下そ
れぞれ(a)電極、(x1 )電極〜(x3 )電極と称す
る。負極容量の測定は、図2に示す試験セルを用いてを
行った。試験セルは、(a)電極、(x1 )電極、(x
2 )電極、または(x3 )電極を用いた負極11と、当
該負極11よりも十分に大きな容量の焼結式水酸化ニッ
ケル正極12と、ナイロン不織布からなるセパレータ1
3と、30重量%の水酸化カリウム水溶液14と、圧力
センサー15と、リリーフバルブ16とから構成されて
いる。更に、試験セル内の内部圧力は、上記リリーフバ
ルブ6によって、5atmになるように設定されてい
る。
(A) Battery, Comparative Example (X 1 ) Battery
The negative electrodes used in the (X 3 ) battery are hereinafter referred to as (a) electrode and (x 1 ) to (x 3 ) electrodes, respectively. The measurement of the negative electrode capacity was performed using the test cell shown in FIG. The test cells were composed of (a) electrode, (x 1 ) electrode, (x
2 ) A negative electrode 11 using an electrode or (x 3 ) electrode, a sintered nickel hydroxide positive electrode 12 having a sufficiently larger capacity than the negative electrode 11, and a separator 1 made of a nonwoven nylon fabric.
3, a 30% by weight aqueous solution of potassium hydroxide 14, a pressure sensor 15, and a relief valve 16. Further, the internal pressure in the test cell is set to 5 atm by the relief valve 6.

【0021】尚、実験は、負極の水素吸蔵合金に対して
50mA/gの電流で9時間充電した後、50mA/g
の電流で放電するという条件で充放電を行い、容量が安
定した5サイクル後の負極容量を測定することにより行
った。また、容量密度は、上記のように測定した負極容
量を用いて、下記に示す計算式によって算出した。
In the experiment, the hydrogen storage alloy of the negative electrode was charged at a current of 50 mA / g for 9 hours, and then charged at 50 mA / g.
The charging and discharging were performed under the condition of discharging at a current of, and the negative electrode capacity was measured after 5 cycles when the capacity was stabilized. The capacity density was calculated by the following formula using the negative electrode capacity measured as described above.

【0022】容量密度(mAh/cc)=5サイクル後の負極容
量(mAh) /負極体積(cc)
Capacity density (mAh / cc) = negative electrode capacity after 5 cycles (mAh) / negative electrode volume (cc)

【0023】[0023]

【表1】 [Table 1]

【0024】表1から明らかなように、本発明の(a)
電極の容量密度が、比較例の(x1)電極〜(x3 )電
極よりも大きいことが分かる。これは、本発明の(a)
電極では、黒鉛層間化合物繊維は導電性を有しているの
で、極板の導電性が向上し、水素吸蔵合金の利用率が向
上すると同時に、黒鉛層間化合物繊維自身が水素を吸
蔵、及び放出できるため非常に大きな容量密度が得られ
たものと考えられる。
As apparent from Table 1, (a) of the present invention
Capacity density of the electrode, it can be seen larger than (x 1) electrodes ~ (x 3) electrodes of the comparative examples. This corresponds to (a) of the present invention.
In the electrode, the graphite intercalation compound fiber has conductivity, so that the conductivity of the electrode plate is improved, the utilization rate of the hydrogen storage alloy is improved, and at the same time, the graphite intercalation compound fiber itself can absorb and release hydrogen. Therefore, it is considered that a very large capacity density was obtained.

【0025】これに対して、比較例の(x1 )電極で
は、極板の導電性が低いために、水素吸蔵合金が水素を
吸蔵及び放出する効率が非常に低くなったものと考えら
れる。また、比較例の(x2 )電極では、ニッケル粉末
によって極板の導電性は向上するが、ニッケル粉末の添
加の分だけ、水素吸蔵合金の添加量が減少し、水素吸蔵
電極の理論容量が低下する。この結果、極板の容量密度
が低下したものと考えられる。
On the other hand, in the (x 1 ) electrode of the comparative example, it is considered that the efficiency of storing and releasing hydrogen by the hydrogen storage alloy was extremely low because the conductivity of the electrode plate was low. In the (x 2 ) electrode of the comparative example, the conductivity of the electrode plate is improved by the nickel powder, but the amount of the hydrogen storage alloy is reduced by the addition of the nickel powder, and the theoretical capacity of the hydrogen storage electrode is reduced. descend. As a result, it is considered that the capacity density of the electrode plate decreased.

【0026】(x3 )電極に付いても(x2 )電極と同
様に、3次元状のニッケルマトリックスの分だけ水素吸
蔵電極の理論容量が低下し、結果として極板の容量密度
が低下したものと考えられる。 〔実験2〕本発明の(A)電池、及び比較例の(X1
電池〜(X3 )電池を用いてサイクル寿命を測定したの
で、表2にその結果を示す。
[0026] (x 3) is also attached to the electrode (x 2) similarly to the electrode, the theoretical capacity of the amount corresponding to the hydrogen storage electrodes of the three-dimensional shape of the nickel matrix is reduced, the capacity density of the electrode plate is lowered as a result It is considered something. [Experiment 2] The battery (A) of the present invention and (X 1 ) of the comparative example
The cycle life was measured using the batteries to (X 3 ) batteries. Table 2 shows the results.

【0027】尚、測定条件としては、低率の充放電を繰
り返すことによって電池を活性化した後、500mAの
電流で2.5時間充電し、更に、500mAの電流で放
電し、電池電圧が1.0Vに達した時点で、放電を終了
するという条件でサイクルを行い、放電容量が初期容量
の50%に達したサイクル数をサイクル寿命とした。
The measurement conditions are as follows. After activating the battery by repeating charging and discharging at a low rate, the battery is charged at a current of 500 mA for 2.5 hours, further discharged at a current of 500 mA, and the battery voltage becomes 1 When the voltage reached 0.0 V, the cycle was performed under the condition that the discharge was terminated, and the number of cycles at which the discharge capacity reached 50% of the initial capacity was defined as the cycle life.

【0028】[0028]

【表2】 [Table 2]

【0029】表2から明らかなように、本発明(A)電
池は、比較例の(X1 )電池〜(X 3 )電池に比べて、
より長期にわたるサイクル寿命が得られることがわか
る。上記のような結果は、以下のような理由によって起
こると考えられる。比較例の(X1 )電池では、負極の
導電性が低いために容量密度が小さい、また比較例の
(x2 )電極、および(x3 )電極は、負極の理論容量
の低下によって容量密度が小さい。このために、これら
比較例の(X1 )電池〜(X3 )電池は、本発明(A)
電池と比べて、短い充放電の繰り返しによって負極が満
充電状態になり、水素ガス発生を生じやすくなる。そし
て、このようにして発生した水素ガスは、一時的に電池
内部に蓄積されるが、徐々に電池内部圧力の上昇をもた
らし、電池内部圧力が一定以上になると、安全弁が動作
し、電池系外に放出される。このガス放出時に、電池内
部の電解液も同時に放出されるため、極端な内部抵抗の
上昇が生じて、電池容量の低下が生じるものと考えられ
る。
As is clear from Table 2, the present invention (A)
The pond was (X1) Battery ~ (X Three) Compared to batteries,
We can see that longer cycle life can be obtained
You. The above results are caused by the following reasons.
It is thought that it will come. (X of the comparative example1) For batteries, the negative electrode
Low capacitance density due to low conductivity.
(XTwo) Electrode, and (xThree) The electrode is the theoretical capacity of the negative electrode
, The capacity density is small. Because of this, these
(X of the comparative example1) Battery ~ (XThree) The battery according to the present invention (A)
Compared to batteries, the charge / discharge cycle is shorter than
The battery is charged and hydrogen gas is easily generated. Soshi
The hydrogen gas generated in this way is temporarily
Accumulates inside but gradually increases battery internal pressure
When the battery internal pressure exceeds a certain level, the safety valve operates.
And is released outside the battery system. When this gas is released,
Part of the electrolyte is also released at the same time,
It is considered that the battery capacity rises and the battery capacity decreases.
You.

【0030】これに対して、本発明(A)電池では、比
較例の(X1 )電池〜(X3 )電池よりも容量密度の高
い負極を使用しており、更に、水素吸蔵合金は3次元マ
トリックスを構成する黒鉛層間化合物繊維によって強く
保持されているため、充放電の繰り返しによる水素吸蔵
合金の微細化に対しても導電性の低下を起こさず、高い
容量密度を維持することができる。このため、長期にわ
たって負極が満充電状態に達するのが防止され、サイク
ル寿命が向上したものと考えられる。 〔その他の事項〕本実施例では、水素を吸蔵及び放出す
ることが可能な黒鉛層間化合物繊維からなる3次元マト
リックスとして天然黒鉛中にカリウムをドープした化合
物を使用したが、水素を吸蔵及び放出できる黒鉛層間化
合物繊維であれば同様の効果が得られる。
On the other hand, in the battery (A) of the present invention, a negative electrode having a higher capacity density than the batteries (X 1 ) to (X 3 ) of the comparative example was used. Since it is strongly held by the graphite interlaminar compound fibers constituting the dimensional matrix, even when the hydrogen storage alloy is miniaturized due to repetition of charge and discharge, the conductivity does not decrease and a high capacity density can be maintained. Therefore, it is considered that the negative electrode is prevented from reaching the fully charged state for a long time, and the cycle life is improved. [Other Matters] In the present embodiment, a compound in which potassium is doped into natural graphite is used as a three-dimensional matrix composed of graphite intercalated compound fibers capable of storing and releasing hydrogen, but hydrogen can be stored and released. A similar effect can be obtained with a graphite interlayer compound fiber.

【0031】例えば、黒鉛中にナトリウム、またはリチ
ウムをドープした黒鉛層間化合物繊維を使用することが
できる。
For example, graphite intercalation compound fibers doped with sodium or lithium in graphite can be used.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
3次元マトリックスを構成する黒鉛層間化合物繊維は、
水素の吸蔵及び放出が可能であり、導電性を有し、更
に、3次元マトリックスに充填された水素吸蔵合金の粒
子を固定する。これにより、理論容量を低下させること
なく、水素吸蔵電極の導電性を向上することができ、結
果として水素吸蔵電極の容量密度を向上することができ
た。
As described above, according to the present invention,
The graphite interlaminar compound fibers constituting the three-dimensional matrix are:
It is capable of storing and releasing hydrogen, has conductivity, and fixes the particles of the hydrogen storage alloy filled in a three-dimensional matrix. Thus, the conductivity of the hydrogen storage electrode could be improved without lowering the theoretical capacity, and as a result, the capacity density of the hydrogen storage electrode could be improved.

【0033】更に、上記水吸蔵合金電極を備えた水素化
物蓄電池のサイクル寿命の向上をもたらすことができ、
この工業的価値は非常に大きい。
Further, it is possible to improve the cycle life of the hydride storage battery provided with the above-mentioned water storage alloy electrode,
This industrial value is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例に係るニッケル−水素電池の断面
図である。
FIG. 1 is a cross-sectional view of a nickel-metal hydride battery according to an example of the present invention.

【図2】電池内ガス量測定のための試験セルの模式図で
ある。
FIG. 2 is a schematic diagram of a test cell for measuring a gas amount in a battery.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 positive electrode 2 negative electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 H01M 10/34 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/24 H01M 10/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素の吸蔵、放出が可能な水素吸蔵合金
を主成分とする水素吸蔵電極において、 上記水素吸蔵電極は、水素の吸蔵、放出可能な黒鉛層間
化合物繊維からなる3次元マトリックス中に前記水素吸
蔵合金が充填された構成となっていることを特徴とする
水素吸蔵電極。
1. A hydrogen storage electrode mainly comprising a hydrogen storage alloy capable of storing and releasing hydrogen, wherein the hydrogen storage electrode is provided in a three-dimensional matrix comprising graphite intercalated compound fibers capable of storing and releasing hydrogen. A hydrogen storage electrode, wherein the hydrogen storage alloy is filled with the hydrogen storage alloy.
JP4111677A 1992-04-30 1992-04-30 Hydrogen storage electrode Expired - Fee Related JP3071033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4111677A JP3071033B2 (en) 1992-04-30 1992-04-30 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4111677A JP3071033B2 (en) 1992-04-30 1992-04-30 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH05314970A JPH05314970A (en) 1993-11-26
JP3071033B2 true JP3071033B2 (en) 2000-07-31

Family

ID=14567389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4111677A Expired - Fee Related JP3071033B2 (en) 1992-04-30 1992-04-30 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP3071033B2 (en)

Also Published As

Publication number Publication date
JPH05314970A (en) 1993-11-26

Similar Documents

Publication Publication Date Title
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
JP3097347B2 (en) Nickel-metal hydride battery
KR100416428B1 (en) A hydrogen occlusion electrode, a nickel electrode, and an alkaline storage battery
JPH11176436A (en) Alkaline storage battery
JP4420767B2 (en) Nickel / hydrogen storage battery
JP3071033B2 (en) Hydrogen storage electrode
JP2966627B2 (en) Metal hydride storage battery
JPH11162468A (en) Alkaline secondary battery
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3071026B2 (en) Metal hydride storage battery
JP2944152B2 (en) Method for manufacturing nickel-hydrogen storage battery
JP2995893B2 (en) Nickel / metal hydride storage battery
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
JP2858862B2 (en) Metal-hydrogen alkaline storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH05335015A (en) Hydrogen storage electrode
JP2988974B2 (en) Prismatic nickel-metal hydride storage battery
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JP3392700B2 (en) Alkaline secondary battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP2925591B2 (en) Method for producing hydrogen storage electrode
JP3096464B2 (en) Nickel-hydrogen alkaline storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees