JP4935406B2 - High heat resistant polyimide resin composition - Google Patents

High heat resistant polyimide resin composition Download PDF

Info

Publication number
JP4935406B2
JP4935406B2 JP2007037400A JP2007037400A JP4935406B2 JP 4935406 B2 JP4935406 B2 JP 4935406B2 JP 2007037400 A JP2007037400 A JP 2007037400A JP 2007037400 A JP2007037400 A JP 2007037400A JP 4935406 B2 JP4935406 B2 JP 4935406B2
Authority
JP
Japan
Prior art keywords
polyimide resin
resin composition
polyimide
molecular weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007037400A
Other languages
Japanese (ja)
Other versions
JP2008201861A (en
Inventor
佐伯泰道
宮崎謙一
竹上明伸
紀氏隆明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP2007037400A priority Critical patent/JP4935406B2/en
Publication of JP2008201861A publication Critical patent/JP2008201861A/en
Application granted granted Critical
Publication of JP4935406B2 publication Critical patent/JP4935406B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、溶剤可溶性を有する極めて耐熱性の高いポリイミド樹脂組成物に関し、更に詳しくは、溶剤可溶性を有しながら、ガラス転移温度が350℃以上と極めて高い耐熱性を兼ね備え、保存安定性、塗膜形成性、密着性、樹脂加工性に優れる高耐熱性ポリイミド樹脂組成物に関する。   The present invention relates to a polyimide resin composition having solvent solubility and extremely high heat resistance, and more specifically, having solvent solubility and having extremely high heat resistance such as a glass transition temperature of 350 ° C. or higher, storage stability, coating The present invention relates to a highly heat-resistant polyimide resin composition excellent in film formability, adhesion, and resin processability.

従来、耐熱絶縁材料、特にFCCLと称されるフレキシブルプリント基板に代表される電子材料用のボリイミド系のベースフィルムとしては、ピロメリット酸とジアミノジフェニルエーテルの縮合物(商品名カプトン)に代表される耐熱温度400℃超のポリイミド樹脂が使用されてきた。しかし、この種の耐熱性の高いポリイミドは溶剤に不溶のケースが多く、実際の使用に関しては、その前駆体であるアミド酸ワニスを用い、その塗膜を例えば350℃以上の温度に加熱して、イミド化を行う方法が取られてきた。また、このようなアミド酸型は保存安定性が悪く、室温保管では経日的な粘度減少を伴う為、冷蔵又は冷凍保管を必要とするなど保存上の問題があった。   Conventionally, as a polyimide base film for heat-resistant insulating materials, especially electronic materials represented by flexible printed circuit boards called FCCL, heat-resistant materials represented by a condensate of pyromellitic acid and diaminodiphenyl ether (trade name: Kapton) Polyimide resins with temperatures above 400 ° C. have been used. However, this type of highly heat-resistant polyimide is often insoluble in solvents, and in actual use, the precursor is amic acid varnish and the coating is heated to a temperature of 350 ° C. or higher, for example. The method of imidizing has been taken. Further, such an amic acid type has poor storage stability and is accompanied by a decrease in viscosity over time at room temperature storage, and thus has storage problems such as requiring refrigeration or freezing storage.

また、従来のアミド酸ワニスから、ポリイミド成形体を得るには、特殊な溶媒に溶解したアミド酸を高温下で、脱水イミド化させる必要があり、特殊な製造設備が必要であった。   Moreover, in order to obtain a polyimide molded body from the conventional amic acid varnish, it is necessary to dehydrate and imidize the amic acid dissolved in a special solvent at a high temperature, which requires special production equipment.

ポリアミド酸ワニスに代えて、溶剤可溶性ポリイミド樹脂が多く提案され、例えば、フルオレン骨格を有するジアミンを構成成分とするポリイミドが開示されている(特許文献1−6)。例えば、特許文献1には、版材用樹脂組成物として、フルオレン骨格を有するジアミンをその成分とする、有機溶媒に可溶で、250℃以上のガラス転移点を有するポリイミド樹脂が開示されている。特許文献2−5にも、特許文献1と同様にフルオレン系ジアミンを有するポリイミドの耐熱性と溶剤可溶性とに着目した用途特許が提出されている。   Many solvent-soluble polyimide resins have been proposed in place of the polyamic acid varnish. For example, a polyimide containing a diamine having a fluorene skeleton as a constituent component is disclosed (Patent Documents 1-6). For example, Patent Document 1 discloses a polyimide resin having a glass transition point of 250 ° C. or higher, which is soluble in an organic solvent, and includes a diamine having a fluorene skeleton as a resin composition for a plate material. . Patent Documents 2-5 also filed application patents focusing on the heat resistance and solvent solubility of polyimides having fluorene-based diamines as in Patent Document 1.

しかながら、これらの特許文献に記載のポリイミド樹脂であっても、従来のポリアミド酸ワニスに比較するとガラス転移温度は低い上、ポリイミド樹脂溶液の保存安定性も必ずしも満足できるものではない。このように、一般的には耐熱性と溶剤可溶性とは相反する性質であり、350℃を超えるガラス転移温度を有し、且つ、溶剤可溶性及び保存安定性に優れたポリイミド樹脂組成物は知られていない。   However, even with the polyimide resins described in these patent documents, the glass transition temperature is lower than that of the conventional polyamic acid varnish, and the storage stability of the polyimide resin solution is not always satisfactory. Thus, generally, heat resistance and solvent solubility are contradictory properties, and a polyimide resin composition having a glass transition temperature exceeding 350 ° C. and excellent in solvent solubility and storage stability is known. Not.

特開2005−289034JP 2005-289034 A 特開2000−8020JP2000-8020 特開2003−51210JP 2003-51210 A 特開2005−262529JP-A-2005-262529 特開平11−212097JP-A-11-212097 特開2005−325332JP 2005-325332 A

本発明は、従来困難とされていた350℃を超えるガラス転移温度を有しながら、保存安定性に優れるポリイミド樹脂組成物を提供することを目的とする。さらには、塗膜形成性、樹脂加工性に優れたポリイミドワニス、及び当該ポリイミドワニスから得られる、強度、弾性率、密着性に優れたポリイミド樹脂成形体を提供することを目的とする。   An object of this invention is to provide the polyimide resin composition which is excellent in storage stability, having the glass transition temperature over 350 degreeC considered conventionally difficult. Furthermore, it aims at providing the polyimide varnish excellent in the strength, elasticity, and adhesiveness obtained from the polyimide varnish excellent in coating-film formation property and resin workability, and the said polyimide varnish.

本発明者らは、上記の課題を解決すべく鋭意検討を進めた結果、以下の知見を得た。
(1)特定のテトラカルボン酸二無水物と、特定の2種のジアミン成分とから得られるポリイミドが、ガラス転移温度が350℃を超え、かつ溶剤可溶性、保存安定性に優れること。
(2)上記ポリイミドと有機溶剤とを含有するポリイミドワニスは、粘度安定性に優れ、塗膜形成性、密着性、樹脂加工性に優れていること。
(3)特に、特定の分子量分布を有することにより、及び/又はポリマー末端の種類によって、密着性や耐熱性が向上すること。
本発明、係る知見に基づいて完成するに至った。
As a result of intensive studies to solve the above problems, the present inventors have obtained the following knowledge.
(1) A polyimide obtained from a specific tetracarboxylic dianhydride and two specific diamine components has a glass transition temperature exceeding 350 ° C., and is excellent in solvent solubility and storage stability.
(2) The polyimide varnish containing the polyimide and the organic solvent is excellent in viscosity stability and excellent in coating film formability, adhesion, and resin processability.
(3) Adhesion and heat resistance are improved by having a specific molecular weight distribution and / or depending on the type of polymer terminal.
The present invention has been completed based on such knowledge.

即ち、本発明は、以下のポリイミド樹脂組成物を提供するものである。   That is, the present invention provides the following polyimide resin composition.

(項1) (A)下記一般式(1)で表される繰り返し単位、及び、(B)下記一般式(2)で表される繰り返し単位からなるポリイミド樹脂組成物であって、(A)と(B)とのモル比が、(A):(B)=50:50〜99:1であるポリイミド樹脂組成物。

Figure 0004935406
Figure 0004935406
[式中、Xは、−O−又は下記式(3)
Figure 0004935406
を表す。] (Item 1) (A) A polyimide resin composition comprising a repeating unit represented by the following general formula (1), and (B) a repeating unit represented by the following general formula (2), wherein (A) The polyimide resin composition whose molar ratio of (B) is (A) :( B) = 50: 50-99: 1.
Figure 0004935406
Figure 0004935406
[Wherein, X is -O- or the following formula (3)
Figure 0004935406
Represents. ]

(項2) ゲルパーミエーションクロマトグラフィー(GPC)の分子量分布測定において、少なくとも2つの分子量ピークを有し、一つのピークが、分子量1,000以上40,000未満であり、他のピークが分子量40,000以上500,000未満である上記項1に記載のポリイミド樹脂組成物。 (Item 2) In the molecular weight distribution measurement of gel permeation chromatography (GPC), it has at least two molecular weight peaks, one peak having a molecular weight of 1,000 or more and less than 40,000, and the other peak having a molecular weight of 40. Item 2. The polyimide resin composition according to Item 1, wherein the composition is 1,000 or more and less than 500,000.

(項3) (N)重量平均分子量が1,000以上40,000未満の請求項1に記載のポリイミド樹脂組成物、及び、(M)重量平均分子量が40,000以上500,000未満の請求項1に記載のポリイミド樹脂組成物を混合して得られる上記項2に記載のポリイミド樹脂組成物。 (Claim 3) (N) The polyimide resin composition according to claim 1, having a weight average molecular weight of 1,000 or more and less than 40,000, and (M) a claim having a weight average molecular weight of 40,000 or more and less than 500,000. Item 3. The polyimide resin composition according to Item 2, obtained by mixing the polyimide resin composition according to Item 1.

(項4) (N)成分が、アミン末端のポリイミド樹脂組成物であり、(M)成分が、酸末端のポリイミド樹脂組成物である上記項3に記載のポリイミド樹脂組成物。 (Item 4) The polyimide resin composition according to item 3, wherein the component (N) is an amine-terminated polyimide resin composition and the component (M) is an acid-terminated polyimide resin composition.

(項5) ゲルパーミエーションクロマトグラフィー(GPC)の分子量分布測定において、分子量1,000以上40,000未満の成分が50〜1重量%であり、分子量40,000以上500,000未満の成分が50〜99重量%である上記項2〜4のいずれかに記載のポリイミド樹脂組成物。 (Item 5) In the molecular weight distribution measurement of gel permeation chromatography (GPC), the component having a molecular weight of 1,000 or more and less than 40,000 is 50 to 1% by weight, and the component having a molecular weight of 40,000 or more and less than 500,000. Item 5. The polyimide resin composition according to any one of Items 2 to 4, which is 50 to 99% by weight.

(項6) 上記項1〜5のいずれかに記載のポリイミド樹脂組成物及び有機溶剤を含有するポリイミドワニス。 (Item 6) A polyimide varnish containing the polyimide resin composition according to any one of Items 1 to 5 and an organic solvent.

(項7) 絶縁材料用、耐熱塗料用、耐熱コーティング材料用、耐熱接着剤用、又は耐熱バインダー用である上記項6に記載のポリイミドワニス。 (Item 7) The polyimide varnish according to item 6, which is for an insulating material, a heat-resistant paint, a heat-resistant coating material, a heat-resistant adhesive, or a heat-resistant binder.

(項8) 上記項6又は7に記載のポリイミドワニスを加熱、乾燥して得られるポリイミド樹脂成形体。 (Item 8) A polyimide resin molded article obtained by heating and drying the polyimide varnish according to Item 6 or 7.

(項9) 皮膜状又はフィルム状の形態にある上記項8に記載のポリイミド樹脂成形体。 (Item 9) The polyimide resin molded article according to item 8, which is in the form of a film or a film.

本発明によれば、溶剤可溶性でありながら、ガラス転移温度が350℃を超える極めて高い耐熱性を有するポリイミド樹脂組成物が得られる。さらに、成形時に、加熱イミド化を必要としないため、加工性に優れるうえ、得られるポリイミド成形体は、耐熱性、密着性等に優れているので、絶縁材料、耐熱塗料、耐熱コーティング材料、耐熱接着剤、耐熱バインダー等の用途に好適に用いられる。   According to the present invention, a polyimide resin composition having a very high heat resistance with a glass transition temperature exceeding 350 ° C. while being soluble in a solvent can be obtained. Furthermore, since heat imidization is not required at the time of molding, it is excellent in workability and the obtained polyimide molded body is excellent in heat resistance, adhesion, etc., so that it can be used for insulating materials, heat-resistant paints, heat-resistant coating materials, heat-resistant materials. It is suitably used for applications such as adhesives and heat-resistant binders.

[ポリイミド樹脂組成物]
本発明のポリイミド樹脂組成物は、下記一般式(1)で表される繰り返し単位及び、下記一般式(2)で表される繰り返し単位を、規定の比率の範囲で含むポリイミド樹脂組成物であり、(A)一般式(1)で表される繰り返し単位と、(B)一般式(2)で表される繰り返し単位とのモル比が、(A):(B)=50:50〜99:1、好ましくは60:40〜90:10、特に70:30〜80:20の範囲にあるポリイミド樹脂組成物である。
[Polyimide resin composition]
The polyimide resin composition of the present invention is a polyimide resin composition containing a repeating unit represented by the following general formula (1) and a repeating unit represented by the following general formula (2) within a specified ratio range. (A) The molar ratio of the repeating unit represented by the general formula (1) and the repeating unit represented by (B) the general formula (2) is (A) :( B) = 50: 50 to 99. : 1, preferably 60:40 to 90:10, especially 70:30 to 80:20.

本発明のポリイミド樹脂組成物は、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸又はその二無水物を酸成分とし、9、9−ビス(4−アミノフェニル)フルオレンと、ビス(4−アミノフェニルエーテル)及びビス[4−(4−アミノフェノキシ)フェニル]スルホンからなる群から選ばれる芳香族ジアミンとをジアミン成分として公知の方法に従って容易に製造することができる。   The polyimide resin composition of the present invention comprises 3,9 ′, 4,4′-diphenylsulfonetetracarboxylic acid or its dianhydride as an acid component, and 9,9-bis (4-aminophenyl) fluorene and bis ( An aromatic diamine selected from the group consisting of 4-aminophenyl ether) and bis [4- (4-aminophenoxy) phenyl] sulfone can be easily produced according to a known method as a diamine component.

[酸成分]
酸成分として、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸又はその二無水物に加えて、他のテトラカルボン酸二無水物を用いることもできるが、耐熱性、密着性、溶剤溶解性など本発明の効果を損ねる虞があるため好ましくない。他の酸成分を用いる場合、その使用量は、酸成分の5モル%以下、特に1モル%以下が例示される。係る酸成分として具体的には、ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、エチレングリコール−ビス−アンヒドロトリメリテート、1,2−プロピレングリコール−ビス−アンヒドロトリメリテート、1,3−プロピレングリコール−ビス−アンヒドロトリメリテート、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’−ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’−テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4−フランテトラカルボン酸二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’−ヘキサフロロイソプロピリデンジフタル酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p−フェニレン−ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルメタン二無水物等の芳香族テトラカルボン酸二無水物、1,2,3,4−ブタンテトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸、1,2,3,4−シクロペンタンテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、3,5,6−トリカルボキシノルボナン−2−酢酸二無水物、2,3,4,5−テトラヒドロフランテトラカルボン酸二無水物、5−(2,5−ジオキソテトラヒドロフラル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸二無水物、ビシクロ[2.2.2]−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物等の脂肪族又は脂環族テトラカルボン酸に無水物が例示される。これらの酸成分は単独で又は2種以上を混合してイミド化反応に供することができる。
[Acid component]
As the acid component, in addition to 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid or its dianhydride, other tetracarboxylic dianhydrides can be used, but heat resistance, adhesion, solvent Since there exists a possibility of impairing the effect of this invention, such as solubility, it is not preferable. When other acid components are used, the amount used is 5 mol% or less, particularly 1 mol% or less of the acid component. Specific examples of the acid component include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, ethylene glycol-bis-anhydro trimellitate, 1,2-propylene. Glycol-bis-anhydro trimellitate, 1,3-propylene glycol-bis-anhydro trimellitate, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene Tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride, 3,3 ′, 4,4′-dimethyldiphenylsilanetetracarboxylic dianhydride, 3,3 ′ , 4,4′-Tetraphenylsilanetetracarboxylic dianhydride, 1,2,3,4-furantetracarboxylic dianhydride, 4,4′-bis (3,4-dicarboxyl Noxi) diphenyl sulfide dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenylsulfone dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenylpropane dianhydride, 3,3 ′, 4,4′-hexafluoroisopropylidene diphthalic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, bis (phthalic acid) phenylphosphine oxide dianhydride P-phenylene-bis (triphenylphthalic acid) dianhydride, bis (triphenylphthalic acid) -4,4′-diphenyl ether dianhydride, bis (triphenylphthalic acid) -4,4′-diphenylmethane dianhydride Aromatic tetracarboxylic dianhydride, 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracar Boronic acid dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,5-tricarboxyl Cyclopentylacetic acid dianhydride, 3,5,6-tricarboxynorbonane-2-acetic acid dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 5- (2,5-dioxotetrahydrofuran L) -3-Methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, bicyclo [2.2.2] -oct-7-ene-2,3,5,6-tetracarboxylic dianhydride An example of the aliphatic or alicyclic tetracarboxylic acid such as an anhydride. These acid components may be used alone or in combination of two or more for the imidization reaction.

[ジアミン成分]
また、ジアミン成分としては、(A1)9、9−ビス(4−アミノフェニル)フルオレンと、(B1)ビス(4−アミノフェニルエーテル)及びビス[4−(4−アミノフェノキシ)フェニル]スルホンから選ばれる少なくとも1種であり、(A1)成分と(B1)成分とを、モル比で(A1):(B1)=50:50〜99:1の範囲で、好ましくは60:40〜95:5、特に好ましくは70:30〜90:10の範囲で含有する。
[Diamine component]
As the diamine component, (A1) 9,9-bis (4-aminophenyl) fluorene and (B1) bis (4-aminophenyl ether) and bis [4- (4-aminophenoxy) phenyl] sulfone It is at least one selected, and the component (A1) and the component (B1) are in a molar ratio of (A1) :( B1) = 50: 50 to 99: 1, preferably 60:40 to 95: 5, particularly preferably in the range of 70:30 to 90:10.

ジアミン成分として、上記以外の他のジアミンを使用することもできるが、本願発明の効果を損ねる虞があるため好ましくない。他のジアミンを併用する場合、その使用量は、全ジアミン成分中の5モル%以下、特に1モル%以下が好ましい。これら他のジアミン成分として、具体的には、m−フェニレンジアミン、p−フェニレンジアミン、4,4'−ジアミノジフェニルメタン、4,4'−ジアミノジフェニルプロパン、4,4'−ジアミノジフェニルエーテル、3,4'−ジアミノジフェニルエーテル、3,3'−ジアミノジフェニルエーテル、4,4'−ジアミノジフェニルスルホン、3,4'−ジアミノジフェニルスルホン、3,3'−ジアミノジフェニルスルホン、4,4'−ジアミノジフェニルスルフィド、3,4'−ジアミノジフェニルスルフィド、3,3'−ジアミノジフェニルスルフィド、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、4,4'−ビス(4−アミノフェノキシ)ビフェニル、4,4'−ビス(3−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、ビス[4−(3−アミノフェノキシ)フェニル]エーテル等の芳香族ジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、ジアミノシクロヘキサン、ジアミノジシクロヘキシルメタン、ジアミノジシクロヘキシルプロパン、ジアミノビシクロ[2.2.1]ヘプタン、ビス(アミノメチル)−ビシクロ[2.2.1]ヘプタン等の脂肪族又は脂環族ジアミンが例示される。これらのジアミンは、単独で又は2種以上組み合わせてイミド化反応に使用することもできる。   Other diamines other than those described above can be used as the diamine component, but this is not preferable because the effects of the present invention may be impaired. When other diamines are used in combination, the amount used is preferably 5 mol% or less, particularly preferably 1 mol% or less, based on the total diamine component. Specific examples of these other diamine components include m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4 '-Diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 3 , 4′-diaminodiphenyl sulfide, 3,3′-diaminodiphenyl sulfide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3 -Aminophenoxy) benzene, 1,3-bis (3-aminopheno) Ii) benzene, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) Phenyl] propane, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- Aromatic diamines such as (3-aminophenoxy) phenyl] ether, hexamethylenediamine, octamethylenediamine, decamethylenediamine, diaminocyclohexane, diaminodicyclohexylmethane, diaminodicyclohexylpropane, diaminobicyclo [2.2.1] heptane, bis (Aminomethyl) -bicyclo [2.2.1] hepta Aliphatic or alicyclic diamines and the like are exemplified. These diamines can be used alone or in combination of two or more for the imidization reaction.

イミド化反応の方法としては、(1)少量の共沸溶剤の存在下で加熱し、生成水を共沸により系外に留去させる熱イミド化方法、(2)ポリイミド前駆体のポリアミド酸を製造後、無水酢酸、無水プロピオン酸等の酸無水物の酸無水物、ジシクロヘキシルカルボジイミド等のカルボジイミド化合物等の脱水作用のある化合物を用いる化学イミド化方法等が挙げられる   As the imidation reaction method, (1) a thermal imidation method in which heating is performed in the presence of a small amount of an azeotropic solvent to distill off the generated water out of the system by azeotropy, and (2) the polyamic acid of the polyimide precursor is Examples include chemical imidization methods that use a dehydrating compound such as acid anhydrides such as acetic anhydride and propionic anhydride, and carbodiimide compounds such as dicyclohexylcarbodiimide after production.

上記ポリイミドの製造方法のうち熱イミド化方法が工業的に好ましく、例えば、有機溶媒中に酸成分及びジアミン成分全量を溶解させるか、又は酸成分及び/又はジアミン成分の一部を段階的に溶解後、100〜250℃、好ましくは150〜200℃に加熱し、水同伴剤を用いて系中の生成水を留去して重縮合反応する方法が挙げられ、この方法により溶剤可溶性ランダム共重合体或いはブロック共重合体を得ることができる。   Among the above polyimide production methods, the thermal imidization method is industrially preferable. For example, the total amount of the acid component and the diamine component is dissolved in an organic solvent, or part of the acid component and / or the diamine component is dissolved stepwise. Thereafter, a method of heating to 100 to 250 ° C., preferably 150 to 200 ° C., and distilling off the produced water in the system using a water entraining agent to carry out a polycondensation reaction, is obtained by this method. A coalescence or block copolymer can be obtained.

イミド化反応開始時における酸成分に対するジアミン成分[(A1)成分と(B1)成分との合計]のモル比は、所望するポリイミド樹脂組成物の分子量、ポリイミド樹脂組成物の末端、粘度等に応じて適宜選択することができる。例えば、イミド化反応開始時の酸成分とジアミン成分とのモル比が当量に近いほど高分子量のポリイミド樹脂組成物が得られやすい傾向がある。また酸成分とジアミン成分とのモル比が当量比から外れるに従い、低分子量のポリイミド樹脂が得られやすくなる。さらに、過剰に用いた成分によって酸末端或いはアミン末端のポリイミド樹脂組成物が得られる。例えば、酸成分とジアミン成分とをモル比で、酸成分:ジアミン成分=100:90〜100:99、好ましくは、100:95〜100:99の範囲でイミド化反応を行うと、酸末端でかつ高分子量のポリイミド樹脂組成物を得ることができる。また、酸成分:ジアミン成分=100:101〜100:110、好ましくは100:101〜100:105の範囲でイミド化反応を行うと、アミン末端でかつ高分子量のポリイミ樹脂組成物を得ることができる。また、例えば、酸成分:ジアミン成分=100:80〜100:90、好ましくは、100:85〜100:90の範囲でイミド化すれば、比較的低分子量の酸末端のポリイミド樹脂組成物が得られ、酸成分:ジアミン成分=100:110〜100:120、好ましくは、100:110〜100:115の範囲でイミド化反応を行えば、アミン末端のポリイミド樹脂組成物が得られやすい。   The molar ratio of the diamine component [total of (A1) component and (B1) component] to the acid component at the start of the imidation reaction depends on the molecular weight of the desired polyimide resin composition, the end of the polyimide resin composition, the viscosity, and the like. Can be selected as appropriate. For example, a higher molecular weight polyimide resin composition tends to be obtained as the molar ratio between the acid component and the diamine component at the start of the imidation reaction is closer to the equivalent. Further, as the molar ratio of the acid component and the diamine component deviates from the equivalent ratio, a low molecular weight polyimide resin is easily obtained. Furthermore, an acid-terminated or amine-terminated polyimide resin composition can be obtained depending on the components used in excess. For example, when the acid component and the diamine component are in a molar ratio, the acid component: diamine component = 100: 90 to 100: 99, preferably 100: 95 to 100: 99. And a high molecular weight polyimide resin composition can be obtained. Moreover, when an imidation reaction is carried out in the range of acid component: diamine component = 100: 101 to 100: 110, preferably 100: 101 to 100: 105, a polyimi resin composition having an amine terminal and a high molecular weight can be obtained. it can. For example, if imidization is performed in the range of acid component: diamine component = 100: 80 to 100: 90, preferably 100: 85 to 100: 90, a relatively low molecular weight acid-terminated polyimide resin composition is obtained. If the imidization reaction is carried out in the range of acid component: diamine component = 100: 110 to 100: 120, preferably 100: 110 to 100: 115, an amine-terminated polyimide resin composition is easily obtained.

また、イミド化反応開始時における(A1)成分と(B1)成分とのモル比は、所望するモル比に応じて適宜選択すればよく、イミド化反応開始時におけるモル比に相当するモル比でポリイミド樹脂組成物が得られる。   In addition, the molar ratio of the (A1) component and the (B1) component at the start of the imidation reaction may be appropriately selected according to the desired molar ratio, and is a molar ratio corresponding to the molar ratio at the start of the imidation reaction. A polyimide resin composition is obtained.

本発明に係る有機溶媒としては、非プロトン性極性溶剤が好適に用いられ、具体的にはN、N−ジメチルホルムアミド、N、N−ジメチルアセトアミド、N−メチル−2−ピロリドン、メチルジグライム、メチルトリグライム、ジオキサン、テトラヒドロフラン、シクロヘキサノン、シクロペンタノン、γ−ブチロラクトン等が例示され、これらは単独で又は混合系として用いることもできる。これらのうち特に、重合性、溶解性等の点からN−メチル−2−ピロリドン、γ−ブチロラクトンが好ましい。   As the organic solvent according to the present invention, an aprotic polar solvent is preferably used. Specifically, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, methyldiglyme, Examples include methyltriglyme, dioxane, tetrahydrofuran, cyclohexanone, cyclopentanone, and γ-butyrolactone, and these can be used alone or as a mixed system. Of these, N-methyl-2-pyrrolidone and γ-butyrolactone are particularly preferred from the viewpoints of polymerizability and solubility.

また、生成水を系外に留去するための水同伴剤としては、トルエン、キシレン、ソルベントナフサ等の芳香族炭化水素、シクロヘキサン、メチルシクロセキサン、ジメチルシクロヘキサン等の脂環族炭化水素等が例示され、これらは単独で又は混合系として用いることができる。その使用量としては、全溶剤量に対して通常1〜30重量%程度、好ましくは5〜10重量%程度である。   Examples of the water entraining agent for distilling the generated water out of the system include aromatic hydrocarbons such as toluene, xylene and solvent naphtha, and alicyclic hydrocarbons such as cyclohexane, methylcyclosexane and dimethylcyclohexane. These can be used alone or as a mixed system. The amount used is usually about 1 to 30% by weight, preferably about 5 to 10% by weight, based on the total amount of solvent.

この時の反応基質濃度としては、特に限定されないが作業性と反応効率の点から10〜80重量%、好ましくは20〜50重量%の範囲である。   The reaction substrate concentration at this time is not particularly limited, but is in the range of 10 to 80% by weight, preferably 20 to 50% by weight from the viewpoint of workability and reaction efficiency.

反応時間としては、通常0.5〜24時間行うことが好ましい。   As reaction time, it is preferable to carry out normally for 0.5 to 24 hours.

本発明のポリイミド樹脂組成物の分子量としては、特に制限はないが、ゲルパーミエーションクロマトグラフィー(GPC)測定による重量平均分子量で、1,000以上500,000未満が例示される。特に、GPC測定により、少なくとも2つのピーク(極大点)を有するポリイミドは、接着強度、密着性が向上する点で好ましい。具体的には、分子量1,000以上40,000未満、好ましくは3,000以上30,000以下であり、特に5,000以上20,000以下の範囲に少なくとも1つのピークを有し、さらに、分子量40,000以上500,000未満、好ましくは40,000以上200,000以下、特に40,000以上100,000以下の範囲に少なくとも1つのピークを有するポリイミド樹脂組成物が好ましい。   Although there is no restriction | limiting in particular as molecular weight of the polyimide resin composition of this invention, 1,000 or more and less than 500,000 are illustrated by the weight average molecular weight by a gel permeation chromatography (GPC) measurement. In particular, polyimide having at least two peaks (maximum points) by GPC measurement is preferable in terms of improving adhesive strength and adhesion. Specifically, the molecular weight is 1,000 or more and less than 40,000, preferably 3,000 or more and 30,000 or less, particularly having at least one peak in the range of 5,000 or more and 20,000 or less, A polyimide resin composition having a molecular weight of 40,000 or more and less than 500,000, preferably 40,000 or more and 200,000 or less, particularly 40,000 or more and 100,000 or less is preferable.

さらに、GPC測定において、分子量1,000以上40,000未満の成分(N)と、分子量40,000以上500,000未満の成分(M)とが、重量比で、(N):(M)=1:99〜50:50、特に10:90〜30:70の範囲である場合に、密着性や耐熱性が向上する傾向があり好ましい。   Further, in GPC measurement, the component (N) having a molecular weight of 1,000 or more and less than 40,000 and the component (M) having a molecular weight of 40,000 or more and less than 500,000 are (N) :( M) = 1: 99 to 50:50, and particularly 10:90 to 30:70, the adhesiveness and heat resistance tend to be improved, which is preferable.

なお、本願特許請求の範囲、明細書においてポリイミド樹脂組成物の分子量は、後記実施例の項に記載の方法で測定される分子量である。   In the claims and specifications of the present application, the molecular weight of the polyimide resin composition is a molecular weight measured by the method described in the Examples section below.

上記の2つのピークを有するポリイミド樹脂組成物を得る方法としては、例えば、重量平均分子量1,000以上40,000未満の低分子量のポリイミド樹脂組成物(N)と、重量平均分子量が40,000以上500,000未満の高分子量のポリイミド樹脂組成物(M)を別途調製しておき、これらを混合することにより製造できる。前記(N)成分と(M)成分とを重量比で、1:99〜50:50の範囲で適宜選択することにより、上記の2つの分子量ピークを有するポリイミド樹脂組成物を容易に得ることができる。なお、このように、2つのポリイミド樹脂組成物を混合する場合、本発明に規定されるポリイミド樹脂組成物である限り限定されず、同一でも異なっていてもよい。また、各ポリイミド樹脂組成物の末端も、同一でも異なっていてもよいが、低分子量成分のポリイミド樹脂組成物がアミン末端である場合に、接着強度、密着性向上の効果に優れる点で好ましく、さらに、高分子量成分のポリイミド樹脂組成物が酸末端である場合には、その効果に特に優れる傾向にある。   As a method for obtaining the polyimide resin composition having the above two peaks, for example, a low molecular weight polyimide resin composition (N) having a weight average molecular weight of 1,000 or more and less than 40,000, and a weight average molecular weight of 40,000 are used. It can be produced by separately preparing a high molecular weight polyimide resin composition (M) having a molecular weight of less than 500,000 and mixing them. By suitably selecting the (N) component and the (M) component in a weight ratio of 1:99 to 50:50, a polyimide resin composition having the above two molecular weight peaks can be easily obtained. it can. In addition, when mixing two polyimide resin compositions in this way, it is not limited as long as it is a polyimide resin composition specified in the present invention, and may be the same or different. Also, the end of each polyimide resin composition may be the same or different, but when the low molecular weight component polyimide resin composition is an amine end, it is preferable in terms of excellent adhesion strength and adhesion improvement, Further, when the polyimide resin composition having a high molecular weight component is acid-terminated, the effect tends to be particularly excellent.

上記イミド化反応により得られた重合溶液は、本発明のポリイミド樹脂組成物が有機溶媒に溶解したポリイミド樹脂溶液である。当該ポリイミド樹脂溶液は、ポリイミドワニスとしてそのまま用いることができる他、メタノール、イソプロパノール等の貧溶媒と混合し、一旦粉末状のポリイミド樹脂組成物を再沈析出させて単離し、単離されたポリイミド樹脂組成物の粉末とすることもできる。   The polymerization solution obtained by the imidization reaction is a polyimide resin solution in which the polyimide resin composition of the present invention is dissolved in an organic solvent. The polyimide resin solution can be used as it is as a polyimide varnish, mixed with a poor solvent such as methanol, isopropanol, etc., and once isolated by reprecipitation of a powdered polyimide resin composition. It can also be a powder of the composition.

本発明のポリイミド樹脂組成物のガラス転移温度は、分子量にもよるが通常350℃以上であり、好ましくは360℃以上、特に380℃以上が好ましい。   The glass transition temperature of the polyimide resin composition of the present invention is usually 350 ° C. or higher, preferably 360 ° C. or higher, particularly preferably 380 ° C. or higher although it depends on the molecular weight.

[ポリイミドワニス]
本発明のポリイミドワニスは、通常、本発明のポリイミド樹脂組成物100重量部に対して、有機溶剤80〜10000重量部を含有している。ポリイミドワニスの粘度安定性及び取り扱いの容易さの点から、ポリイミド共重合体100重量部に対して、有機溶剤が100〜2000重量部が好ましく、更に好ましくは110〜500重量部、特に好ましくは、120〜300重量部の範囲が推奨される。
[Polyimide varnish]
The polyimide varnish of the present invention usually contains 80 to 10,000 parts by weight of an organic solvent with respect to 100 parts by weight of the polyimide resin composition of the present invention. From the viewpoint of the viscosity stability of the polyimide varnish and ease of handling, the organic solvent is preferably 100 to 2000 parts by weight, more preferably 110 to 500 parts by weight, particularly preferably 100 parts by weight of the polyimide copolymer. A range of 120 to 300 parts by weight is recommended.

ポリイミドワニスの製造方法としては、特に制限がなく、例えば、イミド化反応終了後の反応液をそのままポリイミドワニスとして用いることができる他、イミド化反応に用いた溶剤を低沸点の溶剤に置換したり、或いは、該ポリイミド樹脂溶液を加熱乾燥又は貧溶剤を添加するなどして本発明のポリイミド共重合体を単離した後、所望の有機溶剤に溶解してポリイミドワニスとすることができる。また、前記のように、分子量の異なる2つのポリイミド樹脂組成物の粉体、溶液を混合、溶解する等によっても得ることができる。   The method for producing the polyimide varnish is not particularly limited. For example, the reaction solution after completion of the imidization reaction can be used as it is as the polyimide varnish, or the solvent used for the imidization reaction can be replaced with a low boiling point solvent. Alternatively, after isolating the polyimide copolymer of the present invention by drying the polyimide resin solution or adding a poor solvent, the polyimide resin solution can be dissolved in a desired organic solvent to obtain a polyimide varnish. Further, as described above, it can also be obtained by mixing, dissolving, etc., powders and solutions of two polyimide resin compositions having different molecular weights.

上記有機溶剤としては、原則としては、前記イミド化反応の際に使用した有機溶剤であるが、これに限らず、各種のものが使用でき、なかでも、非プロトン性極性溶剤が好適に用いられる。非プロトン性有機溶剤としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、スルホラン、ヘキサメチルリン酸トリアミド、1,3−ジメチルイミダゾリドン、ジグライム、トリグライム、シクロヘキサノン、シクロペンタノン、γ−ブチロラクトン等が例示される。これらは単独で又は混合系として用いることもできる。これらのうち特に、ポリイミドワニスの粘度安定性、吸湿性の点からN−メチル−2−ピロリドン、γ−ブチロラクトンが好ましい。   As the organic solvent, in principle, the organic solvent used in the imidation reaction is not limited to this, and various types can be used, and among them, an aprotic polar solvent is preferably used. . Examples of aprotic organic solvents include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, sulfolane, hexamethylphosphoric triamide, 1,3-dimethylimidazolidone, diglyme , Triglyme, cyclohexanone, cyclopentanone, γ-butyrolactone and the like. These can be used alone or as a mixed system. Of these, N-methyl-2-pyrrolidone and γ-butyrolactone are particularly preferred from the viewpoint of viscosity stability and hygroscopicity of the polyimide varnish.

また、ポリイミドワニスからポリイミド成形体を得る際に、乾燥工程を効率よく行う目的で、有機溶剤の一部を低沸点溶剤に代えることができる。係る低沸点溶剤としては、トルエン、キシレン、ソルベントナフサ等の芳香族炭化水素や、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン等の脂環式炭化水素、プロピレングリコールモノメチルエーテル、又はアセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類が例示される。これらの低沸点溶剤を使用する場合、その使用量は、全有機溶剤量に対して、1〜30重量%、好ましくは、5〜20重量%の範囲が推奨される。   Moreover, when obtaining a polyimide molding from a polyimide varnish, a part of organic solvent can be replaced with a low boiling point solvent for the purpose of performing a drying process efficiently. Such low boiling point solvents include aromatic hydrocarbons such as toluene, xylene, solvent naphtha, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, dimethylcyclohexane, propylene glycol monomethyl ether, or acetone, methyl ethyl ketone, methyl isobutyl ketone, etc. The ketones are exemplified. When these low-boiling solvents are used, the amount used is recommended to be in the range of 1 to 30% by weight, preferably 5 to 20% by weight, based on the total amount of organic solvent.

ポリイミドワニスの粘度として所望の用途により適宜選択することができるが、通常、0.1〜500Pa・s、好ましくは1〜100Pa・sである。なお、ポリイミドワニスの粘度は、後記実施例の項に記載の方法で測定された値である。   Although it can select suitably as a viscosity of a polyimide varnish by a desired use, it is 0.1-500 Pa.s normally, Preferably it is 1-100 Pa.s. In addition, the viscosity of a polyimide varnish is the value measured by the method as described in the term of an after-mentioned Example.

また、本発明のポリイミドワニスには、表面平滑性を出すための平滑剤、レベリング剤、脱泡剤などの各種添加剤を必要に応じて添加することができる。   Moreover, various additives, such as a smoothing agent, a leveling agent, and a defoaming agent for giving surface smoothness, can be added to the polyimide varnish of the present invention as required.

[ポリイミド形成体]
本発明のポリイミドワニスは、絶縁塗料、金属、プラスチック等のポリイミド系コーティング材料として用いることができ、ポリイミドワニスを基材に塗布した後、乾燥することにより本発明のポリイミドの塗膜を得ることができる。さらに、該ポリイミドワニスを従来公知の方法に従ってキャスト、加熱脱溶剤することによりポリイミドフィルムを得ることもできる。さらに、本発明のポリイミド共重合体は、FPCやTABのベースフィルム又は接着剤、接着フィルムとして、或いは電線の被覆材料などとして用いることができる。
[Polyimide formed body]
The polyimide varnish of the present invention can be used as a polyimide coating material such as insulating paint, metal, plastic, etc., and after applying the polyimide varnish to a substrate, it can be dried to obtain the polyimide coating film of the present invention. it can. Furthermore, a polyimide film can be obtained by casting the polyimide varnish in accordance with a conventionally known method and removing the solvent by heating. Furthermore, the polyimide copolymer of the present invention can be used as an FPC or TAB base film or adhesive, an adhesive film, or a coating material for electric wires.

ポリイミド成形体を得る方法としては従来公知の方法が広く使用できる。例えば、本発明のポリイミドワニスを基材上に塗布し、加熱、乾燥することによって、本発明のポリイミド成形体を皮膜として得ることができる。また、基材上から皮膜状の本発明のポリイミド成形体を剥離することによりフィルム状のポリイミド成形体を得ることができる。   A conventionally well-known method can be widely used as a method of obtaining a polyimide molded body. For example, the polyimide molded body of the present invention can be obtained as a film by applying the polyimide varnish of the present invention on a substrate, heating and drying. Moreover, a film-like polyimide molded body can be obtained by peeling the film-shaped polyimide molded body of the present invention from the substrate.

基材状に塗布する方法としては、得られる皮膜又はフィルムの厚み、ポリイミドワニスの粘度に応じて、ダイコーター、コンマコーター、ロールコーター、グラビアコーター、カーテンコーター、スプレーコーター等の公知の方法から適宜選択することができる。   As a method of applying to the substrate, depending on the thickness of the obtained film or film and the viscosity of the polyimide varnish, it is appropriately selected from known methods such as a die coater, comma coater, roll coater, gravure coater, curtain coater, spray coater, etc. You can choose.

塗布したポリイミドワニスの加熱、乾燥方法としては、従来公知の方法が使用できる。例えば熱風式乾燥炉、赤外式加熱乾燥炉等が適宜使用でき、好ましくは窒素、アルゴン等の不活性ガス雰囲気下で、例えば60〜400℃の範囲で乾燥することができる。乾燥時間としては、ポリイミド成形体の厚み、ポリイミドワニスの溶媒等により異なるが、通常1〜500分程度が好ましい。   A conventionally known method can be used as a method for heating and drying the applied polyimide varnish. For example, a hot-air drying oven, an infrared heating drying oven, or the like can be used as appropriate, and drying can be performed in an atmosphere of an inert gas such as nitrogen or argon, for example, in the range of 60 to 400 ° C. As drying time, although it changes with the thickness of a polyimide molded object, the solvent of a polyimide varnish, etc., about 1 to 500 minutes are preferable normally.

本発明のポリイミドワニスを接着剤、例えば銅張り積層板等の接着剤として使用する場合には、従来公知の方法が使用でき、例えば熱圧着法が挙げられる。上記記載の方法で、ポリイミド等のベースフィルム上/又は銅箔上に本発明のポリイミドワニスを塗布、乾燥することにより、本発明のポリイミド成形体を皮膜として有する二層フィルムを得る。なお、ポリイミドワニスに溶解されているポリイミド樹脂としては、GPC測定により、少なくとも2つのピーク(極大点)を有するポリイミド樹脂が好ましい。具体的には、(N)分子量1,000以上40,000未満、好ましくは3,000以上30,000以下であり、特に5,000以上20,000以下の範囲に少なくとも1つのピークを有し、さらに、(M)分子量40,000以上500,000未満、好ましくは40,000以上200,000以下、特に40,000以上100,000以下の範囲に少なくとも1つのピークを有するポリイミド樹脂組成物が好ましく、さらに、(N)成分と(M)成分とが重量比で、(N):(M)=1:99〜50:50、特に10:90〜30:70の範囲であるものが、接着性の点から好ましい。   When the polyimide varnish of the present invention is used as an adhesive, for example, an adhesive such as a copper-clad laminate, a conventionally known method can be used, and examples thereof include a thermocompression bonding method. By applying and drying the polyimide varnish of the present invention on a base film such as polyimide or / and a copper foil by the method described above, a two-layer film having the polyimide molded body of the present invention as a film is obtained. The polyimide resin dissolved in the polyimide varnish is preferably a polyimide resin having at least two peaks (maximum points) by GPC measurement. Specifically, (N) molecular weight is 1,000 or more and less than 40,000, preferably 3,000 or more and 30,000 or less, and particularly has at least one peak in the range of 5,000 or more and 20,000 or less. Further, (M) a polyimide resin composition having a molecular weight of 40,000 or more and less than 500,000, preferably 40,000 or more and 200,000 or less, and particularly at least one peak in the range of 40,000 or more and 100,000 or less. Preferably, the (N) component and the (M) component are in a weight ratio of (N) :( M) = 1: 99 to 50:50, particularly 10:90 to 30:70, It is preferable from the point of adhesiveness.

続いて、上記の方法で得られた二層フィルムの本発明のポリイミド成形体が形成された面に、銅箔又はベースフィルムを貼り合わせ、加熱プレス、熱ラミネートすることにより、銅張り積層板を得ることができる。加熱温度としては、150℃〜400℃、好ましくは250℃〜350℃の温度範囲が好ましい。また、圧力としては特に制限がなく、広い範囲から選択することができるが、1〜500kg/cmが例示される。 Subsequently, a copper-clad laminate is obtained by laminating a copper foil or a base film on the surface of the two-layer film obtained by the above-described method on which the polyimide molded body of the present invention is formed, and heating and laminating. Obtainable. As a heating temperature, a temperature range of 150 ° C to 400 ° C, preferably 250 ° C to 350 ° C is preferable. Moreover, there is no restriction | limiting in particular as a pressure, Although it can select from a wide range, 1-500 kg / cm < 2 > is illustrated.

本発明により提供される銅張り積層板は、そのまま或いはロール巻き、エッチング、及び必要に応じてカール戻し等の処理を行ったあと、所定の大きさに切断して、電子部品用の基板、特にフレキシブル基板として好適に使用することができる。   The copper-clad laminate provided by the present invention is processed as it is or after being rolled, etched, and if necessary, curled back, etc., and then cut into a predetermined size to provide a substrate for electronic components, particularly It can be suitably used as a flexible substrate.

以下に実施例を示し、本発明を更に詳しく説明するが、本発明はこれらの実施例によって制限されるものではない。尚、実施例及び比較例中の各特性の測定方法、化合物の略称は以下の通りである。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. In addition, the measuring method of each characteristic in an Example and a comparative example and the abbreviation of a compound are as follows.

〔測定方法〕
(1)分子量
イミド化反応終了後の反応生成物であるポリイミド樹脂溶液(ポリイミドワニス)約1gをジメチルホルムアミド30mlに希釈溶解して測定用試料を調製した。該試料溶液について、ゲルパーミエーションクロマトグラフィー(GPC)を用いて以下の条件により、標準ポリエチレングリコール換算の重量平均分子量(Mw)を求めた。
装置:島津製作所 RID−6A
カラム:ShodexGPC AD802−S、AD803−S、AD−804S及びAD805S
カラム温度:40℃
溶離液:(10mmol/L−臭化リチウム+10mmol/L−リン酸)/ジメチルホルムアミド
流速:1.0mL/min
検出器:RI
〔Measuring method〕
(1) Molecular weight About 1 g of a polyimide resin solution (polyimide varnish), which is a reaction product after completion of the imidization reaction, was diluted and dissolved in 30 ml of dimethylformamide to prepare a measurement sample. About this sample solution, the weight average molecular weight (Mw) of standard polyethyleneglycol conversion was calculated | required on condition of the following using gel permeation chromatography (GPC).
Equipment: Shimadzu RID-6A
Column: ShodexGPC AD802-S, AD803-S, AD-804S and AD805S
Column temperature: 40 ° C
Eluent: (10 mmol / L-lithium bromide + 10 mmol / L-phosphoric acid) / dimethylformamide Flow rate: 1.0 mL / min
Detector: RI

(2)イミドワニス粘度(Pa・s)
イミド化反応終了後の反応生成物であるポリイミド樹脂溶液(ポリイミドワニス)を、トキメック社製B8H型粘度計を用いて、25℃で測定した。
(2) Imido varnish viscosity (Pa · s)
A polyimide resin solution (polyimide varnish), which is a reaction product after the imidation reaction, was measured at 25 ° C. using a B8H viscometer manufactured by Tokimec Corporation.

(3)ガラス転移温度(Tg)(℃)
イミド化反応終了後の反応生成物であるポリイミド樹脂溶液(ポリイミドワニス)を、ガラス上に塗布した後、窒素気流下、200℃、30分間、常圧で熱風乾燥し、ガラス上から剥離して、ポリイミド樹脂組成物からなる厚み約25μmのポリイミドフィルムを得た。得られたポリイミドフィルムを裁断して、Tg測定用の試料を得た。この測定試料についてパーキンエルマー社製の示差熱走査熱量計(DSC−7)を使用し、毎分10℃の昇温速度で昇温したときの変曲点をガラス転移温度とした。
(3) Glass transition temperature (Tg) (° C)
After applying the polyimide resin solution (polyimide varnish), which is a reaction product after the imidation reaction, on the glass, it is dried with hot air at 200 ° C. for 30 minutes under normal pressure in a nitrogen stream, and then peeled off from the glass. A polyimide film having a thickness of about 25 μm made of a polyimide resin composition was obtained. The obtained polyimide film was cut to obtain a sample for Tg measurement. A differential thermal scanning calorimeter (DSC-7) manufactured by Perkin Elmer Co., Ltd. was used for this measurement sample, and the inflection point when the temperature was raised at a heating rate of 10 ° C. per minute was defined as the glass transition temperature.

(4)ハンダ耐熱温度
・ポリイミド銅張り積層板の作成
イミド化反応終了後の反応生成物であるポリイミド樹脂溶液(ポリイミドワニス)を、ポリイミドベースフィルム(商品名「カプトン100EN」、東レ・デュポン社製、厚み25μm)上に塗布した後、窒素気流下、200℃、30分、常圧で熱風乾燥した。乾燥後、ポリイミドワニスを塗布した面に、一般圧延銅箔(厚さ18μm)を重ね合わせ、410℃で15分間、50kgf/cmの圧力下で加熱圧着し、ポリイミド銅張積層板を得た。
・ハンダ耐熱温度(℃)
このポリイミド銅張積層板を1cm×8cmに切断し、ハンダ耐熱用の測定試料を得た。この測定試料を各温度に設定した溶融ハンダ上に30秒浮かべて、銅箔とポリイミドベースフィルムがはがれるかを目視で確認した。銅箔とポリイミドベースフィルムとが剥離する最低温度をハンダ耐熱温度とした。
(4) Solder heat-resistant temperature / preparation of polyimide copper-clad laminate A polyimide resin solution (polyimide varnish), which is a reaction product after completion of the imidization reaction, was obtained from a polyimide base film (trade name “Kapton 100EN”, manufactured by Toray DuPont. , And then dried with hot air at 200 ° C. for 30 minutes under normal pressure. After drying, a general rolled copper foil (thickness: 18 μm) was superimposed on the surface coated with the polyimide varnish, and thermocompression bonded at 410 ° C. for 15 minutes under a pressure of 50 kgf / cm 2 to obtain a polyimide copper clad laminate. .
・ Solder heat-resistant temperature (℃)
The polyimide copper clad laminate was cut into 1 cm × 8 cm to obtain a measurement sample for soldering heat resistance. This measurement sample was floated on molten solder set to each temperature for 30 seconds, and it was visually confirmed whether the copper foil and the polyimide base film were peeled off. The lowest temperature at which the copper foil and the polyimide base film peel off was defined as the solder heat resistance temperature.

(5)破断強度(MPa)
イミド化反応終了後の反応生成物であるポリイミド樹脂溶液(ポリイミドワニス)を、ガラス上に塗布した後、窒素気流下、200℃、30分間、常圧で熱風乾燥し、ガラス上から剥離して、ポリイミド樹脂組成物からなる厚み約25μmのポリイミドフィルムを得た。得られたポリイミドフィルムを裁断して、破断強度用の試料を得た。この測定試料について、インストロン(5565)を用いて50mm/minの引張速度で破断強度を測定した。
(5) Breaking strength (MPa)
After applying the polyimide resin solution (polyimide varnish), which is a reaction product after the imidation reaction, on the glass, it is dried with hot air at 200 ° C. for 30 minutes under normal pressure in a nitrogen stream, and then peeled off from the glass. A polyimide film having a thickness of about 25 μm made of a polyimide resin composition was obtained. The obtained polyimide film was cut to obtain a sample for breaking strength. With respect to this measurement sample, the breaking strength was measured using an Instron (5565) at a tensile speed of 50 mm / min.

(6)接着強度(N/cm)
(4)のポリイミド銅張り積層板の作成に従って得られた銅張り積層板を、25℃、60%RHで24時間保管した後、積層板の一端の銅箔と、反対側の一端のベースフィルムとを治具で挿み、50mm/minの引張速度で180度ピール剥離試験を行い、最大の剥離強度を接着強度とした。
(6) Adhesive strength (N / cm)
After the copper-clad laminate obtained according to the preparation of the polyimide copper-clad laminate of (4) is stored at 25 ° C. and 60% RH for 24 hours, the copper foil at one end of the laminate and the base film at one end on the opposite side And a 180 degree peel peel test at a tensile speed of 50 mm / min, and the maximum peel strength was defined as the adhesive strength.

[化合物の略号]
以下の実施例及び比較例において用いた化合物の略号は以下のとおりである。
(テトラカルボン酸二無水物)
DSDA:3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物
PMDA:無水ピロメリット酸
ODPA:オキシジフタル酸無水物
(ジアミン)
BAPS:ビス[4−(4−アミノフェノキシ)フェニル]スルホン
FDA:9、9−ビス(4−アミノフェニル)フルオレン
(溶媒)
NMP:N−メチル−2−ピロリドン
[Abbreviation of compound]
The abbreviations of the compounds used in the following Examples and Comparative Examples are as follows.
(Tetracarboxylic dianhydride)
DSDA: 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride PMDA: pyromellitic anhydride ODPA: oxydiphthalic anhydride (diamine)
BAPS: bis [4- (4-aminophenoxy) phenyl] sulfone FDA: 9,9-bis (4-aminophenyl) fluorene (solvent)
NMP: N-methyl-2-pyrrolidone

[実施例1]
攪拌装置、冷却管、温度計及び窒素ガス導入管を備えた4つ口フラスコに、DSDA 53.249g(0.149mol)、BAPS 6.302g(0.015mol)とFDA 45.695g(0.131mol)、反応溶剤として、NMP 360g、水同伴剤としてキシレン40gを仕込み、反応系内を窒素置換した後、窒素気流下、180℃で攪拌し、生成水を系外に除去しながら5時間脱水イミド化反応を行い、ポリイミド樹脂組成物を20重量%溶解してなるポリイミドワニスを得た。得られたポリイミドワニスの粘度は、15Pa・sであった。また、得られたポリイミド樹脂組成物は酸末端であり、その重量平均分子量は、45,000であった。このポリイミドワニスを室温で1ヶ月保存したところ、ポリマーの析出やゲル化現象は見られず、保存安定性に優れていた。また、このポリイミドワニスから得られたポリイミド成形体のガラス転移温度は374℃、破断強度は61MPaであった。また、このポリイミドワニスから銅張り積層板を作成したところ、ハンダ耐熱温度は400℃であり、接着強度は2N/cmであった。
[Example 1]
In a four-necked flask equipped with a stirrer, a cooling tube, a thermometer, and a nitrogen gas introduction tube, 53.249 g (0.149 mol) of DSDA, 6.302 g (0.015 mol) of BAPS, and 45.695 g of FDA (0.131 mol). ), NMP 360 g as a reaction solvent and 40 g of xylene as a water entraining agent were charged, and the reaction system was purged with nitrogen, and then stirred at 180 ° C. under a nitrogen stream to remove the generated water from the system for 5 hours. The polyimide varnish formed by dissolving 20% by weight of the polyimide resin composition was obtained. The viscosity of the obtained polyimide varnish was 15 Pa · s. Moreover, the obtained polyimide resin composition was an acid terminal, and the weight average molecular weight was 45,000. When this polyimide varnish was stored at room temperature for 1 month, no polymer precipitation or gelation was observed, and the storage stability was excellent. Moreover, the glass transition temperature of the polyimide molded body obtained from this polyimide varnish was 374 degreeC, and the breaking strength was 61 MPa. When a copper-clad laminate was prepared from this polyimide varnish, the solder heat resistance temperature was 400 ° C., and the adhesive strength was 2 N / cm.

[実施例2]
DSDA 51.976g(0.145mol)、BAPS 18.454g(0.043mol)及びFDA 34.691g(0.100mol)を用いた以外は、実施例1と同様にしてイミド化反応を行い、ポリイミド樹脂組成物を20重量%溶解してなるポリイミドワニスを得た。このポリイミドワニスの粘度は18Pa・sであった。得られたポリイミド樹脂組成物は、酸末端でありその重量平均分子量は、48,000であった。このポリイミドワニスを室温で1ヶ月間保存して様子を観察したが、ポリマーの析出やゲル化現象は見られず、保存安定性に優れていた。
[Example 2]
An imidization reaction was performed in the same manner as in Example 1 except that 51.976 g (0.145 mol) of DSDA, 18.454 g (0.043 mol) of BAPS and 34.691 g (0.100 mol) of FDA were used, and a polyimide resin was obtained. A polyimide varnish obtained by dissolving 20% by weight of the composition was obtained. The viscosity of this polyimide varnish was 18 Pa · s. The resulting polyimide resin composition was acid-terminated and had a weight average molecular weight of 48,000. The polyimide varnish was stored at room temperature for 1 month and observed for appearance, but no polymer precipitation or gelation was observed, and the storage stability was excellent.

[実施例3]
DSDA 54.304g(0.152mol)、BAPS 17.559g(0.041mol)及びFDA 33.009g(0.095mol)を用いた以外は、実施例1と同様にしていイミド化反応を行い、ポリイミド樹脂組成物を20重量%溶解してなるポリイミドワニスを得た。このポリイミドワニスの粘度は、0.3Pa・sであった。得られたポリイミド樹脂組成物の重量平均分子量は、11,000であった。なお、このポリイミドワニスを室温で1ヶ月間保存して様子を確認したが、ポリマーの析出やゲル化現象は見られず、保存安定性に優れていた。
[Example 3]
Except for using 54.304 g (0.152 mol) of DSDA, 17.559 g (0.041 mol) of BAPS and 33.09 g (0.095 mol) of FDA, an imidization reaction was performed in the same manner as in Example 1 to obtain a polyimide resin. A polyimide varnish obtained by dissolving 20% by weight of the composition was obtained. The viscosity of this polyimide varnish was 0.3 Pa · s. The obtained polyimide resin composition had a weight average molecular weight of 11,000. The polyimide varnish was stored for 1 month at room temperature, and the appearance was confirmed. However, no polymer precipitation or gelation was observed, and the storage stability was excellent.

[比較例1]
DSDAに代えてPMDA 39.719g(0.182mol)、BAPS 23.164g(0.054mol)及びFDA 43.545g(0.125mol)を用いた以外は、実施例1と同様の方法でイミド化反応を行ったところ、反応系がゲル化したため、溶剤可溶性のポリイミド樹脂組成物を得ることができなかった。
[Comparative Example 1]
The imidization reaction was carried out in the same manner as in Example 1 except that PMDA 39.719 g (0.182 mol), BAPS 23.164 g (0.054 mol) and FDA 43.545 g (0.125 mol) were used instead of DSDA. As a result, since the reaction system gelled, a solvent-soluble polyimide resin composition could not be obtained.

[比較例2]
DSDAに代えて、ODPA 46.041g(0.149mol)を用いた以外は、実施例1と同様にしてイミド化反応を行い、ポリイミド樹脂組成物を20重量%溶解してなるポリイミドワニスを得た。得られたポリイミドワニスの粘度は、0.3Pa・sであり、ポリイミド樹脂組成物の平均重量分子量は、12,000であった。このポリイミドワニスから得られたガラス転移温度は272℃と低く、また、成形性が悪く、破断強度の測定試料を作成するためのフィルムが得られず、測定できなかった。また、このポリイミドワニスを用いて、銅張り積層板を作成しハンダ耐熱温度を測定したところ、310℃と低い耐熱温度であった。
[Comparative Example 2]
Except for using ODPA 46.041 g (0.149 mol) instead of DSDA, an imidization reaction was performed in the same manner as in Example 1 to obtain a polyimide varnish obtained by dissolving 20% by weight of the polyimide resin composition. . The resulting polyimide varnish had a viscosity of 0.3 Pa · s, and the polyimide resin composition had an average weight molecular weight of 12,000. The glass transition temperature obtained from this polyimide varnish was as low as 272 ° C., the moldability was poor, and a film for preparing a measurement sample for breaking strength could not be obtained and measurement was not possible. Moreover, when the copper-clad laminate was prepared using this polyimide varnish and the solder heat resistance temperature was measured, the heat resistance temperature was as low as 310 ° C.

[比較例3]
DSDA 47.962g(0.134mol)、BAPS 56.762g(0.131mol)を用いた以外は、実施例1と同様にしてイミド化反応を行い、ポリイミド樹脂組成物20重量%を溶解してなるポリイミドワニスを得た。得られたポリイミドワニスの粘度は12Pa・sであった。このポリイミドワニスから得られたガラス転移温度は、290℃であった。また、このポリイミドワニスを用いて銅張り積層板を作成しハンダ耐熱温度を測定したところ、300℃と低い耐熱温度であった。
[Comparative Example 3]
Except for using DSDA 47.962 g (0.134 mol) and BAPS 56.762 g (0.131 mol), an imidization reaction was performed in the same manner as in Example 1 to dissolve 20% by weight of the polyimide resin composition. A polyimide varnish was obtained. The viscosity of the obtained polyimide varnish was 12 Pa · s. The glass transition temperature obtained from this polyimide varnish was 290 ° C. Moreover, when the copper-clad laminate was prepared using this polyimide varnish and the solder heat resistance temperature was measured, the heat resistance temperature was as low as 300 ° C.

[実施例4]
実施例2で得られたポリイミドワニス(酸末端、重量平均分子量48,000) 70gと、実施例3で得られたポリイミドワニス(アミン末端、重量平均分子量11,000) 30gとを窒素気流下、60℃で1時間撹拌し、分子量10,000以上40,000未満が30重量%、40,000以上500,000未満が70重量%のポリイミド樹脂組成物を含有するポリイミド樹脂濃度20重量%のポリイミドワニスを調製した。このポリイミドワニスの粘度は、2Pa・sであった。このポリイミドワニスから得られたポリイミド成形体のガラス転移温度は360℃であり、破断強度は83MPaであった。また、このポリイミドワニスを用いて作成した銅張り積層板の接着強度は、7N/cmであった。
[Example 4]
70 g of the polyimide varnish (acid terminal, weight average molecular weight 48,000) obtained in Example 2 and 30 g of the polyimide varnish (amine terminal, weight average molecular weight 11,000) obtained in Example 3 were placed under a nitrogen stream. A polyimide with a concentration of 20% by weight of a polyimide resin, which is stirred at 60 ° C. for 1 hour and contains a polyimide resin composition having a molecular weight of 10,000 to 40,000 and 30% by weight, and 40,000 to 500,000 and 70% by weight. A varnish was prepared. The viscosity of this polyimide varnish was 2 Pa · s. The glass transition temperature of the polyimide molded body obtained from this polyimide varnish was 360 ° C., and the breaking strength was 83 MPa. Moreover, the adhesive strength of the copper-clad laminate produced using this polyimide varnish was 7 N / cm.

本発明により、ガラス転移温度が350℃以上と極めて高く、かつ溶剤可溶性、保存安定性に優れたポリイミドワニスが得られ、高温での加熱イミド化工程を必要とせず、塗布乾燥のみで高耐熱性の絶縁膜、耐熱性塗膜、耐熱性コーティング等を行える。さらに、本発明のポリイミドを接着剤としたプリント配線板は350℃以上のハンダ耐熱性を有し、極めて高耐熱性のものとなる。即ち本発明のポリイミドにより、従来の溶剤可溶型ポリイミドの限界であった300℃前後の耐熱性を50℃以上も高めることが可能になり、これを利用した絶縁体、耐熱性塗膜、耐熱性コーティングを簡便に製造できることのみならず、例えばそれを利用したプリント配線板等の応用製品の高耐熱化、高性能化、製造効率改善などを行うことができ、工業的に極めて利用価値が高い。   According to the present invention, a polyimide varnish having an extremely high glass transition temperature of 350 ° C. or more, solvent solubility, and excellent storage stability can be obtained. Insulating film, heat-resistant coating film, heat-resistant coating, etc. can be performed. Furthermore, the printed wiring board using the polyimide of the present invention as an adhesive has a solder heat resistance of 350 ° C. or higher, and has extremely high heat resistance. In other words, the polyimide of the present invention makes it possible to increase the heat resistance at around 300 ° C., which was the limit of conventional solvent-soluble polyimide, to 50 ° C. or more. In addition to being able to easily manufacture functional coatings, for example, it is possible to increase the heat resistance, performance, and manufacturing efficiency of applied products such as printed wiring boards, which are extremely useful industrially. .

Claims (9)

(A)下記一般式(1)で表される繰り返し単位、及び、(B)下記一般式(2)で表される繰り返し単位からなるポリイミド樹脂組成物であって、(A)と(B)とのモル比が、(A):(B)=50:50〜99:1であるポリイミド樹脂組成物。
Figure 0004935406
Figure 0004935406
[式中、Xは、下記式(3)
Figure 0004935406

を表す。]
(A) A polyimide resin composition comprising a repeating unit represented by the following general formula (1) and (B) a repeating unit represented by the following general formula (2), wherein (A) and (B) The polyimide resin composition whose molar ratio is (A) :( B) = 50: 50 to 99: 1.
Figure 0004935406
Figure 0004935406
[In the formula, X, under following formula (3)
Figure 0004935406

Represents. ]
ゲルパーミエーションクロマトグラフィー(GPC)の分子量分布測定において、少なくとも2つの分子量ピークを有し、一つのピークが、分子量1,000以上40,000未満であり、他のピークが分子量40,000以上500,000未満である請求項1に記載のポリイミド樹脂組成物。   In molecular weight distribution measurement of gel permeation chromatography (GPC), it has at least two molecular weight peaks, one peak having a molecular weight of 1,000 to less than 40,000, and the other peak having a molecular weight of 40,000 to 500. The polyimide resin composition according to claim 1, which is less than 1,000. (N)重量平均分子量が1,000以上40,000未満の請求項1に記載のポリイミド樹脂組成物、及び、(M)重量平均分子量が40,000以上500,000未満の請求項1に記載のポリイミド樹脂組成物を混合して得られる請求項2に記載のポリイミド樹脂組成物。   (N) The polyimide resin composition according to claim 1, wherein the weight average molecular weight is 1,000 or more and less than 40,000, and (M) the weight average molecular weight is 40,000 or more and less than 500,000. The polyimide resin composition of Claim 2 obtained by mixing the polyimide resin composition of. (N)成分が、アミン末端のポリイミド樹脂組成物であり、(M)成分が、酸末端のポリイミド樹脂組成物である請求項3に記載のポリイミド樹脂組成物。   The polyimide resin composition according to claim 3, wherein the component (N) is an amine-terminated polyimide resin composition, and the component (M) is an acid-terminated polyimide resin composition. ゲルパーミエーションクロマトグラフィー(GPC)の分子量分布測定において、分子量1,000以上40,000未満の成分が50〜1重量%であり、分子量40,000以上500,000未満の成分が50〜99重量%である請求項2〜4のいずれかに記載のポリイミド樹脂組成物。   In the molecular weight distribution measurement of gel permeation chromatography (GPC), the component having a molecular weight of 1,000 or more and less than 40,000 is 50 to 1% by weight, and the component having a molecular weight of 40 or more and less than 500,000 is 50 to 99% by weight. It is%, The polyimide resin composition in any one of Claims 2-4. 請求項1〜5のいずれかに記載のポリイミド樹脂組成物及び有機溶剤を含有するポリイミドワニス。   A polyimide varnish containing the polyimide resin composition according to any one of claims 1 to 5 and an organic solvent. 絶縁材料用、耐熱塗料用、耐熱コーティング材料用、耐熱接着剤用、又は耐熱バインダー用である請求項6に記載のポリイミドワニス。   The polyimide varnish according to claim 6, which is used for an insulating material, a heat resistant paint, a heat resistant coating material, a heat resistant adhesive, or a heat resistant binder. 請求項6又は7に記載のポリイミドワニスを加熱、乾燥して得られるポリイミド樹脂成形体。   A polyimide resin molded body obtained by heating and drying the polyimide varnish according to claim 6. 皮膜状又はフィルム状の形態にある請求項8に記載のポリイミド樹脂成形体。   The polyimide resin molded product according to claim 8, which is in a film-like or film-like form.
JP2007037400A 2007-02-19 2007-02-19 High heat resistant polyimide resin composition Expired - Fee Related JP4935406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007037400A JP4935406B2 (en) 2007-02-19 2007-02-19 High heat resistant polyimide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007037400A JP4935406B2 (en) 2007-02-19 2007-02-19 High heat resistant polyimide resin composition

Publications (2)

Publication Number Publication Date
JP2008201861A JP2008201861A (en) 2008-09-04
JP4935406B2 true JP4935406B2 (en) 2012-05-23

Family

ID=39779694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007037400A Expired - Fee Related JP4935406B2 (en) 2007-02-19 2007-02-19 High heat resistant polyimide resin composition

Country Status (1)

Country Link
JP (1) JP4935406B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5321193B2 (en) * 2009-03-30 2013-10-23 デクセリアルズ株式会社 Polyamic acid solution, polyimide and optical device
US11078378B2 (en) * 2015-03-31 2021-08-03 Asahi Kasei Kabushiki Kaisha Polyimide film, polyimide varnish, and product and layered product using the polyimide film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335790A (en) * 2005-05-31 2006-12-14 Toray Ind Inc Polyimide resin, heat-resistant resin-laminated film and laminated film with metal layer using the same

Also Published As

Publication number Publication date
JP2008201861A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP7469383B2 (en) Metal-clad laminates and circuit boards
JP4957059B2 (en) Polyimide film laminate
JP2008001876A (en) Polyesterimide and method for producing the same
JP2024040228A (en) Manufacturing method for metal clad laminates
JP2009286868A (en) Linear polyimide precursor, linear polyimide, thermally cured product thereof, production method, adhesive and copper-clad laminate
JP2020072198A (en) Metal-clad laminate, circuit board, multilayer circuit board, and manufacturing method thereof
CN111385967A (en) Metal-clad laminate and circuit board
TW202140622A (en) Resin film, metal-clad laminate and circuit board wherein the resin film includes a liquid crystal polymer layer, a first adhesive layer, and a second adhesive layer
JP5009670B2 (en) Polyesterimide precursor and polyesterimide
JP4527687B2 (en) Soluble polyimide resin and method for producing the same
CN106795284B (en) Polyimide copolymer and molded body using same
JP4935406B2 (en) High heat resistant polyimide resin composition
JP2008303372A (en) Polyimide precursor having asymmetric structure, polyimide, and their production methods
JP7120870B2 (en) Method for producing polyimide film and method for producing metal-clad laminate
JP5941429B2 (en) Polyamic acid and polyimide
JP2002322276A (en) New thermoplastic polyimide resin
JP2514313B2 (en) Flexible copper clad circuit board
JP2009091441A (en) Polyimide precursor and polyimide
JP2002114848A (en) New thermoplastic polyimide resin and flexible metal foil-clad laminate
JP4862247B2 (en) Heat resistant adhesive composition
TW202010634A (en) Laminated board with metal-coated layer, adhesive sheet, adhesive polyimide resin composition and circuit substrate having adhesive layer with excellent adhesion, dielectric constant, small dielectric dissipation factor and capable of reducing transmission loss even for high-frequency transmission
JP3463111B2 (en) Novel copolymer and its production method
WO1988000428A1 (en) Flexible copper-clad circuit board
JP2019214642A (en) Polyimide film for coverlay film, and manufacturing method therefor
JPH0555716A (en) Manufacture of flexible wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees