JP2008001876A - Polyesterimide and method for producing the same - Google Patents

Polyesterimide and method for producing the same Download PDF

Info

Publication number
JP2008001876A
JP2008001876A JP2006243800A JP2006243800A JP2008001876A JP 2008001876 A JP2008001876 A JP 2008001876A JP 2006243800 A JP2006243800 A JP 2006243800A JP 2006243800 A JP2006243800 A JP 2006243800A JP 2008001876 A JP2008001876 A JP 2008001876A
Authority
JP
Japan
Prior art keywords
polyesterimide
film
precursor
polyimide
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006243800A
Other languages
Japanese (ja)
Inventor
Masatoshi Hasegawa
匡俊 長谷川
Akihiro Kato
明宏 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2006243800A priority Critical patent/JP2008001876A/en
Publication of JP2008001876A publication Critical patent/JP2008001876A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyesterimide having a high glass transition temperature, low linear thermal expansion (coefficient), low water absorption coefficient, low hygroscopic expansion coefficient, high modulus of elasticity and sufficient toughness in combination and to provide a method for producing the polyesterimide. <P>SOLUTION: The polyesterimide has a repeating unit represented by general formula (4) [wherein, A represents the tetravalent aromatic group represented by formula (2) and/or formula (3)]. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は高いガラス転移温度、低い線熱膨張(係数)、低い吸水率、低い吸湿膨張率、高い弾性率及び十分な靭性を併せ持つ、フレキシブルプリント配線(FPC)基板、テープオートメーションボンディング(TAB)用基材、各種電子デバイスにおける電気絶縁膜および液晶ディスプレー用基板、有機エレクトロルミネッセンス(EL)ディスプレー用基板、電子ペーパー用基板、太陽電池用基板に利用でき、特にFPC基板として有用なポリエステルイミドおよびその製造方法に関する。   The present invention has a high glass transition temperature, low linear thermal expansion (coefficient), low water absorption, low hygroscopic expansion, high elastic modulus and sufficient toughness, for flexible printed wiring (FPC) substrates, for tape automation bonding (TAB) Polyesterimide that can be used for substrates, substrates for electric insulating films and liquid crystal displays, substrates for organic electroluminescence (EL) displays, substrates for electronic paper, and substrates for solar cells, and particularly useful as FPC substrates, and their production Regarding the method.

ポリイミドは優れた耐熱性のみならず、耐薬品性、耐放射線性、電気絶縁性、優れた機械的性質などの特性を併せ持つことから、現在、FPC基板、TAB用基材、半導体素子の保護膜、集積回路の層間絶縁膜等、様々な電子デバイスに現在広く利用されている。ポリイミドはこれらの特性以外にも、製造方法の簡便さ、極めて高い膜純度、入手可能な種々のモノマーを用いた物性改良のしやすさといったことから、近年益々その重要性が高まっている。   Polyimide has not only excellent heat resistance, but also chemical resistance, radiation resistance, electrical insulation, and excellent mechanical properties. Therefore, FPC substrates, TAB base materials, and semiconductor element protective films are currently available. Currently, it is widely used in various electronic devices such as interlayer insulating films of integrated circuits. In addition to these properties, polyimide has become increasingly important in recent years because of its simplicity of production method, extremely high film purity, and ease of improving physical properties using various available monomers.

電子機器の軽薄短小化が進むにつれてポリイミドへの要求特性も年々厳しさを増し、ハンダ耐熱性だけに留まらず、熱サイクルや吸湿に対するポリイミドフィルムの寸法安定性、透明性、金属基板との接着性、成型加工性、スルーホール等の微細加工性等、複数の特性を同時に満足する多機能性ポリイミド材料が求められるようになってきている。   As electronic devices become lighter, thinner, and more demanding, the demands on polyimide increase year by year. Not only solder heat resistance, but also the dimensional stability of polyimide film against thermal cycling and moisture absorption, transparency, and adhesion to metal substrates There is a growing demand for multifunctional polyimide materials that simultaneously satisfy a plurality of characteristics, such as moldability and fine processability such as through holes.

近年、FPC基板としてのポリイミドの需要が飛躍的に増加している。FPC基板の原反(銅張積層板、FCCL)の構成は主に3つの様式に分類される。即ち、1)ポリイミドフィルムと銅箔とをエポキシ系接着剤等を用いて貼り付ける3層タイプ、2)銅箔にポリイミドワニスを塗付後乾燥または、ポリイミド前駆体(ポリアミド酸)ワニスを塗布後、乾燥・イミド化するか、あるいは蒸着・スパッタ等によりポリイミドフィルム上に銅層を形成する無接着剤2層タイプ、3)接着層として熱可塑性ポリイミドを用いる擬似2層タイプが知られている。ポリイミドフィルムに高度な寸法安定性が要求される用途では接着剤を使用しない2層FCCLが有利である。寸法安定性は、熱膨張及び吸湿の両方に対して求められている。   In recent years, the demand for polyimide as an FPC substrate has increased dramatically. The composition of the original fabric of the FPC board (copper-clad laminate, FCCL) is mainly classified into three modes. That is, 1) Three-layer type in which polyimide film and copper foil are attached using an epoxy-based adhesive, etc. 2) After applying polyimide varnish to copper foil and drying or after applying polyimide precursor (polyamic acid) varnish There are known a non-adhesive two-layer type in which a copper layer is formed on a polyimide film by drying / imidization or vapor deposition / sputtering, and 3) a pseudo two-layer type using thermoplastic polyimide as an adhesive layer. In applications where a high degree of dimensional stability is required for the polyimide film, a two-layer FCCL that does not use an adhesive is advantageous. Dimensional stability is required for both thermal expansion and moisture absorption.

FPC基板としてのポリイミドは実装工程における様々な熱サイクルに曝されて寸法変化が起こる。これをできるだけ抑えるためには、ポリイミドのガラス転移温度が工程温度よりも高いことに加えて、ガラス転移温度以下での線熱膨張(係数)ができるだけ低いことが望ましい。後述するようにポリイミド層の線熱膨張(係数)の制御は2層FCCL製造工程中に発生する残留応力の低減の観点からも極めて重要である。 Polyimide as an FPC board undergoes dimensional changes when exposed to various thermal cycles in the mounting process. In order to suppress this as much as possible, in addition to the glass transition temperature of polyimide being higher than the process temperature, it is desirable that the linear thermal expansion (coefficient) below the glass transition temperature is as low as possible. As will be described later, the control of the linear thermal expansion (coefficient) of the polyimide layer is extremely important from the viewpoint of reducing the residual stress generated during the two-layer FCCL manufacturing process.

多くのポリイミドは有機溶媒に不溶で、ガラス転移温度以上でも溶融しないため、ポリイミドそのものを成型加工することは通常容易ではない。そのためポリイミドは一般に、無水ピロメリット酸(PMDA)等の芳香族テトラカルボン酸二無水物と4,4’−オキシジアニリン(ODA)等の芳香族ジアミンとをジメチルアセトアミド(DMAc)等の非プロトン性極性有機溶媒中で等モル反応させて、先ず高重合度のポリイミド前駆体(ポリアミド酸)を重合し、このワニスを銅箔上に塗付し、250〜400℃で加熱脱水閉環(イミド化)して製膜される。   Since many polyimides are insoluble in organic solvents and do not melt above the glass transition temperature, it is usually not easy to mold the polyimide itself. For this reason, polyimide is generally composed of an aromatic tetracarboxylic dianhydride such as pyromellitic anhydride (PMDA) and an aromatic diamine such as 4,4′-oxydianiline (ODA) and a non-proton such as dimethylacetamide (DMAc). First, a high-polymerization degree polyimide precursor (polyamic acid) is polymerized, and this varnish is coated on a copper foil, followed by heat-dehydration cyclization (imidization) at 250 to 400 ° C. ) To form a film.

残留応力は、高温でのイミド化反応後にポリイミド/金属基板積層体を室温へ冷却する過程で発生し、FCCLのカーリング、剥離、膜の割れ等、深刻な問題がしばしば起こる。   Residual stress occurs during the process of cooling the polyimide / metal substrate laminate to room temperature after the imidization reaction at high temperature, and serious problems such as FCCL curling, peeling, and film cracking often occur.

熱応力低減の方策として、絶縁膜であるポリイミド自身を低熱膨張化することが有効である。殆どのポリイミドでは線熱膨張(係数)が50〜200℃の範囲にて40〜100ppm/Kの範囲にあり、金属基板、例えば銅の線熱膨張(係数)17ppm/Kよりもはるかに大きいため、銅の値に近い、およそ20ppm/K以下を示す低熱膨張性ポリイミドの研究開発が行われている。   As a measure for reducing thermal stress, it is effective to reduce the thermal expansion of polyimide itself as an insulating film. Most polyimides have a linear thermal expansion (coefficient) in the range of 40 to 100 ppm / K in the range of 50 to 200 ° C., which is much larger than the linear thermal expansion (coefficient) of 17 ppm / K of metal substrates such as copper. Research and development of low thermal expansion polyimide, which is close to the value of copper and exhibits about 20 ppm / K or less, is being conducted.

現在実用的な低熱膨張性ポリイミド材料としては3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とp−フェニレンジアミンから形成されるポリイミドが最もよく知られている。このポリイミドフィルムは、膜厚や作製条件にもよるが、5〜10ppm/Kと非常に低い線熱膨張(係数)を示すことが知られている(例えば非特許文献1参照)が、低吸水性は示さない。   As a practically low thermal expansion polyimide material, a polyimide formed from 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and p-phenylenediamine is most well known. This polyimide film is known to exhibit a very low linear thermal expansion (coefficient) of 5 to 10 ppm / K, although it depends on the film thickness and production conditions (for example, see Non-Patent Document 1). Does not show sex.

ポリイミドの寸法安定性は、熱サイクルだけでなく吸湿に対しても要求される。従来のポリイミドでは2〜3wt%(以下、%)も吸湿する。絶縁層の吸湿は、高密度配線や多層配線においては、寸法変化に伴う回路の位置ずれ、特に、ポリイミド/導体界面でのコロージョン、イオンマイグレーション、絶縁破壊等、電気特性の低下という問題を生じさせる可能性があり、改善すべき課題であった。そのため絶縁膜としてのポリイミド層はできるだけ吸水率や吸湿膨張率が低いことが求められている。   The dimensional stability of polyimide is required not only for thermal cycling but also for moisture absorption. Conventional polyimide also absorbs 2 to 3 wt% (hereinafter,%). Moisture absorption of the insulating layer causes problems such as circuit displacement due to dimensional changes, particularly deterioration of electrical characteristics such as corrosion, ion migration, and dielectric breakdown at the polyimide / conductor interface in high-density wiring and multilayer wiring. There was a possibility, and it was a problem to be improved. Therefore, the polyimide layer as the insulating film is required to have as low a water absorption rate and a hygroscopic expansion rate as possible.

低吸水率や低吸湿膨張率を実現するための分子設計として、例えば式(5)で表されるエステル基含有ジアミンを使用してポリイミド骨格へのパラ芳香族エステル結合を導入することが有効であると報告されている(例えば非特許文献2参照)。

Figure 2008001876
As a molecular design for realizing a low water absorption rate and a low hygroscopic expansion coefficient, it is effective to introduce a para aromatic ester bond to a polyimide skeleton using, for example, an ester group-containing diamine represented by the formula (5). It has been reported (see Non-Patent Document 2, for example).
Figure 2008001876

しかしながら更なる低吸水率化や低吸湿膨張率化を目論み、ポリイミド中のパラ芳香族エステル基の含有率を更に増加すれば、ポリイミド最大の特長である耐熱性、前駆体の溶解性(溶液キャスト製膜性)、重合反応性(重合時に沈殿しないこと)等の悪化が懸念される。   However, with the aim of further lowering the water absorption rate and lowering the hygroscopic expansion rate and further increasing the content of para-aromatic ester groups in the polyimide, the heat resistance and precursor solubility (solution casting), which are the greatest features of polyimide, There are concerns about deterioration such as film-forming properties and polymerization reactivity (no precipitation during polymerization).

重合反応性や製膜加工性を保持したまま低線熱膨張(係数)(30ppm/K以下)、低吸水率(1.5%以下)、低吸湿膨張率(8ppm/%RH以下)、高靭性、ハンダ耐熱性、且つ銅箔との密着性を満足するポリイミドを得ることは分子設計上容易ではなく、コスト面で不利なフッ素化ポリイミドを除いて、このような要求特性を満足する実用的な材料は今のところ殆ど知られていないのが現状である。
Macromolecules,29,7897(1996) 高分子討論会予稿集,53,4115(2004)
Low linear thermal expansion (coefficient) (30 ppm / K or less), low water absorption (1.5% or less), low hygroscopic expansion (8 ppm /% RH or less), high while maintaining polymerization reactivity and film forming processability Obtaining polyimide that satisfies toughness, soldering heat resistance, and adhesion to copper foil is not easy in terms of molecular design, and is practical enough to satisfy these requirements, except for fluorinated polyimide, which is disadvantageous in terms of cost. Currently, there are few known materials.
Macromolecules, 29, 7897 (1996). Proceedings of the Macromolecules Conference, 53, 4115 (2004)

本発明は高いガラス転移温度、低い線熱膨張(係数)、低い吸水率、低吸湿膨張率、高い弾性率及び十分な靭性を併せ持つポリエステルイミドおよびその製造方法を提供することを目的とする。また、本発明のポリエステルイミドを用いた積層板及びプリント基板を提供することを目的とする。   An object of the present invention is to provide a polyesterimide having a high glass transition temperature, a low linear thermal expansion (coefficient), a low water absorption rate, a low hygroscopic expansion rate, a high elastic modulus and sufficient toughness, and a method for producing the same. Moreover, it aims at providing the laminated board and printed circuit board using the polyesterimide of this invention.

以上の問題を鑑み、鋭意研究を積み重ねた結果、下記一般式(1)で表されるポリエステルイミド前駆体ワニスを銅箔等の導体基板上に塗付・乾燥してフィルムとし、これを熱的に又脱水試薬等を用いてイミド化して、形成した下記一般式(4)で表されるポリエステルイミドフィルムが、上記産業分野において極めて有益な材料となることを見出し、本発明を完成するに至った。   In view of the above problems, as a result of intensive research, the polyesterimide precursor varnish represented by the following general formula (1) is coated on a conductive substrate such as copper foil and dried to form a film, which is thermally treated. In addition, the polyesterimide film represented by the following general formula (4) formed by imidization using a dehydrating reagent or the like is found to be an extremely useful material in the industrial field, and the present invention has been completed. It was.

即ち本発明は以下に示すものである。
1.一般式(1)で表される反復単位を有するポリエステルイミド前駆体であって、

Figure 2008001876
ここで、Aは、下記式(2)および/または(3)で表される4価の芳香族基を表し、Aに結合する2つのカルボキシル基は、式(1)ではシス配置が例示されているが、シス配置に限定されず、シスおよびトランス配置が混在するものであるポリエステルイミド前駆体。
Figure 2008001876
Figure 2008001876
2.固有粘度が0.1〜15.0dL/gの範囲である、上記1に記載のポリエステルイミド前駆体。
3.一般式(4)で表される反復単位を有するポリエステルイミドであって、
Figure 2008001876
ここで、Aは、上記1中の式(2)および/または(3)で表される4価の芳香族基を表すポリエステルイミド。
4.上記1または2に記載のポリエステルイミド前駆体を加熱あるいは脱水試薬を用いて環化反応(イミド化)させることを特徴とする、上記3に記載のポリエステルイミドの製造方法。
5.上記1または2に記載のポリエステルイミド前駆体を経由することなしに、ポリエステルイミド前駆体の原料である、テトラカルボン酸二無水物とジアミンを溶媒中、高温下で重縮合反応することを特徴とする、請求項3に記載のポリエステルイミドの製造方法。
6.上記1または2に記載のポリエステルイミド前駆体を主成分として含有するワニスを金属箔上に塗布、乾燥後、加熱あるいは脱水試薬を用いて環化反応(イミド化)させることを特徴とする、金属箔と上記3に記載のポリエステルイミドの積層板の製造方法。
7.上記6に記載の積層板の金属箔をエッチングすることを特徴とするフレキシブルプリント配線(FPC)基板の製造方法。 That is, the present invention is as follows.
1. A polyesterimide precursor having a repeating unit represented by the general formula (1),
Figure 2008001876
Here, A represents a tetravalent aromatic group represented by the following formula (2) and / or (3), and the two carboxyl groups bonded to A are exemplified by the cis configuration in formula (1). However, it is not limited to the cis configuration, and is a polyesterimide precursor in which cis and trans configurations are mixed.
Figure 2008001876
Figure 2008001876
2. The polyesterimide precursor according to 1 above, wherein the intrinsic viscosity is in the range of 0.1 to 15.0 dL / g.
3. A polyesterimide having a repeating unit represented by the general formula (4),
Figure 2008001876
Here, A is a polyesterimide representing a tetravalent aromatic group represented by the formula (2) and / or (3) in 1 above.
4). 3. The method for producing a polyesterimide according to 3 above, wherein the polyesterimide precursor according to 1 or 2 is subjected to a cyclization reaction (imidation) using heating or a dehydrating reagent.
5. A polycondensation reaction of tetracarboxylic dianhydride and a diamine, which are raw materials for a polyesterimide precursor, in a solvent at a high temperature without going through the polyesterimide precursor described in 1 or 2 above, The manufacturing method of the polyesterimide of Claim 3.
6). A metal, characterized in that a varnish containing the polyesterimide precursor described in 1 or 2 above as a main component is coated on a metal foil, dried, and then subjected to a cyclization reaction (imidization) using heating or a dehydrating reagent. 4. A method for producing a laminated board of foil and the polyesterimide described in 3 above.
7). 7. A method for producing a flexible printed wiring (FPC) board, comprising etching the metal foil of the laminated board according to 6 above.

本発明によれば、高いガラス転移温度(Tg)、低い線熱膨張(係数)、低い吸水率、低吸湿膨張率、高い弾性率及び十分な靭性を併せ持つポリエステルイミドおよびその製造方法を提供することができる。本発明のポリエステルイミドは、積層体及びプリント基板として用いることができ、フレキシブルプリント配線(FPC)基板、テープオートメーションボンディング(TAB)用基材、各種電子デバイスにおける電気絶縁膜および液晶ディスプレー用基板、有機エレクトロルミネッセンス(EL)ディスプレー用基板、電子ペーパー用基板、太陽電池用基板、特にFPC基板として有用である。   According to the present invention, a polyesterimide having both a high glass transition temperature (Tg), a low linear thermal expansion (coefficient), a low water absorption rate, a low hygroscopic expansion rate, a high elastic modulus and sufficient toughness, and a method for producing the same are provided. Can do. The polyesterimide of the present invention can be used as a laminate and a printed board, such as a flexible printed wiring (FPC) board, a substrate for tape automation bonding (TAB), an electrical insulating film and a liquid crystal display board in various electronic devices, organic It is useful as an electroluminescence (EL) display substrate, an electronic paper substrate, a solar cell substrate, particularly an FPC substrate.

ポリイミドを低熱膨張化するための分子設計として、主鎖骨格をできるだけ直線状で剛直に(内部回転により多様なコンホメーションをとりにくく)する必要がある。しかし一方で、これによりポリマー鎖の絡み合いが減少し、フィルムが脆弱化する恐れがある。また、ポリイミド骨格へのエーテル結合等の屈曲性単位の過大な導入は膜靭性の向上には大きく寄与するが、低熱膨張特性の発現を妨げる。   As a molecular design for reducing the thermal expansion of polyimide, it is necessary to make the main chain skeleton as straight and rigid as possible (various conformations are difficult to take due to internal rotation). However, on the other hand, this reduces the entanglement of the polymer chains and may cause the film to become brittle. In addition, excessive introduction of a flexible unit such as an ether bond into the polyimide skeleton greatly contributes to the improvement of film toughness, but hinders the expression of low thermal expansion characteristics.

本発明において着目したパラ芳香族エステル結合はエーテル結合に比べて内部回転障壁が高く、コンホメーション変化が比較的妨げられているため、剛直構造単位として振舞い、且つポリイミド主鎖にある程度の柔軟さも付与し、可撓性のフィルムを与えることが期待される。   The para-aromatic ester bond focused in the present invention has a higher internal rotation barrier than the ether bond, and the change in conformation is relatively hindered. Therefore, the para-aromatic ester bond behaves as a rigid structural unit and has a certain degree of flexibility in the polyimide main chain. And is expected to give a flexible film.

またエステル結合はアミド結合やイミド結合よりも単位体積当たりの分極率が低いため、ポリイミドへのエステル結合の導入は低吸水率化及び低吸湿膨張率化にも有利である。   In addition, since the ester bond has a lower polarizability per unit volume than the amide bond or imide bond, the introduction of the ester bond into the polyimide is advantageous for lowering the water absorption rate and lowering the hygroscopic expansion coefficient.

本発明のポリエステルイミド前駆体は下式(6)で表されるエステル基含有ジアミンを用いて製造される。

Figure 2008001876
The polyesterimide precursor of the present invention is produced using an ester group-containing diamine represented by the following formula (6).
Figure 2008001876

ポリイミドの低吸水率化のためにしばしばフッ素化モノマーが使用されるが、該ジアミンはフッ素基を一切含有せず、ポリイミドを低コストで製造することができる。またフッ素化モノマー使用時にしばしば見られるガラス転移温度の低下の心配がなく、銅箔との密着性の点においても含フッ素ジアミンを用いるより有利である。   Although a fluorinated monomer is often used to reduce the water absorption rate of polyimide, the diamine does not contain any fluorine group, and polyimide can be produced at low cost. Further, there is no concern about a decrease in glass transition temperature often observed when using a fluorinated monomer, and it is more advantageous than using a fluorine-containing diamine in terms of adhesion to a copper foil.

該ジアミンの特徴の一つはジアミン分子内に疎水基として振舞う3つの芳香環と2つのエステル基を含有し、これらが全てパラ結合している点である。これにより、低吸水率及び低吸湿膨張率と低線熱膨張(係数)を同時に実現することが可能になる。   One of the features of the diamine is that it contains three aromatic rings that act as hydrophobic groups and two ester groups in the diamine molecule, all of which are para-bonded. Thereby, it becomes possible to simultaneously realize a low water absorption rate, a low hygroscopic expansion rate, and a low linear thermal expansion (coefficient).

該ジアミンモノマー中の2つのアミノ基の重合反応性は、得られるポリエステルイミドフィルムの靭性に大きな影響を及ぼす。アミノ基の塩基性即ち重合反応性が十分高くないと、高重合体が得られず、結果としてポリマー鎖同士の絡み合いが低くなり、ポリエステルイミドフィルムが脆弱になる恐れがある。   The polymerization reactivity of two amino groups in the diamine monomer greatly affects the toughness of the resulting polyesterimide film. If the basicity of the amino group, that is, the polymerization reactivity is not sufficiently high, a high polymer cannot be obtained, and as a result, the entanglement between the polymer chains becomes low and the polyesterimide film may become brittle.

該ジアミンモノマーにおけるアミノ基の反応性の観点から、アミノ基のパラ位にあるエステル基がどのように連結しているかが重要である。本発明に係るエステル基含有ジアミンでは電子吸引性のカルボニル基が直接アミノ基のパラ位に結合しておらず、カルボニル基は酸素原子を介して結合している。もし、カルボニル基がパラ位に直接結合していた場合、アミノ基の塩基性は大きく低下し、高重合体を得られなくなる恐れがある。   From the viewpoint of the reactivity of the amino group in the diamine monomer, it is important how the ester group at the para position of the amino group is linked. In the ester group-containing diamine according to the present invention, the electron-withdrawing carbonyl group is not directly bonded to the para position of the amino group, and the carbonyl group is bonded via an oxygen atom. If the carbonyl group is directly bonded to the para position, the basicity of the amino group is greatly reduced, and there is a possibility that a high polymer cannot be obtained.

本発明のポリエステルイミド前駆体を重合する際、下式(7)および/または(8)で表されるエステル基含有テトラカルボン酸二無水物が用いられる。

Figure 2008001876
Figure 2008001876
When polymerizing the polyesterimide precursor of the present invention, an ester group-containing tetracarboxylic dianhydride represented by the following formula (7) and / or (8) is used.
Figure 2008001876
Figure 2008001876

上記エステル基含有テトラカルボン酸二無水物を用いることで、式(6)で表されるエステル基含有ジアミンを使用した場合と同様な効果が期待される。即ち、分子内の2つのパラ芳香族エステル結合の存在により、得られるポリエステルイミドは低吸水率、低吸湿膨張率、低線熱膨張(係数)および高弾性率を同時に示すことが期待される。   By using the ester group-containing tetracarboxylic dianhydride, the same effect as that when the ester group-containing diamine represented by the formula (6) is used is expected. That is, due to the presence of two paraaromatic ester bonds in the molecule, the resulting polyesterimide is expected to exhibit a low water absorption, a low hygroscopic expansion, a low linear thermal expansion (coefficient), and a high elastic modulus at the same time.

式(7)で表されるテトラカルボン酸二無水物を用いて、該エステル基含有ジアミンと重合する際、重合条件(重合溶媒、モノマー濃度、重合温度等)によってはまれに重合溶液中での液晶性発現、重合溶液の不均一化、ゲル化、沈殿等が起こる場合がある。その場合、メチル置換基を有する式(8)で表されるテトラカルボン酸二無水物を代わりに用いるか、あるいは共重合成分として併用することで、ポリエステルイミド前駆体鎖同士の凝集が適度に弱められ、上記の問題を回避することができる。   When polymerizing with the ester group-containing diamine using the tetracarboxylic dianhydride represented by the formula (7), depending on the polymerization conditions (polymerization solvent, monomer concentration, polymerization temperature, etc.), rarely in the polymerization solution. In some cases, liquid crystallinity expression, polymerization solution non-uniformity, gelation, precipitation, etc. may occur. In that case, by using the tetracarboxylic dianhydride represented by the formula (8) having a methyl substituent instead, or using it as a copolymerization component, the aggregation of the polyesterimide precursor chains is moderately weakened. The above problem can be avoided.

また、式(7)で表されるテトラカルボン酸二無水物を用いた場合、製膜条件(イミド化温度プログラム、膜厚等)によってはまれにポリエステルイミドフィルムが結晶化して、脆弱になる場合がある。その場合、メチル置換基を有する式(8)で表されるテトラカルボン酸二無水物を代わりに用いるか、あるいは共重合成分として併用することで、ポリエステルイミド鎖同士のパッキングを乱して結晶化を防げ、フィルムの脆弱化を回避することができる。   In addition, when the tetracarboxylic dianhydride represented by the formula (7) is used, the polyesterimide film may rarely crystallize and become brittle depending on the film forming conditions (imidation temperature program, film thickness, etc.). There is. In that case, the tetracarboxylic dianhydride represented by the formula (8) having a methyl substituent is used instead, or it is used as a copolymerization component so that the packing between the polyesterimide chains is disturbed and crystallized. Can be prevented, and the weakening of the film can be avoided.

式(7)で表わされる剛直な構造のテトラカルボン酸二無水物を用いると、本発明に係るポリエステルイミドフィルムは銅箔より低い線熱膨張(係数)を示すことがある。この場合、適当量の4,4’−オキシジアニリン等の屈曲性モノマーを共重合成分として併用することで、ポリエステルイミドフィルムの線熱膨張(係数)を銅箔の値に一致させることができる。屈曲性モノマーの併用によりポリエステルイミドフィルムの靭性も大幅に改善することができる。   When the tetracarboxylic dianhydride having a rigid structure represented by the formula (7) is used, the polyesterimide film according to the present invention may exhibit a lower linear thermal expansion (coefficient) than that of the copper foil. In this case, the linear thermal expansion (coefficient) of the polyesterimide film can be matched with the value of the copper foil by using an appropriate amount of a flexible monomer such as 4,4′-oxydianiline as a copolymerization component. . The toughness of the polyesterimide film can be greatly improved by the combined use of the flexible monomer.

以下に本発明の実施の形態について詳細に説明するが、これらは本発明の実施形態の一例であり、これらの内容に限定されない。   Embodiments of the present invention will be described in detail below, but these are examples of the embodiments of the present invention and the present invention is not limited to these contents.

本発明は式(6)で表されるエステル基含有ジアミンを原料とし、式(7)および/または(8)で表されるエステル基含有テトラカルボン酸二無水物と組み合わせて重合反応させることにより産業上極めて有用なポリエステルイミドを提供することができる。該エステル基含有ジアミンおよび該エステル基含有テトラカルボン酸二無水物の反応性、剛直性、疎水性、置換基の立体的嵩高さという構造上の特徴から、樹脂とした際に低線熱膨張(係数)、高弾性率、低吸水率、低吸湿膨張率、高ガラス転移温度、高膜靭性という従来の材料では得ることのできなかった物性を有する材料とすることができる。   In the present invention, an ester group-containing diamine represented by the formula (6) is used as a raw material, and a polymerization reaction is performed in combination with the ester group-containing tetracarboxylic dianhydride represented by the formula (7) and / or (8). Industrially very useful polyesterimide can be provided. Due to the structural characteristics of the ester group-containing diamine and the ester group-containing tetracarboxylic dianhydride, such as reactivity, rigidity, hydrophobicity, and steric bulk of the substituent, low linear thermal expansion ( Coefficient), high elastic modulus, low water absorption, low hygroscopic expansion coefficient, high glass transition temperature, high film toughness, and other materials having physical properties that cannot be obtained with conventional materials.

<ポリエステルイミド前駆体の製造方法>
本発明に係るポリエステルイミド前駆体を製造する方法は特に限定されず、公知の方法を適用することができる。より具体的には、以下の方法により得られる。まず該ジアミンを重合溶媒に溶解し、これにテトラカルボン酸二無水物粉末を徐々に添加し、メカニカルスターラーを用い、0〜100℃、好ましくは20〜60℃で0.5〜100時間好ましくは1〜24時間攪拌する。この際モノマー濃度は5〜50重量%、好ましくは10〜40重量%である。このモノマー濃度範囲で重合を行うことにより均一で高重合度のポリイミド前駆体溶液を得ることができる。
<Method for producing polyesterimide precursor>
The method for producing the polyesterimide precursor according to the present invention is not particularly limited, and a known method can be applied. More specifically, it is obtained by the following method. First, the diamine is dissolved in a polymerization solvent, tetracarboxylic dianhydride powder is gradually added thereto, and a mechanical stirrer is used, and 0-100C, preferably 20-60C, preferably 0.5-100 hours. Stir for 1-24 hours. In this case, the monomer concentration is 5 to 50% by weight, preferably 10 to 40% by weight. By carrying out polymerization in this monomer concentration range, a polyimide precursor solution having a uniform and high degree of polymerization can be obtained.

ポリエステルイミドフィルムの靭性の観点からポリエステルイミド前駆体の重合度はできるだけ高いことが望ましい。上記モノマー濃度範囲で重合を行うことによりポリマーの重合度が十分高く、モノマー及びポリマーの溶解性も十分確保することができる。上記範囲より低い濃度で重合を行うと、ポリエステルイミド前駆体の重合度が十分高くならない場合があり、また、上記モノマー濃度範囲より高濃度で重合を行うと、モノマーや生成するポリマーの溶解が不十分となる場合がある。   From the viewpoint of the toughness of the polyesterimide film, the degree of polymerization of the polyesterimide precursor is desirably as high as possible. By performing the polymerization in the above monomer concentration range, the degree of polymerization of the polymer is sufficiently high, and the solubility of the monomer and the polymer can be sufficiently ensured. If the polymerization is carried out at a concentration lower than the above range, the degree of polymerization of the polyesterimide precursor may not be sufficiently high, and if the polymerization is carried out at a concentration higher than the above monomer concentration range, the dissolution of the monomer and the polymer to be produced is not possible. May be sufficient.

また、ポリエステルイミドフィルムの靭性およびワニスのハンドリングの観点から、ポリエステルイミド前駆体の固有粘度は好ましくは0.1〜15.0dL/gの範囲であり、0.5〜5.0dL/gの範囲であることがより好ましい。   Further, from the viewpoint of toughness of the polyesterimide film and handling of the varnish, the intrinsic viscosity of the polyesterimide precursor is preferably in the range of 0.1 to 15.0 dL / g, and in the range of 0.5 to 5.0 dL / g. It is more preferable that

本発明に係るポリエステルイミドフィルムの要求特性およびポリエステルイミド前駆体の重合反応性を損なわない範囲で、式(1)で表されるポリエステルイミド前駆体重合の際に式(7)および/または(8)で表されるエステル基含有テトラカルボン酸二無水物以外の芳香族テトラカルボン酸二無水物を用いることができる。使用可能な芳香族テトラカルボン酸二無水物としては、特に限定されないが、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸二無水物、2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン酸二無水物、2,2’−ビス(3,4−ジカルボキシフェニル)プロパン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物等が挙げられる。また、これらを2種類以上用いてもよい。   As long as the required properties of the polyesterimide film according to the present invention and the polymerization reactivity of the polyesterimide precursor are not impaired, the formula (7) and / or (8) An aromatic tetracarboxylic dianhydride other than the ester group-containing tetracarboxylic dianhydride represented by The aromatic tetracarboxylic dianhydride that can be used is not particularly limited, but pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4 , 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenylsulfone tetracarboxylic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropanoic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) propanoic dianhydride, 1,4,5, Examples include 8-naphthalenetetracarboxylic dianhydride and 2,3,6,7-naphthalenetetracarboxylic dianhydride. Two or more of these may be used.

本発明に係るポリエステルイミドフィルムの要求特性およびポリエステルイミド前駆体の重合反応性を損なわない範囲で、式(1)で表されるポリエステルイミド前駆体重合の際に式(7)および/または(8)で表されるエステル基含有テトラカルボン酸二無水物以外に、脂肪族テトラカルボン酸二無水物を用いることができる。使用可能な脂肪族テトラカルボン酸二無水物としては、特に限定されないが、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、5−(ジオキソテトラヒドロフリル−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、4−(2,5−ジオキソテトラヒドロフラン−3−イル)−テトラリン−1,2−ジカルボン酸無水物、テトラヒドロフラン−2,3,4,5−テトラカルボン酸二無水物、ビシクロ−3,3’ ,4,4’−テトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物等が挙げられる。またこれらを2種類以上併用することもできる。   As long as the required properties of the polyesterimide film according to the present invention and the polymerization reactivity of the polyesterimide precursor are not impaired, the formula (7) and / or (8) In addition to the ester group-containing tetracarboxylic dianhydride represented by), an aliphatic tetracarboxylic dianhydride can be used. The aliphatic tetracarboxylic dianhydride that can be used is not particularly limited, but bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 5- (Dioxotetrahydrofuryl-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) -tetralin-1,2-dicarboxylic anhydride, Tetrahydrofuran-2,3,4,5-tetracarboxylic dianhydride, bicyclo-3,3 ′, 4,4′-tetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride Products, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, etc. Two or more of these may be used in combination.

本発明に係るポリエステルイミド前駆体の重合反応性、ポリエステルイミドの要求特性を著しく損なわない範囲で、式(6)で表されるエステル基含有ジアミン以外の芳香族ジアミンを部分的に用いることができる。使用可能な芳香族ジアミンとしては、特に限定されないが、p−フェニレンジアミン、m−フェニレンジアミン、2,4−ジアミノトルエン、2,5−ジアミノトルエン、2,4−ジアミノキシレン、2,4−ジアミノデュレン、4,4’−ジアミノジフェニルメタン、4,4’−メチレンビス(2−メチルアニリン)、4,4’−メチレンビス(2−エチルアニリン)、4,4’−メチレンビス(2,6−ジメチルアニリン)、4,4’−メチレンビス(2,6−ジエチルアニリン)、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、2,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンズアニリド、4−アミノフェニル−4’−アミノベンゾエート、4−アミノ−2−メチルフェニル−4’−アミノベンゾエート、ベンジジン、3,3’−ジヒドロキシベンジジン、3,3’−ジメトキシベンジジン、o−トリジン、m−トリジン、2,2’−ビス(トリフルオロメチル)ベンジジン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス(4−(3−アミノフェノキシ)フェニル)スルホン、ビス(4−(4−アミノフェノキシ)フェニル)スルホン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、p−ターフェニレンジアミン等が挙げられる。またこれらを2種類以上併用することもできる。   Aromatic diamines other than the ester group-containing diamine represented by formula (6) can be partially used as long as the polymerization reactivity of the polyesterimide precursor according to the present invention and the required properties of the polyesterimide are not significantly impaired. . Although it does not specifically limit as aromatic diamine which can be used, p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,4-diaminoxylene, 2,4-diamino Durene, 4,4'-diaminodiphenylmethane, 4,4'-methylenebis (2-methylaniline), 4,4'-methylenebis (2-ethylaniline), 4,4'-methylenebis (2,6-dimethylaniline) 4,4′-methylenebis (2,6-diethylaniline), 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 2,4′-diaminodiphenyl ether, 4, 4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone, , 4′-diaminobenzophenone, 3,3′-diaminobenzophenone, 4,4′-diaminobenzanilide, 4-aminophenyl-4′-aminobenzoate, 4-amino-2-methylphenyl-4′-aminobenzoate, Benzidine, 3,3′-dihydroxybenzidine, 3,3′-dimethoxybenzidine, o-tolidine, m-tolidine, 2,2′-bis (trifluoromethyl) benzidine, 1,4-bis (4-aminophenoxy) Benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, bis (4- (3-amino) Phenoxy) phenyl) sulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, 2,2-bis (4 (4-aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, p-terphenylenediamine Etc. Two or more of these may be used in combination.

本発明に係るポリエステルイミド前駆体の重合反応性、ポリエステルイミドの要求特性を著しく損なわない範囲で、式(6)で表されるエステル基含有ジアミン以外に、脂肪族ジアミンを部分的に用いることができる。使用可能な脂肪族ジアミンとしては、特に限定されないが、例えば、4,4’−メチレンビス(シクロヘキシルアミン)、イソホロンジアミン、トランス−1,4−ジアミノシクロヘキサン、シス−1,4−ジアミノシクロヘキサン、1,4−シクロヘキサンビス(メチルアミン)、2,5−ビス(アミノメチル)ビシクロ〔2.2.1〕ヘプタン、2,6−ビス(アミノメチル)ビシクロ〔2.2.1〕ヘプタン、3,8−ビス(アミノメチル)トリシクロ〔5.2.1.0〕デカン、1,3−ジアミノアダマンタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、2,2−ビス(4−アミノシクロヘキシル)ヘキサフルオロプロパン、1,3−プロパンジアミン、1,4−テトラメチレンジアミン、1,5−ペンタメチレンジアミン、1,6−ヘキサメチレンジアミン、1,7−ヘプタメチレンジアミン、1,8−オクタメチレンジアミン、1,9−ノナメチレンジアミン等が挙げられる。またこれらを2種類以上併用することもできる。   In addition to the ester group-containing diamine represented by formula (6), an aliphatic diamine may be partially used as long as the polymerization reactivity of the polyesterimide precursor according to the present invention and the required properties of the polyesterimide are not significantly impaired. it can. The aliphatic diamine that can be used is not particularly limited. For example, 4,4′-methylenebis (cyclohexylamine), isophoronediamine, trans-1,4-diaminocyclohexane, cis-1,4-diaminocyclohexane, 1, 4-cyclohexanebis (methylamine), 2,5-bis (aminomethyl) bicyclo [2.2.1] heptane, 2,6-bis (aminomethyl) bicyclo [2.2.1] heptane, 3,8 -Bis (aminomethyl) tricyclo [5.2.1.0] decane, 1,3-diaminoadamantane, 2,2-bis (4-aminocyclohexyl) propane, 2,2-bis (4-aminocyclohexyl) hexa Fluoropropane, 1,3-propanediamine, 1,4-tetramethylenediamine, 1,5-pentamethylenediamine , 1,6-hexamethylene diamine, 1,7-heptamethylene diamine, 1,8-octamethylene diamine, 1,9-nonamethylenediamine, and the like. Two or more of these may be used in combination.

重合反応の際使用される溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド等の非プロトン性溶媒が好ましいが、原料モノマーと生成するポリイミド前駆体が溶解すれば問題はなく、特にその構造には限定されない。具体的に例示するならば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン、α−メチルーγ−ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m−クレゾール、p−クレゾール、3−クロロフェノール、4−クロロフエノール等のフェノール系溶媒、アセトフェノン、1,3−ジメチル−2−イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフエノール、0−クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、プチルセロソルブ、2−メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども添加して使用できる。   The solvent used in the polymerization reaction is preferably an aprotic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, etc., but is formed with the raw material monomer. There is no problem as long as the polyimide precursor is dissolved, and the structure is not particularly limited. Specifically, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε -Cyclic ester solvents such as caprolactone, α-methyl-γ-butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, m-cresol, p-cresol, 3-chlorophenol, 4-chloro Phenol solvents such as phenol, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like are preferably used. Furthermore, other common organic solvents, such as phenol, 0-cresol, butyl acetate, ethyl acetate, isobutyl acetate, propylene glycol methyl acetate, ethyl cellosolve, ptyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, Tetrahydrofuran, dimethoxyethane, diethoxyethane, dibutyl ether, diethylene glycol dimethyl ether, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, methyl ethyl ketone, acetone, butanol, ethanol, xylene, toluene, chlorobenzene, terpene, mineral spirit, petroleum naphtha solvent Etc. can also be added and used.

本発明のポリエステルイミド前駆体はその重合溶液を、大量の水やメタノール等の貧溶媒中に滴下・濾過・乾燥し、粉末として単離することもできる。   The polyesterimide precursor of the present invention can be isolated as a powder by dropping, filtering, and drying the polymerization solution into a large amount of poor solvent such as water or methanol.

<ポリエステルイミドの製造方法>
本発明のポリエステルイミドは、上記の方法で得られたポリエステルイミド前駆体を脱水閉環反応(イミド化反応)することで製造することができる。この際ポリエステルイミドの使用可能な形態としては、フィルム、金属箔/ポリエステルイミドフィルム積層体、粉末、成型体および溶液が挙げられる。
<Method for producing polyesterimide>
The polyesterimide of the present invention can be produced by subjecting the polyesterimide precursor obtained by the above method to a dehydration ring-closing reaction (imidation reaction). In this case, examples of usable forms of the polyesterimide include a film, a metal foil / polyesterimide film laminate, a powder, a molded product, and a solution.

まずポリエステルイミドフィルムを製造する方法について述べる。ポリエステルイミド前駆体の重合溶液(ワニス)をガラス、銅、アルミニウム、シリコン等の基板上に流延し、オーブン中40〜180℃、好ましくは50〜150℃で乾燥する。得られたポリエステルイミド前駆体フィルムを基板上で真空中、窒素等の不活性ガス中、あるいは空気中、200〜430℃、好ましくは250〜400℃で加熱することで本発明のポリエステルイミドフィルムを製造することができる。加熱温度は、イミド化の閉環反応を十分に行なうという観点から200℃以上、生成したポリエステルイミドフィルムの熱安定性の観点から430℃以下が好ましい。またイミド化は真空中あるいは不活性ガス中で行うことが望ましいが、イミド化温度が高すぎなければ空気中で行っても、差し支えない。   First, a method for producing a polyesterimide film will be described. A polymerization solution (varnish) of a polyesterimide precursor is cast on a glass, copper, aluminum, silicon, or other substrate and dried in an oven at 40 to 180 ° C, preferably 50 to 150 ° C. The polyesterimide film of the present invention can be obtained by heating the obtained polyesterimide precursor film on a substrate in a vacuum, in an inert gas such as nitrogen, or in air at 200 to 430 ° C., preferably 250 to 400 ° C. Can be manufactured. The heating temperature is preferably 200 ° C. or higher from the viewpoint of sufficiently carrying out the imidization ring-closing reaction, and 430 ° C. or lower from the viewpoint of the thermal stability of the produced polyesterimide film. The imidization is preferably performed in a vacuum or in an inert gas, but if the imidization temperature is not too high, it may be performed in air.

またイミド化反応は、熱処理に代えて、ポリエステルイミド前駆体フィルムをピリジンやトリエチルアミン等の3級アミン存在下、無水酢酸等の脱水試薬を含有する溶液に浸漬することによって行うことも可能である。   Further, the imidization reaction can be carried out by immersing the polyesterimide precursor film in a solution containing a dehydrating reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine instead of the heat treatment.

ポリエステルイミドの溶液(ワニス)は、ポリイミド自体が重合に用いた溶媒に溶解する場合、ポリエステルイミド前駆体の重合溶液をそのままあるいは同一の溶媒で適度に希釈した後、150〜200℃に加熱することで容易に製造することができる。溶媒に不溶な場合は、結晶性のポリエステルイミド粉末を沈殿物として得ることができる。この際、イミド化の副生成物である水等を共沸留去するために、トルエンやキシレン等を添加しても差し支えない。また触媒としてγ―ピコリン等の塩基を添加することができる。得られたワニスを大量の水やメタノール等の貧溶媒中に滴下・濾過しポリエステルイミドを粉末として単離することもできる。またポリエステルイミド粉末を上記重合溶媒に再溶解してポリイミドワニスとすることができる。   When the polyimide imide solution (varnish) is dissolved in the solvent used for the polymerization, the polymerization solution of the polyester imide precursor is appropriately diluted as it is or with the same solvent, and then heated to 150 to 200 ° C. Can be manufactured easily. When insoluble in a solvent, crystalline polyesterimide powder can be obtained as a precipitate. At this time, toluene, xylene or the like may be added in order to azeotropically distill off water or the like which is a by-product of imidization. Further, a base such as γ-picoline can be added as a catalyst. The resulting varnish can be dropped and filtered into a large amount of water or a poor solvent such as methanol to isolate the polyesterimide as a powder. Polyester imide powder can be redissolved in the polymerization solvent to obtain a polyimide varnish.

本発明のポリエステルイミドは、テトラカルボン酸二無水物とジアミンを溶媒中で反応させることにより、ポリエステルイミド前駆体を経由することなく製造することができる。ポリエステルイミド前駆体を経由することなくとは、テトラカルボン酸二無水物とジアミンから一段階で重合することができることを意味する。この際、溶液は、反応促進の観点から、130〜250℃、好ましくは150〜200℃の範囲に保持するとよい。また、ポリエステルイミドが重合に用いた溶媒に不溶な場合、ポリエステルイミドは沈殿として得られ、可溶な場合はポリエステルイミドのワニスとして得られる。重合溶媒は特に限定されないが、使用可能な溶媒として、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド等の非プロトン性溶媒が例として挙げられるが、より好ましくはm−クレゾール等のフェノール系溶媒やNMP等のアミド系溶媒が用いられる。これらの溶媒にイミド化反応の副生成物である水を共沸留去するために、トルエンやキシレン等を添加することができる。またイミド化触媒としてγ―ピコリン等の塩基を添加することができる。得られたワニスを大量の水やメタノール等の貧溶媒中に滴下・濾過しポリエステルイミドを粉末として単離することができる。またポリエステルイミドが溶媒に可溶である場合はその粉末を上記溶媒に再溶解してポリイミドワニスとすることができる。   The polyesterimide of the present invention can be produced without passing through a polyesterimide precursor by reacting tetracarboxylic dianhydride and diamine in a solvent. The term "without going through a polyesterimide precursor" means that polymerization can be performed in one step from tetracarboxylic dianhydride and diamine. At this time, the solution may be maintained in the range of 130 to 250 ° C., preferably 150 to 200 ° C. from the viewpoint of promoting the reaction. When the polyesterimide is insoluble in the solvent used for polymerization, the polyesterimide is obtained as a precipitate, and when it is soluble, it is obtained as a varnish of the polyesterimide. The polymerization solvent is not particularly limited, and examples of usable solvents include aprotic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and dimethyl sulfoxide. More preferably, phenol solvents such as m-cresol and amide solvents such as NMP are used. In order to azeotropically distill off water, which is a by-product of the imidization reaction, to these solvents, toluene, xylene, or the like can be added. A base such as γ-picoline can be added as an imidization catalyst. The resulting varnish can be dropped and filtered into a large amount of poor solvent such as water or methanol to isolate the polyesterimide as a powder. When the polyesterimide is soluble in a solvent, the powder can be redissolved in the solvent to obtain a polyimide varnish.

上記ポリエステルイミドワニスを基板上に塗布し、40〜400℃、好ましくは100〜300℃で乾燥することによりポリエステルイミドフィルムを形成することができる。   A polyesterimide film can be formed by applying the polyesterimide varnish on a substrate and drying at 40 to 400 ° C, preferably 100 to 300 ° C.

上記のように得られたポリエステルイミド粉末を200〜450℃、好ましくは250〜430℃で加熱圧縮することでポリエステルイミドの成型体を作製することができる。   A polyesterimide molded body can be produced by heating and compressing the polyesterimide powder obtained as described above at 200 to 450 ° C., preferably 250 to 430 ° C.

ポリエステルイミド前駆体溶液中にN,N−ジシクロヘキシルカルボジイミドやトリフルオロ無水酢酸等の脱水試薬を添加・撹拌して0〜100℃、好ましくは0〜60℃で反応させることにより、ポリエステルイミドの異性体であるポリエステルイソイミドが生成する。イソイミド化反応は上記脱水試薬を含有する溶液中にポリエステルイミド前駆体フィルムを浸漬することでも可能である。ポリエステルイソイミドワニスを上記と同様な手順で製膜した後、250〜450℃、好ましくは270〜400℃で熱処理することにより、ポリエステルイミドへ容易に変換することができる。   Polyesterimide isomers by adding and stirring a dehydrating reagent such as N, N-dicyclohexylcarbodiimide or trifluoroacetic anhydride in the polyesterimide precursor solution and reacting at 0 to 100 ° C., preferably 0 to 60 ° C. This produces a polyester isoimide. The isoimidization reaction can also be performed by immersing the polyesterimide precursor film in a solution containing the dehydrating reagent. After forming a polyester isoimide varnish in the same procedure as described above, it can be easily converted to a polyesterimide by heat treatment at 250 to 450 ° C., preferably 270 to 400 ° C.

本発明のポリエステルイミド前駆体のワニスを金属箔例えば銅箔上に塗付・乾燥後、上記の条件によりイミド化することで、金属層とポリエステルイミド樹脂層の積層板を得ることができる。更に塩化第二鉄水溶液等のエッチング液を用いて金属層を所望する回路状にエッチングすることで、無接着剤型FPC基板の回路を製造することができる。   The polyester imide precursor varnish of the present invention is applied onto a metal foil such as a copper foil and dried, and then imidized under the above conditions to obtain a laminate of a metal layer and a polyesterimide resin layer. Furthermore, the circuit of the non-adhesive type FPC board can be manufactured by etching the metal layer into a desired circuit shape using an etching solution such as an aqueous ferric chloride solution.

FPC基板の金属箔としては、種々の金属箔を使用することができるが、好ましくは、アルミニウム箔、銅箔、ステンレス箔などを挙げることができる。これらの金属箔は、マット処理、メッキ処理、クロメート処理、アルミニウムアルコラート処理、アルミニウムキレート処理、シランカップリング剤処理などの表面処理を行ってもよい。   Various metal foils can be used as the metal foil of the FPC board, and preferably, an aluminum foil, a copper foil, a stainless steel foil, and the like can be given. These metal foils may be subjected to surface treatment such as mat treatment, plating treatment, chromate treatment, aluminum alcoholate treatment, aluminum chelate treatment, silane coupling agent treatment, and the like.

金属箔の厚みは、特に限定されないが、好ましくは35μm以下、さらに好ましくは6〜18μmである。   Although the thickness of metal foil is not specifically limited, Preferably it is 35 micrometers or less, More preferably, it is 6-18 micrometers.

FPC基板は、以下の様にして製造することができる。まず、本発明のポリエステルイミド前駆体ワニスを金属箔上にブレードコーターや、リップコーター、グラビアコーター等を用い塗工を行い、その後乾燥させてポリエステルイミド前駆体層を形成する。塗工厚は、ポリエステルイミド前駆体ワニスの固形分濃度に影響される。ポリエステルイミド前駆体層を、窒素、ヘリウム、アルゴン等の不活性雰囲気下にて、200〜400℃にて熱イミド化させることによりポリエステルイミド樹脂絶縁層を形成することができる。ポリエステルイミド樹脂絶縁層の厚みは、100μm以下、好ましくは50μm以下、さらに好ましくは3〜25μmである。   The FPC board can be manufactured as follows. First, the polyesterimide precursor varnish of the present invention is coated on a metal foil using a blade coater, a lip coater, a gravure coater, etc., and then dried to form a polyesterimide precursor layer. The coating thickness is affected by the solid content concentration of the polyesterimide precursor varnish. The polyesterimide resin insulating layer can be formed by thermally imidizing the polyesterimide precursor layer at 200 to 400 ° C. in an inert atmosphere such as nitrogen, helium, and argon. The thickness of the polyesterimide resin insulating layer is 100 μm or less, preferably 50 μm or less, and more preferably 3 to 25 μm.

本発明のポリエステルイミドおよびその前駆体中に、必要に応じて酸化安定剤、フィラー、接着促進剤、シランカップリング剤、感光剤、光重合開始剤および増感剤等の添加物を加えることができる。   If necessary, additives such as an oxidation stabilizer, a filler, an adhesion promoter, a silane coupling agent, a photosensitizer, a photopolymerization initiator, and a sensitizer may be added to the polyesterimide of the present invention and its precursor. it can.

<用途>
本発明のポリエステルイミドは低線熱膨張(係数)、高弾性率、低吸水率、低吸湿膨張率、高ガラス転移温度、および高い膜靭性を有するため、積層体及びプリント基板として好適に用いることができる。具体的には、各種電子デバイスにおける電気絶縁膜およびFPC基板、ディスプレー用基板、電子ペーパー用基板、太陽電池用基板等に利用でき、特にFPC基板として有用である。
<Application>
Since the polyesterimide of the present invention has low linear thermal expansion (coefficient), high elastic modulus, low water absorption, low hygroscopic expansion, high glass transition temperature, and high film toughness, it is preferably used as a laminate and a printed circuit board. Can do. Specifically, it can be used for electrical insulating films and FPC substrates, display substrates, electronic paper substrates, solar cell substrates and the like in various electronic devices, and is particularly useful as an FPC substrate.

以下、本発明を実施例により具体的に説明するが、これら実施例に限定されるものではない。なお、以下の例における物性値は、次の方法により測定した。
<赤外吸収スペクトル>
フーリエ変換赤外分光光度計(日本分光社製FT−IR5300)を用い、透過法にてポリエステルイミド前駆体およびポリエステルイミドフィルム(5μm厚)の赤外線吸収スペクトルを測定した。
<固有粘度>
0.5重量%のポリエステルイミド前駆体溶液を、オストワルド粘度計を用いて30℃で測定した。
<ガラス転移温度:Tg>
ブルカーエイエックス社製熱機械分析装置(TMA4000)を用いて動的粘弾性測定により、周波数0.1Hz、昇温速度5℃/分における損失ピークからポリエステルイミドフィルム(20μm厚)のガラス転移温度を求めた。
<線熱膨張(係数):CTE>
ブルカーエイエックス社製熱機械分析装置(TMA4000)を用いて、熱機械分析により、荷重0.5g/膜厚1μm、昇温速度5℃/分における試験片の伸びより、100〜200℃の範囲での平均値としてポリエステルイミドフィルム(20μm厚)の線熱膨張(係数)を求めた。
<5%重量減少温度:Td5
ブルカーエイエックス社製熱重量分析装置(TG−DTA2000)を用いて、窒素中または空気中、昇温速度10℃/分での昇温過程において、ポリエステルイミドフィルム(20μm厚)の初期重量が5%減少した時の温度を測定した。これらの値が高いほど、熱安定性が高いことを表す。
<複屈折:Δn>
アタゴ社製アッベ屈折計(アッベ4T)を用いて、ポリエステルイミドフィルム(20μm厚)に平行な方向(nin)と垂直な方向(nout)の屈折率をアッベ屈折計(ナトリウムランプ使用、波長589nm)で測定し、これらの屈折率の差から複屈折(Δn=nin−nout)を求めた。この値が高いほど、ポリマー鎖の面内配向度が高いことを意味する。
<誘電率:εcal>
アタゴ社製アッベ屈折計(アッベ4T)を用いて、ポリエステルイミドフィルムの平均屈折率〔nav=(2nin+nout)/3〕に基づいて次式:εcal=1.1×nav2により1MHzにおけるポリエステルイミドフィルムの誘電率(εcal)を算出した。
<吸水率>
50℃で24時間真空乾燥したポリエステルイミドフィルム(膜厚20〜30μm)を24℃の水に24時間浸漬した後、余分の水分を拭き取り、重量増加分から吸水率(%)を求めた。殆どの用途においてこの値が低いほど好ましい。
<吸湿膨張率:CHE>
アルバック理工株式会社製熱機械分析装置(TM−9400)及び湿度雰囲気調整装置(HC−1)を用いて、幅3mm、長さ20mm(チャック間長さ15mm)、厚み20〜25μm、のフィルムを23℃、荷重5gにて湿度10%RHから80%RHに変化させた際の試験片の伸びから10%RH〜80%RHにおける平均値としてポリエステルイミドフィルムの吸湿膨張率(ppm/%RH)を求めた。
<弾性率、破断伸び>
東洋ボールドウィン社製引張試験機(テンシロンUTM−2)を用いて、ポリエステルイミドフィルム(20μm厚)の試験片(3mm×30mm)について引張試験(延伸速度:8mm/分)を実施し、応力―歪曲線の初期の勾配から弾性率を、フィルムが破断した時の伸び率から破断伸び(%)を求めた。破断伸びが高いほどフィルムの靭性が高いことを意味する。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, it is not limited to these Examples. The physical property values in the following examples were measured by the following methods.
<Infrared absorption spectrum>
Using a Fourier transform infrared spectrophotometer (FT-IR5300 manufactured by JASCO Corporation), infrared absorption spectra of the polyesterimide precursor and the polyesterimide film (5 μm thickness) were measured by a transmission method.
<Intrinsic viscosity>
A 0.5 wt% polyesterimide precursor solution was measured at 30 ° C. using an Ostwald viscometer.
<Glass transition temperature: Tg>
By using a thermomechanical analyzer (TMA4000) manufactured by Bruker Ax, the glass transition temperature of the polyesterimide film (thickness: 20 μm) is determined from the loss peak at a frequency of 0.1 Hz and a temperature increase rate of 5 ° C./min by dynamic viscoelasticity measurement. Asked.
<Linear thermal expansion (coefficient): CTE>
The range of 100 to 200 ° C. from the elongation of the test piece at a load of 0.5 g / film thickness of 1 μm and a heating rate of 5 ° C./min by thermomechanical analysis using a Bruker Ax thermomechanical analyzer (TMA4000). The linear thermal expansion (coefficient) of the polyesterimide film (thickness of 20 μm) was determined as an average value.
<5% weight loss temperature: Td 5 >
Using a thermogravimetric analyzer (TG-DTA2000) manufactured by Bruker Ax, the initial weight of the polyesterimide film (thickness 20 μm) is 5 in the temperature rising process in nitrogen or air at a temperature rising rate of 10 ° C./min. The temperature at the time of% reduction was measured. Higher values indicate higher thermal stability.
<Birefringence: Δn>
Using an Abbe refractometer (Abbe 4T) manufactured by Atago Co., Ltd., the Abbe refractometer (with a sodium lamp, wavelength 589 nm) is used to determine the refractive index in the direction (nin) parallel to the polyesterimide film (20 μm thickness) and the direction (nout). The birefringence (Δn = nin−nout) was determined from the difference in refractive index. The higher this value, the higher the in-plane orientation degree of the polymer chain.
<Dielectric constant: εcal>
Using an Abbe refractometer (Abbe 4T) manufactured by Atago Co., based on the average refractive index [nav = (2nin + nout) / 3] of the polyesterimide film, a polyesterimide film at 1 MHz according to the following formula: εcal = 1.1 × nav 2 The dielectric constant (εcal) of was calculated.
<Water absorption rate>
A polyesterimide film (film thickness: 20 to 30 μm) vacuum-dried at 50 ° C. for 24 hours was immersed in water at 24 ° C. for 24 hours. A lower value is preferred for most applications.
<Hygroscopic expansion coefficient: CHE>
A film having a width of 3 mm, a length of 20 mm (length between chucks of 15 mm), and a thickness of 20 to 25 μm was obtained using a thermomechanical analyzer (TM-9400) and a humidity atmosphere adjusting device (HC-1) manufactured by ULVAC-RIKO. The hygroscopic expansion coefficient (ppm /% RH) of the polyesterimide film as an average value from 10% RH to 80% RH from the elongation of the test piece when the humidity is changed from 10% RH to 80% RH at a load of 5 g at 23 ° C. Asked.
<Elastic modulus, elongation at break>
Using a tensile tester (Tensilon UTM-2) manufactured by Toyo Baldwin Co., Ltd., a tensile test (stretching speed: 8 mm / min) was performed on a test piece (3 mm × 30 mm) of a polyesterimide film (20 μm thick), and stress-distortion The elastic modulus was determined from the initial gradient of the line, and the elongation at break (%) was determined from the elongation when the film was broken. Higher elongation at break means higher film toughness.

[実施例1]
<ポリエステルイミド前駆体の重合、イミド化およびポリエステルイミドフィルム特性の評価>
よく乾燥した攪拌機付密閉反応容器中に式(6)で表されるエステル基含有ジアミン(以下BPTPと称する)3mmolを入れ、モレキュラーシーブス4Aで十分に脱水したN−メチル−2−ピロリドン31mLに溶解した後、この溶液に式(7)で表されるエステル基含有テトラカルボン酸二無水物(以下TAHQと称する)の粉末3mmolを徐々に加えた。10分後、溶液粘度が急激に増加した。更に室温で24時間撹拌し、透明、均一で粘稠なポリエステルイミド前駆体溶液を得た。
[Example 1]
<Polymerization of polyesterimide precursor, imidization and evaluation of polyesterimide film characteristics>
3 mmol of ester group-containing diamine represented by formula (6) (hereinafter referred to as BPTP) is placed in a well-closed sealed reaction vessel with a stirrer, and dissolved in 31 mL of N-methyl-2-pyrrolidone sufficiently dehydrated with Molecular Sieves 4A. After that, 3 mmol of an ester group-containing tetracarboxylic dianhydride (hereinafter referred to as TAHQ) powder represented by the formula (7) was gradually added to this solution. After 10 minutes, the solution viscosity increased rapidly. Furthermore, the mixture was stirred at room temperature for 24 hours to obtain a transparent, uniform and viscous polyesterimide precursor solution.

このポリエステルイミド前駆体溶液は室温および−20℃で一ヶ月間放置しても沈澱、ゲル化は全く起こらず、高い溶液貯蔵安定を示した。N−メチル−2−ピロリドン中、30℃、0.5重量%の濃度でオストワルド粘度計にて測定したポリエステルイミド前駆体の固有粘度は8.61dL/gであった。   Even if this polyesterimide precursor solution was allowed to stand at room temperature and −20 ° C. for one month, no precipitation or gelation occurred, and the solution storage stability was high. The intrinsic viscosity of the polyesterimide precursor measured with an Ostwald viscometer in N-methyl-2-pyrrolidone at a concentration of 0.5% by weight at 30 ° C. was 8.61 dL / g.

このポリエステルイミド前駆体溶液をガラス基板に塗布し、80℃で3時間乾燥して得たポリエステルイミド前駆体フィルムを基板上、減圧下250℃で1時間更に300℃で1時間熱イミド化を行った後、残留応力を除去するために基板から剥がして350℃で1時間、熱処理を行い、膜厚20μmの淡黄色の透明なポリエステルイミドフィルムを得た。このポリエステルイミドフィルムは180°折曲げ試験によっても破断せず、可撓性を示した。また如何なる有機溶媒に対しても全く溶解性を示さなかった。このポリエステルイミドフィルムについて動的粘弾性測定を行った結果、470℃までには明瞭なガラス転移点(動的粘弾性曲線における損失ピークより決定)は観測されず、熱可塑性は全く見られなかった。このようにこのポリエステルイミドフィルムは極めて高い寸法安定性を有している。   The polyesterimide precursor film obtained by applying this polyesterimide precursor solution to a glass substrate and drying at 80 ° C. for 3 hours is subjected to thermal imidization on the substrate at 250 ° C. for 1 hour and at 300 ° C. for 1 hour under reduced pressure. Then, in order to remove the residual stress, it was peeled from the substrate and heat-treated at 350 ° C. for 1 hour to obtain a pale yellow transparent polyesterimide film having a thickness of 20 μm. This polyesterimide film did not break even in the 180 ° bending test and showed flexibility. Moreover, it did not show any solubility in any organic solvent. As a result of dynamic viscoelasticity measurement of this polyesterimide film, no clear glass transition point (determined from the loss peak in the dynamic viscoelastic curve) was observed by 470 ° C., and no thermoplasticity was observed. . Thus, this polyesterimide film has extremely high dimensional stability.

また線熱膨張(係数)(100℃から200℃の間の平均値)は−5.4ppm/Kと極めて低い線熱膨張(係数)を示した。これは、非常に大きな複屈折値(Δn=0.186)から判断して、ポリエステルイミド鎖の高度な面内配向によるものと考えられる。平均屈折率より見積もった誘電率は3.12であり、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とp−フェニレンジアミンからなる代表的な全芳香族低熱膨張ポリイミドの誘電率(3.5)より低い値であった。この結果はポリイミド骨格中にエステル基を導入した効果である。   Further, the linear thermal expansion (coefficient) (average value between 100 ° C. and 200 ° C.) showed an extremely low linear thermal expansion (coefficient) of −5.4 ppm / K. Judging from the very large birefringence value (Δn = 0.186), this is considered to be due to the high in-plane orientation of the polyesterimide chain. The dielectric constant estimated from the average refractive index is 3.12. The dielectric constant of a typical wholly aromatic low thermal expansion polyimide composed of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine. The value was lower than the rate (3.5). This result is the effect of introducing an ester group into the polyimide skeleton.

また5%重量減少温度は窒素中で507℃、空気中で501℃であった。また、吸水率0.44%、吸湿膨張率7.6ppm/%RHと極めて低く、引張弾性率(ヤング率)7.37GPa、破断強度0.176GPa、破断伸び4.5%と優れた機械的特性を示した。このようにこのポリエステルイミドは極めて低い線熱膨張(係数)、優れた寸法安定性、高い熱安定性、比較的低い誘電率および膜靭性に加え、低吸水率、低吸湿膨張率を達成することができた。表1に物性値をまとめる。得られたポリエステルイミド前駆体およびポリエステルイミドフィルムの赤外線吸収スペクトルを図1、図2にそれぞれ示す。   The 5% weight loss temperature was 507 ° C. in nitrogen and 501 ° C. in air. In addition, it has an extremely low water absorption rate of 0.44%, a hygroscopic expansion rate of 7.6 ppm /% RH, a tensile elastic modulus (Young's modulus) of 7.37 GPa, a breaking strength of 0.176 GPa, and a breaking elongation of 4.5%. The characteristics are shown. Thus, this polyesterimide achieves low water absorption and low hygroscopic expansion in addition to extremely low linear thermal expansion (coefficient), excellent dimensional stability, high thermal stability, relatively low dielectric constant and film toughness. I was able to. Table 1 summarizes the physical property values. Infrared absorption spectra of the obtained polyesterimide precursor and polyesterimide film are shown in FIGS. 1 and 2, respectively.

[実施例2]
テトラカルボン酸二無水物として、TAHQの代わりに式(8)で表されるエステル基含有テトラカルボン酸二無水物を用いた以外は実施例1に記載した方法に従って、ポリエステルイミド前駆体を重合し、製膜、イミド化してポリエステルイミドフィルムを作製し、同様に物性評価した。物性値を表1に示す。実施例1に記載のポリエステルイミドと同様に、極めて低い線熱膨張(係数)、優れた寸法安定性、高い熱安定性、比較的低い誘電率および十分な膜靭性に加え、低吸水率、低吸湿膨張率を達成することができた。得られたポリエステルイミド前駆体およびポリエステルイミドフィルムの赤外線吸収スペクトルを図3、図4にそれぞれ示す。
[Example 2]
A polyesterimide precursor was polymerized according to the method described in Example 1 except that an ester group-containing tetracarboxylic dianhydride represented by the formula (8) was used instead of TAHQ as the tetracarboxylic dianhydride. A polyesterimide film was prepared by film formation and imidization, and physical properties were similarly evaluated. The physical property values are shown in Table 1. Similar to the polyesterimide described in Example 1, in addition to extremely low linear thermal expansion (coefficient), excellent dimensional stability, high thermal stability, relatively low dielectric constant and sufficient film toughness, low water absorption, low The hygroscopic expansion rate could be achieved. Infrared absorption spectra of the obtained polyesterimide precursor and polyesterimide film are shown in FIGS. 3 and 4, respectively.

[実施例3]
BPTPの他に共重合成分として4,4’−オキシジアニリンを併用した以外は実施例1に記載した方法に従って、ポリエステルイミド前駆体を重合し、製膜、イミド化してポリエステルイミドフィルムを作製し、同様に物性評価した。共重合組成(モル比)はBPTP:4,4’−オキシジアニリン=70:30である。物性値を表1に示す。実施例1より銅に近い線熱膨張(係数)、優れた寸法安定性、高い熱安定性、比較的低い誘電率および高い膜靭性に加え、低吸水率、低吸湿膨張率を達成することができた。
[Example 3]
According to the method described in Example 1 except that 4,4′-oxydianiline was used as a copolymerization component in addition to BPTP, a polyesterimide precursor was polymerized to form a polyesterimide film by film formation and imidization. The physical properties were similarly evaluated. The copolymer composition (molar ratio) is BPTP: 4,4′-oxydianiline = 70: 30. The physical property values are shown in Table 1. In addition to linear thermal expansion (coefficient) closer to copper than in Example 1, excellent dimensional stability, high thermal stability, relatively low dielectric constant and high film toughness, low water absorption and low hygroscopic expansion can be achieved. did it.

[実施例4]
BPTPの他に共重合成分として4,4’−オキシジアニリンを併用した以外は実施例2に記載した方法に従って、ポリエステルイミド前駆体を重合し、製膜、イミド化してポリエステルイミドフィルムを作製し、同様に物性評価した。共重合組成(モル比)はBPTP:4,4’−オキシジアニリン=70:30である。物性値を表1に示す。実施例2より銅に近い線熱膨張(係数)、優れた寸法安定性、高い熱安定性、比較的低い誘電率および高い膜靭性に加え、低吸水率、低吸湿膨張率を達成することができた。
[比較例1]
ジアミンとして、BPTPの代わりに式(5)で表されるジアミン即ち4−アミノフェニル−4’−アミノベンゾエートを用いた以外は実施例1に記載した方法に従って、ポリエステルイミド前駆体を重合し、製膜、イミド化してポリエステルイミドフィルムを作製し、同様に物性評価した。物性値を表1に示す。実施例1に記載のポリエステルイミドと同様に、極めて低い線熱膨張(係数)、高い寸法安定性、高い熱安定性、および十分な膜靭性を示したが、誘電率は3.26、吸水率は0.8%、吸湿膨張率は10ppm/%RHと、共に実施例1に記載のポリエステルイミドフィルムより高い値であった。これはジアミン成分として、BPTPよりも分子中のエステル基および芳香環が少ないエステル含有ジアミンを用いたためである。
[Example 4]
According to the method described in Example 2 except that 4,4′-oxydianiline was used as a copolymerization component in addition to BPTP, a polyesterimide precursor was polymerized to form a polyesterimide film by film formation and imidization. The physical properties were similarly evaluated. The copolymer composition (molar ratio) is BPTP: 4,4′-oxydianiline = 70: 30. The physical property values are shown in Table 1. In addition to the linear thermal expansion (coefficient) closer to copper than Example 2, excellent dimensional stability, high thermal stability, relatively low dielectric constant and high film toughness, low water absorption and low hygroscopic expansion can be achieved. did it.
[Comparative Example 1]
A polyesterimide precursor was polymerized according to the method described in Example 1 except that a diamine represented by formula (5), that is, 4-aminophenyl-4′-aminobenzoate, was used as the diamine instead of BPTP. The film was imidized to produce a polyesterimide film, and the physical properties were similarly evaluated. The physical property values are shown in Table 1. Similar to the polyesterimide described in Example 1, it exhibited very low linear thermal expansion (coefficient), high dimensional stability, high thermal stability, and sufficient film toughness, but had a dielectric constant of 3.26 and a water absorption rate. 0.8% and the hygroscopic expansion coefficient were 10 ppm /% RH, both values higher than the polyesterimide film described in Example 1. This is because an ester-containing diamine having fewer ester groups and aromatic rings in the molecule than BPTP is used as the diamine component.

[比較例2]
BPTPの代わりに4,4’−ジアミノベンズアニリドを用いた以外は実施例1に記載した方法に従って、ポリアミドイミド前駆体を重合した。N,N−ジメチルアセトアミド中、30℃、0.5重量%の濃度でオストワルド粘度計にて測定したポリイミド前駆体の固有粘度は7.16dL/gと極めて高重合体であった。実施例1に記載した方法に従って、製膜・イミド化を行った。実施例1〜5に記載のポリエステルイミドと同様に、極めて低い線熱膨張(係数)、高い寸法安定性、高い熱安定性、および十分な膜靭性を示したが、吸水率は3.4%、吸湿膨張率は25ppm/%RHと高い値であった。これはこのポリアミドイミドがエステル基の代わりにより高分極性のアミド基を含有しているためである。フィルム物性を表1に示す。
[Comparative Example 2]
The polyamideimide precursor was polymerized according to the method described in Example 1 except that 4,4′-diaminobenzanilide was used instead of BPTP. The intrinsic viscosity of the polyimide precursor measured with an Ostwald viscometer in N, N-dimethylacetamide at a concentration of 0.5% by weight at 30 ° C. was 7.16 dL / g, which was a very high polymer. According to the method described in Example 1, film formation and imidization were performed. Similar to the polyester imides described in Examples 1 to 5, it showed very low linear thermal expansion (coefficient), high dimensional stability, high thermal stability, and sufficient film toughness, but the water absorption was 3.4%. The hygroscopic expansion coefficient was a high value of 25 ppm /% RH. This is because this polyamideimide contains a highly polarizable amide group in place of the ester group. Table 1 shows the film properties.

Figure 2008001876
Figure 2008001876

本発明のポリエステルイミドは、フレキシブルプリント配線(FPC)基板、テープオートメーションボンディング(TAB)用基材、各種電子デバイスにおける電気絶縁膜および液晶ディスプレー用基板、有機エレクトロルミネッセンス(EL)ディスプレー用基板、電子ペーパー用基板、太陽電池用基板、特にFPC基板として好適に利用できる。   The polyesterimide of the present invention includes a flexible printed wiring (FPC) substrate, a substrate for tape automation bonding (TAB), an electric insulating film and a liquid crystal display substrate in various electronic devices, an organic electroluminescence (EL) display substrate, and electronic paper. It can be suitably used as an industrial substrate, a solar cell substrate, particularly an FPC substrate.

実施例1に記載のポリエステルイミド前駆体フィルムの赤外線吸収スペクトルである。2 is an infrared absorption spectrum of a polyesterimide precursor film described in Example 1. 実施例1に記載のポリエステルイミドフィルムの赤外線吸収スペクトルである。2 is an infrared absorption spectrum of the polyesterimide film described in Example 1. 実施例2に記載のポリエステルイミド前駆体フィルムの赤外線吸収スペクトルである。2 is an infrared absorption spectrum of a polyesterimide precursor film described in Example 2. 実施例2に記載のポリエステルイミドフィルムの赤外線吸収スペクトルである。2 is an infrared absorption spectrum of a polyesterimide film described in Example 2.

Claims (7)

一般式(1)で表される反復単位を有するポリエステルイミド前駆体であって、
Figure 2008001876
ここで、Aは、下記式(2)および/または(3)で表される4価の芳香族基を表し、Aに結合する2つのカルボキシル基はシス配置に限定されず、シスとトランス配置が混在したものであるポリエステルイミド前駆体。
Figure 2008001876
Figure 2008001876
A polyesterimide precursor having a repeating unit represented by the general formula (1),
Figure 2008001876
Here, A represents a tetravalent aromatic group represented by the following formula (2) and / or (3), and the two carboxyl groups bonded to A are not limited to the cis configuration, and the cis and trans configurations Polyesterimide precursor that is a mixture of
Figure 2008001876
Figure 2008001876
固有粘度が0.1〜15.0dL/gの範囲である、請求項1に記載のポリエステルイミド前駆体。   The polyesterimide precursor according to claim 1, wherein the intrinsic viscosity is in the range of 0.1 to 15.0 dL / g. 一般式(4)で表される反復単位を有するポリエステルイミドであって、
Figure 2008001876
ここで、Aは、請求項1中の式(2)および/または(3)で表される4価の芳香族基を表すポリエステルイミド。
A polyesterimide having a repeating unit represented by the general formula (4),
Figure 2008001876
Here, A is a polyesterimide representing a tetravalent aromatic group represented by the formula (2) and / or (3) in claim 1.
請求項1または請求項2に記載のポリエステルイミド前駆体を加熱あるいは脱水試薬を用いて環化反応(イミド化)させることを特徴とする、請求項3に記載のポリエステルイミドの製造方法。   The method for producing a polyesterimide according to claim 3, wherein the polyesterimide precursor according to claim 1 or 2 is subjected to a cyclization reaction (imidation) using heating or a dehydrating reagent. 請求項1または請求項2に記載のポリエステルイミド前駆体を経由することなしに、ポリエステルイミド前駆体の原料である、テトラカルボン酸二無水物とジアミンを溶媒中、高温下で重縮合反応することを特徴とする、請求項3に記載のポリエステルイミドの製造方法。   A polycondensation reaction between a tetracarboxylic dianhydride and a diamine, which are raw materials of a polyesterimide precursor, in a solvent at a high temperature without going through the polyesterimide precursor according to claim 1 or 2. The manufacturing method of the polyesterimide of Claim 3 characterized by these. 請求項1または請求項2に記載のポリエステルイミド前駆体を主成分として含有するワニスを金属箔上に塗布、乾燥後、加熱あるいは脱水試薬を用いて環化反応(イミド化)させることを特徴とする、金属層と請求項3に記載のポリエステルイミド樹脂層の積層板の製造方法。   A varnish containing the polyesterimide precursor according to claim 1 or 2 as a main component is coated on a metal foil, dried, and then subjected to a cyclization reaction (imidation) using heating or a dehydrating reagent. The manufacturing method of the laminated board of a metal layer and the polyesterimide resin layer of Claim 3. 請求項6に記載の積層板の金属層をエッチングすることを特徴とするフレキシブルプリント配線(FPC)基板の製造方法。


A method for manufacturing a flexible printed wiring (FPC) board, comprising etching a metal layer of the laminated board according to claim 6.


JP2006243800A 2006-05-23 2006-09-08 Polyesterimide and method for producing the same Pending JP2008001876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006243800A JP2008001876A (en) 2006-05-23 2006-09-08 Polyesterimide and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006143103 2006-05-23
JP2006243800A JP2008001876A (en) 2006-05-23 2006-09-08 Polyesterimide and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008001876A true JP2008001876A (en) 2008-01-10

Family

ID=39006517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006243800A Pending JP2008001876A (en) 2006-05-23 2006-09-08 Polyesterimide and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008001876A (en)

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001877A (en) * 2006-05-23 2008-01-10 Asahi Kasei Corp Polyesterimide and method for producing the same
JP2010070721A (en) * 2008-09-22 2010-04-02 Sekisui Chem Co Ltd Polyimide and method of producing the same
JP2010077184A (en) * 2008-09-24 2010-04-08 Sekisui Chem Co Ltd Polyimide and method for producing the same
CN102317352A (en) * 2009-02-12 2012-01-11 本州化学工业株式会社 Ester group-containing tetracarboxylic acid dianhydride, polyester polyimide precursor, polyesterimide, and methods for producing same
US8178621B2 (en) 2009-10-29 2012-05-15 Samsung Electronics Co., Ltd. Composition for crosslinkable polyimide precusor, method of manufacturing cross-linked polyimide, and polyimide film
US8304160B2 (en) 2009-04-14 2012-11-06 Hitachi Chemical Dupont Microsystems, Ltd. Photosensitive resin composition and circuit formation substrate using the same
JP2013166929A (en) * 2012-01-20 2013-08-29 Ube Industries Ltd Polyimide precursor and polyimide
KR20180096151A (en) * 2017-02-20 2018-08-29 한국과학기술연구원 Diamine compound having improved transparency, light transmittance and heat resistance, polymer prepared therewith and polyimide film containing the polymer
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10201382B2 (en) 2009-10-09 2019-02-12 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10251664B2 (en) 2016-01-15 2019-04-09 Ethicon Llc Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
US10278721B2 (en) 2010-07-22 2019-05-07 Ethicon Llc Electrosurgical instrument with separate closure and cutting members
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10299810B2 (en) 2010-02-11 2019-05-28 Ethicon Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10335182B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Surgical instruments with articulating shafts
US10335183B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Feedback devices for surgical control systems
US10335614B2 (en) 2008-08-06 2019-07-02 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10349999B2 (en) 2014-03-31 2019-07-16 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10433900B2 (en) 2011-07-22 2019-10-08 Ethicon Llc Surgical instruments for tensioning tissue
US10441310B2 (en) 2012-06-29 2019-10-15 Ethicon Llc Surgical instruments with curved section
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10517627B2 (en) 2012-04-09 2019-12-31 Ethicon Llc Switch arrangements for ultrasonic surgical instruments
US10524872B2 (en) 2012-06-29 2020-01-07 Ethicon Llc Closed feedback control for electrosurgical device
US10524854B2 (en) 2010-07-23 2020-01-07 Ethicon Llc Surgical instrument
US10543008B2 (en) 2012-06-29 2020-01-28 Ethicon Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
CN110857332A (en) * 2018-08-22 2020-03-03 臻鼎科技股份有限公司 Polymer resin, polymer resin composition and copper-clad plate
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
KR20200050639A (en) * 2018-11-02 2020-05-12 주식회사 엘지화학 Polyimide film for flexible substrate
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10688321B2 (en) 2009-07-15 2020-06-23 Ethicon Llc Ultrasonic surgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10729494B2 (en) 2012-02-10 2020-08-04 Ethicon Llc Robotically controlled surgical instrument
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10779879B2 (en) 2014-03-18 2020-09-22 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US10779845B2 (en) 2012-06-29 2020-09-22 Ethicon Llc Ultrasonic surgical instruments with distally positioned transducers
WO2020226118A1 (en) * 2019-05-07 2020-11-12 積水化学工業株式会社 Multifunctional active ester compound, resin composition, cured product and buildup film
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US10856929B2 (en) 2014-01-07 2020-12-08 Ethicon Llc Harvesting energy from a surgical generator
US10881449B2 (en) 2012-09-28 2021-01-05 Ethicon Llc Multi-function bi-polar forceps
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10912603B2 (en) 2013-11-08 2021-02-09 Ethicon Llc Electrosurgical devices
US10912580B2 (en) 2013-12-16 2021-02-09 Ethicon Llc Medical device
US10925659B2 (en) 2013-09-13 2021-02-23 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US10952788B2 (en) 2015-06-30 2021-03-23 Ethicon Llc Surgical instrument with user adaptable algorithms
US10987123B2 (en) 2012-06-28 2021-04-27 Ethicon Llc Surgical instruments with articulating shafts
US10993763B2 (en) 2012-06-29 2021-05-04 Ethicon Llc Lockout mechanism for use with robotic electrosurgical device
JP2021074894A (en) * 2019-11-05 2021-05-20 株式会社カネカ Multilayer polyimide film
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11179173B2 (en) 2012-10-22 2021-11-23 Cilag Gmbh International Surgical instrument
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11311326B2 (en) 2015-02-06 2022-04-26 Cilag Gmbh International Electrosurgical instrument with rotation and articulation mechanisms
US11324527B2 (en) 2012-11-15 2022-05-10 Cilag Gmbh International Ultrasonic and electrosurgical devices
US11337747B2 (en) 2014-04-15 2022-05-24 Cilag Gmbh International Software algorithms for electrosurgical instruments
US11399855B2 (en) 2014-03-27 2022-08-02 Cilag Gmbh International Electrosurgical devices
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62236732A (en) * 1986-04-08 1987-10-16 住友ベークライト株式会社 Manufacture of substrate for flexible printed circuit
JPH0977871A (en) * 1995-09-11 1997-03-25 Japan Synthetic Rubber Co Ltd Crystalline polyimide
WO2002067641A1 (en) * 2001-02-21 2002-08-29 Kaneka Corporation Wiring board, process for producing the same, polyimide film for use in the wiring board, and etchant for use in the process
JP2003119282A (en) * 2001-10-10 2003-04-23 Kanegafuchi Chem Ind Co Ltd Method for producing thermoplastic polyimide
JP2004285364A (en) * 2004-06-07 2004-10-14 Kaneka Corp Base film for flexible printed circuit board, polyimide film usable for carrier tape for tab
JP2007246709A (en) * 2006-03-16 2007-09-27 Nippon Steel Chem Co Ltd Polyimide resin and polyimide film
JP2008001877A (en) * 2006-05-23 2008-01-10 Asahi Kasei Corp Polyesterimide and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62236732A (en) * 1986-04-08 1987-10-16 住友ベークライト株式会社 Manufacture of substrate for flexible printed circuit
JPH0977871A (en) * 1995-09-11 1997-03-25 Japan Synthetic Rubber Co Ltd Crystalline polyimide
WO2002067641A1 (en) * 2001-02-21 2002-08-29 Kaneka Corporation Wiring board, process for producing the same, polyimide film for use in the wiring board, and etchant for use in the process
JP2003119282A (en) * 2001-10-10 2003-04-23 Kanegafuchi Chem Ind Co Ltd Method for producing thermoplastic polyimide
JP2004285364A (en) * 2004-06-07 2004-10-14 Kaneka Corp Base film for flexible printed circuit board, polyimide film usable for carrier tape for tab
JP2007246709A (en) * 2006-03-16 2007-09-27 Nippon Steel Chem Co Ltd Polyimide resin and polyimide film
JP2008001877A (en) * 2006-05-23 2008-01-10 Asahi Kasei Corp Polyesterimide and method for producing the same

Cited By (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
JP2008001877A (en) * 2006-05-23 2008-01-10 Asahi Kasei Corp Polyesterimide and method for producing the same
US11890491B2 (en) 2008-08-06 2024-02-06 Cilag Gmbh International Devices and techniques for cutting and coagulating tissue
US10335614B2 (en) 2008-08-06 2019-07-02 Ethicon Llc Devices and techniques for cutting and coagulating tissue
JP2010070721A (en) * 2008-09-22 2010-04-02 Sekisui Chem Co Ltd Polyimide and method of producing the same
JP2010077184A (en) * 2008-09-24 2010-04-08 Sekisui Chem Co Ltd Polyimide and method for producing the same
CN102317352A (en) * 2009-02-12 2012-01-11 本州化学工业株式会社 Ester group-containing tetracarboxylic acid dianhydride, polyester polyimide precursor, polyesterimide, and methods for producing same
CN102317352B (en) * 2009-02-12 2014-04-09 本州化学工业株式会社 Ester group-containing tetracarboxylic acid dianhydride, polyester polyimide precursor, polyesterimide, and methods for producing same
US8614051B2 (en) 2009-04-14 2013-12-24 Hitachi Chemical Dupont Microsystems, Ltd. Photosensitive resin composition and circuit formation substrate using the same
US8304160B2 (en) 2009-04-14 2012-11-06 Hitachi Chemical Dupont Microsystems, Ltd. Photosensitive resin composition and circuit formation substrate using the same
US11717706B2 (en) 2009-07-15 2023-08-08 Cilag Gmbh International Ultrasonic surgical instruments
US10688321B2 (en) 2009-07-15 2020-06-23 Ethicon Llc Ultrasonic surgical instruments
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10201382B2 (en) 2009-10-09 2019-02-12 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11871982B2 (en) 2009-10-09 2024-01-16 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10265117B2 (en) 2009-10-09 2019-04-23 Ethicon Llc Surgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8178621B2 (en) 2009-10-29 2012-05-15 Samsung Electronics Co., Ltd. Composition for crosslinkable polyimide precusor, method of manufacturing cross-linked polyimide, and polyimide film
US11382642B2 (en) 2010-02-11 2022-07-12 Cilag Gmbh International Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US10299810B2 (en) 2010-02-11 2019-05-28 Ethicon Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US10278721B2 (en) 2010-07-22 2019-05-07 Ethicon Llc Electrosurgical instrument with separate closure and cutting members
US10524854B2 (en) 2010-07-23 2020-01-07 Ethicon Llc Surgical instrument
US10433900B2 (en) 2011-07-22 2019-10-08 Ethicon Llc Surgical instruments for tensioning tissue
JP2013166929A (en) * 2012-01-20 2013-08-29 Ube Industries Ltd Polyimide precursor and polyimide
US10729494B2 (en) 2012-02-10 2020-08-04 Ethicon Llc Robotically controlled surgical instrument
US11419626B2 (en) 2012-04-09 2022-08-23 Cilag Gmbh International Switch arrangements for ultrasonic surgical instruments
US10517627B2 (en) 2012-04-09 2019-12-31 Ethicon Llc Switch arrangements for ultrasonic surgical instruments
US10987123B2 (en) 2012-06-28 2021-04-27 Ethicon Llc Surgical instruments with articulating shafts
US10966747B2 (en) 2012-06-29 2021-04-06 Ethicon Llc Haptic feedback devices for surgical robot
US10779845B2 (en) 2012-06-29 2020-09-22 Ethicon Llc Ultrasonic surgical instruments with distally positioned transducers
US10335183B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Feedback devices for surgical control systems
US11096752B2 (en) 2012-06-29 2021-08-24 Cilag Gmbh International Closed feedback control for electrosurgical device
US10441310B2 (en) 2012-06-29 2019-10-15 Ethicon Llc Surgical instruments with curved section
US10524872B2 (en) 2012-06-29 2020-01-07 Ethicon Llc Closed feedback control for electrosurgical device
US11871955B2 (en) 2012-06-29 2024-01-16 Cilag Gmbh International Surgical instruments with articulating shafts
US11583306B2 (en) 2012-06-29 2023-02-21 Cilag Gmbh International Surgical instruments with articulating shafts
US10543008B2 (en) 2012-06-29 2020-01-28 Ethicon Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US10335182B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Surgical instruments with articulating shafts
US11717311B2 (en) 2012-06-29 2023-08-08 Cilag Gmbh International Surgical instruments with articulating shafts
US11426191B2 (en) 2012-06-29 2022-08-30 Cilag Gmbh International Ultrasonic surgical instruments with distally positioned jaw assemblies
US10993763B2 (en) 2012-06-29 2021-05-04 Ethicon Llc Lockout mechanism for use with robotic electrosurgical device
US10881449B2 (en) 2012-09-28 2021-01-05 Ethicon Llc Multi-function bi-polar forceps
US11179173B2 (en) 2012-10-22 2021-11-23 Cilag Gmbh International Surgical instrument
US11324527B2 (en) 2012-11-15 2022-05-10 Cilag Gmbh International Ultrasonic and electrosurgical devices
US10925659B2 (en) 2013-09-13 2021-02-23 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US10912603B2 (en) 2013-11-08 2021-02-09 Ethicon Llc Electrosurgical devices
US10912580B2 (en) 2013-12-16 2021-02-09 Ethicon Llc Medical device
US10856929B2 (en) 2014-01-07 2020-12-08 Ethicon Llc Harvesting energy from a surgical generator
US10932847B2 (en) 2014-03-18 2021-03-02 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US10779879B2 (en) 2014-03-18 2020-09-22 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US11399855B2 (en) 2014-03-27 2022-08-02 Cilag Gmbh International Electrosurgical devices
US10349999B2 (en) 2014-03-31 2019-07-16 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US11471209B2 (en) 2014-03-31 2022-10-18 Cilag Gmbh International Controlling impedance rise in electrosurgical medical devices
US11337747B2 (en) 2014-04-15 2022-05-24 Cilag Gmbh International Software algorithms for electrosurgical instruments
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US11413060B2 (en) 2014-07-31 2022-08-16 Cilag Gmbh International Actuation mechanisms and load adjustment assemblies for surgical instruments
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US11311326B2 (en) 2015-02-06 2022-04-26 Cilag Gmbh International Electrosurgical instrument with rotation and articulation mechanisms
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10952788B2 (en) 2015-06-30 2021-03-23 Ethicon Llc Surgical instrument with user adaptable algorithms
US11903634B2 (en) 2015-06-30 2024-02-20 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10687884B2 (en) 2015-09-30 2020-06-23 Ethicon Llc Circuits for supplying isolated direct current (DC) voltage to surgical instruments
US11033322B2 (en) 2015-09-30 2021-06-15 Ethicon Llc Circuit topologies for combined generator
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10624691B2 (en) 2015-09-30 2020-04-21 Ethicon Llc Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments
US10610286B2 (en) 2015-09-30 2020-04-07 Ethicon Llc Techniques for circuit topologies for combined generator
US10751108B2 (en) 2015-09-30 2020-08-25 Ethicon Llc Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms
US10736685B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US11766287B2 (en) 2015-09-30 2023-09-26 Cilag Gmbh International Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments
US11559347B2 (en) 2015-09-30 2023-01-24 Cilag Gmbh International Techniques for circuit topologies for combined generator
US11666375B2 (en) 2015-10-16 2023-06-06 Cilag Gmbh International Electrode wiping surgical device
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11751929B2 (en) 2016-01-15 2023-09-12 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11134978B2 (en) 2016-01-15 2021-10-05 Cilag Gmbh International Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly
US10299821B2 (en) 2016-01-15 2019-05-28 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limit profile
US11058448B2 (en) 2016-01-15 2021-07-13 Cilag Gmbh International Modular battery powered handheld surgical instrument with multistage generator circuits
US11974772B2 (en) 2016-01-15 2024-05-07 Cilag GmbH Intemational Modular battery powered handheld surgical instrument with variable motor control limits
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11229450B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with motor drive
US11051840B2 (en) 2016-01-15 2021-07-06 Ethicon Llc Modular battery powered handheld surgical instrument with reusable asymmetric handle housing
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10779849B2 (en) 2016-01-15 2020-09-22 Ethicon Llc Modular battery powered handheld surgical instrument with voltage sag resistant battery pack
US11896280B2 (en) 2016-01-15 2024-02-13 Cilag Gmbh International Clamp arm comprising a circuit
US10537351B2 (en) 2016-01-15 2020-01-21 Ethicon Llc Modular battery powered handheld surgical instrument with variable motor control limits
US10842523B2 (en) 2016-01-15 2020-11-24 Ethicon Llc Modular battery powered handheld surgical instrument and methods therefor
US11684402B2 (en) 2016-01-15 2023-06-27 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10251664B2 (en) 2016-01-15 2019-04-09 Ethicon Llc Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US10828058B2 (en) 2016-01-15 2020-11-10 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US11202670B2 (en) 2016-02-22 2021-12-21 Cilag Gmbh International Method of manufacturing a flexible circuit electrode for electrosurgical instrument
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US11864820B2 (en) 2016-05-03 2024-01-09 Cilag Gmbh International Medical device with a bilateral jaw configuration for nerve stimulation
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US11344362B2 (en) 2016-08-05 2022-05-31 Cilag Gmbh International Methods and systems for advanced harmonic energy
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
KR20180096151A (en) * 2017-02-20 2018-08-29 한국과학기술연구원 Diamine compound having improved transparency, light transmittance and heat resistance, polymer prepared therewith and polyimide film containing the polymer
KR101965618B1 (en) * 2017-02-20 2019-04-04 한국과학기술연구원 Diamine compound having improved transparency, light transmittance and heat resistance, polymer prepared therewith and polyimide film containing the polymer
CN110857332B (en) * 2018-08-22 2022-10-21 臻鼎科技股份有限公司 Polymer resin, polymer resin composition and copper-clad plate
CN110857332A (en) * 2018-08-22 2020-03-03 臻鼎科技股份有限公司 Polymer resin, polymer resin composition and copper-clad plate
KR20200050639A (en) * 2018-11-02 2020-05-12 주식회사 엘지화학 Polyimide film for flexible substrate
KR102251290B1 (en) 2018-11-02 2021-05-11 주식회사 엘지화학 Polyimide film for flexible substrate
TWI830911B (en) * 2019-05-07 2024-02-01 日商積水化學工業股份有限公司 Multifunctional active ester compounds, resin compositions, cured products and build-up films
CN113785008A (en) * 2019-05-07 2021-12-10 积水化学工业株式会社 Polyfunctional active ester compound, resin composition, cured product, and laminated film
CN113785008B (en) * 2019-05-07 2023-08-15 积水化学工业株式会社 Polyfunctional active ester compound, resin composition, cured product, and laminated film
WO2020226118A1 (en) * 2019-05-07 2020-11-12 積水化学工業株式会社 Multifunctional active ester compound, resin composition, cured product and buildup film
JP7480040B2 (en) 2019-05-07 2024-05-09 積水化学工業株式会社 Polyfunctional active ester compound, resin composition, cured product, and build-up film
JP2021074894A (en) * 2019-11-05 2021-05-20 株式会社カネカ Multilayer polyimide film
JP7429519B2 (en) 2019-11-05 2024-02-08 株式会社カネカ multilayer polyimide film
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11974801B2 (en) 2019-12-30 2024-05-07 Cilag Gmbh International Electrosurgical instrument with flexible wiring assemblies
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument

Similar Documents

Publication Publication Date Title
JP2008001876A (en) Polyesterimide and method for producing the same
JP5746280B2 (en) Novel ester group-containing tetracarboxylic dianhydrides, novel polyesterimide precursors and polyesterimides derived therefrom
KR101740802B1 (en) Polyimide resin, thin film and method for manufacturing thereof
JP5244303B2 (en) Polyesterimide and method for producing the same
JP2009286854A (en) Polyesterimide precursor and polyesterimide
JP2008101187A (en) Polyesterimide and method for producing the same
TWI395770B (en) Polyesterimide precursors and polyester imides
WO2011152178A1 (en) Flexible metal-clad laminate
JP2009286868A (en) Linear polyimide precursor, linear polyimide, thermally cured product thereof, production method, adhesive and copper-clad laminate
JP4699321B2 (en) Ester group-containing polyimide, precursor thereof, and production method thereof
JP7469537B2 (en) Polyimide manufacturing method
WO2018207706A1 (en) Poly(amic acid), poly(amic acid) solution, polyimide, polyimide film, layered product, flexible device, and production method for polyimide film
CN113462300A (en) Resin film, metal-clad laminate, and circuit board
JP5009670B2 (en) Polyesterimide precursor and polyesterimide
JP4846609B2 (en) Polyimide precursor having ester group and oxazole structure, polyimide and method for producing the same
JP2008303372A (en) Polyimide precursor having asymmetric structure, polyimide, and their production methods
JP2009286853A (en) Polyesterimide precursor and polyesterimide
JP2011148901A (en) Phosphorus-containing diamine and phosphorus-containing polyimide obtained therefrom
TW200930563A (en) Metal laminate
JP2009091441A (en) Polyimide precursor and polyimide
JP2009286966A (en) Polyesterimide precursor, polyesterimide, and metal-polyesterimide complex
JP2008063517A (en) Polyesterimide and its manufacturing method
JP4603929B2 (en) Esterimide oligomer, thermoset thereof, and production method thereof
JP4792204B2 (en) Polyimide having both high organic solvent solubility, high thermoplasticity, high toughness and high glass transition temperature, and method for producing the same
TW202319444A (en) Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327