JP4934498B2 - 走査式光学装置、画像形成装置及びジッター補正方法 - Google Patents

走査式光学装置、画像形成装置及びジッター補正方法 Download PDF

Info

Publication number
JP4934498B2
JP4934498B2 JP2007132030A JP2007132030A JP4934498B2 JP 4934498 B2 JP4934498 B2 JP 4934498B2 JP 2007132030 A JP2007132030 A JP 2007132030A JP 2007132030 A JP2007132030 A JP 2007132030A JP 4934498 B2 JP4934498 B2 JP 4934498B2
Authority
JP
Japan
Prior art keywords
scanning
sensor
light
light beam
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007132030A
Other languages
English (en)
Other versions
JP2008287018A5 (ja
JP2008287018A (ja
Inventor
和幸 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007132030A priority Critical patent/JP4934498B2/ja
Priority to US12/117,327 priority patent/US8310738B2/en
Priority to CN2008100990824A priority patent/CN101308254B/zh
Publication of JP2008287018A publication Critical patent/JP2008287018A/ja
Publication of JP2008287018A5 publication Critical patent/JP2008287018A5/ja
Application granted granted Critical
Publication of JP4934498B2 publication Critical patent/JP4934498B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/123Multibeam scanners, e.g. using multiple light sources or beam splitters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/12Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers
    • G06K15/1204Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers involving the fast moving of an optical beam in the main scanning direction
    • G06K15/1219Detection, control or error compensation of scanning velocity or position, e.g. synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/047Detection, control or error compensation of scanning velocity or position
    • H04N1/053Detection, control or error compensation of scanning velocity or position in main scanning direction, e.g. synchronisation of line start or picture elements in a line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/113Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors
    • H04N1/1135Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors for the main-scan only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/047Detection, control or error compensation of scanning velocity or position
    • H04N2201/04753Control or error compensation of scanning position or velocity
    • H04N2201/04758Control or error compensation of scanning position or velocity by controlling the position of the scanned image area
    • H04N2201/04767Control or error compensation of scanning position or velocity by controlling the position of the scanned image area by controlling the timing of the signals, e.g. by controlling the frequency o phase of the pixel clock
    • H04N2201/04768Controlling the frequency of the signals
    • H04N2201/0477Controlling the frequency of the signals using a clock signal composed from a number of clock signals of different frequencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Laser Beam Printer (AREA)

Description

本発明は、画像形成装置などに応用可能な走査式光学装置及びそのジッター補正方法に関する。
従来、感光体にレーザ光を露光して静電潜像を形成し、この静電潜像をトナーで現像し、記録紙上に転写して画像を得る画像形成装置が知られている。このような画像形成装置は、感光体にレーザ光を露光するための走査式光学装置を備えている。走査式光学装置は、一般に、回転多面鏡によりレーザ光を偏向走査する。
しかし、回転多面鏡の各反射面における反射率の誤差、又は回転多面鏡を駆動するモータの回転周期の変動によりジッターが生じてしまう。ジッターとは、感光体上の主走査方向での露光位置の変動をいう。
特許文献1によれば、回転多面鏡の各反射面における反射率の誤差及び回転多面鏡を駆動するモータの回転周期の変動を補正することで、ジッターを低減する方法が提案されている。
特許第2615668号公報
特許文献1ではモノクロ画像形成装置を対象としているが、最近では、カラー画像形成装置の需要も伸びている。とりわけ、複数の感光体を使用するタンデム型のカラー画像形成装置では、ジッターが、各トナー画像を重ね合わせた際に主走査方向の色ズレをもたらす。
そこで、本発明は、このような課題及び他の課題のうち、少なくとも1つを解決することを目的とする。本発明の目的は、例えば、低コストかつコンパクトで、主走査方向の色ズレを少なくできる走査式光学装置を提供することである。なお、他の課題については明細書の全体を通して理解できよう。
本発明は、例えば、走査式光学装置、画像形成装置及びジッター補正方法として実現できる。走査式光学装置は、入射してきた光束を回転しながら反射する複数の反射面を備えた回転多面鏡と、回転多面鏡の回転軸を通る平面により区画された一方側から第1光束を入射する第1光源と、他方側から第2光束を入射する第2光源とを含む。走査式光学装置は、結像手段、第1乃至第4検知手段、第1及び第2算出手段、記憶手段及びジッター補正手段などを含む。結像手段は、回転多面鏡にて偏向走査された第1及び第2光束をそれぞれ対応する感光体に結像させる。第1検知手段は、第1光束を主走査方向の走査開始側で検知する。第2検知手段は、第1光束を主走査方向の走査終了側で検知する。第3検知手段は、第2光束を主走査方向の走査開始側で検知する。第4検知手段は、第2光束を主走査方向の走査終了側で検知する。第1算出手段は、第1検知手段と第2検知手段により第1光束が検出された時間間隔を第1光源による走査時間として算出する。第2算出手段は、第3検知手段と第4検知手段により第2光束が検出された時間間隔を第2光源による走査時間として算出する。記憶手段は、第1算出手段及び第2算出手段によりそれぞれ算出された回転多面鏡の反射面ごとの走査時間を記憶する。ジッター補正手段は、第1光源に供給される画素クロックを第2光源に係る走査時間に応じて制御することでジッターを補正する。また、ジッター補正手段は、第2光源に供給される画素クロックを第1光源に係る走査時間に応じて制御することでジッターを補正する。
本発明によれば、低コストかつコンパクトで、主走査方向の色ズレを少なくできる走査式光学装置を提供できる。
以下に本発明の一実施形態を示す。以下で説明される個別の実施形態は、本発明の上位概念、中位概念及び下位概念など種々の概念を理解するために役立つであろう。また、本発明の技術的範囲は、特許請求の範囲によって確定されるのであって、以下の個別の実施形態によって限定されるわけではない。
[第1実施例]
以下に、図面を参照しながら本発明に係る走査式光学装置をタンデム型の多色画像形成装置(特にカラープリンタ)に適用した実施例について説明する。なお、走査式光学装置は、光学走査装置、スキャナ又は露光装置と呼ばれることもある。また、画像形成装置は、例えば、印刷装置、プリンタ、複写機、複合機又はファクシミリとして実現されてもよい。
図1は、本発明の一実施例に係るタンデム型のカラープリンタの概略断面図である。カラープリンタ100には、複数の画像形成部(画像形成ユニット又は画像形成ステーションと呼ばれることもある。)が設けられている。画像形成部81Bkは、ブラック色の画像を形成する。画像形成部81Cは、シアン色の画像を形成する。画像形成部81Mは、マゼンタ色の画像を形成する。画像形成部81Yは、イエロー色の画像を形成する。これら4つの画像形成部81Bk、81C、81M、81Yは一定の間隔をおいて一列に配置される。
各画像形成部81Bk、81C、81M、81Yには、それぞれドラム型の感光体(以下、感光ドラムという)82a、82b、82c、82dが設置されている。各感光ドラム82a、82b、82c、82dは、負帯電のOPC感光体でアルミニウム製のドラム基体上に光導電層を有しており、駆動装置(不図示)によって矢印方向(図1における時計回り方向)に所定のプロセススピードで回転駆動される。各感光ドラム82a、82b、82c、82dに対向して、転写装置としての転写ローラ85a、85b、85c、85dが設けられている。転写ローラ85a、85b、85c、85dは、各一次転写ニップ部にて中間転写ベルト87を介して各感光ドラム82a、82b、82c、82dに当接している。
中間転写ベルト87は、一対のベルト搬送ローラ88、89間に張架されており、矢印A方向(図1における反時計回り方向)に回転(移動)される。中間転写ベルト87は、ポリカーボネート、ポリエチレンテレフタレート樹脂フィルム、ポリフッ化ビニリデン樹脂フィルム等のような誘電体樹脂によって構成されている。
ベルト搬送ローラ88は、中間転写ベルト87を介して二次転写ローラ90と当接して、二次転写部を形成している。ベルト搬送ローラ88や二次転写ローラ90は転写装置の一例である。中間転写ベルト87の外側でベルト搬送ローラ89近傍には、中間転写ベルト87表面に残った転写残トナーを除去して回収するベルトクリーニング装置91が設置されている。
給紙カセット92は、シート状の記録媒体である転写用紙を格納している。転写用紙は、記録材、記録媒体、シート、転写材、転写紙又は単に用紙と呼ばれることもある。給紙カセット92内の転写用紙は、給紙ローラ93により1枚ずつ給紙され、レジストローラ対94に搬送されると、そこでいったん停止する。二次転写部へのトナー像の到着タイミングに合わせて、転写用紙の搬送が再開される。二次転写部でトナー像を転写された転写用紙は、定着装置95によりトナー像を熱により定着され、搬送ローラ対96、排紙ローラ対97により、排紙トレイ98上に搬送、排紙される。
図2は、走査式光学装置と画像形成部を示す概略断面図である。各感光ドラム82a、82b、82c、82dの周囲には、一次帯電装置83a、83b、83c、83d、現像装置84a、84b、84c、84d、ドラムクリーナ装置86a、86b、86c、86dがそれぞれ配置されている。一次帯電装置83a、83b、83c、83dと現像装置84a、84b、84c、84d間の下方には走査式光学装置50が設置されている。
各現像装置84a、84b、84c、84dには、それぞれブラックトナー、シアントナー、マゼンタトナー、イエロートナーが収納されている。一次帯電手段としての一次帯電装置83a、83b、83c、83dは、帯電バイアス電源(不図示)から印加される帯電バイアスによって各感光ドラム82a、82b、82c、82d表面を負極性の所定電位に均一に帯電する。現像装置84a、84b、84c、84dは、トナーを内蔵し、それぞれ各感光ドラム82a、82b、82c、82d上に形成される各静電潜像に各色のトナーを付着させてトナー像として現像(可視像化)する。ドラムクリーナ装置86a、86b、86c、86dは、感光体ドラム上で一次転写時の残留した残留トナーを、感光体から除去するためのクリーニングブレード等で構成されている。トナー像は現像剤像と呼ばれることもある。
走査式光学装置50は、ポリゴンミラー10を備えている。ポリゴンミラー10は、入射してきた光束を回転しながら反射する複数の反射面を備えた回転多面鏡の一例である。以下では、走査式光学装置50の詳細について、図2乃至図5を用いて説明する。
図3は、本発明の一実施例に係る走査式光学装置を示す概略平面図である。なお、図3は、図1及び図2において画像形成部側から走査式光学装置50を見下ろした様子を示している。図4、5は、レーザホルダ部の断面図である。
図3、図4において、レーザホルダ1は、光源の一例である半導体レーザ(シングルビームレーザ)2、3を鏡筒保持部1a、1bに圧入して保持している。電気回路基板4は、半導体レーザ2、3を駆動するためのレーザ駆動回路を備えている。電気回路基板4上には、BDセンサ5が設けられている。BDセンサ5は、ポリゴンミラー10により反射された光束を検知して主走査方向の検知信号を出力する。この検知信号は、画像端部の走査開始を意味している。第1実施例において、BDセンサ5は、第1光束を主走査方向の走査開始側で検知する第1検知手段の一例である。ところで、主走査方向は、一般に、光束の走査平面に対して平行となる方向をいう。また、副走査方向は、一般に、主走査方向と直交する方向をいう。主走査方向や副走査方向は、3次元空間における絶対的な方向というよりは、光束の走査平面によって定まる相対的な方向である。
図4によれば、鏡筒保持部1a、1bは、半導体レーザ2、3の光軸が互いに副走査方向に所定角度θを持って交差するように半導体レーザ2、3を保持する。このため、半導体レーザ2、3の間隔を近接して保持することが可能である。鏡筒保持部1a、1bの先端側には半導体レーザ2、3のそれぞれに対応する絞り部1c、1dが設けられている。絞り部1c、1dは、半導体レーザ2、3から射出された光束を所望の最適なビーム形状に成形する。鏡筒保持部1a、1bのさらに先端には、絞り部1c、1dを通過した各光束を略平行光束に変換するコリメータレンズ6、7が設けられている。
図5によれば、レーザホルダ11は、レーザホルダ1と同一部品であり、半導体レーザ12、13を鏡筒保持部11a、11bに圧入して保持している。電気回路基板14は、半導体レーザ12、13を駆動するためのレーザ駆動回路を備えている。電気回路基板14上にはBDセンサ15が設けられている。図3によれば、BDセンサ15は、ポリゴンミラー10により反射された光束を検知して主走査方向の検知信号を出力する。この検知信号は、画像端部の走査終了を意味している。第1実施例において、BDセンサ15は、第2光束を主走査方向の走査終了側で検知する第4検知手段の一例である。
ここで、鏡筒保持部11a、11bは、半導体レーザ12、13の光軸が互いに副走査方向に所定角度θを持って交差するように半導体レーザ12、13を保持する。このため、半導体レーザ12、13の間隔を近接して保持することが可能である。鏡筒保持部11a、11bの先端側には半導体レーザ12、13のそれぞれに対応する絞り部11c、11dが設けられている。絞り部11c、11dは、半導体レーザ12、13から射出された光束を所望の最適なビーム形状に成形する。鏡筒保持部11a、11bのさらに先端には、絞り部11c、11dを通過した各光束を略平行光束に変換するコリメータレンズ16、17が設けられている。
図2、図3に示されている光学ケース40は、走査式光学装置50の各光学部品を格納するためのケースである。光学ケース40の側壁には、レーザホルダ1を位置決めするための勘合穴部及び長穴部が副走査方向に設けられている。勘合穴部及び長穴部に、レーザホルダ1の鏡筒保持部1a、1bの外形部に設けられた勘合部を勘合させる。このようにして光学ケース40にレーザホルダ1を取り付けているので、半導体レーザ2、3と光学ケース40に格納された各光学部品との位置関係を精度良く保証することができる。
レーザホルダ11の光学ケース40に対する位置決めもレーザホルダ1と同様になされている。このため、半導体レーザ12、13と光学ケース40に格納された各光学部品との位置関係を精度良く保証することができる。
図3に示されているシリンドリカルレンズ8は、副走査方向のみに所定の屈折力を有している。BDレンズ9は、BDセンサ5の受光面に対してポリゴンミラー10により反射された光束を結像させる。なお本実施例では、半導体レーザ2に対応した位置にBDセンサ5が設けられており、半導体レーザ3に対応した位置にはBDセンサが設けられていない。半導体レーザ2、3が副走査方向において1つのレーザホルダ1に設けられているため、半導体レーザ3による画像端部の走査開始のタイミングは半導体レーザ2と同じタイミングとすることができる。よって、半導体レーザ3に対応したBDセンサを省略できる。
シリンドリカルレンズ18は、副走査方向のみに所定の屈折力を有している。BDレンズ19は、BDセンサ15の受光面に対してポリゴンミラー10により反射された光束を結像させる。なお本実施例では、半導体レーザ12に対応した位置にBDセンサ15が設けられており、半導体レーザ13に対応したBDセンサは設けられていない。この理由も、半導体レーザ2、3について説明したとおりである。
ポリゴンミラー10は、不図示のモータを一定速度で図3の矢印方向(時計回り方向)に回転させることで、半導体レーザから射出された光束を偏向走査する。図3によれば、半導体レーザ2は、ポリゴンミラー10の回転軸を通る平面により区画された一方側から第1光束を入射する第1光源の一例であることがわかる。また、半導体レーザ12は、この平面により区画された他方側から第2光束を入射する第2光源の一例であることがわかる。図3によれば、この平面は、回転軸を中心として走査光学式装置50を左右に分割する仮想的な平面であり、紙面に対して垂直となっている。
図1及び図2示されている第1の結像レンズ21は、第2の結像レンズ22、23と共にレーザ光を等速走査及びドラム上でスポット結像させるfθレンズとして機能する。第1の結像レンズ21は、半導体レーザ2、3から射出された光束が互いに異なる角度で入射するため、シリンダーレンズにより構成されている。副走査方向に関しては、半導体レーザ2の光束は、第2の結像レンズ22により結像される。同様に、半導体レーザ3の光束は、第2の結像レンズ23により結像される。これらの結像レンズは、回転多面鏡にて偏向走査された光束をそれぞれ対応する感光体に結像させる結像手段の一例である。
折り返しミラー24〜26は光束を所定の方向へ反射するミラーである。折り返しミラー24は、半導体レーザ2の光束に対して配置された最終折り返しミラーである。折り返しミラー25は、半導体レーザ3の光束に対して配置された分離用折り返しミラーである。折り返しミラー26は、半導体レーザ3の光束に対して配置された最終折り返しミラーである。このように、分離用折り返しミラー25と最終折り返しミラー26により、半導体レーザ3の光束を複数回反射させる。これにより、少ないスペースを有効活用して半導体レーザ2の光束と同一の光路長にできる。
BDセンサ28は、半導体レーザ2から射出され、ポリゴンミラー10により反射された光束を検知して主走査方向の検知信号を出力する。この検知信号は、画像端部の走査終了のタイミングを表す。第1実施例において、BDセンサ28は、第1光束を主走査方向の走査終了側で検知する第2検知手段の一例である。BDレンズ29は、BDセンサ28の受光面に対してポリゴンミラー10により反射された光束を結像させる。このように、BDセンサ5で走査開始のタイミングを検知し、BDセンサ28で走査終了のタイミングを検知することで、半導体レーザ2から射出され、ポリゴンミラー10により反射された光束の走査時間を測定できる。
一方、ポリゴンミラー10の反対側には、半導体レーザ12、13に対応した第1の結像レンズ31、第2の結像レンズ32、33が配置されている。同様に、半導体レーザ13の光束に対して配置された最終折り返しミラー34、半導体レーザ12の光束に対して配置された分離用折り返しミラー35、半導体レーザ12の光束に対して配置された最終折り返しミラー36が配置されている。これらの結像レンズは、回転多面鏡にて偏向走査された光束をそれぞれ対応する感光体に結像させる結像手段の一例である。分離用折り返しミラー35と最終折り返しミラー36により、半導体レーザ12の光束を複数回反射させることで、少ないスペースを有効活用して半導体レーザ13の光束と同一の光路長にできる。このため、走査式光学装置50をコンパクト化することが可能である。
BDセンサ38は、半導体レーザ2から射出され、ポリゴンミラー10により反射された光束を検知して主走査方向の検知信号を出力する。この検知信号は、画像端部の走査開始位置のタイミングを表す。第1実施例において、BDセンサ38は、第2光束を主走査方向の走査開始側で検知する第3検知手段の一例である。
BDレンズ19は、BDセンサ38の受光面に対してポリゴンミラー10により反射された光束を結させる。BDセンサ38で走査開始のタイミングを検知し、BDセンサ15で走査終了のタイミングを検知することで、半導体レーザ12から射出され、ポリゴンミラー10により反射された光束の走査時間を測定できる。
図2に示されている上フタ41は、光学ケース40に取り付けられる。これにより、走査式光学装置50が密封され、走査式光学装置50内に埃やトナー等の進入が防止される。上フタ41には、各感光ドラム82a、82b、82c、82dに対応した位置にスリット状の開口部が設けられている。これらの開口部には、透明部材である防塵ガラス43a、43b、43c、43dがそれぞれ取り付けられている。このため、防塵ガラス43a、43b、43c、43dを通して各感光ドラム82a、82b、82c、82dに走査光を露光することが可能である。また、これらの防塵ガラスは、走査式光学装置50内に埃やトナー等の進入を防止している。
図6は本発明の一実施例に係る制御部のブロック図である。ジッター補正部60は、ポリゴンミラー10の各反射面における反射率の誤差やポリゴンミラー10を駆動するモータの回転周期の変動による各ジッターが補正されるよう、半導体レーザ2、3、12、13の画素クロックを制御する。半導体レーザ2、3、12、13は、対応するレーザ駆動部66、67、68、69から画素クロックが供給される。なお、ジッター補正部60は、演算回路61、62、メモリ63、64、演算回路65を有している。
半導体レーザ2から射出され、ポリゴンミラー10により反射された光束は、主走査方向の走査開始側に配置されたBDセンサ5と主走査方向の走査終了側に配置されたBDセンサ28とにより検知される。走査開始のタイミングを表す検知信号がBDセンサ5から演算回路61に入力される。同様に、走査終了のタイミングを表す検知信号がBDセンサ28から演算回路61に入力される。演算回路61は、BDセンサ5、28の検知信号からポリゴンミラー10の反射面ごとの走査時間Aniを測定し、測定した走査時間Aniをメモリ63に記憶させる。iは、i番目の反射面を意味する(本実施例では、i=1乃至6)。nは、ポリゴンミラー10がn回転目であることを意味する。例えば、A12は、1回転目における2番目の反射面についての走査時間を意味する。演算回路61は、第1検知手段と第2検知手段により第1光束が検出された時間間隔を第1光源による走査時間として算出する第1算出手段の一例である。
図7は、本発明の一実施例に係るBDセンサのタイムチャートである。上述した1面目乃至6面目に対応した走査時間A11〜A16がメモリ63に記憶される。さらにポリゴンミラー10の2回転目に、走査時間A21〜A26が測定され、メモリ63に記憶される。こうすることで、メモリ63には、n−1回転目とn回転目に半導体レーザ2から射出された各光束の走査時間が、反射面ごとに記憶される。本実施例では、2回転分の走査時間がメモリに記憶されるものとする。メモリ63、64は、第1算出手段及び第2算出手段によりそれぞれ算出された回転多面鏡の反射面ごとの走査時間を記憶する記憶手段の一例である。
半導体レーザ12から射出され、ポリゴンミラー10により反射された光束は、主走査方向の走査開始側に配置されたBDセンサ38と主走査方向の走査終了側に配置されたBDセンサ15により検知される。走査開始のタイミングを表す検知信号がBDセンサ38から演算回路62に入力される。同様に、走査終了のタイミングを表す検知信号がBDセンサ15から演算回路62に入力される。演算回路62は、BDセンサ38、15の検知信号からポリゴンミラー10の反射面ごとの走査時間Bnjを測定し、測定した走査時間Bnjをメモリ64に記憶させる。jは、j番目の反射面を意味する(本実施例では、j=1乃至6)。nは、ポリゴンミラー10がn回転目であることを意味する。例えば、B12は、1回転目における2番目の反射面についての走査時間を意味する。演算回路62は、第3検知手段と第4検知手段により第2光束が検出された時間間隔を第2光源による走査時間として算出する第2算出手段の一例である。
上述した1面目乃至6面目に対応した走査時間B11〜B16がメモリ64に記憶される。さらにポリゴンミラー10の2回転目に、走査時間B21〜B26が測定され、メモリ64に記憶される。こうすることで、メモリ64には、n−1回転目とn回転目に半導体レーザ12から射出された各光束の走査時間が、反射面ごとに記憶される。本実施例では、2回転分の走査時間がメモリに記憶されるものとする。
レーザ駆動部66は、演算回路65により決定された画素クロックに基づき半導体レーザ2の発光を行う。レーザ駆動部67は、演算回路65により算出されたレーザ駆動部66と同様の画素クロックに基づき半導体レーザ3の発光を行う。レーザ駆動部68は、演算回路65により算出された画素クロックに基づき半導体レーザ12の発光を行う。レーザ駆動部69は、演算回路65により算出されたレーザ駆動部68と同様の画素クロックに基づき半導体レーザ13の発光を行う。
演算回路65は、第1光源に供給される画素クロックを第2光源に係る走査時間に応じて制御することでジッターを補正するジッター補正手段の一例である。第1実施例の演算回路65は、半導体レーザ2、3を発光させる際に、ポリゴンミラー10の反射面に応じてn回転目の走査時間Aniを用いて画素クロックを変調することで、各反射面の反射率の誤差を補正する。例えば、1面目であれば、演算回路65は、メモリ63から走査時間A21を読み出し、基準となる基準走査時間Tに対して、T/A21倍となるように画素クロックを変調する。
また、演算回路65は、ポリゴンミラー10の反射面に応じて、半導体レーザ12についてのn−1回転目とn回転目の走査時間を用いて画素クロックを変調することで、ポリゴンミラー10を駆動するモータの回転周期の変動を補正する。例えば、演算回路65は、メモリ64から走査時間B11とB21を読み出し、B11/B21 倍となるように画素クロックを変調する。最終的に、半導体レーザ2、3についての目標となる走査時間Tは、次式により表すことができる。
=(T/A21)×(B11/B21)
演算回路65は、走査時間Tとなるように画素クロックを変調する。演算回路65は、走査時間Ani、走査時間Bn−1i及びBniとからジッターを補正するために必要となる第1目標走査時間Tを決定し、これに応じて第1光源に供給される画素クロックを変調する。Tは、第1目標走査時間の一例である。走査時間Aniは、i番目の反射面により偏向された第1光束についてのn回転目の走査時間である。走査時間Bn−1i及びBniは、i番目の反射面により偏向された第2光束についてのn−1回転目及びn回転目の走査時間である。
このように、1回転前の走査時間A21と、ポリゴンミラー10の反対側における略1.5回転前の走査時間B11から略0.5回転前の走査時間B21までの変化とを用いてジッターが補正される。
図8Aは、回転回数と走査時間との関係を表す図である。図中のTは、上述した基準走査時間である。図8Bは、実施例に係るジッターの補正概念を説明するための図である。とりわけ、図8Bが示すように、走査時間Tの補正残差ΔB1は、2回転前の走査時間A11から1回転前の走査時間A21の変化を用いた場合の補正残差ΔA1の約1/2まで削減される。つまり、モータの回転周期における、より最新の変動を補正することで、ジッターをより低減することができる。2面目から6面目までも同様に反射面ごとの走査時間を用いてジッター補正が実行される。
一方、演算回路65は、第2光源に供給される画素クロックを第1光源に係る走査時間に応じて制御することでジッターを補正するジッター補正手段の一例である。演算回路65は、半導体レーザ12、13を発光させる際に、ポリゴンミラー10の反射面に応じて画素クロックを変調することで各反射面の反射率の誤差を補正する。例えば、1面目であれば、演算回路65は、メモリ64から走査時間B21を読み出し、基準走査時間Tに対して、T/B21 倍となるように画素クロックを変調する。また、演算回路65は、半導体レーザ2について取得されたn−1回転目とn回転目の走査時間を用いて画素クロックを変調することでポリゴンミラー10を駆動するモータの回転周期の変動を補正する。例えば、演算回路65は、メモリ63から走査時間A11、A21を読み出し、A11/A21 倍となるように画素クロックを変調する。最終的に、半導体レーザ12、13での走査時間Tは、次式により表すことができる。
=(T/B21)×(A11/A21)
演算回路65は、算出した走査時間Tとなるように画素クロックを変調する。演算回路65は、走査時間Bnj、走査時間An−1i及びBAiとからジッターを補正するために必要となる第2目標走査時間Tを決定し、これに応じて、第2光源に供給される画素クロックを変調する。Tは、第2目標走査時間の一例である。走査時間Bnjは、j番目の反射面により偏向された第2光束についてのn回転目の走査時間である。走査時間An−1j及びAnjは、j番目の反射面により偏向された第1光束についてのn−1回転目の走査時間及びn回転目の走査時間である。
このように、本実施例では、1回転前の走査時間B21と、ポリゴンミラー10の反対側における略1.5回転前の走査時間A11から略0.5回転前の走査時間A21まで変化を用いてジッターを補正する。これにより、2回転前の走査時間B11から1回転前の走査時間B12の変化を用いるよりも、モータの回転周期のより最新の変動を補正することが可能となるため、ジッターをより低減することができる。2面目から6面目までも同様に反射面ごとの走査時間を用いて補正が実行される。
=(T/B21)×(A11/A21)
演算回路65は、算出した走査時間Tとなるように画素クロックを変調する。演算回路65は、走査時間Bnj、走査時間An−1j及びAnjとからジッターを補正するために必要となる第2目標走査時間Tを決定し、これに応じて、第2光源に供給される画素クロックを変調する。Tは、第2目標走査時間の一例である。走査時間Bnjは、j番目の反射面により偏向された第2光束についてのn回転目の走査時間である。走査時間An−1j及びAnjは、j番目の反射面により偏向された第1光束についてのn−1回転目の走査時間及びn回転目の走査時間である。
図8Cは、一実施例に係るジッター補正方法のフローチャートである。プリントスタートの信号が入力されると、ポリゴンミラー10が不図示のモータにより回転駆動される。ポリゴンミラー10が、所定回転数に到達すると、半導体レーザ2が発光する。BDセンサ5は、半導体レーザ2からの第1光束を主走査方向の走査開始側で検知する(S801)。BDセンサ28は、半導体レーザ2からの第1光束を主走査方向の走査終了側で検知する(S802)。BDセンサ5、28の検知信号からポリゴンミラー10の反射面ごとに、1面目〜6面目に応じて走査時間A11〜A16が算出される(S803)。測定された走査時間A11〜A16は、メモリ63に記憶される(S804)。さらにポリゴンミラー10の反射面ごとに2回目の走査時間A21〜A26が測定され、メモリ63に記憶される(S801〜S804)。こうして、半導体レーザ2から射出された光束に係る最新の2回転分の走査時間がポリゴンミラー10の反射面ごとにメモリに記憶される。
同様に、BDセンサ38は、半導体レーザ12からの第2光束を主走査方向の走査開始側で検知する(S805)。BDセンサ15は、半導体レーザ12からの第2光束を主走査方向の走査終了側で検知する(S806)。演算回路62は、BDセンサ38、15の検知信号からポリゴンミラー10の反射面ごとに、1面目〜6面目に応じて走査時間B11〜B16を算出する(S807)。測定された走査時間B11〜B16は、メモリ64に記憶される(S808)。さらにポリゴンミラー10の反射面ごとに2回目の走査時間B21〜B26が測定され、メモリ64に記憶される(S805〜S808)。こうして、半導体レーザ12から射出された光束に係る最新の2回転分の走査時間が、ポリゴンミラー10の反射面ごとにメモリに記憶される。
次に、演算回路65は、半導体レーザ2、3を発光させる際に、ポリゴンミラー10の反射面に応じて、各反射面の反射率の誤差とポリゴンミラー10を駆動するモータの回転周期の変動を補正する(S809)。例えば、1面目であれば、走査時間A21、走査時間B11、B21及び基準となる走査時間Tを用いて、演算回路65は、目標となる走査時間Tを算出する。
=T/A21×B11/B21
演算回路65は、走査時間Tが満たされるよう画素クロックを変調する(S809)。すなわち、ポリゴンミラー10の反射面ごとに算出された画素クロックが画像情報に変調される。レーザ駆動部66は、この変調信号に応じて半導体レーザ2を発光させる。同様に、レーザ駆動部67は、この変調信号に応じて半導体レーザ3を発光させる。
半導体レーザ2、3から射出された光束は、レーザホルダ1の絞り部1c、1dによってその光束断面の大きさが制限される。さらに、光束は、コリメータレンズ6、7により略平行光束に変換され、シリンドリカルレンズ8のレンズ部に入射する。シリンドリカルレンズ8に入射した光束のうち、主走査断面内においてはそのままの状態で透過される。一方で、入射した光束のうち、副走査断面内においては収束してポリゴンミラー10の同一面にほぼ線像として結像する。この際に、光束は、副走査方向に角度θを持って斜入射する。そして、ポリゴンミラー10が回転することで偏向走査されながら、副走査方向に角度θを持って光束が射出される。ポリゴンミラー10から射出された2本の光束のうち、半導体レーザ2から射出された光束がBDレンズ9を通り、BDセンサ5に受光される。BDセンサ5は、半導体レーザ2から射出された光束を検知して検知信号を出力する。この検知信号に応じて、半導体レーザ2、3による画像端部の走査開始位置のタイミングが調整される。
ここで、半導体レーザ2、3が副走査方向に1つのレーザホルダ1に設けられているため、半導体レーザ3による画像端部の走査開始位置のタイミングは半導体レーザ2と同じタイミングとすることができる。タイミング調整されて半導体レーザ2、3から射出された光束は、第1の結像レンズ21を透過する。その後、半導体レーザ2から射出した光束は第2の結像レンズ22を透過して最終折り返しミラー24によって反射され、防塵ガラス43aを透過して感光ドラム82aに走査光E1として露光される。一方、半導体レーザ3から射出した光束は分離用折り返しミラー25により下側に反射され、第2の結像レンズ23を透過して最終折り返しミラー26によって反射される。さらに、この光束は、防塵ガラス43bを透過して感光ドラム82bに走査光E2として露光される。その後、半導体レーザ2から射出され、ポリゴンミラー10により反射された光束は、BDレンズ29を通りBDセンサ28により受光される。BDセンサ28により画像端部の走査終了のタイミングが検知される。そして、演算回路61が走査時間を測定することで、メモリ63に最新の走査時間が記憶される。すなわち、走査時間は常に更新されて行く。
演算回路65は半導体レーザ12、13を発光させる際に、ポリゴンミラー10の反射面に応じて、画素クロックを変調することで、ポリゴンミラー10の各面の反射率の誤差とポリゴンミラー10を駆動するモータの回転周期の変動を補正する(S810)。1面目であれば、走査時間B21、走査時間A11、A21、基準となる走査時間Tが下記式に代入され、目標となる走査時間Tが算出される。
=T/B21×A11/A21
このため、ポリゴンミラー10の反射面ごとに、演算回路65により算出された画素クロックを画像情報は変調される(S810)。レーザ駆動部68は、この変調信号に応じて半導体レーザ12を発光させる。また、レーザ駆動部69は、この変調信号に応じて半導体レーザ13を発光させる。
半導体レーザ12、13から射出された光束はそれぞれ、絞り部11c、11d、コリメータレンズ16、17、シリンドリカルレンズ18を通過してポリゴンミラー10に入射する。この際に、光束は、副走査方向に角度θを持って斜入射する。そして、ポリゴンミラー10が回転することで偏向走査されながら、副走査方向に角度θを持って光束が射出される。ポリゴンミラー10から射出された2本の光束のうち、半導体レーザ12を起源とする光束がBDレンズ19を通り、BDセンサ38に受光される。BDセンサ38は、半導体レーザ12から射出した光束を検知して検知信号を出力する。この検知信号に応じて、半導体レーザ12、13による画像端部の走査開始位置のタイミングが調整される。
=T/B21×A11/A21
このため、ポリゴンミラー10の反射面ごとに、演算回路65により算出された画素クロックを画像情報により変調される(S810)。レーザ駆動部68は、この変調信号に応じて半導体レーザ12を発光させる。また、レーザ駆動部69は、この変調信号に応じて半導体レーザ13を発光させる。
一方、半導体レーザ13から射出した光束は、第2の結像レンズ32を透過して最終折り返しミラー34によって反射される。さらに、この光束は、防塵ガラス43dを透過して感光ドラム82dに走査光E4として露光される。その後、半導体レーザ12を起源とする光束は、BDレンズ39を通りBDセンサ15に受光される。BDセンサ15により画像端部の走査終了のタイミングが検知される。さらに、BDセンサ15とBDセンサ38からの各検知信号から演算回路62が走査時間を測定することで、最新の走査時間がメモリ64に記憶される。
こうして、ジッター補正の施された走査光E1、E2、E3、E4が各感光ドラム82a、82b、82c、82dに対して走査光として露光される。なお、各感光ドラムは、対応する一次帯電装置83a、83b、83c、83dにより予め一様に帯電されている。各感光ドラム82a、82b、82c、82dには、露光によって、静電潜像が形成する。現像装置84a、84b、84c、84dは、各色のトナーを静電潜像に付着させることで各感光ドラム82a、82b、82c、82d上にトナー像が形成される。トナー像は、各感光ドラム82a、82b、82c、82d上から各一次転写ニップ部にて中間転写ベルト87上に転写される。一方、給紙カセット92から給紙ローラ93により転写用紙が1枚ずつ給紙される。転写用紙は、レジストローラ対94に搬送されると、いったん停止する。トナー像の搬送タイミングに合わせて、転写用紙の搬送が再開される。二次転写部では、中間転写ベルト87上から転写用紙にトナー像が転写される。これにより画像が転写用紙上に形成される。定着装置95は、転写用紙に対して熱によりトナー像を定着させる。転写用紙は、搬送ローラ対96、排紙ローラ対97により、排紙トレイ98上に搬送及び排紙される。
このように各色ごとにジッター補正を行いながら露光することで、主走査方向での露光位置の変動が抑えられ、主走査方向の色ズレの少ない高画質の画像が形成される。
以上説明したように、走査式光学装置50は、1つのポリゴンミラー10で複数の半導体レーザ2、3、12、13から射出されたレーザ光を同時に偏向走査して、複数の感光ドラム82a、82b、82c、82dを露光する。そのため、部品点数が削減され、走査式光学装置50を低コストでコンパクト化することができる。また、走査式光学装置50は、分離用折り返しミラー25と最終折り返しミラー26により、半導体レーザ3の光束を複数回反射させる。さらに、走査式光学装置50は、分離用折り返しミラー35と最終折り返しミラー36により、半導体レーザ12の光束を複数回反射させる。この構成により、少ないスペースを有効活用して各光束の光路長を同一にできるため、走査式光学装置50をさらにコンパクト化できる。最終的に、カラープリンタ100も低コストでコンパクト化できる。
また、ポリゴンミラー10の反射面に対して、回転軸を通る平面により区画された一方側と他方側から光束を入射させて走査時間を測定する。すなわち、ポリゴンミラー10が1回転するまでに、各反射面の走査時間を2度測定できる。ジッター補正部60は、半導体レーザ2,3に供給される画素クロックを半導体レーザ12に係る走査時間に応じて制御する。一方で、ジッター補正部60は、半導体レーザ12,13に供給される画素クロックを半導体レーザ2に係る走査時間に応じて制御することでジッターを補正する。例えば、ジッター補正部60は、一方の側で測定された走査時間と、他方の側で測定された略1.5回転前の走査時間から略0.5回転前の走査時間の変化とを用いて画素クロックを変調する。これにより、各反射面の反射率の誤差に起因する短周期のジッターと、ポリゴンミラー10を駆動するモータの回転周期の変動に起因する長周期のジッターを低減することができる。特に、ポリゴンミラー10の他方の側で取得された略1.5回転前の走査時間と略0.5回転前の走査時間との変化量を用いて画素クロックを変調することで、モータの回転周期のより最新の変動を補正することが可能となる。そのため、ジッターをより低減することができる。このようにジッターを補正して露光制御することが可能となり、主走査方向での露光位置の変動が抑えられる。すなわち、カラープリンタ10は、主走査方向の色ズレの少ない高画質の画像を形成できるようになる。このため、カラープリンタ100のコンパクト化とに高画質化を両立できるようになる。
[第2実施例]
以下に、図9乃至図11を参照して第2実施例について説明する。とりわけ、第2実施例は、BDセンサ28、38を省略可能な構成を採用している。
図9は、本発明の第2実施例に係る走査式光学装置を示す概略平面図である。第2実施例において、第1実施例と同構成のものに関しては同一の符号を用いて説明を省略する。
図9と図3とを比較してみると、BDセンサ28が省略され、BDミラー27が追加されている。さらに、BDレンズ29の位置が変更されている。BDミラー27は、半導体レーザ2から射出され、ポリゴンミラー10により反射された光束をBDセンサ5に向けて再度反射する反射ミラーである。BDレンズ29は、BDセンサ5の受光面にBDミラー27で反射された光束を結像させるレンズである。
つまり、半導体レーザ2から射出してポリゴンミラー10により反射された光束は、走査開始時にBDレンズ9を通りBDセンサ5に受光され、走査終了時にBDミラー27で反射し、BDレンズ29を通り再度BDセンサ5により受光される。このため、BDセンサ5は、走査開始時にはBDレンズ9を通過してきた光束を検知して検知信号を出力し、走査終了時にBDミラー27で反射し、BDレンズ29を通過してきた光束を検知して検知信号を出力する。よって、BDセンサ5から出力される走査開始時の検知信号と走査終了時の検知信号との時間間隔から半導体レーザ2の走査時間を測定できる。
このように、第2実施例では、BDミラー27を設けることで、第1検知手段と第2検知手段とを同一のセンサにより実現できる利点がある。また、半導体レーザ2に係る走査時間の測定は、センサ感度の個体差の影響を受けない利点もある。もし温度変化によりセンサの感度特性が変化したり、センサ検出面が汚れる等の不均一な変化が生じても、測定された走査時間は個体差の影響を受けないため、ジッター補正が安定する。さらには、電気部品の削減になると共に束線も削減されるため、組立性の改善にもつながる。ひいては、さらにローコストでコンパクトな走査式光学装置50を実現しやすくなる。なお、BDミラー27は、主走査方向の走査終了側へ偏向された第1光束をさらに第1検知手段に向けて反射する第1ミラーの一例である。
図9と図3とを比較してみると、BDセンサ38が省略され、BDミラー37が追加されている。さらに、BDレンズ19の位置が変更されている。BDミラー37は、半導体レーザ12から射出され、ポリゴンミラー10により反射された光束をBDセンサ15に向けて再度反射する反射ミラーである。BDレンズ19は、BDセンサ15の受光面にBDミラー37で反射された光束を結像させるレンズである。つまり、半導体レーザ12から射出してポリゴンミラー10により反射された光束は、走査開始時にBDミラー37で反射し、BDレンズ19を通過してBDセンサ15に受光され、走査終了時にBDレンズ39を通り再度BDセンサ15に受光される。このため、BDセンサ15は、走査開始時にはBDミラー37で反射し、BDレンズ19を通り受光された光束を検知して検知信号を出力する。さらに、BDセンサ15は、走査終了時にBDレンズ39を通過してきた光束を検知して検知信号を出力する。よって、BDセンサ15から出力される走査開始時の検知信号と走査終了時の検知信号との時間間隔から半導体レーザ12の走査時間を測定できる。このように、第2実施例では、BDミラー37を設けることで、第3検知手段と第4検知手段とを同一のセンサにより実現できる利点がある。さらに、センサ間の個体差の影響を受けないことは、上述したとおりである。また、電気部品の削減になると共に束線も削減されるため、組立性の改善にもつながる。ひいては、さらにローコストでコンパクトな走査式光学装置50を実現しやすくなる。なお、BDミラー37は、主走査方向の走査開始側へ偏向された第2光束をさらに第4検知手段に向けて反射する第2ミラーの一例である。
図10は、本発明の第2実施例に係るタンデム型カラープリンタのブロック図である。図11は、本発明の第2実施例に係るBDセンサのタイムチャートである。
図10と図6とを比較するとわかるように、BDセンサ28、38が省略されている。それゆえ、演算回路61は、BDセンサ5から走査開始時に出力される検知信号と、走査終了時に出力される検知信号との時間間隔から、半導体レーザ2に係る走査時間を測定できる。同様に、演算回路62は、BDセンサ15から走査開始時に出力される検知信号と、走査終了時に出力される検知信号との時間間隔から、半導体レーザ12に係る走査時間を測定できる。
図11を参照すると、演算回路61は、BDセンサ5から出力される連続した2つの検知信号からポリゴンミラー10の反射面ごとの走査時間Aniを測定する。測定した走査時間Aniはメモリ63に記憶される。iは、i番目の反射面を意味する(本実施例では、i=1乃至6)。nは、ポリゴンミラー10がn回転目であることを意味する。
演算回路62は、BDセンサ15から出力される連続した2つの検知信号からポリゴンミラー10の反射面ごとの走査時間Bnjを測定する。測定された走査時間Bnjはメモリ64に記憶される。jは、j番目の反射面を意味する(本実施例では、j=1乃至6)。nは、ポリゴンミラー10がn回転目であることを意味する。
なお、演算回路65が実行するジッター補正処理は、第1実施例と同様であるため、説明を省略する。
以上説明したように、第2実施例によれば、第1実施例の効果に加え、さらなる効果を奏すことができる。すなわち、また、第1実施例で説明したBDセンサ5とBDセンサ28を、第2実施例では同一のセンサ(BDセンサ5)で実現できるようにしたため、BDセンサ28を省略できる。さらに、センサ間の個体差の影響も排除できる。同様に、第1実施例で説明したBDセンサ15とBDセンサ38を、第2実施例では同一のセンサ(BDセンサ15)で実現できるようにしたため、BDセンサ38を省略できる。さらに、センサ間の個体差の影響も排除できる。
[第3実施例]
以下に、図12乃至図14を参照して第3実施例について説明する。第2実施例と同様に、第3実施例も、BDセンサ28、38を省略可能な構成を採用している。
図12は、本発明の第3実施例に係る走査式光学装置を示す概略平面図である。第3実施例において、他の実施例と同構成のものに関しては同一の符号を用いて説明を省略する。
図12と図3とを比較してみると、BDセンサ28、38が省略され、BDミラー27、37が追加されている。図12と図9とを比較してみると、さらに、BDミラー20、30が追加されている。
第2実施例と異なるのは半導体レーザ2から射出された光束のうち、主走査方向の走査開始側へ偏向された光束をBDセンサ15へ反射するBDミラー20が設けられていることである。なお、BDレンズ9の位置も変更されている。BDミラー20により反射された光束はBDレンズ9を通過してBDセンサ15へ入射する。BDミラー20は、主走査方向の走査開始側へ偏向された第1光束をさらに第3検知手段に向けて反射する第1ミラーの一例である。
また、半導体レーザ12から射出された光束のうち、主走査方向の走査終了側へ偏向された光束をBDセンサ5へ反射するBDミラー30が設けられている。そのため、BDレンズ39の位置も変更されている。BDミラー30により反射された光束は、BDレンズ39を通過してBDセンサ5へ入射する。BDミラー30は、主走査方向の走査終了側へ偏向された第2光束をさらに第2検知手段に向けて反射する第2ミラーの一例である。
図13は、本発明の第3実施例に係る制御部のブロック図である。図6や図9と比較するとわかるように、BDセンサ5の検知信号は演算回路61、62に入力される。同様に、BDセンサ15の検知信号も演算回路61、62に入力される。
図14は本発明の第3実施例に係るBDセンサのタイムチャートである。演算回路61は、BDセンサ5から出力される検知信号とBDセンサ15から出力される検知信号とからポリゴンミラー10の反射面ごとの走査時間Aniを測定する。測定した走査時間Aniはメモリ63に記憶される。iは、i番目の反射面を意味する(本実施例では、i=1乃至6)。nは、ポリゴンミラー10がn回転目であることを意味する。
演算回路62は、BDセンサ15から出力される検知信号とBDセンサ5から出力される検知信号とからポリゴンミラー10の反射面ごとの走査時間Bnjを測定する。測定された走査時間Bnjはメモリ64に記憶される。jは、j番目の反射面を意味する(本実施例では、j=1乃至6)。nは、ポリゴンミラー10がn回転目であることを意味する。
なお、演算回路65が実行するジッター補正処理は、第1実施例と同様であるため、説明を省略する。
以上説明したように、第3実施例によれば、第2実施例と同様の効果を奏する。
[他の実施形態]
各実施例において説明した構成は、適宜、組み合わされてもよい。例えば、図3に示した右半分の構成を、図9に示した右半分の構成と入れ替えてもよい。逆に、図3に示した左半分構成を、図9に示した左半分構成と入れ替えてもよい。
さらに、反射ミラーの数や反射回数の一例が上記実施例において説明されたが、本発明は、これらに限定されることはない。反射面ごとの走査時間Ani、Bnjを測定できるような反射ミラーの数と配置及び反射回数であれば、本発明は、どのようなものでも採用できる。
上述の各実施例では、1つのポリゴンミラーの両側にそれぞれ2本のレーザ光束を入射させることで、4つの感光ドラムを露光する方式が採用されていた。しかしながら、本発明はこのような構成にのみ限定されるわけではない。例えば、1つのポリゴンミラーの両側にそれぞれ1本のレーザ光束を入射させることで、2つの感光ドラムを露光する方式が採用されてもよい。この場合、4つの感光ドラムを露光するためには、2つの走査式光学装置が必要となる。
本発明の一実施例に係るタンデム型カラープリンタの概略断面図である。 走査式光学装置と画像形成部を示す概略断面図である。 本発明の一実施例に係る走査式光学装置を示す概略平面図である。 レーザホルダ部の断面図である。 レーザホルダ部の断面図である。 本発明の一実施例に係るタンデム型カラープリンタのブロック図である。 本発明の一実施例に係るBDセンサのタイムチャートである。 本発明の一実施例に係る走査時間の変化を表す図である。 一実施例に係るジッター補正方法のフローチャートである。 本発明の第2実施例に係る走査式光学装置を示す概略平面図である。 本発明の第2実施例に係るタンデム型カラープリンタのブロック図である。 本発明の第2実施例に係るBDセンサのタイムチャートである。 本発明の第3実施例に係る走査式光学装置を示す概略平面図である。 本発明の第3実施例に係るタンデム型カラープリンタのブロック図である。 本発明の第3実施例に係るBDセンサのタイムチャートである。
符号の説明
1、11…レーザホルダ
2、3、12、13…半導体レーザ
5、15、28、38…BDセンサ
10…ポリゴンミラー
50…走査式光学装置
60…ジッター補正部
63、64…メモリ
82a、82b、82c、82d…感光ドラム
100…カラープリンタ

Claims (8)

  1. 入射してきた光束を回転しながら反射する複数の反射面を備えた回転多面鏡と、
    前記回転多面鏡の回転軸を通る平面により区画された一方側から第1光束を入射する第1光源と、
    前記平面により区画された他方側から第2光束を入射する第2光源と、
    前記回転多面鏡にて偏向走査された前記第1及び第2光束をそれぞれ対応する感光体に結像させる結像手段と、
    前記第1光束を主走査方向の走査開始側で検知する第1検知手段と、
    前記第1光束を主走査方向の走査終了側で検知する第2検知手段と、
    前記第2光束を主走査方向の走査開始側で検知する第3検知手段と、
    前記第2光束を主走査方向の走査終了側で検知する第4検知手段と、
    前記第1検知手段と前記第2検知手段により前記第1光束が検出された時間間隔を前記第1光源による走査時間として算出する第1算出手段と、
    前記第3検知手段と前記第4検知手段により前記第2光束が検出された時間間隔を前記第2光源による走査時間として算出する第2算出手段と、
    前記第1算出手段及び前記第2算出手段によりそれぞれ算出された前記回転多面鏡の前記反射面ごとの前記走査時間を記憶する記憶手段と、
    前記第1光源に供給される画素クロックを前記第2光源に係る走査時間に応じて制御し、前記第2光源に供給される画素クロックを前記第1光源に係る走査時間に応じて制御することでジッターを補正するジッター補正手段と
    を含むことを特徴とする走査式光学装置。
  2. 前記ジッター補正手段は、
    i番目の反射面により偏向された前記第1光束についてのn回転目の走査時間に対して、前記i番目の反射面により偏向された前記第2光束についてのn回転目の走査時間及びn−1回転目の走査時間を使用して前記ジッターを補正するために必要となる第1目標走査時間を決定し、決定された該第1目標走査時間に応じて前記第1光源に供給される画素クロックを変調することを特徴とする請求項1に記載の走査式光学装置。
  3. 前記ジッター補正手段は、
    j番目の反射面により偏向された前記第2光束についてのn回転目の走査時間に対して、前記j番目の反射面により偏向された前記第1光束についてのn回転目の走査時間及びn−1回転目の走査時間を使用して前記ジッターを補正するために必要となる第2目標走査時間を決定し、決定された該第2目標走査時間に応じて、前記第2光源に供給される画素クロックを変調することを特徴とする請求項1又は2に記載の走査式光学装置。
  4. 前記主走査方向の走査終了側へ偏向された前記第1光束をさらに前記第1検知手段を構成する第1センサに向けて反射する第1ミラーをさらに備えることで、前記第1検知手段と前記第2検知手段とを前記第1センサにより実現したことを特徴とする請求項1乃至3の何れか1項に記載の走査式光学装置。
  5. 前記主走査方向の走査開始側へ偏向された前記第2光束をさらに前記第4検知手段を構成する第2センサに向けて反射する第2ミラーをさらに備えることで、前記第3検知手段と前記第4検知手段とを前記第2センサにより実現したことを特徴とする請求項1乃至4の何れか1項に記載の走査式光学装置。
  6. 前記主走査方向の走査終了側へ偏向された前記第1光束を第1センサに向けて反射する第1ミラーと、
    前記主走査方向の走査開始側へ偏向された前記第2光束を第2センサに向けて反射する第2ミラーと、
    前記主走査方向の走査開始側へ偏向された前記第1光束を前記第2センサに向けて反射する第ミラーと、
    前記主走査方向の走査終了側へ偏向された前記第2光束を前記第1センサに向けて反射する第ミラーをさらに備えることで、前記第1検知手段と前記第3検知手段とを前記第2センサにより実現し、前記第2検知手段と前記第4検知手段とを前記第1センサにより実現したことを特徴とする請求項1乃至3の何れか1項に記載の走査式光学装置。
  7. 画像形成装置であって、
    複数の感光体と、
    前記感光体を帯電させる帯電装置と、
    画像情報に応じた光束で前記感光体の表面を走査することで静電潜像を形成する、請求項1乃至6の何れか1項に記載の走査式光学装置と、
    前記静電潜像を現像して現像剤像を形成する現像装置と、
    前記現像剤像を用紙に転写する転写装置と、
    転写された前記現像剤像を前記用紙に定着させる定着装置と
    を含むことを特徴とする画像形成装置。
  8. 入射してきた光束を回転しながら反射する複数の反射面を備えた回転多面鏡と、
    前記回転多面鏡の回転軸を通る平面により区画された一方側から第1光束を入射する第1光源と、
    前記平面により区画された他方側から第2光束を入射する第2光源と、
    前記回転多面鏡にて偏向走査された前記第1及び第2光束をそれぞれ対応する感光体に結像させる結像手段と
    を含む走査式光学装置におけるジッター補正方法であって、
    第1検知手段が、前記第1光束を主走査方向の走査開始側で検知する第1検知工程と、
    第2検知手段が、前記第1光束を主走査方向の走査終了側で検知する第2検知工程と、
    第3検知手段が、前記第2光束を主走査方向の走査開始側で検知する第3検知工程と、
    第4検知手段が、前記第2光束を主走査方向の走査終了側で検知する第4検知工程と、
    第1算出手段が、前記第1検知工程と前記第2検知工程により前記第1光束が検出された時間間隔を前記第1光源による走査時間として算出する第1算出工程と、
    第2算出手段が、前記第3検知工程と前記第4検知工程により前記第2光束が検出された時間間隔を前記第2光源による走査時間として算出する第2算出工程と、
    記憶手段が、前記第1算出工程及び前記第2算出工程によりそれぞれ算出された前記回転多面鏡の前記反射面ごとの前記走査時間を記憶する記憶工程と、
    ジッター補正手段が、前記第1光源に供給される画素クロックを前記第2光源に係る走査時間に応じて制御し、前記第2光源に供給される画素クロックを前記第1光源に係る走査時間に応じて制御することでジッターを補正するジッター補正工程と
    を含むことを特徴とするジッター補正方法。
JP2007132030A 2007-05-17 2007-05-17 走査式光学装置、画像形成装置及びジッター補正方法 Expired - Fee Related JP4934498B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007132030A JP4934498B2 (ja) 2007-05-17 2007-05-17 走査式光学装置、画像形成装置及びジッター補正方法
US12/117,327 US8310738B2 (en) 2007-05-17 2008-05-08 Scanning optical device, image forming device and jitter correction method
CN2008100990824A CN101308254B (zh) 2007-05-17 2008-05-16 扫描光学装置、图像形成装置和抖动校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007132030A JP4934498B2 (ja) 2007-05-17 2007-05-17 走査式光学装置、画像形成装置及びジッター補正方法

Publications (3)

Publication Number Publication Date
JP2008287018A JP2008287018A (ja) 2008-11-27
JP2008287018A5 JP2008287018A5 (ja) 2010-07-01
JP4934498B2 true JP4934498B2 (ja) 2012-05-16

Family

ID=40027193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007132030A Expired - Fee Related JP4934498B2 (ja) 2007-05-17 2007-05-17 走査式光学装置、画像形成装置及びジッター補正方法

Country Status (3)

Country Link
US (1) US8310738B2 (ja)
JP (1) JP4934498B2 (ja)
CN (1) CN101308254B (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219667A (ja) * 2009-03-13 2010-09-30 Murata Machinery Ltd 画像読取装置
JP5786306B2 (ja) * 2010-11-02 2015-09-30 富士ゼロックス株式会社 光走査装置および画像形成装置
JP5976495B2 (ja) * 2012-10-17 2016-08-23 シャープ株式会社 光走査装置、及びそれを備えた画像形成装置
US9817332B2 (en) 2015-07-27 2017-11-14 Canon Kabushiki Kaisha Optical scanning device and image forming apparatus including the same
JP6651768B2 (ja) * 2015-09-28 2020-02-19 株式会社ニコン パターン描画装置
CN109791281B (zh) * 2016-10-04 2021-07-30 株式会社尼康 光束扫描装置
JP6878901B2 (ja) * 2017-01-18 2021-06-02 コニカミノルタ株式会社 画像形成装置及び画像形成制御プログラム
US11296155B2 (en) * 2019-01-04 2022-04-05 Beijing Boe Display Technology Co., Ltd. Display panel and operation method thereof
CN110460828B (zh) * 2019-08-22 2021-03-19 淮南师范学院 一种微机电扫描镜投射***和方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615668B2 (ja) 1987-09-29 1997-06-04 富士ゼロックス株式会社 レーザ記録装置
JP2580933B2 (ja) * 1992-04-10 1997-02-12 キヤノン株式会社 ジッター量測定手段を有した光走査装置
JP3998760B2 (ja) * 1997-08-01 2007-10-31 株式会社リコー 多色画像形成装置
JP4032655B2 (ja) * 2001-03-09 2008-01-16 富士ゼロックス株式会社 画像形成装置
JP2005017680A (ja) * 2003-06-26 2005-01-20 Canon Inc 走査光学装置
JP4396188B2 (ja) * 2003-09-03 2010-01-13 富士ゼロックス株式会社 タイミング制御装置及び画像形成装置
JP2006163058A (ja) * 2004-12-08 2006-06-22 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2007147826A (ja) * 2005-11-25 2007-06-14 Ricoh Co Ltd 光書込装置、光書込方法、画像形成装置及び画像形成方法

Also Published As

Publication number Publication date
CN101308254B (zh) 2010-09-15
JP2008287018A (ja) 2008-11-27
CN101308254A (zh) 2008-11-19
US8310738B2 (en) 2012-11-13
US20080285095A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
JP4934498B2 (ja) 走査式光学装置、画像形成装置及びジッター補正方法
JP5050262B2 (ja) 画像形成装置
JP4922118B2 (ja) 光走査装置及び画像形成装置
JP2005140922A (ja) 光走査装置、画像形成装置及び位置ずれ補正方法
US20120050444A1 (en) Optical scanning device and image forming apparatus
KR20140103516A (ko) 회전 다면경, 이를 채용한 광 주사 장치 및 전자 사진 방식의 화상 형성 장치
KR101814121B1 (ko) 전자 사진 방식의 화상 형성 장치
US7471307B2 (en) Image forming apparatus and method of controlling same
JP4818070B2 (ja) 走査式光学装置及び画像形成装置
JP4921024B2 (ja) 画像形成装置
JP2006337514A (ja) 光走査装置及び画像形成装置
JP2011048085A (ja) 走査光学装置及び電子写真画像形成装置
JP2008112041A5 (ja)
JP2006208697A (ja) 光走査装置及び光ビーム検出方法及び画像形成装置
JP2006337515A (ja) 光走査装置及び画像形成装置
JP2015031718A (ja) 光走査装置及びこれを用いた画像形成装置
JP2020049767A (ja) 情報処理装置および画像形成装置
JP2012194333A (ja) 光走査装置及び画像形成装置
JP5188097B2 (ja) 画像形成装置
JP5094170B2 (ja) 画像形成装置
JP4713310B2 (ja) 光学装置の制御方法
KR20230004094A (ko) 복수개의 광원을 하나의 동기 검출 센서로 처리하는 레이저 스캐닝 장치
JP5123797B2 (ja) 光走査装置、画像形成装置及びプラスチック光学素子
JP2012018337A (ja) 光走査装置及び画像形成装置
JP5041614B2 (ja) 画像形成装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120123

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees