JP4032655B2 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP4032655B2
JP4032655B2 JP2001067594A JP2001067594A JP4032655B2 JP 4032655 B2 JP4032655 B2 JP 4032655B2 JP 2001067594 A JP2001067594 A JP 2001067594A JP 2001067594 A JP2001067594 A JP 2001067594A JP 4032655 B2 JP4032655 B2 JP 4032655B2
Authority
JP
Japan
Prior art keywords
light beam
image
color
scanning
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001067594A
Other languages
English (en)
Other versions
JP2002267970A (ja
Inventor
常雄 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2001067594A priority Critical patent/JP4032655B2/ja
Publication of JP2002267970A publication Critical patent/JP2002267970A/ja
Application granted granted Critical
Publication of JP4032655B2 publication Critical patent/JP4032655B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Color Electrophotography (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光源と複数の画像担持体とを備え、前記光源から複数の異なる画像信号に基づいて変調されて出射された光ビームを順次走査することによって、前記各画像信号に対応した前記各画像担持体上にそれぞれ異なる原画像を形成し、当該各原画像を同一の記録媒体上に多重転写して画像を形成する画像形成装置に関する。
【0002】
【従来の技術】
従来から、レーザプリンタ、レーザコピー機等を始めとする画像形成装置としては、画像担持体として設けられた感光体をレーザビームで走査露光して画像形成を行うものが知られており、近年、これらの画像形成装置は、ディジタル化、カラー化されて利用される場合が多くなっている。
【0003】
これらの画像形成装置において、特に、カラー画像を形成する場合には、ブラック(K)、イエロー(Y)、マゼンタ(M)、及びシアン(C)の4色各色毎にそれぞれ対応する原画像を形成し、最終的に、これら4つの原画像を重ね合わせることによって、1つのカラー画像を形成するようになっており、従来の白黒画像を形成する画像形成装置と比較すると、画像形成動作における生産性が低下してしまうことがあった。
【0004】
このため、従来から、上記K、Y、M、Cの各色にそれぞれ対応する原画像を同時に形成可能な、所謂タンデム方式の画像形成装置が知られている。このタンデム方式の画像形成装置は、複数の感光体を有し、各色毎に分解された画像データ信号に基づいて露光装置から出射したレーザビームによって、各色毎に対応する感光体を露光したのち、現像して各色毎の原画像を形成し、最終的に各色毎の原画像を同一の転写媒体上に重ね合わせることで、1つのカラー画像を形成するようになっている。このようにして、タンデム方式の画像形成装置は、従来から問題となっていた画像形成動作における生産性を格段に向上している。
【0005】
しかしながら、このようなタンデム方式の画像形成装置では、露光装置から出射される各色に対応するレーザビームの光学特性のバラツキ等に起因して、各原画像の重ね合わせ時における位置ズレが生じることがあり、これによって、形成画像の品質を低下させてしまうことがある。従って、この問題を解決するためには、各色の原画像間における適切な位置合わせ制御を行う必要がある。
【0006】
高品質なカラー画像を形成するために各原画像間において適切な位置合わせを行うに当たっては、主走査方向の走査線の書き出し位置(以下、サイドレジという)、副走査方向の走査線の書き出し位置(以下、リードレジという)、主走査方向の走査線の書き終わり位置又は印字幅(以下、倍率という)、走査線自身の湾曲(以下、走査線湾曲という)、及び走査線の傾き(以下、走査線傾きという)等を適切に設定する必要がある。
【0007】
ところで、上記のタンデム方式の画像形成装置では、各感光体を走査露光するためのレーザビームを出射する走査露光装置の構成によって、大きく2つの形態に分類される。
【0008】
第1の形態は、図14に示すように、回転多面鏡73によりレーザ光源(図示せず)からの1つのレーザビームを偏向して出射する走査露光装置72K、72Y、72M、72Cを、上記のK、Y、M、及びC4色の各色毎に独立に並べて設けた形態(以下、4連タンデム方式と称する。)の画像形成装置70である。この4連タンデム方式の画像形成装置70において、上記走査露光装置72K、72Y、72M、72Cは、各々モータ(図示せず)によって回転動作する回転多面鏡73を有しており、この回転多面鏡73でレーザビームを偏向走査することによって、それぞれ対応する感光体74上に、K、Y、M、C各色毎の単色画像の露光を行うようになっている。また、各色に対応する感光体74上にそれぞれ露光された単色画像は、それぞれの現像器76で現像された後、それぞれの転写器77において、各色間で共通の転写部材である転写ベルト78に転写されるようになっている。転写ベルト78の最後端側には定着器80が配設されており、ここで、記録媒体P上に、各色毎の単色画像を順次重ね合わせて、最終的に1つのカラー画像を形成するようになっている。
【0009】
このとき、カラー画像形成時における各単色画像の重ね合わせ(すなわち、各色に対応するレーザビームにおける走査露光位置の位置合わせ)を行う場合には、上記の、サイドレジ、リードレジ、倍率、走査線湾曲、及び走査線傾き等を主に考慮して行うが、このことに加え、この4連タンデム方式の画像形成装置70では、各走査露光装置72K、72Y、72M、72Cにおいて、回転多面鏡73を回転動作させる各モータの回転位相を制御する特別な機構を設ける必要がある。
【0010】
一方、第2の形態は、例えば、特開平3−142412号公報に記載の技術(以下、先行技術1という。)のように、4色各色に対応する画像信号に基づいて変調されたレーザビームを、偏向手段である1つの回転多面鏡によって、2色毎に当該回転多面鏡を中心として互いに相反する方向に偏向して、主走査方向に露光走査を行う走査露光装置を設けた形態(以下、双方向スプレイペイント方式と称する)の画像形成装置である。この双方向スプレイペイント方式の画像形成装置では、1つの回転多面鏡によって各色に対応するレーザビームを偏向して各感光体ドラムを露光走査するため、走査露光装置自体が比較的コンパクトな構成とすることができる。また、双方向スプレイペイント方式の画像形成装置において、カラー画像形成時における各色の単色画像の多重転写動作は上述した4連タンデム方式の画像形成装置と同様であるが、回転多面鏡によるレーザビームの偏向走査動作では上述した4連タンデム方式の画像形成装置のように、複数のモータ間における特別な回転位相制御機構を設ける必要はない。
【0011】
従って、4連タンデム方式の画像形成装置では、各モータが独立しているため、各モータの回転位相制御によって、各単色画像間において自由度の高い位置合わせ制御を行うことができ、各色ともほとんど同一位置への位置合わせを行うことが可能である。一方、双方向スプレイペイント方式の画像形成装置では、共通の回転多面鏡によって各色のレーザビームを偏向するため、各単色画像間における位置合わせ制御では、走査ライン単位の位置合わせを実行することになる。
【0012】
ここで、各タンデム方式の画像形成装置における、各単色画像間の形成位置合わせ制御について説明する。
【0013】
各単色画像間の形成位置合わせを行う場合、上述のように、サイドレジ、リードレジ、倍率、走査線湾曲及び走査線傾き等を補正して、適切な値に設定する必要がある。
【0014】
例えば、サイドレジについて各単色画像間における位置合わせを行う技術としては、特開平2−291573号公報に記載の技術(以下、先行技術2という。)が知られている。この先行技術2では、画像の印字する前に、各色のテストトナー像を形成し、それらを転写ベルトに転写して、転写ベルトに設けた読み取りセンサ(ここでは、CCDセンサ)で、各色のテストトナー像を読みとり各色のテストトナー像間における位置ズレを読み取り、そのズレ量を算出する。これによって、各レーザビームで実際に書き出す際に、何色のレーザビームにどのくらいの量のズレが生じているかを検出することができる。こうして得た検出結果に基づいて、主走査方向の書き出し開始位置であるサイドレジの補正を行っている。
【0015】
また、上述した先行技術1では、各色のレーザビームで各感光体上にレジスタマークを露光して現像を行った後、転写媒体上にレジスタマーク画像を形成し、そのレジスタマークを転写媒体に設けた読み取りセンサで位置ズレを検出し、その検出結果に基づいて、主走査方向の書き出し開始位置であるサイドレジの補正を行っている。
【0016】
また、上記の他に、サイドレジの補正方法として、走査レーザビームを利用する技術(以下、先行技術3という。)が知られている。この先行技術3では、画像形成領域外の書き出し開始位置検出センサ(以下、SOSセンサと称する。)を設け、このSOSセンサによるレーザビームの検出によって主走査方向における走査位置情報を得ている。すなわち、走査開始側に配設したSOSセンサによって、レーザビームがSOSセンサ上を通過したときに発生するSOSセンサの出力信号に基づいて、カウンタでの基本クロック信号によるカウント動作を開始し、所定の設定値になったときに画像の書き出しを開始している。なお、ここでは、回転多面鏡における分割角度誤差の影響よる画像の書き出し位置の微小な位置ズレの発生を防止するため、上記カウンタの基本クロック信号としては、SOSセンサに同期した信号を利用する必要がある。また、4連タンデム方式の画像形成装置では各色画像信号に対応するレーザビームに対して、その走査開始位置側に各々SOSセンサを設けることになるが、双方向スプレイペイント方式の画像形成装置では、各色画像信号に対応するレーザビームの走査方向は回転多面鏡を中心にして互いに相反する方向となるため、それぞれ対角に位置する走査開始側にSOSセンサを設けることになる。また、この場合、各色に対応した走査レーザビームの通過を検出したときのSOSセンサの出力信号(SOS信号)により、基準となる走査レーザビームによるSOS信号とその他の走査レーザビームによるSOS信号との相関関係から、画素書き出し開始位置を補正制御することが可能である。
【0017】
【発明が解決しようとする課題】
しかしながら、上述の先行技術2では、同一媒体である転写媒体に色合わせを行うためのテスト画像を形成し、CCDセンサに代表される読み取りセンサで各色間の位置関係すなわち、走査レーザビームの関係を得ていた。この場合、高品位なカラー画像とは、色ズレの無い画像であることはもちろんであるが、各の走査レーザビームによる位置合わせ精度(分解能)は、当然、読み取りセンサの分解能に依存する。例えば、画像書き込み密度が600DPI(Dots PerInch)である場合では、各色の位置合わせに必要な精度として42.3ミクロン以下の分解能が少なくとも必要とされるため、読み取りセンサとして高価なCCDセンサ等を用いることが必要となり、製造コストが高くなってしまうことがある。まして、画像の高解像度化は今後さらに進むことが予想され、読み取りセンサに必要とされる分解能はさらに高くなり、その分製造コストが高くなる可能性がある。
【0018】
また、上述の先行技術1では、転写材搬送ベルト上に転写されたレジスタマークを読み取るCCDセンサや、それに付随する光学系、走査線を折り返すミラーの傾きを調整するアクチュエータが必要であり、装置全体の構成が複雑となり、製造コストが高くなってしまうことがある。また、アクチュエータの動作制御に関わる各種演算処理の時間を要し、結果的に画像形成動作全体の処理時間が増大してしまい、画像形成動作の生産性を低下させてしまうことがある。
【0019】
また、上述の先行技術3では、例えば、図15に示す走査露光装置72Aを備えた双方向スプレイペイント方式の画像形成装置において、サイドレジ補正に当たり、以下のような問題が生じる場合がある。なお、走査露光装置72Aは、図15の矢印▲1▼方向に等速回転する回転多面鏡73Aを中心として、平凸レンズ及び平凹レンズで構成されたfθレンズ73Bが、図15の上下方向各々に配置されている。また、図示しない画像データ入力部から送られてくるカラー画像信号を構成する各色信号に基づいて変調されたレーザ光を出射するレーザ光源が設けられており、このレーザ光源から出射されたレーザ光は、上記のfθレンズ73Bを透過して、走査開始位置P1から図15の矢印▲2▼方向、及び走査開始位置P2から図15の矢印▲3▼方向(すなわち、互いに相反する方向)にそれぞれ偏向され走査されるようになっている。なお、各走査開始位置P1、P2の近傍にはそれぞれ、レーザ光の走査開始タイミングの同期をとるための上記SOSセンサ82C、82Mが配置されている。なお、ここでは、走査開始位置P1から図15の矢印▲2▼方向に偏向走査されるレーザ光はC色の画像信号に対応し、走査開始位置P2から図15の矢印▲3▼方向に偏向走査されるレーザ光はM色の画像信号に対応するものとする。また、サイドレジ補正において、補正の基準とする色(基準色)をC色とし、基準色に合わせる色(被基準色)をMとする。
【0020】
図16(A)、(B)に示すように、初期状態では、記録媒体PP上で記録位置ズレの無いようにそれぞれの書き出し開始時間がTC0及びTM0に設定されている(図16(A)のSOS信号▲1▼及びSOS信号▲2▼)。
【0021】
図16(A)に示すように、SOSセンサ82Mの位置変動等により被基準色のM色に対応するSOS信号の位相にズレが生じ(▲3▼)、基準色のC色に対応するSOS信号(▲1▼)の位相にズレがない場合では、上記の各書き出し開始時間は固定のままなので、記録媒体PP上におけるM色の記録位置はC色の記録位置に対してズレることになる。このとき、2つのSOS信号の位相差は、初期状態の位相差ΔTCM0からΔTCM1に変化する。従って、M色のズレ分ΔTMは、
ΔTM=ΔTCM1−ΔTCM0
である。従って、このズレ分ΔTMを用いてM色の書き出し開始時間を補正することで、C色とのズレは解消することができる。ここで、初期状態の位相差ΔTCM0とズレ発生後の位相差ΔTCM1との大小関係が、
ΔTCM1−ΔTCM0>0
の場合は、ズレ分ΔTMだけM色の書き出し開始時間を早める必要があり、この場合の補正後書き出し開始時間TM1は、
M1=TM0−ΔTM
となる。一方、
ΔTCM1−ΔTCM0<0
の場合は、ズレ分ΔTMだけM色の書き出し開始時間を遅らせる必要があり、この場合の補正後書き出し開始時間TM1は、
M1=TM0+(−ΔTM)=TM0−ΔTM
となる。
【0022】
従って、結果的に、M色にズレが生じた場合における、M色の補正後書き出し開始時間TM1
M1=TM0−ΔTM
として求めることができ、補正後書き出し開始時間TM1を用いて、書き出し開始時間が適切に補正されたM色に対応するSOS信号(▲4▼)を得ることができる。
【0023】
次に、図16(B)に示すように、SOSセンサ82Cの位置変動等により基準色のC色に対応するSOS信号の位相にズレが生じ(▲5▼)、被基準色のM色に対応するSOS信号(▲2▼)の位相にズレがない場合では、上記の各書き出し開始時間は固定のままなので、記録媒体PP上におけるM色の記録位置はC色の記録位置に対してズレることになる。このとき、2つのSOS信号の位相差は、初期状態の位相差ΔTCM0からΔTCM1に変化する。従って、M色のズレ分ΔTMは、
ΔTM=ΔTCM1−ΔTCM0
である。従って、このズレ分ΔTMを用いてM色の書き出し開始時間を補正することで、C色とのズレは解消することができる。ここで、初期状態の位相差ΔTCM0とズレ発生後の位相差ΔTCM1との大小関係が、
ΔTCM1−ΔTCM0>0
の場合は、ズレ分ΔTMだけM色の書き出し開始時間を遅らせる必要があり、この場合の補正後書き出し開始時間TM1は、
M1=TM0+ΔTM
となる。一方、
ΔTCM1−ΔTCM0<0
の場合は、ズレ分ΔTMだけM色の書き出し開始時間を早める必要があり、この場合の補正後書き出し開始時間TM1は、
M1=TM0−(−ΔTM)=TM0+ΔTM
となる。
【0024】
従って、結果的に、M色にズレが生じた場合における、M色の補正後書き出し開始時間TM1は、
M1=TM0+ΔTM
として求めることができ、補正後書き出し開始時間TM1を用いて、書き出し開始時間が適切に補正されたM色に対応するSOS信号(▲6▼)を得ることができる。
【0025】
以上から、ズレる色が基準色か否かによって補正手順が異なる(補正の方向が逆になる)ことになり、2色のSOS信号の相対的な位相情報のみの検出では、どちらの色がズレたかは判断することができず、適切に位相ズレの補正を行うことができない場合がある。このことにより、サイドレジの補正を適切に行うことができない場合がある。
【0026】
本発明は、上記の問題点を解決すべく成されたもので、多重画像形成時における画像形成位置のズレを防止し、高品質の画像を形成することができる画像形成装置を提供することを目的とする。
【0027】
【課題を解決するための手段】
請求項1の発明では、複数の光源と複数の画像担持体とを備え、1つの基準画像信号を含む複数の異なる画像信号に基づいて変調され前記各光源から出射された光ビームを、所定方向に等速回転する回転多面鏡によって偏向して、前記各画像信号に対応する前記画像担持体各々に対して、前記基準画像信号を含む複数の画像信号に対応する光ビームを第1の主走査方向へ走査すると共に、残りの複数の画像信号に対応する光ビームを、前記第1の主走査方向と相反する第2の主走査方向へ走査する双方向走査を順次行うことにより、前記各画像信号に対応した前記各画像担持体上にそれぞれ異なる原画像を形成し、当該各原画像を最終的に同一の記録媒体上に多重転写して画像を形成する画像形成装置において、前記回転多面鏡により偏向された前記基準画像信号に対応する基準光ビーム及び前記第2の主走査方向へ走査する少なくとも1つの光ビームを反射するように、当該基準光ビームの走査開始位置付近でかつ前記少なくとも1つの光ビームの走査終了位置付近に設けられた第1の反射手段と、前記第1の反射手段により反射された前記基準光ビームを検出することで基準走査開始信号を出力する基準走査開始位置検出手段と、前記第1の反射手段により反射された前記少なくとも1つの光ビームを検出することで走査終了信号を出力する走査終了位置検出手段と、前記回転多面鏡により偏向された前記基準画像信号に対応する前記基準光ビームを除きかつ前記少なくとも1つの光ビームを含む各光ビームを反射するように、当該各光ビームの各走査開始位置付近の各々に設けられた複数の第2の反射手段と、前記第2の反射手段により反射された前記各光ビームを各々検出することで各々走査開始信号を出力する複数の走査開始位置検出手段と、前記基準走査開始信号及び前記走査開始信号の各々が出力された時点から、予め定めた待機時間だけ経過した後に、前記各光源から出力され、かつ前記回転多面鏡により偏向された光ビームの各々による前記各画像担持体上への前記各原画像の書き出しを開始するように制御する制御手段と、前記少なくとも1つの光ビームの前記走査開始信号の出力から前記走査終了信号の出力までの時間間隔と前記画像形成装置の初期状態における前記時間間隔との差分に基づいて、前記各原画像を最終的に同一の記録媒体上に多重転写する際に前記基準光ビームに対応する原画像と前記少なくとも1つの光ビームに対応する原画像との間で位置ズレが生じないように、前記少なくとも1つの光ビームに対応する前記待機時間を補正する補正手段と、を備えている。
【0028】
請求項1に記載の発明によれば、基準走査開始位置検出手段は、回転多面鏡により偏向された基準画像信号に対応する基準光ビーム及び第2の主走査方向へ走査する少なくとも1つの光ビームを反射するように、基準光ビームの走査開始位置付近でかつ前記少なくとも1つの光ビームの走査終了位置付近に設けられた第1の反射手段により反射された基準光ビームを検出することで基準走査開始信号を出力する。また、走査終了位置検出手段は、第1の反射手段により反射された前記少なくとも1つの光ビームを検出することで走査終了信号を出力する。さらに、複数の走査開始位置検出手段は、回転多面鏡により偏向された基準光ビームを除きかつ前記少なくとも1つの光ビームを含む各光ビームを反射するように、当該各光ビームの各走査開始位置付近の各々に設けられた複数の第2の反射手段により反射された各光ビームを各々検出することで各々走査開始信号を出力する。制御手段は、基準走査開始信号及び走査開始信号の各々が出力された時点から、予め定めた待機時間だけ経過した後に、各光源から出力され、かつ回転多面鏡により偏向された光ビームの各々による各画像担持体上への各原画像の書き出しを開始するように制御する。また、補正手段は、前記少なくとも1つの光ビームの前記走査開始信号の出力から前記走査終了信号の出力までの時間間隔と前記画像形成装置の初期状態における前記時間間隔との差分に基づいて、各原画像を最終的に同一の記録媒体上に多重転写する際に基準光ビームに対応する原画像と前記少なくとも1つの光ビームに対応する原画像との間で位置ズレが生じないように、前記少なくとも1つの光ビームに対応する待機時間を補正する。これにより、前記少なくとも1つの光ビームに対応する原画像の形成位置を適切に調整することができ、各原画像を同一の記録媒体上に多重転写する際に、基準光ビームに対応する原画像と前記少なくとも1つの光ビームに対応する原画像との間で位置ズレのない高品質な画像を形成することができる。
【0029】
請求項2に記載の発明は、請求項1に記載の発明において、前記第1の反射手段を前記基準光ビーム及び前記少なくとも1つの光ビームを反射する1つの反射部材で構成するか、又は前記基準光ビームを反射する反射部材及び前記少なくとも1つの光ビームを反射する反射部材を1つの固定部材に保持して構成したことを特徴としている。
【0030】
請求項2に記載の発明によれば、第1の反射手段は、基準光ビーム及び前記少なくとも1つの光ビームを反射する1つの反射部材で構成することができる。この反射部材としては、例えば、1枚の反射ミラーを採用することができる。これにより、例えば、この反射ミラーの位置変動等により生じる走査開始信号の位相ズレと走査終了信号の位相ズレとの相関関係を容易に把握できる。また、基準光ビームを反射する反射部材及び前記少なくとも1つの光ビームを反射する反射部材を1つの固定部材に保持して構成することができる。この場合でも、それら各反射部材を保持する固定部材が1つのものであれば、同様に、例えば、この固定部材の位置変動等により生じる走査開始信号の位相ズレと走査終了信号の位相ズレとの相関関係を容易に把握できる。
【0033】
請求項3に記載の発明は、請求項1又は請項2に記載の発明において、前記補正手段は、前記基準走査開始信号の出力から前記第1の主走査方向へ走査する前記基準光ビームを除く各光ビームの前記走査開始信号の出力までの時間間隔と前記画像形成装置の初期状態における前記時間間隔との差分に基づいて、前記第1の主走査方向へ走査する各光ビームに対応する前記各画像信号に対応する各原画像間で位置ズレが生じないように、前記第1の主走査方向へ走査する前記基準光ビームを除く各光ビームに対応する前記待機時間の各々を補正することを特徴としている。
請求項4に記載の発明は、請求項1〜請項3の何れか1項に記載の発明において、前記補正手段は、前記第2の主走査方向へ走査する前記少なくとも1つの光ビームの前記走査開始信号の出力から前記第2の主走査方向へ走査する前記少なくとも1つの光ビームを除く各光ビームの出力までの時間間隔と前記画像形成装置の初期状態における前記時間間隔との差分に基づいて、前記第2の主走査方向へ走査する各光ビームに対応する前記各画像信号に対応する各原画像間で位置ズレが生じないように、前記第2の主走査方向へ走査する前記少なくとも1つの光ビームを除く各光ビームに対応する前記待機時間の各々を補正することを特徴としている。
請求項5に記載の発明は、請求項1〜請項4の何れか1項に記載の発明において、装置内の温度を検出する温度検出手段をさらに備え、当該温度検出手段で検出した温度値が所定値以上となった場合に、前記補正手段による補正を行うことを特徴としている。
【0034】
請求項5に記載の発明によれば、温度検出手段は、装置内の温度を検出する。温度検出手段で検出した温度値が所定値以上となった場合に、補正手段による補正を行う。走査開始信号及び走査終了信号における位相のズレは、基本的に装置内の温度状態による反射部材等の位置変動に起因して生じるので、温度検出手段により装置内温度を監視することで、走査開始信号及び走査終了信号における位相のズレが発生し得る装置の状態(装置内温度値が所定値以上である状態)を間接的に把握することができる。このことにより、上記のような状態となった場合に補正手段による補正を行うことで、効率的に補正動作を行うことができ、結果として、装置全体を制御する制御部の負荷を低減することができる。
【0035】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0036】
図1には、本発明が適用された画像形成装置10の概略が示されている。この画像形成装置10、カラー画像信号を構成する各色信号に対応した4つの現像ユニット(イエロー現像ユニットY、マゼンタ現像ユニットM、シアン現像ユニットC、ブラック現像ユニットK)を備え、各現像ユニットは同一の構成とされており、画像担持体としての感光体ドラム12を各々含んでいる。
【0037】
また、画像形成装置10は、上記の各現像ユニットに含まれる感光体ドラム12に対してレーザ光を照射するための走査露光装置11を備えている。
【0038】
図2には、図1の矢印A方向からみた走査露光装置11の概略が示されている。この走査露光装置11には、図2の矢印▲1▼方向に等速回転する回転多面鏡(ポリゴンミラー)22を中心として、平凸レンズ及び平凹レンズで構成されたfθレンズ36が、図2の上下方向各々に配置されている。また、レーザ走査装置11には、画像データ信号を構成する各色信号に基づいて変調された、Y(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)の各色に対応するレーザ光を出射する4つのレーザダイオード30が設けられている。各レーザダイオード30から出射されるレーザ光は、それぞれ対応するコリメータレンズ34で平行光に変換されて反射ミラー29でその光路を屈折された後、上記fθレンズ36を透過して、ポリゴンミラー22にそれぞれ入射するようになっている。
【0039】
ポリゴンミラー22に入射した各レーザ光は、ポリゴンミラー22の反射面で反射され再びfθレンズ36を透過し、入射時とは異なる光路上に配置されているミラー27で屈折されてシリンドリカルミラー28にそれぞれ導光される(図1参照)。シリンドリカルミラー28に導光されたレーザ光は、シリンドリカルミラー28で屈折されて、各現像ユニットの感光体ドラム12の表面(以下、ドラム表面と称する。)における露光走査位置13に照射されるようになっている。従って、このレーザ光は、上記fθレンズ36の作用によって、ドラム表面を等速度で走査されることになる。なお、各色のレーザ光の光路は、それぞれ矢印15Y、15M、15C、15Kで示している。
【0040】
また、各現像ユニットでは、感光体ドラム12が図示しないモータによって、図1の矢印▲1▼方向に所定速度で回転するようになっている。これによって、上記走査露光装置11から出射される各レーザ光が、ドラム表面を感光体ドラム12の軸方向(主走査方向)に沿って繰り返し走査される。
【0041】
各現像ユニットでは、図1の矢印▲1▼で示すドラム回転方向に沿って露光走査位置13のわずか上流側には帯電器14が設けられており、ドラム表面を一様に帯電させるようになっている。これにより、帯電器14によって一様に帯電されたドラム表面に対して、レーザ光の露光走査がなされることにより、画像部分以外の帯電電荷を除去して、画像部分に電荷を残した静電潜像を形成するようになっている。
【0042】
また、図1の矢印▲1▼で示すドラム回転方向に沿って露光走査位置13のわずか下流側には現像器16が設けられている。この現像器16は、静電潜像と逆極性に帯電したトナーが充填されており、ドラム表面に形成された静電潜像に、それぞれの色(Y、M、C、K)に着色した帯電微粒子であるトナーを静電的に付着させて可視像(トナー像)を形成するようになっている。
【0043】
また、感光体ドラム12の図1の下方には転写器18が設けられており、この転写器18と感光体ドラム12とによって上記トナー像を転写する転写ベルト18Aが挟持されている。この転写ベルト18Aは、駆動ローラによって、図1の矢印▲2▼方向へ、各現像ユニットY、M、C、Kを順に搬送されるようになっている。また、各現像ユニットにおける転写器18では、電荷を転写ベルト18Aに与え、その静電力によって各色毎のトナー像を転写ベルト18Aに順次転写するようになっている。
【0044】
さらに、各色毎のトナー像が転写された転写ベルト18Aの図1の矢印▲2▼方向下流側には、定着器24が配設されている。この定着器24では、画像を記録する記録媒体26を挟持して図1の矢印▲3▼方向へ搬送しつつ、熱又は圧力を加えることによって転写ベルト18Aに転写されたトナー像を記録媒体26に融着するようになっている。
【0045】
なお、各現像ユニットの感光体ドラム12の回転方向(図1の矢印▲1▼方向)最後端には、転写後感光体ドラム12上に残留するトナー等を除去するためのクリーナ20が設けられている。
【0046】
また、図2に示すように、走査露光装置11において、C色及びK色に対応するレーザ光の主走査方向(図2の矢印C、K)における走査開始位置近傍には、それぞれ、レーザ光による主走査開始(Start Of Scan;SOS)のタイミングの同期をとるためにレーザ光を検出するSOSセンサ40C、40Kが配置されている。また、Y色及びM色に対応するレーザ光の主走査方向(図2の矢印Y、M)において、その走査開始位置近傍には上記のSOSセンサ40Y、40Mがそれぞれ配置され、その走査終了位置近傍にはレーザ光による主走査終了(End Of Scan;EOS)のタイミングの同期をとるためにレーザ光を検出するEOSセンサ41Y、41Mがそれぞれ配置されている。
【0047】
この場合、Y色及びM色用にEOSセンサを割り当てるレイアウトとなる。これらの割り当ては、被基準色であって、基準色と走査方向を異にする色に割り当てる必要がある。本実施の形態では、C色を基準色とするため、C色の走査方向と異なる走査方向であるY色及びM色に対して、EOSセンサを設けることになる。
【0048】
また、上記のSOSセンサ40K、SOS40CとEOSセンサ41M、41Yは、図3(A)に示すように、それぞれ対応するピックアップミラー38K、38CM、38Yによりピックアップされたレーザ光を検出するようになっている。ここでは、SOS40C及びEOSセンサ41Mに対して共通に、1つのピックアップミラー38CMが設けられている。なお、別の態様として図3(B)に示すように共通のホルダ39にピックアップミラー38C、38Mがそれぞれ保持され、一体として機能するようにしてもよい。また、共通のピックアップミラー38CM等でピックアップされるレーザ光はそれぞれ走査方向が異なる方向のものであり、一方が基準色であってもよい。このように一体的にピックアップミラーの設置位置が変位することにより、基準色(C色)のズレ量と同等のズレ量を被基準色(M色)に展開することで、基準色(C色)のズレの有無による補正方向の判断を容易に行うことができる。
【0049】
すなわち、図3(A)の矢印A方向からみた概略図である図8(A)に示すように、そのうちのC色とM色の走査レーザビームに着目したものである。センサ出力位置の時間的変化は、主としてそのピックアップミラーの変位によるものであり、実線で描かれているミラーが点線で描かれているミラーのように変位すると、ピックアップするポイントにズレが生じる。すなわち、図8(A)では走査角にしてΔθ分変化した位置でピックアップすることになる。この結果、図8(B)に示すように、変動前のC色SOSセンサの出力タイミングがΔt分だけ進むと同時に、M色EOSセンサの出力タイミングが同量のΔt分だけ遅れることになる。また、出力タイミングの移動方向が逆方向となることから、補正には都合がよい。
【0050】
以上から、C色とM色は互いに走査方向が逆であるため、従来のように、基準色の位置変動の有無によって、走査方向が異なる被基準色の補正により、さらに位置ズレを悪化させてしまうことを防止でき、適切な補正を行うことができる。
【0051】
図4には、画像形成装置10の主要構成部であるレジストレーションコントロール部(以下、レジコン部と称する。)の概略が示されている。このレジコン部は、走査方向が同方向であるレーザ光(Y色とM色、及びC色とK色)、及び走査方向が異方向であるレーザ光(C色とM色)について、それぞれ位置ズレの補正を行い、さらに全体として位置ズレの補正を行うものである。ここでは、各SOSセンサ及びEOSセンサの出力信号間の時間差を計測する。ここで、C色及びK色の走査方向を正走査と、Y色とM色の走査方向を逆走査と呼んで説明する。先ずは正走査について説明する。基準色はC色であるので、被基準色であるK色とのSOS信号の時間差を計測するため、セレクタで、この2つの信号が選択され、レジコンカウンタで計測を行う。カウントされたカウント値はデータレジスタに蓄えられる。同様にして、逆走査のY色とM色がセレクタで選択され、カウント値がデータレジスタに蓄えられる。この逆走査においては、M色を基準とした値を保持する。両者のペアは、互いに同方向に走査しているため、信号時間差が変動した場合には、その変動分に相応したラインシンク信号の出力タイミングを変動させる。
【0052】
その後、正走査のC色と逆走査のM色との時間差をレジコンカウンタにて計測し、カウント値がデータレジスタに蓄えられる。このようにして、蓄えられた各データをもとに最終的な補正値を演算器で算出して各ラインシンクカウンタに入力され、所望のラインシンク信号を得る。画像データを画像処理して生成された印字データをこのラインシンク信号のタイミングでレーザ駆動回路に送り、半導体レーザを変調して実際の印字を行う。ラインシンク信号へのカウンタ値は直接外部のコマンダで設定可能であると同時にメインコントロール内に格納される。この値はレジコントロール回路のデータレジスタと関係を持つことで、初期出荷時の調整や、出荷後の再調整用に利用される。
【0053】
次に、本実施の形態の作用について詳細に説明する。
【0054】
本実施の形態に係る画像形成装置10では、起動時おける画像形成前の準備段階動作を行う初期処理として、図5に示す処理ルーチンが実行される。
【0055】
まず、ステップ100では、初期値として、各色の初期ラインシンク発生時間(Y、M、C、K)を、データレジスタにロードする。
【0056】
次のステップ102では、ユーザがコマンダによって、各色のラインシンク発生時間として所望の時間値を入力して設定する(外部入力ラインシンク発生時間の設定)。
【0057】
次のステップ104では、全色についてのラインシンク発生時間の入力設定が終了したか否かを判断し、否定判断の場合にはステップ102に戻り、肯定判断の場合には次のステップ106へ進む。
【0058】
次のステップ106では、設定された上記の初期値にから、初期情報として、SOSセンサ40Y及びSOSセンサ40Mの各検出信号間の位相差、SOSセンサ40K及びSOSセンサ40Cの各検出信号間の位相差、SOSセンサ40M及びEOSセンサ41Mの各検出信号間の位相差、及びSOSセンサ40C及びEOSセンサ41Mの各検出信号間の位相差を計測し、データレジスタに格納して、本処理ルーチンを終了する。
【0059】
上述の初期処理によって、画像形成装置10の初期状態における各値を適切に把握することができる。
【0060】
次に、画像形成装置10において、走査方向が同方向であるレーザ光間における位置ズレ補正処理では、図6に示す処理ルーチンのステップ200〜212が実行されることで、図7に示すように、補正処理が行われる。
【0061】
図7(A)は初期状態を示し、各SOSセンサの出力タイミングから、各色のラインシンク信号(L/S(K)、L/S(C))を生成している。この時のラインシンク信号の発生タイミングは、それぞれ、LSTK(Line SyncTiming of K)及びLSTC(Line Sync Timingof C)として保持されている。また、各SOSの時間差はSDTKC(Same Direction Timing of K and C)として保持される。
【0062】
ここで、図7(B)のようにC色のセンサ出力がずれる(Δ)と、書き出し位置は変動し、何の補正もしなければ、Δ分の色ズレが発生する。この時、SDTKCの値は変化しているので、SDTKCの変動前と変動後からΔ分を演算器で算出し、Kのラインシンクカウンタのカウント値を補正することにより、色ズレは解消される。
【0063】
すなわち、モニタ手段であるSDTKC(K色からC色のSOS信号時間間隔)の初期が
SDTKC=OLD_SDTKC
であって、SOS信号からラインシンク信号の発生までの時間(LSTx)の初期が
LSTK=OLD_LSTK
LSTC=OLD_LSTC
であるとき、C色のビーム検出位置が遅れて変位した場合には(図参照)、
SDTKC=NEW_SDTKC=OLD_SDTKC+Δ
となり、各色のラインシンク信号の発生までの時間を
LSTC=OLD_LSTC
LSTK=NEW_LSTK=OLD_LSTK+Δ
とすることで、イメージの書き出し位置を揃えることができる。
【0064】
反対に、C色のビーム検出位置が進んで変位した(時間間隔が減る)場合には、
SDTKC=NEW_SDTKC=OLD_SDTKC−Δ
となり、各色のラインシンク信号の発生までの時間を
LSTC=OLD_LSTC
LSTK=NEW_LSTK=OLD_LSTK−Δ
とすることで、同様にイメージの書き出し位置を揃えることができる。
【0065】
また、図7(C)において、K色のセンサがずれた(Δ)場合でも、同様にKのラインシンクカウンタのカウント値を補正することにより、色ズレは解消される。
【0066】
すなわち、K色のビーム検出位置が進んで変位した場合には(図参照)、
SDTKC=NEW_SDTKC=OLD_SDTKC+Δ
となり、各色のラインシンク信号の発生までの時間を
LSTC=OLD_LSTC
LSTK=NEW_LSTK=OLD_LSTK+Δ
とすることで、イメージの書き出し位置を揃えることができる。また、K色のビーム検出位置が遅れて変位した(時間間隔が減る)場合には、
SDTKC=NEW_SDTKC=OLD_SDTKC−Δ
となり、各色のラインシンク信号の発生までの時間を
LSTC=OLD_LSTC
LSTK=NEW_LSTK=OLD_LSTK−Δ
また、実際には、図7(D)のように、同時に変動することもある。この場合でも、SDTKCの変動をモニタし、変動分が色ズレ分であるから、被基準色のラインシンクカウンタのカウント値を対応して変えることで、色ズレは解消される。
【0067】
すなわち、以上から、一般的なケースである両色がずれたときにおいて、
K色のビーム検出位置が遅れて変位した(時間間隔が増える)場合は、
SDTKC=NEW_SDTKC=OLD_SDTKC+Δ
となり、各色のラインシンク信号の発生までの時間を
LSTC=OLD_LSTC
LSTK=NEW_LSTK=OLD_LSTK+Δ
として、イメージの書き出し位置を揃えることができる。
【0068】
また、K色のビーム検出位置が進んで変位した(時間間隔が減る)場合は、ずれ量の符号が変わり、
LSTC=OLD_LSTC
LSTK=NEW_LSTK=OLD_LSTK−Δ
として、イメージの書き出し位置を揃えることができる。
【0069】
Y色及びM色についても同様に、M色に合わせるように、SDTYMの変動ををモニタし、変動分が色ズレ分であるから、逆走査の被基準色であるY色のラインシンクカウンタのカウント値を対応して変えることで、位置ズレは解消される。
【0070】
以上の補正処理によって、走査方向が同方向であるものについては、それぞれC色とM色に合わせられているので、C色とM色の色ズレを補正することによって、全ての色合わせが完了する。本実施の形態では、本来の基準色であるC色にM色を合わせることとする。以下において特に定めが無い限り、C色とM色について説明し、K色とY色は、それぞれC色とM色と一致し、位置ズレは無いものとする。
【0071】
次に、画像形成装置10において、走査方向が異方向であるレーザ光間における位置ズレ補正処理では、図9に示す処理ルーチンのステップ300〜314が実行されることで、図10に示すように、補正処理が行われる。
【0072】
ここでは、C色とM色とにおけるの補正について説明する。なお、図10では、丸数字の各タイミングにおける印字イメージも併せて示している。
【0073】
まず初期状態としては、▲1▼及び▲2▼のタイミングで印字を行っていることとする。この時の、M色におけるSOSセンサからEOSセンサまでの時間間隔をOLD_DDSETM(Different Direction Sos to Eos Time of M)とする。次に、C色及びM色の共通ピックアップミラー等が変動し、併せてM色の単独のピックアップミラー(SOS側)が変動した場合を想定し、その時に状態を▲3▼、▲4▼及び▲5▼とする(C色及びM色の書き出し方向へのズレが生じている)。基準色CのズレであるΔCは、前述した共通構造の効果により、▲3▼に示すようにEOSセンサの出力ポイントのズレとして、同量変化する。一方、M色のSOSセンサは、これらとは独立に変動し、ΔMだけ変化する。この時に印字イメージは、C色についてはセンサ出力が進むため書き出し方向(左方向)にΔC分のレジがずれ、M色についても書き出し方向ズレるが、走査方向が逆であるためにΔM分の右方向にズレる。したがって、印字イメージ上でレジを合わせるためには、M色のタイミングをΔC+ΔM分レジがずれ左方向に補正する必要がある。
【0074】
ここで、変動後のM色ビームのSOSセンサからEOSセンサまでの時間間隔(NEW_DDSETM)は、M自身のSOSピックアップミラーのズレ分(ΔM)とEOS側の共通ミラーによるズレ分(ΔC)が含まれるので、その差分DDTM(Different Direction Time of M)は、DDTM=NEW_DDSETM−OLD_DDSETM=ΔM+ΔCとなり、M色の補正すべきズレ量に相当する。したがって、この差分の結果をM色に補正するようにすることによって、C色とM色のレジ補正が可能となる。
【0075】
C色が変動しなければ、レジ補正の基本であるSOSセンサ同士の時間間隔のモニタによる補正方法をC色とM色に当てはめれば良いのであるが、C色が変動したか否かについて補正を行う際に監視する必要があり、処理上極めて煩雑になる。この判断処理を行わなくてもDDSETMの変動を監視していれば、自動的に補正することができる。すなわち、M色のSOS〜EOS時間による補正では、C色が変動しなければΔCがゼロになるため、
DDTM=NEW_DDSETM−OLD_DDSETM=ΔM
となり、ΔMだけの補正となる。ΔCの監視を行うことなく、ΔM分だけ補正することが自動的にできる。
【0076】
なお、完全に変動前(補正前)の状態に戻す場合には、基準色であるC色のズレ分を補正する必要がある。基準色CのSOSセンサとM色のEOSセンサの時間間隔(DDCSMET:Different Direction C−Sos to M−Eos Time)の変動は、共通ミラーの寄与のみが含まれることになるため、それをモニタすることにより、基準色自身のズレを求めることができる。すなわちDDTC(Different Direction Time of C)は、
Figure 0004032655
であるから、このズレ分を各色のラインシンク発生タイミング(LSTx)に反映させることで変動前に戻すことが可能となる。
【0077】
上述の各補正処理によって、図11に示すように、初期状態から変動することで、それぞれのSOS出力タイミングがずれた場合に、まず、Y色とM色についてM色に合うように、また、C色とK色についてC色に合うように同方向の補正が行われ、次に異方向の補正がC色とM色に行われ、Y色とM色に対して補正がかかる。これで、カラーレジの補正としては完了するが、基準のズレ量が把握出来ているので、その分を全ての色について行うことでもとのポジションに印字が可能となる。
【0078】
以上により、本実施の形態に係る画像形成装置では、製造コストの安い、簡単な構成で、レーザビームの走査方向に依存せずに、画素書き出し位置の設定と制御が可能となり、多重画像形成時における色ズレを防止することができる。また、制御については、従来のようにテスト画像を形成することを必要としないため、常時モニタリングが可能であり、必要に応じて即補正制御ができる。さらに、コマンダでの入力により、書き出し位置を所望に設定可能なため、製品出荷後でも、随時色ズレ補正を行うことができる。
【0079】
なお、図3に示した、本実施の形態に係るSOSセンサ、EOSセンサ、及びピックアップミラーの構成の変形例として、図12に示すように、走査方向が同方向であるレーザ光を共通のセンサ(40CK、41YM)で検出するようにしてもよい。この例は、図3(B)に示すホルダ39を利用した一体タイプであるが、1つのセンサに2つの走査レーザビームが入射されるように、それぞれのピックアップミラー38を、所定角度分の傾きを設けて設置するようになっている。このようにする事で、センサの数を減らすことができ、コストダウンを達成できる。なお、この変形例の場合においては、同時に走査レーザビームが入射されると、どちらの色のビームであるかが判断つかないことが生じることから、例えば、光学レイアウトの変更(レーザビームのポリゴンミラーへの入射角に多少のオフセットを設けて、センサに対しては時系列的に入射させることが必要となる。さらに、後段の処理に都合の良いように、センサ信号出力をそれぞれ分離する分離回路を設ける必要がある。この概略構成としては、図13に示すように、図4に示すセンサ部を図の如く変更したものである。
【0080】
【発明の効果】
以上説明したように、本発明によれば、第1及び第2の主走査方向へ走査する光ビームによる画像信号に対応する走査開始信号と第2の主走査方向へ走査する光ビームによる画像信号に対応する走査終了信号との相関関係に基づいて、各画像信号毎に対応する光ビームによる画像担持体上への原画像の書き出しを開始するまでの待機時間を、各原画像を最終的に同一の記録媒体上に多重転写する際に各原画像間で位置ズレが生じないように補正するので、多重画像形成時における画像形成位置のズレを防止し、高品質の画像を形成することができる画像形成装置を提供できる、という優れた効果を有する。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る画像形成装置の概略構成図である。
【図2】 本発明の実施の形態に係る走査露光装置の概略構成図である。
【図3】 (A)は本発明の実施の形態に係るピックアップミラー、SOSセンサ、EOSセンサの配置構成の概略図であり、(B)は(A)に示す配置構成の他の例の概略図である。
【図4】 本発明の実施の形態に係る画像形成装置の主要構成部のブロック図である。
【図5】 本発明の補正制御における初期処理の流れを示すフローチャートである。
【図6】 本発明の補正制御における同方向走査レーザ光間における補正処理の流れを示すフローチャートである。
【図7】 同方向走査レーザ光間の補正処理の様子を説明するためのタイミングチャートである。
【図8】 (A)はピックアップミラー、SOSセンサ、及びEOSセンサの設置位置変動の様子を説明するための図であり、(B)は(A)の位置変動に伴うSOS信号の変動の様子を説明するためのタイミングチャートである。
【図9】 本発明の補正制御における異方向走査レーザ光間における補正処理の流れを示すフローチャートである。
【図10】 異方向走査レーザ光間の補正処理の様子を説明するためのタイミングチャートである。
【図11】 同方向と異方向との双方の走査レーザ光間の補正処理の様子を説明するためのタイミングチャートである。
【図12】 ピックアップミラー、SOSセンサ、EOSセンサの配置構成の変形例を示す概略図である。
【図13】 図12に示す変形例における画像形成装置の主要構成部のブロック図である。
【図14】 従来の画像形成装置の概略構成図である。
【図15】 従来の他の画像形成装置における走査露光装置についての概略構成図である。
【図16】 (A)及び(B)は、図15に示す走査露光装置におけるSOS信号のズレを説明するための図である。
【符号の説明】
10 画像形成装置
11 走査露光装置
12 感光体ドラム
18 転写器
18A 転写ベルト
22 ポリゴンミラー
26 記録媒体
30 レーザダイオード
36 fθレンズ
38 ピックアップミラー
39 ホルダ
40 SOSセンサ
41 EOSセンサ

Claims (5)

  1. 複数の光源と複数の画像担持体とを備え、1つの基準画像信号を含む複数の異なる画像信号に基づいて変調され前記各光源から出射された光ビームを、所定方向に等速回転する回転多面鏡によって偏向して、前記各画像信号に対応する前記画像担持体各々に対して、前記基準画像信号を含む複数の画像信号に対応する光ビームを第1の主走査方向へ走査すると共に、残りの複数の画像信号に対応する光ビームを、前記第1の主走査方向と相反する第2の主走査方向へ走査する双方向走査を順次行うことにより、前記各画像信号に対応した前記各画像担持体上にそれぞれ異なる原画像を形成し、当該各原画像を最終的に同一の記録媒体上に多重転写して画像を形成する画像形成装置において、
    前記回転多面鏡により偏向された前記基準画像信号に対応する基準光ビーム及び前記第2の主走査方向へ走査する少なくとも1つの光ビームを反射するように、当該基準光ビームの走査開始位置付近でかつ前記少なくとも1つの光ビームの走査終了位置付近に設けられた第1の反射手段と、
    前記第1の反射手段により反射された前記基準光ビームを検出することで基準走査開始信号を出力する基準走査開始位置検出手段と、
    前記第1の反射手段により反射された前記少なくとも1つの光ビームを検出することで走査終了信号を出力する走査終了位置検出手段と、
    前記回転多面鏡により偏向された前記基準画像信号に対応する前記基準光ビームを除きかつ前記少なくとも1つの光ビームを含む各光ビームを反射するように、当該各光ビームの各走査開始位置付近の各々に設けられた複数の第2の反射手段と、
    前記第2の反射手段により反射された前記各光ビームを各々検出することで各々走査開始信号を出力する複数の走査開始位置検出手段と、
    前記基準走査開始信号及び前記走査開始信号の各々が出力された時点から、予め定めた待機時間だけ経過した後に、前記各光源から出力され、かつ前記回転多面鏡により偏向された光ビームの各々による前記各画像担持体上への前記各原画像の書き出しを開始するように制御する制御手段と、
    前記少なくとも1つの光ビームの前記走査開始信号の出力から前記走査終了信号の出力までの時間間隔と前記画像形成装置の初期状態における前記時間間隔との差分に基づいて、前記各原画像を最終的に同一の記録媒体上に多重転写する際に前記基準光ビームに対応する原画像と前記少なくとも1つの光ビームに対応する原画像との間で位置ズレが生じないように、前記少なくとも1つの光ビームに対応する前記待機時間を補正する補正手段と、
    を備えた画像形成装置。
  2. 前記第1の反射手段を前記基準光ビーム及び前記少なくとも1つの光ビームを反射する1つの反射部材で構成するか、又は前記基準光ビームを反射する反射部材及び前記少なくとも1つの光ビームを反射する反射部材を1つの固定部材に保持して構成したことを特徴とする請求項1に記載の画像形成装置。
  3. 前記補正手段は、前記基準走査開始信号の出力から前記第1の主走査方向へ走査する前記基準光ビームを除く各光ビームの前記走査開始信号の出力までの時間間隔と前記画像形成装置の初期状態における前記時間間隔との差分に基づいて、前記第1の主走査方向へ走査する各光ビームに対応する前記各画像信号に対応する各原画像間で位置ズレが生じないように、前記第1の主走査方向へ走査する前記基準光ビームを除く各光ビームに対応する前記待機時間の各々を補正する請求項1又は請項2に記載の画像形成装置。
  4. 前記補正手段は、前記第2の主走査方向へ走査する前記少なくとも1つの光ビームの前記走査開始信号の出力から前記第2の主走査方向へ走査する前記少なくとも1つの光ビームを除く各光ビームの出力までの時間間隔と前記画像形成装置の初期状態における前記時 間間隔との差分に基づいて、前記第2の主走査方向へ走査する各光ビームに対応する前記各画像信号に対応する各原画像間で位置ズレが生じないように、前記第2の主走査方向へ走査する前記少なくとも1つの光ビームを除く各光ビームに対応する前記待機時間の各々を補正する請求項1〜請求項3の何れか1項に記載の画像形成装置。
  5. 装置内の温度を検出する温度検出手段をさらに備え、当該温度検出手段で検出した温度値が所定値以上となった場合に、前記補正手段による補正を行うことを特徴とする請求項1〜請項4の何れか1項に記載の画像形成装置。
JP2001067594A 2001-03-09 2001-03-09 画像形成装置 Expired - Fee Related JP4032655B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001067594A JP4032655B2 (ja) 2001-03-09 2001-03-09 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001067594A JP4032655B2 (ja) 2001-03-09 2001-03-09 画像形成装置

Publications (2)

Publication Number Publication Date
JP2002267970A JP2002267970A (ja) 2002-09-18
JP4032655B2 true JP4032655B2 (ja) 2008-01-16

Family

ID=18925920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001067594A Expired - Fee Related JP4032655B2 (ja) 2001-03-09 2001-03-09 画像形成装置

Country Status (1)

Country Link
JP (1) JP4032655B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492344B2 (ja) * 2004-12-27 2010-06-30 富士ゼロックス株式会社 画像形成装置
JP4728649B2 (ja) * 2005-01-07 2011-07-20 株式会社リコー 画像形成装置、プリンタ装置、ファクシミリ装置及び複写機
JP2006256047A (ja) * 2005-03-16 2006-09-28 Fuji Xerox Co Ltd 画像形成装置
JP4934498B2 (ja) * 2007-05-17 2012-05-16 キヤノン株式会社 走査式光学装置、画像形成装置及びジッター補正方法
JP5119755B2 (ja) * 2007-06-13 2013-01-16 富士ゼロックス株式会社 画像形成装置および制御装置
JP6198402B2 (ja) * 2013-02-05 2017-09-20 シャープ株式会社 光走査装置、及びそれを備えた画像形成装置

Also Published As

Publication number Publication date
JP2002267970A (ja) 2002-09-18

Similar Documents

Publication Publication Date Title
US7679634B2 (en) Method and apparatus for image forming capable of detecting a reference signal for a lighting control
EP1424609A2 (en) Color shift correcting method, optical writing device and image forming apparatus
JP3351435B2 (ja) 多重画像形成装置におけるカラーレジストレーションずれの補正方法
US7071957B2 (en) Image forming apparatus and color-misregistration correcting method
US8305637B2 (en) Image forming apparatus, positional deviation correction method, and recording medium storing positional deviation correction program
JP2006035725A (ja) カラー画像形成装置及びプロセスカートリッジ
KR20140103516A (ko) 회전 다면경, 이를 채용한 광 주사 장치 및 전자 사진 방식의 화상 형성 장치
US7518628B2 (en) Image forming apparatus capable of effectively correcting main scanning misregistration
JP2003337294A (ja) 光走査装置及び画像形成装置
EP1296512B1 (en) Color image forming apparatus
JPS63296559A (ja) レ−ザ−プリンタ−同期装置
US6198495B1 (en) Color image forming apparatus having means for correcting deviations between scanning light beams accurately and in real time
JP2004004510A (ja) 光走査装置及び画像形成装置
JP4032655B2 (ja) 画像形成装置
JP4260616B2 (ja) カラー画像形成装置
JP3998760B2 (ja) 多色画像形成装置
JP4849878B2 (ja) 位置ずれ補正方法及びカラー画像形成装置
JP4492344B2 (ja) 画像形成装置
JPS6366580A (ja) カラ−プリンタ−
JP3633181B2 (ja) 画像形成装置の画像位置調整方法
JPH11218991A (ja) カラーレーザープリンタ
JP3219025B2 (ja) カラー画像形成装置
JPH11254757A (ja) 多色画像形成装置
JP2004345172A (ja) 画像形成装置
JP6758906B2 (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees