JP4929019B2 - Magnesium alloy for plastic working and magnesium alloy forged parts - Google Patents

Magnesium alloy for plastic working and magnesium alloy forged parts Download PDF

Info

Publication number
JP4929019B2
JP4929019B2 JP2007102585A JP2007102585A JP4929019B2 JP 4929019 B2 JP4929019 B2 JP 4929019B2 JP 2007102585 A JP2007102585 A JP 2007102585A JP 2007102585 A JP2007102585 A JP 2007102585A JP 4929019 B2 JP4929019 B2 JP 4929019B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
plastic working
magnesium
aluminum
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007102585A
Other languages
Japanese (ja)
Other versions
JP2008260976A (en
Inventor
耕平 久保田
洋一 野坂
隆之 堀
範人 太利
和幸 能本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2007102585A priority Critical patent/JP4929019B2/en
Priority to KR1020070139845A priority patent/KR20080085664A/en
Priority to CN2007101800697A priority patent/CN101270429B/en
Publication of JP2008260976A publication Critical patent/JP2008260976A/en
Application granted granted Critical
Publication of JP4929019B2 publication Critical patent/JP4929019B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)

Description

本発明はダイカスト鋳造によって容易に得ることができ、マグネシウム合金の再結晶温度よりも低い温度での塑性変形性及び耐クリープ性に優れている塑性加工用マグネシウム合金及びマグネシウム合金鍛造成形部材に関し、具体的には軽量化を必要とする自動車、携帯電話、ノート型パソコンなどの民生電機・情報機器、電動工具、汎用エンジンなどの産業機械等のマグネシウム合金製部材の製造に用いることができる塑性加工用マグネシウム合金及びマグネシウム合金鍛造成形部材に関する。 The present invention relates to a magnesium alloy for plastic working and a magnesium alloy forged molded member which can be easily obtained by die casting and has excellent plastic deformation and creep resistance at a temperature lower than the recrystallization temperature of the magnesium alloy. For plastic processing that can be used for the manufacture of magnesium alloy parts for consumer electronics and information equipment such as automobiles, mobile phones, laptop computers, power tools, general-purpose engines, etc. The present invention relates to a magnesium alloy and a magnesium alloy forged member.

上記のような産業分野のマグネシウム合金製部材の製造に使用される合金の多くはマグネシウム−アルミニウム系合金であり、鋳造性及び強度を必要とする場合にはアルミニウム含有量が多い合金が汎用されている。一方、鍛造など塑性変形性を必要とする場合にはアルミニウム含有量が少ない合金が汎用されている。   Most of the alloys used in the manufacture of magnesium alloy members in the industrial field as described above are magnesium-aluminum alloys. When castability and strength are required, alloys having a high aluminum content are widely used. Yes. On the other hand, when plastic deformation is required, such as forging, alloys with a low aluminum content are widely used.

マグネシウム合金は一般的に塑性変形性に乏しいので、一般に573K以上に加熱して塑性加工を実施している。そのため金型の寿命が短く、潤滑剤の選定が難しく、成形精度に課題がある等多くの問題がある。特にマグネシウム合金の鍛造において、鍛造を573K以上で実施することは、マグネシウム合金の再結晶温度を超えているので鍛造加工後の強度向上が得られないか、あるいは逆に硬さが低下することさえもある。一方、塑性加工温度を573K未満にすると、低い加工率でも割れが生じやすく、多様な成形に対応できないという問題があった。   Magnesium alloys are generally poor in plastic deformability, and are generally heated to 573 K or higher to perform plastic working. Therefore, there are many problems such as a short mold life, difficult selection of a lubricant, and problems in molding accuracy. In particular, in forging a magnesium alloy, forging at 573 K or higher exceeds the recrystallization temperature of the magnesium alloy, so that strength improvement after forging cannot be obtained, or conversely, hardness decreases. There is also. On the other hand, when the plastic processing temperature is less than 573 K, there is a problem that cracking is likely to occur even at a low processing rate, and it cannot be applied to various moldings.

本発明は鋳造、特にダイカスト鋳造によって容易に得ることができ、マグネシウム合金の再結晶温度よりも低い温度での塑性変形性及び耐クリープ性に優れており、特に鍛造成形に適している塑性加工用マグネシウム合金及びマグネシウム合金鍛造成形部材を提供することを目的としている。   The present invention can be easily obtained by casting, particularly die casting, and is excellent in plastic deformation and creep resistance at a temperature lower than the recrystallization temperature of a magnesium alloy, and particularly suitable for forging. An object is to provide a magnesium alloy and a magnesium alloy forged member.

本発明者らは上記の目的を達成するための方策を種々検討した結果、次の知見を得るに至った。すなわち、マグネシウム合金中のアルミニウム量が低下することで塑性加工性は向上し、鋳造性、特にダイカスト鋳造性を考慮した場合と、塑性加工性、特に鍛造成形性及び耐クリープ性を考慮した場合とでは、マグネシウム合金中のアルミニウム含有量として0.5質量%以上、望ましくは1質量%以上の差が生じる。また、溶湯を鋳造、特にダイカスト鋳造して得たマグネシウム合金は結晶組織が微細化しているので可能な鍛造加工率は向上している。これらの組合せにより、鍛造温度473K以下で圧縮加工率50%以上の鍛造加工が可能となることが明らかになった。一方、マグネシウム合金中のアルミニウム含有量の低下は合金強度の低下を招くが、鍛造温度473K以下での鍛造加工による加工硬化により補うことができる。   As a result of various studies on measures for achieving the above object, the present inventors have obtained the following knowledge. That is, the plastic workability is improved by reducing the amount of aluminum in the magnesium alloy, and when considering castability, especially die cast castability, and when considering plastic workability, particularly forging formability and creep resistance. In this case, the difference in aluminum content in the magnesium alloy is 0.5% by mass or more, desirably 1% by mass or more. In addition, the magnesium alloy obtained by casting a molten metal, in particular, die casting, has a refined crystal structure, so that the possible forging rate is improved. It became clear that these combinations enable forging with a compression rate of 50% or more at a forging temperature of 473K or less. On the other hand, a decrease in the aluminum content in the magnesium alloy causes a decrease in the alloy strength, but it can be compensated by work hardening by forging at a forging temperature of 473 K or less.

本発明者らはマグネシウム溶湯中のアルミニウムと金属間化合物を形成する金属元素を添加することを検討した。しかし、その金属元素が溶湯中でアルミニウムと金属間化合物を形成する場合には、溶湯中のアルミニウム含有量を実質的に下げてしまい、鋳造性の向上には寄与せず、また金属間化合物が粗大化するため溶湯中で沈殿して強度向上にも寄与しない。しかし、凝固過程の共晶反応でアルミニウムと金属間化合物を形成する金属元素であれば、その金属間化合物は凝固過程で生成し結晶粒周囲に微細で均一に分散するので、鋳造時には比較的高アルミニウム含有量であるが、凝固後のマグネシウム相中のアルミニウム濃度を低くすることが可能である。また、凝固した金属組織中に微細な金属間化合物が均一に分散するため、塑性加工性、耐クリープ性に加えて合金の高強度化が可能となる。   The present inventors have studied to add a metal element that forms an intermetallic compound with aluminum in molten magnesium. However, when the metal element forms an intermetallic compound with aluminum in the molten metal, the aluminum content in the molten metal is substantially reduced, which does not contribute to the improvement of castability. Since it becomes coarse, it precipitates in the molten metal and does not contribute to strength improvement. However, if it is a metal element that forms an intermetallic compound with aluminum in the eutectic reaction during the solidification process, the intermetallic compound is formed during the solidification process and is finely and uniformly dispersed around the crystal grains. Although it is aluminum content, it is possible to reduce the aluminum concentration in the magnesium phase after solidification. Further, since fine intermetallic compounds are uniformly dispersed in the solidified metal structure, the strength of the alloy can be increased in addition to plastic workability and creep resistance.

即ち、本発明の塑性加工用マグネシウム合金は、マグネシウムと、アルミニウムと、凝固過程の共晶反応でアルミニウムとの金属間化合物を形成する希土類金属、カルシウム及びストロンチウムの少なくとも一種の金属元素とからなる溶湯をダイカスト鋳造して得たマグネシウム合金であって、該マグネシウム合金中の全アルミニウム含有量が2〜5質量%であり、マグネシウム合金の金属組織におけるマグネシウム相中のアルミニウム濃度が該マグネシウム合金中の全アルミニウム含有量よりも0.5質量%以上低くなっており、残りのアルミニウムが金属間化合物として存在しており、凝固過程の共晶反応でアルミニウムとの金属間化合物を形成する金属元素の量がマグネシウム合金の金属組織におけるマグネシウム相中のアルミニウム濃度を0.5質量%以上低下させる量であり、マグネシウム合金の金属組織の結晶粒度が平均30μm以下であることを特徴とする。 That is, the magnesium alloy for plastic working of the present invention is a molten metal comprising magnesium, aluminum, and at least one metal element of rare earth metal, calcium, and strontium that forms an intermetallic compound with aluminum by a eutectic reaction in the solidification process. A magnesium alloy obtained by die casting, wherein the total aluminum content in the magnesium alloy is 2 to 5% by mass, and the aluminum concentration in the magnesium phase in the metal structure of the magnesium alloy is the total aluminum content in the magnesium alloy. The aluminum content is 0.5% by mass or more lower than the aluminum content, the remaining aluminum is present as an intermetallic compound, and the amount of metal elements that form an intermetallic compound with aluminum in the eutectic reaction during the solidification process is aluminum magnesium phase in the metal structure of the magnesium alloy The amount der to reduce the degrees least 0.5 mass% is, grain size of the metallic structure of a magnesium alloy, characterized in der Rukoto average 30μm or less.

本発明の塑性加工用マグネシウム合金は、マグネシウム合金の再結晶温度よりも低い温度での塑性変形性及び耐クリープ性に優れており、鍛造温度473K以下、特に373K以下での鍛造成形性に優れているものであり、自動車、携帯電話、ノート型パソコンなどの民生電機・情報機器、電動工具、汎用エンジンなどの産業機械等の軽量化の進展が可能になる。   The magnesium alloy for plastic working of the present invention is excellent in plastic deformation property and creep resistance at a temperature lower than the recrystallization temperature of the magnesium alloy, and excellent in forgeability at a forging temperature of 473 K or less, particularly at 373 K or less. As a result, it will become possible to reduce the weight of consumer machinery and information equipment such as automobiles, mobile phones, and notebook computers, and industrial machines such as power tools and general-purpose engines.

本発明の塑性加工用マグネシウム合金は、マグネシウムと、アルミニウムと、凝固過程の共晶反応でアルミニウムとの金属間化合物を形成する希土類金属、カルシウム及びストロンチウムの少なくとも一種の金属元素とからなる溶湯をダイカスト鋳造して得たマグネシウム合金であり、各合金元素を純金属としてあるいは母合金として用いるか又は各成分を含む合金として用い、溶解させて得た溶湯をダイカスト鋳造することにより得られる。この溶湯中のアルミニウム含有量を2〜5質量%とする。 The magnesium alloy for plastic working of the present invention is a die casting of a molten metal comprising magnesium, aluminum, and a rare earth metal that forms an intermetallic compound with aluminum by a eutectic reaction during solidification, calcium, and strontium. This is a magnesium alloy obtained by casting, and is obtained by die casting a molten metal obtained by using each alloy element as a pure metal, as a mother alloy, or as an alloy containing each component and melting them. The aluminum content in the molten metal is 2 to 5% by mass.

鋳造後の凝固過程の共晶反応でアルミニウムと上記の金属元素が金属間化合物を形成するので、マグネシウム合金の金属組織におけるマグネシウム相中のアルミニウム濃度が該マグネシウム合金中の全アルミニウム含有量よりも0.5質量%以上、望ましくは1質量%以上低くなり、残りのアルミニウムが凝固した金属組織中に微細な金属間化合物として均一に分散するので、マグネシウム合金の再結晶温度よりも低い温度での塑性加工性、耐クリープ性に加えて強度も改善される。   Since aluminum and the above metal elements form an intermetallic compound in the eutectic reaction during the solidification process after casting, the aluminum concentration in the magnesium phase in the metal structure of the magnesium alloy is less than the total aluminum content in the magnesium alloy. .5% by mass or more, desirably 1% by mass or less, and the remaining aluminum is uniformly dispersed as a fine intermetallic compound in the solidified metal structure, so plasticity at a temperature lower than the recrystallization temperature of the magnesium alloy. In addition to workability and creep resistance, strength is also improved.

凝固過程の共晶反応でアルミニウムとの金属間化合物を形成する金属元素としてはランタン、セリウムなどの希土類金属、あるいはその混合物であるミッシュメタル、カルシウム、ストロンチウム等があり、コスト面からミッシュメタル、カルシウム、ストロンチウムが有利である。これらの金属元素の含有量は一律に決まるものではなく、マグネシウム合金の金属組織におけるマグネシウム相中のアルミニウム濃度を該マグネシウム合金中の全アルミニウム含有量よりも0.5質量%以上、望ましくは1質量%以上低くさせる量である。マグネシウム相中のアルミニウム濃度は例えばEPMA(Electron Probe Micro-Analyzer)により分析できる。あるいは、各金属元素が形成する金属間化合物は、例えばAl2Ca、Al4Ce、あるいはMg−Al−Ca系などの複合化合物等であり、この原子比から算出することもできる。 Metal elements that form intermetallic compounds with aluminum in the eutectic reaction of the solidification process include rare earth metals such as lanthanum and cerium, or mixtures thereof such as misch metal, calcium, and strontium. Strontium is preferred. The content of these metal elements is not determined uniformly, magnesium alloy metal aluminum magnesium concentration phase in the tissue than 0.5 wt% than the total aluminum content in the magnesium alloy, preferably 1 This is the amount to be lowered by mass% or more. The aluminum concentration in the magnesium phase can be analyzed by, for example, EPMA (Electron Probe Micro-Analyzer). Alternatively, the intermetallic compound formed by each metal element is, for example, a composite compound such as Al 2 Ca, Al 4 Ce, or Mg—Al—Ca, and can also be calculated from this atomic ratio.

本発明の塑性加工用マグネシウム合金は、金属組織が微細化しているのでマグネシウム合金の再結晶温度よりも低い温度での塑性変形性、機械的強度の両面から有用であり、また、鋳造、特にダイカスト鋳造の急冷凝固により結晶粒度が50μm以下、望ましくは30μm以下と微細となり、塑性加工用、特に鍛造成形用合金素材として適している。また、このような微細組織のマグネシウム合金は耐食性に優れることも知られている。従って、本発明の塑性加工用マグネシウム合金はマグネシウム合金の再結晶温度よりも低い温度、具体的には473K以下、特に373K以下の温度での押出し、圧延、鍛造又はプレスの塑性加工、特に鍛造成形が可能であり、本発明はこのような塑性加工により得られたマグネシウム合金塑性加工部材も包含する。   The magnesium alloy for plastic working according to the present invention is useful in terms of both plastic deformability and mechanical strength at a temperature lower than the recrystallization temperature of the magnesium alloy since the metal structure is refined, and is particularly useful for casting, particularly die casting. Due to the rapid solidification of casting, the crystal grain size becomes as fine as 50 μm or less, desirably 30 μm or less, and it is suitable for plastic working, particularly as an alloy material for forging. It is also known that such a microstructured magnesium alloy is excellent in corrosion resistance. Therefore, the magnesium alloy for plastic working according to the present invention is subjected to plastic working of extrusion, rolling, forging, or pressing, particularly forging forming at a temperature lower than the recrystallization temperature of the magnesium alloy, specifically 473 K or less, particularly 373 K or less. The present invention also includes a magnesium alloy plastic working member obtained by such plastic working.

本発明の塑性加工用マグネシウム合金は、塑性加工の加工温度・加工比を制御することにより再結晶や動的再結晶を生じさせ、マグネシウム合金塑性加工部材の金属組織を50μm以下、望ましくは30μm以下に微細化できる。微細組織の有効性は上記した通りである。このような組織制御を行う塑性加工としては加工温度・加工比の自由度から鍛造加工が有利である。このように本発明のマグネシウム合金鍛造加工部材においては、マグネシウム合金の金属組織の結晶粒度が他の製法では困難な平均50μm以下とすることができ、30μm以下であることが好ましい。   The magnesium alloy for plastic working of the present invention causes recrystallization or dynamic recrystallization by controlling the processing temperature and processing ratio of plastic working, and the metal structure of the magnesium alloy plastic working member is 50 μm or less, desirably 30 μm or less. Can be miniaturized. The effectiveness of the microstructure is as described above. As plastic working for such structure control, forging is advantageous because of the freedom of the working temperature and working ratio. Thus, in the magnesium alloy forged member of the present invention, the crystal grain size of the metal structure of the magnesium alloy can be 50 μm or less on average, which is difficult by other production methods, and is preferably 30 μm or less.

また、本発明の塑性加工用マグネシウム合金は、473K以下、特に373K以下の温度での鍛造成形、据込み鍛造で、圧縮率30%程度、殊に条件の制御により圧縮率50%程度でも割れが生じず、鍛造後の硬さを加工硬化により30%以上、条件により50%以上向上させることができる。本発明はこのような鍛造成形により得られたマグネシウム合金鍛造成形部材も包含する。   Further, the magnesium alloy for plastic working of the present invention is cracked even at a compression rate of about 30%, especially by controlling the conditions at a compression rate of about 30% by forging or upset forging at a temperature of 473K or lower, particularly 373K or lower. It does not occur, and the hardness after forging can be improved by 30% or more by work hardening and 50% or more depending on conditions. The present invention also includes a magnesium alloy forged member obtained by such forging.

また、マグネシウム合金塑性加工部材の成形形状又は強度の必要な部位が限定されている場合には、本発明の塑性加工用マグネシウム合金を573K以上の熱間鍛造で成形し、強度の必要な部位を473K以下で冷間鍛造を付与することも可能である。このような方法を自由に組合わせることで本発明の塑性加工用マグネシウム合金の鍛造方法の幅が広がり、鍛造による強度・信頼性の向上を得ることもできる。   In addition, when the part where the shape or strength of the magnesium alloy plastic working member is required is limited, the magnesium alloy for plastic working of the present invention is formed by hot forging of 573K or more, and the part requiring strength is formed. It is also possible to give cold forging at 473K or less. By freely combining such methods, the width of the forging method of the magnesium alloy for plastic working of the present invention can be expanded, and the strength and reliability can be improved by forging.

以下に実施例及び比較例に基づいて本発明を具体的に説明する。
実施例1(参考例)、実施例2〜4及び比較例1
実施例1〜4及び比較例1の塑性加工用マグネシウム合金を製造するために用いた原料合金組成を第1表に示す。なお、第1表中のMmはミッシュメタルである。
The present invention will be specifically described below based on examples and comparative examples.
Example 1 (Reference Example), Examples 2 to 4 and Comparative Example 1
The raw material alloy compositions used for producing the magnesium alloys for plastic working of Examples 1 to 4 and Comparative Example 1 are shown in Table 1. Note that Mm in Table 1 is Misch metal.

Figure 0004929019
Figure 0004929019

第1表に示す原料マグネシウム合金A、B、C、D及びEについて、鋳鋼鋳物製の坩堝に先ずマグネシウムとアルミニウムとを装入して溶解させ、その溶湯にカルシウム、ミッシュメタル及びストロンチウムを添加し(原料マグネシウム合金A及びCの場合はストロンチウム無添加)、溶解を確認した後にマグネシウム−マンガン母合金を添加し、撹拌を行った後Arガスを10分間バブリングさせ、その後10分間静置し、表面のドロスを除去してそれぞれ原料合金A、B、C、D及びEの溶湯を作製した。   Regarding the raw material magnesium alloys A, B, C, D and E shown in Table 1, first, magnesium and aluminum are charged and melted in a crucible made of cast steel, and calcium, misch metal and strontium are added to the molten metal. (In the case of raw material magnesium alloys A and C, strontium is not added.) After confirming dissolution, a magnesium-manganese master alloy is added, and after stirring, Ar gas is bubbled for 10 minutes, and then left to stand for 10 minutes. The melts of the raw material alloys A, B, C, D and E were produced by removing the dross.

溶湯温度を873〜973Kに維持し、溶湯表面に希釈SF6を流動させながら鋳造を行った。金型温度473Kで第2表に示す鋳造方法によって鋳造した。ダイカスト鋳造の場合にはΦ70×100mmの丸棒を作製し、金型鋳造の場合にはΦ100×100mmの丸棒を作製した。各々の丸棒をそれぞれ高さ50mmに切断して試験片を作製した。 Casting was performed while maintaining the molten metal temperature at 873 to 973 K and flowing diluted SF 6 on the molten metal surface. Casting was performed at a mold temperature of 473 K by the casting method shown in Table 2. In the case of die casting, a round bar of Φ70 × 100 mm was produced, and in the case of die casting, a round bar of Φ100 × 100 mm was produced. Each round bar was cut to a height of 50 mm to prepare a test piece.

作製した各々の試験片についての金属組織の平均結晶粒度はJIS G 0551の定義による結晶粒度であり、マグネシウム相中のアルミニウム濃度はEDX版定量分析による値である。それらの値は第2表に示す通りであった。   The average crystal grain size of the metallographic structure for each of the prepared test pieces is a crystal grain size according to the definition of JIS G 0551, and the aluminum concentration in the magnesium phase is a value obtained by EDX quantitative analysis. Those values were as shown in Table 2.

Figure 0004929019
Figure 0004929019

上記実施例及び比較例の各々の試験片について、それぞれ第3表に示す鍛造温度で据込み鍛造加工を行った。圧縮率を10%単位で上昇させて実施し、割れが発生した時点でその試験片について試験を終了した。第3表には各々の試験片、鍛造温度に対し割れが発生しなかった最大の圧縮率を示す。また、硬さは鍛造前の試験片の硬さと最大圧縮率を示した鍛造後の試験片の硬さをマイクロビッカース試験(300g、30秒)で測定した。測定結果は第3表に示す通りであった。   About each test piece of the said Example and comparative example, the upset forging process was performed at the forging temperature shown in Table 3, respectively. The compression rate was increased in units of 10%, and the test was completed for the test piece when cracking occurred. Table 3 shows the maximum compression ratio at which cracking did not occur for each test piece and forging temperature. Moreover, the hardness of the test piece after forging which showed the hardness and the maximum compression rate of the test piece before forging was measured by the micro Vickers test (300 g, 30 seconds). The measurement results were as shown in Table 3.

Figure 0004929019
Figure 0004929019

Claims (6)

マグネシウムと、アルミニウムと、凝固過程の共晶反応でアルミニウムとの金属間化合物を形成する希土類金属、カルシウム及びストロンチウムの少なくとも一種の金属元素とからなる溶湯をダイカスト鋳造して得たマグネシウム合金であって、該マグネシウム合金中の全アルミニウム含有量が2〜5質量%であり、マグネシウム合金の金属組織におけるマグネシウム相中のアルミニウム濃度が該マグネシウム合金中の全アルミニウム含有量よりも0.5質量%以上低くなっており、残りのアルミニウムが金属間化合物として存在しており、凝固過程の共晶反応でアルミニウムとの金属間化合物を形成する金属元素の量がマグネシウム合金の金属組織におけるマグネシウム相中のアルミニウム濃度を0.5質量%以上低下させる量であり、マグネシウム合金の金属組織の結晶粒度が平均30μm以下であることを特徴とする塑性加工用マグネシウム合金。 A magnesium alloy obtained by die casting a molten metal composed of magnesium, aluminum, and a rare earth metal that forms an intermetallic compound with aluminum by a eutectic reaction in a solidification process, calcium and strontium. The total aluminum content in the magnesium alloy is 2 to 5% by mass, and the aluminum concentration in the magnesium phase in the metal structure of the magnesium alloy is 0.5% by mass or more lower than the total aluminum content in the magnesium alloy. it has, the remaining aluminum is present as an intermetallic compound, aluminum magnesium phase in the metal structure of the amount Gama magnesium alloy of a metal element which forms an intermetallic compound with aluminum eutectic reaction of the coagulation process the amount der to reduce the concentration 0.5 mass% or more is, Ma For plastic working of magnesium alloy grain size of the metallic structure of Neshiumu alloy, characterized in der Rukoto average 30μm or less. マグネシウム合金の金属組織におけるマグネシウム相中のアルミニウム濃度が該マグネシウム合金中の全アルミニウム含有量よりも1質量%以上低くなっていることを特徴とする請求項1記載の塑性加工用マグネシウム合金。   The magnesium alloy for plastic working according to claim 1, wherein the aluminum concentration in the magnesium phase in the metal structure of the magnesium alloy is 1 mass% or less lower than the total aluminum content in the magnesium alloy. 請求項1又は2に記載の塑性加工用マグネシウム合金を押出し、圧延、鍛造又はプレスの塑性加工により得られたものであり、塑性加工による圧縮率が30%以上であり、塑性加工後のマイクロビッカース硬さが82以上であり、塑性加工による硬さの増加率が34%以上であることを特徴とするマグネシウム合金塑性加工部材。 Extruding the plastic working for the magnesium alloy according to claim 1 or 2, rolling, forging or all SANYO obtained by plastic working of the press, the compression ratio by plastic working is 30% or more, micro after plastic working Vickers hardness is not less 82 or more, magnesium rate of increase in hardness due to plastic working, characterized in der Rukoto least 34% alloy plastic working member. 請求項3記載のマグネシウム合金塑性加工部材において、塑性加工が鍛造成形であることを特徴とするマグネシウム合金鍛造成形部材。 In the magnesium alloy plastic working member as claimed in claim 3, wherein the to luma magnesium alloy forging member that plastic working is forging. 鍛造温度が473K以下であることを特徴とする請求項記載のマグネシウム合金鍛造成形部材。 The forged magnesium alloy forged member according to claim 4 , wherein the forging temperature is 473K or less. 請求項4又は5に記載のマグネシウム合金鍛造成形部材を用いた輸送機器、情報家電、産業機械の部品。 Parts for transportation equipment, information home appliances, and industrial machines using the magnesium alloy forged molded member according to claim 4 or 5 .
JP2007102585A 2007-03-19 2007-04-10 Magnesium alloy for plastic working and magnesium alloy forged parts Expired - Fee Related JP4929019B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007102585A JP4929019B2 (en) 2007-04-10 2007-04-10 Magnesium alloy for plastic working and magnesium alloy forged parts
KR1020070139845A KR20080085664A (en) 2007-03-19 2007-12-28 Magnesium alloy for plastic process and magnesium alloy plastic processing member
CN2007101800697A CN101270429B (en) 2007-03-19 2007-12-30 Magnesium alloy for plastic working and magnesium alloy plastic working component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007102585A JP4929019B2 (en) 2007-04-10 2007-04-10 Magnesium alloy for plastic working and magnesium alloy forged parts

Publications (2)

Publication Number Publication Date
JP2008260976A JP2008260976A (en) 2008-10-30
JP4929019B2 true JP4929019B2 (en) 2012-05-09

Family

ID=39983672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007102585A Expired - Fee Related JP4929019B2 (en) 2007-03-19 2007-04-10 Magnesium alloy for plastic working and magnesium alloy forged parts

Country Status (1)

Country Link
JP (1) JP4929019B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7324978B2 (en) * 2019-06-07 2023-08-14 株式会社戸畑製作所 Magnesium alloys and cast structural members using magnesium alloys

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104137A (en) * 1998-09-30 2000-04-11 Mazda Motor Corp Magnesium alloy forging stock, forged member and production of the forged member
CN101961779B (en) * 2004-06-30 2014-01-29 住友电气工业株式会社 Method for producing magnesium alloy product
JP4803357B2 (en) * 2005-09-06 2011-10-26 独立行政法人産業技術総合研究所 Heat-resistant magnesium alloy produced by hot working and method for producing the same

Also Published As

Publication number Publication date
JP2008260976A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
CN111032897A (en) Method of forming cast aluminum alloy
JP3905115B2 (en) High strength and high toughness magnesium alloy and method for producing the same
CN102712969B (en) Flame retardant magnesium alloy with excellent mechanical properties, and preparation method thereof
JP5355320B2 (en) Aluminum alloy casting member and manufacturing method thereof
KR101258470B1 (en) High-Strength High-Ductility Ignition-Proof Magnesium Alloy
CA2645677C (en) Aluminium alloy
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
KR20170138916A (en) Aluminum alloy for die casting, and die-cast aluminum alloy using same
JP6852146B2 (en) Aluminum alloy for die casting and aluminum alloy die casting using this
JP2009280846A (en) Magnesium alloy forged member, and producing method therefor
EP2369025A1 (en) Magnesium alloy and magnesium alloy casting
JP5305323B2 (en) Zinc alloy for die casting and method for producing die cast member using Zn alloy for die casting
US10047426B2 (en) Wrought magnesium alloy capable of being heat treated at high temperature
JP6860235B2 (en) Magnesium-based alloy wrought material and its manufacturing method
JP6229130B2 (en) Cast aluminum alloy and casting using the same
JP4929000B2 (en) Magnesium alloy for plastic working and magnesium alloy plastic working member
KR20200032160A (en) Method for recycling and purification of aluminum alloy
JP5595891B2 (en) Method for producing heat-resistant magnesium alloy, heat-resistant magnesium alloy casting and method for producing the same
EP3216884A1 (en) Aluminum alloy for die casting and aluminum-alloy die cast obtained therefrom
US20080219880A1 (en) Creep-resistant magnesium alloy for casting
JP4433916B2 (en) Magnesium alloy and magnesium alloy member for plastic working
JP4929019B2 (en) Magnesium alloy for plastic working and magnesium alloy forged parts
JP5688744B2 (en) High strength and high toughness copper alloy forging
KR20080085664A (en) Magnesium alloy for plastic process and magnesium alloy plastic processing member
JP6649665B2 (en) Magnesium alloy manufacturing method, rolled magnesium alloy material, and magnesium alloy compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101027

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4929019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees