JP4925926B2 - Fuel cell electrode catalyst - Google Patents

Fuel cell electrode catalyst Download PDF

Info

Publication number
JP4925926B2
JP4925926B2 JP2007148876A JP2007148876A JP4925926B2 JP 4925926 B2 JP4925926 B2 JP 4925926B2 JP 2007148876 A JP2007148876 A JP 2007148876A JP 2007148876 A JP2007148876 A JP 2007148876A JP 4925926 B2 JP4925926 B2 JP 4925926B2
Authority
JP
Japan
Prior art keywords
metal
alloy
catalyst
organic compound
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007148876A
Other languages
Japanese (ja)
Other versions
JP2008305561A (en
Inventor
宣宏 岡田
布士人 山口
勲 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2007148876A priority Critical patent/JP4925926B2/en
Publication of JP2008305561A publication Critical patent/JP2008305561A/en
Application granted granted Critical
Publication of JP4925926B2 publication Critical patent/JP4925926B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、固体高分子型燃料電池用電極触媒に関する。   The present invention relates to an electrode catalyst for a polymer electrolyte fuel cell.

燃料電池は水素、エタノールなどを電気化学的に反応させて電気エネルギーを直接得る装置であり、高効率かつ低公害性な発電システムとして近年注目されている。
この燃料電池は、使用される電解質などの違いにより数種類に分類され、溶融炭酸塩型(MCFC)、リン酸型(PAFC)、固体酸化物型(SOFC)、固体高分子型(PEFC)等がある。これらの中で、PEFCは小型、軽量、簡便性などの利点から、自動車用、家庭用定置型コジェネレーションシステムや、携帯電話、ノートPCなどの電子端末機器用小型電源等、実用化に向けた検討が試されている。
PEFCで用いる燃料源には色々なものがあり、水素やアルコールなどが挙げられ、特に比較的安価で取り扱いの容易なメタノールを燃料に用いる直接メタノール型PEFCはDMFCと呼ばれ、小型化、軽量化が容易であり注目されている。
A fuel cell is a device that directly obtains electric energy by electrochemically reacting hydrogen, ethanol, or the like, and has recently attracted attention as a highly efficient and low-pollution power generation system.
This fuel cell is classified into several types depending on the electrolyte used, etc., and includes molten carbonate type (MCFC), phosphoric acid type (PAFC), solid oxide type (SOFC), and solid polymer type (PEFC). is there. Among these, PEFC has the advantages of small size, light weight, simplicity, etc., so that it can be put to practical use such as stationary power generation for automobiles and home use, and small power supplies for electronic terminal devices such as mobile phones and notebook PCs. Consideration is being tried.
There are various fuel sources used in PEFC, such as hydrogen and alcohol. Direct methanol type PEFC that uses methanol, which is relatively inexpensive and easy to handle, is called DMFC, and is smaller and lighter. It is easy and attracts attention.

これらのPEFCのカソード(空気極)では、以下のような酸素還元反応がおきている。
カソード(空気極):O + 4H + 4e → 2H
この反応に使用される触媒として実用化されているのは、白金(Pt)をカーボン粒子に担持させたものである。しかし、例えば燃料電池車を世界規模で普及させることを考えた場合、Ptのみからなる触媒ではコストが高いために、普及は困難である。
These PEFC cathodes (air electrodes) undergo the following oxygen reduction reaction.
Cathode (air electrode): O 2 + 4H + + 4e → 2H 2 O
As a catalyst used for this reaction, platinum (Pt) is supported on carbon particles. However, for example, considering the spread of fuel cell vehicles on a global scale, it is difficult to spread a catalyst made of only Pt because of its high cost.

上記問題を解決するために、白金以外の金属、金属酸化物を触媒として適用することが検討されている。
酸化ルテニウム、酸化チタン、酸化バナジウム、酸化マンガン、酸化コバルト、酸化ニッケルおよび酸化タングステン、あるいは窒化モリブデンから選ばれる少なくとも1種の燃料電池用触媒(特許文献1)などがある。この技術において、白金を全く使用しないことは、コスト面では有用ではあるが、しかしながら、これらの電極触媒を使用した場合、その起電力は低く、実用上の性能を有しているとは言い難く、課題に対する解決策とはなりえていない。
In order to solve the above problems, it has been studied to apply a metal other than platinum or a metal oxide as a catalyst.
There are at least one fuel cell catalyst selected from ruthenium oxide, titanium oxide, vanadium oxide, manganese oxide, cobalt oxide, nickel oxide and tungsten oxide, or molybdenum nitride (Patent Document 1). In this technique, it is useful in terms of cost not to use platinum at all. However, when these electrode catalysts are used, the electromotive force is low and it is difficult to say that they have practical performance. It is not a solution to the problem.

一方、白金以外の貴金属触媒では、Pd、Ru、Rh、Irなどが酸性電解質中で酸素還元活性を有することが知られており、この中でも、PdがPtに次いで酸素還元活性が高いとされている。特に、パラジウム−コバルト系合金は、高いORR活性を示すことが示されている(特許文献2、非特許文献1、非特許文献2、非特許文献3、非特許文献4、非特許文献5)。
しかし、本発明者等のその後の検討により、従来報告されているPd−Co系合金は、作動温度が室温付近では比較的良好な性能を示すが、燃料電池の実作動温度である60〜80℃近辺では劣化が著しく性能が落ち、改善が必要である。又、実作動温度では、印加サイクルによる経時的な性能低下が生じるため、耐久性の面でも改善が必要であることが判明した。
On the other hand, in noble metal catalysts other than platinum, it is known that Pd, Ru, Rh, Ir and the like have oxygen reduction activity in an acidic electrolyte, and among these, Pd has the highest oxygen reduction activity after Pt. Yes. In particular, palladium-cobalt alloys have been shown to exhibit high ORR activity (Patent Document 2, Non-Patent Document 1, Non-Patent Document 2, Non-Patent Document 3, Non-Patent Document 4, Non-Patent Document 5). .
However, the Pd—Co-based alloys that have been reported so far show that the operating temperature is relatively good at room temperature, but the actual operating temperature of the fuel cell is 60 to 80. In the vicinity of ° C., the deterioration is remarkably reduced, and improvement is necessary. Further, it has been found that, at the actual operating temperature, the performance is deteriorated over time due to the application cycle, so that it is necessary to improve the durability.

又、該金属に配位子が配位した有機金属錯体を用いて触媒を調整する手法を用いることも知られている。
特許文献3では、Pt又はその合金と、有機金属錯体の混合触媒を担体上で焼成することで得られる触媒を、特許文献4では、遷移金属又はその合金と、平面状立体配位構造を有する有機金属錯体の混合触媒で、好ましくは担体上で焼成することで得られる触媒を提
案しているが、どちらの技術においてもアノード触媒用であり、カソード触媒としての能力は定かではない。又、先述したような実作動温度の高温下での活性及び耐久性に関しては、更なる検討や改善が必要といえる。
非特許文献6では、Pd合金カソード触媒の調整方法として、PdClと鉄フタロシアニン錯体を、担体カーボン上で焼成をすることを提案している。又、特許文献5では、炭素材料上に貴金属と大環状化合物錯体を混合担持し、熱処理した触媒を提案している。更に、特許文献6では、上記特許文献5に類似で、導電性炭素上に遷移金属と窒素含有有機金属遷移錯体を混合担持し、熱処理した触媒を提案している。しかし、これら上記3点の技術により得られる触媒は、原料に遷移金属錯体を用いているために、作製した触媒内の合金の結晶相、組成はばらつきやすく、そのため、目標とする合金の触媒活性を発現できない。又、先述したような実作動温度の高温下での活性及び耐久性に関しても、更なる検討や改善が必要といえる。
It is also known to use a method of adjusting a catalyst using an organometallic complex in which a ligand is coordinated to the metal.
In Patent Document 3, a catalyst obtained by firing a mixed catalyst of Pt or an alloy thereof and an organometallic complex on a carrier is used. In Patent Document 4, a transition metal or an alloy thereof and a planar three-dimensional coordination structure are provided. A mixed catalyst of an organometallic complex, preferably a catalyst obtained by calcination on a support, has been proposed, but in both techniques, it is used for an anode catalyst, and its ability as a cathode catalyst is not clear. Further, it can be said that further study and improvement are necessary for the activity and durability at the actual operating temperature as described above.
Non-Patent Document 6 proposes that PdCl 2 and an iron phthalocyanine complex are calcined on carrier carbon as a method for adjusting a Pd alloy cathode catalyst. Further, Patent Document 5 proposes a catalyst in which a noble metal and a macrocyclic compound complex are supported on a carbon material and heat-treated. Further, Patent Document 6 proposes a catalyst which is similar to Patent Document 5 described above and is obtained by heat-treating a mixture of a transition metal and a nitrogen-containing organometallic transition complex on conductive carbon. However, since the catalyst obtained by the above three techniques uses a transition metal complex as a raw material, the crystal phase and composition of the alloy in the prepared catalyst are likely to vary. Therefore, the catalytic activity of the target alloy Cannot be expressed. Moreover, it can be said that further examination and improvement are necessary for the activity and durability under the actual operating temperature as described above.

特開2005−63677号公報JP 2005-63677 A 特開2005−135752号公報JP 2005-135752 A 特開2006−85976号公報JP 2006-85976 A 特開2002−329500号公報JP 2002-329500 A 特開2003−109614号公報JP 2003-109614 A 特表2004−532734号公報JP-T-2004-532734 Electrochemistry Communications 6(2004)105−109Electrochemistry Communications 6 (2004) 105-109 Journal of the American Chemical Society 127(2005)357−365Journal of the American Chemical Society 127 (2005) 357-365 Journal of the American Chemical Society 127(2005)13100−13101Journal of the American Chemical Society 127 (2005) 13100-13101 Journal of Physical Chemistry B 109(2005)22909−22912Journal of Physical Chemistry B 109 (2005) 22909-22912 6th International Symposium on New Materials for Electrochemical Systems 要旨集 NMES06−72(2006)6th International Symposium on New Materials for Electrochemical Systems Abstracts NMES06-72 (2006) 電気化学大会第73回大会 要旨集 3P05(2006)The 73rd Annual Meeting of the Electrochemical Society 3P05 (2006)

本発明は、上記した従来技術に鑑みてなされたものであり、その主な目的は、実作動温度である高温下、例えば50〜120℃、あるいは60〜80℃で、酸素還元性能及び耐久性の面で優れた性能を有する固体高分子型燃料電池用カソード触媒を提供することを目的とする。   The present invention has been made in view of the above-described prior art, and the main purpose thereof is an oxygen reduction performance and durability at a high temperature that is an actual operating temperature, for example, 50 to 120 ° C. or 60 to 80 ° C. An object of the present invention is to provide a cathode catalyst for a polymer electrolyte fuel cell having excellent performance in terms of the above.

本発明者は、前記課題を解決するため鋭意研究を重ねた結果、触媒を製造する過程で、特定の有機化合物を添加することで、実作動温度である高温下で、酸素還元性能及び耐久性の面で優れた性能を有することを見出した。詳細には、高温下における電位サイクル後においても、酸素還元反応の過電圧の減少及び反応電流値の増大が見られ、優れた耐久性を示すことを見出した。   As a result of intensive research to solve the above problems, the present inventor added a specific organic compound in the process of producing a catalyst, thereby reducing the oxygen reduction performance and durability at a high operating temperature. It has been found that it has excellent performance in terms of Specifically, it was found that even after a potential cycle at a high temperature, a decrease in overvoltage of the oxygen reduction reaction and an increase in the reaction current value were observed, indicating excellent durability.

すなわち、本発明は、下記の固体高分子型燃料電池用カソード触媒を提供するものである。
1、(i)Pdである金属Mと、該金属M以外のCo、Cr,Auのいずれかから選ばれる金属A及び/又は(該金属Aの水酸化物、過酸化物、酸化物から選択される1種以上のA’)からなる混合物X、
(ii)Pdである金属Mと、該金属M以外のCo、Cr,Auのいずれかから選ばれる金属A及び/又は(該金属Aの水酸化物、過酸化物、酸化物から選択される1種以上のA’)、そして、該金属M、A以外のCo、Cr,Auのいずれかから選ばれる金属B及び/又は(該金属Bの水酸化物、過酸化物、酸化物から選択される1種以上のB’)からなる混合物Y、そして
(iii)下記一般式(1)で表される合金(下記一般式(1)中、0<x<1、0<y<1、0≦z<1、MはPdを示し、AとBはCo、Cr,Auのいずれかから選ばれる互いに異なるM以外の金属を示す)、
から選ばれる一種以上と、
非共有電子対を持つ窒素原子を含有している有機化合物と、
及び炭素粉末と、
を少なくとも含有する組成物を、まず300℃〜600℃で第一段目の焼成を施し、その後、引き続き700℃〜1000℃まで昇温して第二段目の焼成を施して得られる固体高分子型燃料電池用カソード触媒であって、該有機化合物がmeso−Tetraphenylporphyrin、2,3,7,8,12,13,17,18−Octaethyl−21H,23H−porphine、Tetrakis(4−carboxyphenyl)porphineで表されるポルフィリン誘導体、Phthalocyanine、1,4,8,11,15,18,22,25−Octabutoxy−29H,31H−phthalocyanine、2,3,9,10,16,17,23,24−Octakis(octyloxy)−29H,31H−phthalocyanineで表されるフタロシアニン誘導体、N,N’−Bis(salicylidene)ethylenediamine、N,N’−Bis(salicylidene)1,3−propanediamineで表されるサレン誘導体、及びポリアクリロニトリル、ポリメタアクリロニトリルで表されるニトリル誘導体の中から選ばれることを特徴とする固体高分子型燃料電池用カソード触媒。
xyz (1)
2、該焼成の雰囲気が水素ガス、水素ガス含有不活性ガス、不活性ガスのいずれかであることを特徴とする1、に記載の固体高分子型燃料電池用カソード触媒。
3、炭素粉末上に担持された該混合物X、及び/又は該混合物Yの担持体を、非共有電子対を持つ窒素原子を含有している有機化合物と共に焼成する事を特徴とする1、又は2、に記載の固体高分子型燃料電池用カソード触媒の製造方法。
That is, the present invention provides the following cathode catalyst for a polymer electrolyte fuel cell.
1, (i) A metal M selected from Pd and a metal A selected from Co, Cr and Au other than the metal M and / or (selected from hydroxides, peroxides and oxides of the metal A A mixture X consisting of one or more A ′)
(Ii) a metal M which is Pd and a metal A selected from Co, Cr and Au other than the metal M and / or a hydroxide, a peroxide and an oxide of the metal A One or more A ′), and metal B selected from any of Co, Cr, and Au other than the metals M and A and / or (selected from hydroxides, peroxides, and oxides of the metal B) (Iii) an alloy represented by the following general formula (1) (in the following general formula (1), 0 <x <1, 0 <y <1, 0 ≦ z <1, M represents Pd, and A and B represent different metals other than M selected from Co, Cr, and Au),
With one or more types selected from
An organic compound containing a nitrogen atom with an unshared electron pair;
And carbon powder,
Is obtained by first baking the first stage at 300 ° C. to 600 ° C. and then raising the temperature to 700 ° C. to 1000 ° C. and then baking the second stage. a cathode catalyst for molecular type fuel cell, the organic compound is meso-Tetraphenylporphyrin, 2,3,7,8,12,13,17,18-Octaethyl- 21H, 23H-porphine, Tetrakis (4-carbo xy phenyl ) Porphyrin derivative represented by porphine, Phthalocyanine, 1,4,8,11,15,18,22,25-Octabutoxy-29H, 31H-phthalocyanine, 2,3,9,10,16,17,23,24 -Octakis (octyro y) a phthalocyanine derivative represented by -29H, 31H-phthalocyanine, N, N'-Bis (salicylidene) ethylenediamine, a salen derivative represented by N, N'-Bis (salicylidene) 1,3-propandinemine, and polyacrylonitrile A cathode catalyst for a polymer electrolyte fuel cell, selected from nitrile derivatives represented by polymethacrylonitrile.
M x A y B z (1)
2. The cathode catalyst for a polymer electrolyte fuel cell according to 1, wherein the firing atmosphere is any one of hydrogen gas, hydrogen gas-containing inert gas, and inert gas.
3. The mixture X and / or the mixture Y supported on carbon powder is calcined together with an organic compound containing a nitrogen atom having an unshared electron pair, or 2. A method for producing a cathode catalyst for a polymer electrolyte fuel cell according to 2.

本発明の固体高分子型燃料電池用カソード触媒は、低コストで埋蔵資源量の制約を受けることがなく、かつ実作動温度である高温下で、酸素還元性能及び耐久性の面で優れた性能発現を提供することができる。   The cathode catalyst for a polymer electrolyte fuel cell of the present invention is low in cost and is not limited by the amount of reserve resources, and has excellent performance in terms of oxygen reduction performance and durability at a high operating temperature. Expression can be provided.

以下、本発明の触媒について、具体的に説明する。
本発明の触媒は、下記一般式(1)で表される合金(下記一般式(1)中、0<x<1、0<y<1、0≦z<1、MはPd及び/又はPtを示し、AとBはM以外の金属を示す)、非共有電子対を持つ窒素原子を含有している有機化合物及び炭素粉末の混合物を焼成して得られる固体高分子型燃料電池用カソード触媒である。
(1)
本発明において、合金中にM,A,B以外の金属が含有されていても構わないが、本願発明の効果を奏するには、M、A、Bの成分の合計が原子比で合金全体の中で50%を超えることが必要である(以下、M,A,B以外の金属が含有される合金をM,A,Bを主成分とする合金と称する)。
Hereinafter, the catalyst of the present invention will be specifically described.
The catalyst of the present invention is an alloy represented by the following general formula (1) (in the following general formula (1), 0 <x <1, 0 <y <1, 0 ≦ z <1, M is Pd and / or A solid polymer type fuel cell cathode obtained by firing a mixture of an organic compound containing a nitrogen atom having an unshared electron pair and a carbon powder. It is a catalyst.
M x A y B z (1)
In the present invention, metals other than M, A, and B may be contained in the alloy. However, in order to achieve the effect of the present invention, the total of the components of M, A, and B is atomic ratio of the entire alloy. In particular, it is necessary to exceed 50% (hereinafter, an alloy containing a metal other than M, A, and B is referred to as an alloy containing M, A, and B as main components).

本発明において、MはPd及び/又はPtを表す。しかし、Ptはコストが高く、埋蔵資源量が少ないので、例えば燃料電池車を世界規模で普及させるだけのPt量が地球上に存在しないという致命的な問題があるため、Mは、好ましくはPdである。
本発明において、A、BはM以外の金属を表し、貴金属元素、遷移金属元素及び典型金属元素のいずれでも構わない。MにA、Bを合金化させる効果は定かではないが、Mのカソード触媒としての能力を向上させる効果や、Mの触媒としての耐久性能力を向上させる効果が発現すると思われる。よって、上記効果をより顕著に発現させるためには、A及び/又はBは、好ましくは遷移金属であり、更に好ましくはTi、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ta、W、Auの1種以上である。
In the present invention, M represents Pd and / or Pt. However, since Pt is expensive and has a small amount of reserve resources, for example, there is a fatal problem that there is no Pt amount on the earth to disperse fuel cell vehicles on a global scale, so M is preferably Pd It is.
In the present invention, A and B represent metals other than M, and may be any of noble metal elements, transition metal elements, and typical metal elements. Although the effect of alloying A and B with M is not clear, it seems that the effect of improving the ability of M as a cathode catalyst and the effect of improving the durability ability of M as a catalyst appear. Therefore, A and / or B is preferably a transition metal, more preferably Ti, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, in order to express the above effect more remarkably. , Ta, W, Au.

本発明の上記一般式(1)で表される合金は上記のごとく、M、A、B以外の成分を含んでいても良い。その成分としては、Au、Rh、Ir、Osなどの貴金属元素の1種以上、Ni、Co、Cr、Fe、Ta、Zr、Nb、Tiなどの遷移金属元素の1種以上、Al、Ga、In、Snなどの典型金属元素の1種以上、O、S、Se、Pなどの非金属元素の1種以上のいずれでも構わないが、M、A、Bからなる合金と化合物化できるものに限る。又、上記成分の元素の数は、化合物化できる範囲ならば特に制限はない。   The alloy represented by the general formula (1) of the present invention may contain components other than M, A and B as described above. As the component, one or more kinds of noble metal elements such as Au, Rh, Ir, Os, one or more kinds of transition metal elements such as Ni, Co, Cr, Fe, Ta, Zr, Nb, Ti, Al, Ga, One or more of typical metal elements such as In and Sn and one or more of non-metallic elements such as O, S, Se, and P may be used, but those that can be compounded with an alloy composed of M, A, and B Limited. Further, the number of elements of the above component is not particularly limited as long as it can be compounded.

本発明における合金中のモル比率は、上記一般式(1)において、0<x<1、0<y<1、0≦z<1である。各金属の役割は定かではないが、Mはカソード触媒としての活性中心であり、A、BはMの触媒活性能力を向上させる効果や、触媒の耐久性能力を向上させる効果を担っていると考えられる。よって、各金属の役割をより効果的にするといった観点から、好ましい比率は、0.20<x<0.99、0.01<y<0.80、0≦z<0.79であり、更に好ましい比率は、0.30<x<0.99、0.01<y<0.70、0≦z<0.69である。したがって、本発明の合金は、M、A、Bの三元系、M,Aの二元系のいずれかの態様を取り得る。   The molar ratio in the alloy in the present invention is 0 <x <1, 0 <y <1, and 0 ≦ z <1 in the general formula (1). Although the role of each metal is not clear, M is an active center as a cathode catalyst, and A and B have the effect of improving the catalyst activity ability of M and the effect of improving the durability ability of the catalyst. Conceivable. Therefore, from the viewpoint of making the role of each metal more effective, preferable ratios are 0.20 <x <0.99, 0.01 <y <0.80, 0 ≦ z <0.79, Further preferable ratios are 0.30 <x <0.99, 0.01 <y <0.70, and 0 ≦ z <0.69. Therefore, the alloy of the present invention can take any of the ternary system of M, A and B and the binary system of M and A.

本発明では上記一般式(1)で表される合金の代りに又は該合金と共に、Pd及び/又はPtから選択される金属Mと、該金属M以外の金属A及び/又は(該金属Aの水酸化物、過酸化物、酸化物から選択される1種以上のA’)からなる混合物X、或いは、Pd及び/又はPtから選択される金属Mと、該金属M以外の金属A及び/又は(該金属Aの水酸化物、過酸化物、酸化物から選択される1種以上のA’)、そして、該金属M、A以外の金属B及び/又は(該金属Bの水酸化物、過酸化物、酸化物から選択される1種以上のB’)からなる混合物Yといった合金化する前の段階(以下、合金前駆体と称する)で非共有電子対を持つ窒素原子を含有している有機化合物と、炭素粉末と共に焼成を行っても構わない。   In the present invention, instead of or together with the alloy represented by the general formula (1), a metal M selected from Pd and / or Pt, a metal A other than the metal M, and / or (of the metal A Mixture X consisting of one or more A ′) selected from hydroxides, peroxides and oxides, or a metal M selected from Pd and / or Pt, and a metal A other than the metal M and / or Or (one or more A ′ selected from hydroxides, peroxides and oxides of the metal A), and metals B other than the metals M and A and / or (hydroxides of the metal B) A nitrogen atom having an unshared electron pair in a stage before alloying (hereinafter referred to as an alloy precursor) such as a mixture Y composed of one or more B ′ selected from peroxides and oxides) Baking may be performed together with the organic compound and the carbon powder.

本発明のM、A、Bを主成分とする合金は、いかなる形態であっても構わないが、触媒として有効に働かせるといった観点から、微粒子状であることが好ましい。更に、粒子サイズは、同様な理由から高比表面積となり得るものが良いといった観点から、平均粒子径
の上限値は、好ましくは1μm以下、より好ましくは100nm以下、更に好ましくは10nm以下である。平均粒子径の下限値は特に制限されるものではないが、物理的安定性の見地から1nm程度以上とすれば良い。ここで述べている平均粒子径とは、触媒担体を除いた実質的な触媒有効成分を透過型顕微鏡(TEM)により観察し、任意に選んだ100個の粒子径の算術平均値である。
The alloy mainly composed of M, A, and B of the present invention may be in any form, but is preferably in the form of fine particles from the viewpoint of effectively acting as a catalyst. Furthermore, the upper limit of the average particle diameter is preferably 1 μm or less, more preferably 100 nm or less, and even more preferably 10 nm or less, from the viewpoint that the particle size should be a high specific surface area for the same reason. The lower limit of the average particle diameter is not particularly limited, but may be about 1 nm or more from the viewpoint of physical stability. The average particle size described here is an arithmetic average value of 100 particle sizes arbitrarily selected by observing a substantial catalytic active component excluding the catalyst carrier with a transmission microscope (TEM).

本発明における非共有電子対を持つ窒素原子を含有している有機化合物とは、該有機化合物の窒素原子の非共有電子対が金属への供与体となることで、金属に配位結合できる能力を持つものであれば、特に制限はない。又、上記窒素原子を含有していれば、炭素及び水素原子の他に、硫黄原子、酸素原子、リン原子などの他の原子を、本発明の触媒としての性能を落とすことがない範囲において含有していても構わない。更に、該有機化合物は、主に陰イオンあるいは中性分子であり、又、有機化合物一分子における窒素原子の数の下限は1個以上であり、上限は特に制限はない。   The organic compound containing a nitrogen atom having an unshared electron pair in the present invention is the ability to coordinately bond to a metal because the unshared electron pair of the nitrogen atom of the organic compound becomes a donor to the metal. If it has, there will be no restriction in particular. In addition to the carbon and hydrogen atoms, other atoms such as a sulfur atom, an oxygen atom, and a phosphorus atom are contained within a range that does not deteriorate the performance of the catalyst of the present invention. It does not matter. Further, the organic compound is mainly an anion or a neutral molecule, and the lower limit of the number of nitrogen atoms in one molecule of the organic compound is 1 or more, and the upper limit is not particularly limited.

本発明の有機化合物は、先述したように、該混合物X、該混合物Y、該合金から選ばれるいずれか一種以上と炭素粉末とから組成物を形成し焼成される。焼成後の構造は定かではないが、金属周りに有機化合物の窒素原子が存在、又は配位し、炭素を主とする成分が焼成時に担体の炭素粉末と一体化すると思われる。よって、金属との相互作用のしやすさと担体の炭素粉末との炭化のしやすさといった観点から、好ましくは、例えばmeso−Tetraphenylporphyrin、2,3,7,8,12,13,17,18−Octaethyl−21H,23H−porphine、Tetrakis(4−carboxyyphenyl)porphineなどが挙げられるポルフィリン誘導体、例えばPhthalocyanine、1,4,8,11,15,18,22,25−Octabutoxy−29H,31H−phthalocyanine、2,3,9,10,16,17,23,24−Octakis(octyloxy)−29H,31H−phthalocyanineなどが挙げられるフタロシアニン誘導体、N,N’−Bis(salicylidene)ethylenediamine、N,N’−Bis(salicylidene)1,3−propanediamineなどが挙げられるサレン誘導体、ポリアクリロニトリル、ポリメタアクリロニトリルなどが挙げられるニトリル誘導体、4,4’−Dimethoxy−2,2’−bipyridine、4,4’−Dicarboxy−2,2−bipyridine、4,4’−Di−tert−butyl−2,2’−bipyridylなどが挙げられるピリジン誘導体、5,6−Dimethyl−1,10−phenanthroline、4,7−Dihydroxy−1,10−phenanthroline、1,10−phenanthroline−5,6−dioneなどが挙げられるフェナントロリン誘導体から選択される1種以上である。   As described above, the organic compound of the present invention is fired by forming a composition from at least one selected from the mixture X, the mixture Y, and the alloy and carbon powder. Although the structure after firing is not certain, it is considered that nitrogen atoms of an organic compound exist around or coordinate with the metal, and a component mainly composed of carbon is integrated with the carbon powder of the support during firing. Therefore, from the viewpoint of ease of interaction with metal and ease of carbonization of the support carbon powder, for example, meso-tetraphenylporphyrin, 2, 3, 7, 8, 12, 13, 17, 18- Porphyrin derivatives such as Octaethyl-21H, 23H-porphine, Tetrakis (4-carboxyphenyl) porphine, such as Phthalocyanine, 1,4,8,11,15,18,22,25-Octabutoxy-29H, 31c-pheny , 3, 9, 10, 16, 17, 23, 24-Octakis (octyloxy) -29H, 31H-phthalocyanine, and the like, N, N -Bis (salicylidene) ethylenediamine, N, N'-Bis (salicylidene) 1,3-propanediamine, salen derivatives such as nitrile derivatives such as polyacrylonitrile, polymethacrylonitrile, 4,4'-dimethyl-2, Pyridine derivatives such as 2′-bipyridine, 4,4′-Dicarboxylic-2,2-bipyridine, 4,4′-Di-tert-butyl-2, 2′-bipyridine, 5,6-Dimethyl-1, 10-phenanthroline, 4,7-Dihydroxy-1,10-phenanthroline, 1,10-phenanthroline-5,6-dio e is at least one is selected from phenanthroline derivatives and the like.

本発明の触媒は、焼成することで、定かではないが先述したような構造をとっていると思われ、その有機化合物の焼成後の構造体の効果により、実作動温度である80℃近辺においても、酸素還元性能及び耐久性の面で優れた性能発現を提供することができると予測される。
よって、非共有電子対を持つ窒素原子を含有している有機化合物のM、A、Bを主成分とする合金に対する添加量は、(該有機化合物)/(該合金)のモル比率で示すと、その下限は、上記記載の効果が発現できる必要最小量より、好ましくは1×10−4以上、更に好ましくは1×10−3以上である。先述した、該有機化合物の焼成後の構造体は、触媒としての活性を考慮すると、最低限は該合金の表層原子においてのみ形成できれば良いと考えられる。よって、該合金の表層原子に必要な該有機化合物の量ということから、上記の下限値が見積もられる。又、その上限は、合金のモル比率が少なすぎることによる触媒活性の低下を防止することや、有機化合物のモル比率が多すぎることによる材料コストの上昇を防止するといった観点から、5以下が好ましく、3以下が更に好ましい。ここで
、合金前駆体を用いて作製する場合は、該合金前駆体が該合金となった場合に換算して、該有機化合物の添加量を決定すればよい。
The catalyst of the present invention is supposed to have a structure as described above by firing, but it is considered to have a structure as described above. Due to the effect of the structure after firing of the organic compound, the actual operating temperature is around 80 ° C. In addition, it is predicted that excellent performance can be provided in terms of oxygen reduction performance and durability.
Therefore, the addition amount of an organic compound containing a nitrogen atom having an unshared electron pair with respect to an alloy containing M, A, and B as a main component is expressed by a molar ratio of (the organic compound) / (the alloy). The lower limit is preferably 1 × 10 −4 or more, more preferably 1 × 10 −3 or more, from the necessary minimum amount capable of exhibiting the effects described above. In view of the activity as a catalyst, it is considered that the above-mentioned structure after firing of the organic compound can be formed only at the surface layer atoms of the alloy. Therefore, the above lower limit value can be estimated from the amount of the organic compound necessary for the surface layer atoms of the alloy. Further, the upper limit is preferably 5 or less from the viewpoint of preventing a decrease in catalytic activity due to an excessively low molar ratio of the alloy and an increase in material cost due to an excessively high molar ratio of the organic compound. 3 or less is more preferable. Here, when producing using an alloy precursor, the addition amount of the organic compound may be determined in terms of the case where the alloy precursor becomes the alloy.

本発明に用いる炭素粉末は、導電性担体として用いられる限り特に限定はないが、例えば、カーボンブラック、アセチレンブラック、ファーネスブラック、グラファイト、活性炭等が挙げられる。粒子サイズは、上限は、好ましくは1μm以下、より好ましくは100nm以下であり、下限は、好ましくは10nm以上、より好ましくは30nm以上である。そして、炭素粒子の比表面積は、好ましくは20m/g〜1400m/g、より好ましくは400m/g〜1000m/g、最も好ましくは600m/g〜900m/gである。特に本発明の触媒には、カーボンブラックが、電池性能が向上するといった観点から好ましく、中でもケッチェンブラック(登録商標、ケッチェン・ブラック・インターナショナル株式会社製)を用いるのが好ましい。
尚、本発明では、上記の炭素粒子以外にも、フラーレン、カーボンナノチューブ、カーボンナノフォーン(ヘリンクボーン型やプレートレット型等)等を用いることができる。
The carbon powder used in the present invention is not particularly limited as long as it is used as a conductive carrier, and examples thereof include carbon black, acetylene black, furnace black, graphite, activated carbon and the like. The upper limit of the particle size is preferably 1 μm or less, more preferably 100 nm or less, and the lower limit is preferably 10 nm or more, more preferably 30 nm or more. The specific surface area of the carbon particles is preferably 20m 2 / g~1400m 2 / g, more preferably 400m 2 / g~1000m 2 / g, most preferably 600m 2 / g~900m 2 / g. In particular, for the catalyst of the present invention, carbon black is preferable from the viewpoint of improving battery performance. Among them, Ketjen black (registered trademark, manufactured by Ketjen Black International Co., Ltd.) is preferably used.
In the present invention, fullerenes, carbon nanotubes, carbon nanophones (such as herringbone type and platelet type) can be used in addition to the above carbon particles.

次に本発明の触媒の調整方法を詳細に説明する。
本発明の触媒は、合金又は合金前駆体、非共有電子対を持つ窒素原子を含有している有機化合物及び炭素粉末の混合物を焼成することで得られる。
本発明の触媒の調整方法には、主に以下の8点の方法が挙げられるが、これらに限定されるものではない。
(1)炭素粉末上に担持された該合金前駆体の担持体を作製し、次いで該担持体と該有機化合物の混合体を形成後、該混合体を焼成する調整方法。
(2)炭素粉末上に担持された該合金前駆体の担持体を作製し、次いで該担持体を該有機化合物と共に加熱処理した後、焼成する調整方法。
(3)炭素粉末上に担持された該合金の担持体を作製し、次いで該担持体と該有機化合物の混合体を形成後、該混合体を焼成する調整方法。
(4)炭素粉末上に担持された該合金の担持体を作製し、次いで該担持体を該有機化合物と共に加熱処理した後、焼成する調整方法。
Next, the adjustment method of the catalyst of this invention is demonstrated in detail.
The catalyst of the present invention can be obtained by firing a mixture of an alloy or an alloy precursor, an organic compound containing a nitrogen atom having an unshared electron pair, and carbon powder.
The catalyst preparation method of the present invention mainly includes the following eight methods, but is not limited thereto.
(1) An adjustment method in which a support of the alloy precursor supported on carbon powder is prepared, and then a mixture of the support and the organic compound is formed, and then the mixture is fired.
(2) An adjustment method in which a carrier of the alloy precursor supported on carbon powder is prepared, and then the carrier is heated together with the organic compound and then fired.
(3) An adjustment method in which a carrier of the alloy supported on carbon powder is prepared, and then a mixture of the carrier and the organic compound is formed, and then the mixture is fired.
(4) An adjustment method in which a carrier of the alloy supported on carbon powder is produced, and then the carrier is heated together with the organic compound and then fired.

(5)該合金前駆体を作製し、次いで該合金前駆体、該有機化合物、及び炭素粉末の混合体を形成後、該混合体を焼成する調整方法。
(6)該合金前駆体を作製し、次いで該合金前駆体を該有機化合物と共に加熱処理した後、更に炭素粉末上に担持させ、焼成する調整方法。
(7)該合金を作製し、次いで該合金、該有機化合物、及び炭素粉末の混合体を形成後、該混合体を焼成する調整方法。
(8)該合金を作製し、次いで該合金を該有機化合物と共に加熱処理した後、更に炭素粉末上に担持させ、焼成する調整方法。
(5) An adjustment method in which the alloy precursor is prepared, and then a mixture of the alloy precursor, the organic compound, and carbon powder is formed, and then the mixture is fired.
(6) An adjustment method in which the alloy precursor is prepared, and then the alloy precursor is heat-treated with the organic compound, and then supported on carbon powder and fired.
(7) An adjustment method in which the alloy is produced, and then a mixture of the alloy, the organic compound, and carbon powder is formed, and then the mixture is fired.
(8) An adjustment method in which the alloy is manufactured, and then the alloy is heat-treated with the organic compound, and then supported on carbon powder and fired.

以上8点のうち、工程の簡便性、目的の触媒構造の構築のしやすさといった観点から、好ましくは(1)〜(4)の方法が良い。
上記(1)、(2)、(5)、(6)で用いる混合物Xや混合物Yといった合金前駆体は、各金属M,A,Bの金属源(例えば金属塩など)を原料に用いて、逆ミセル法、共沈法、含浸法、蒸発乾固法などの手法により作製することができ、引き続き該合金前駆体に適切な焼成工程を施すことで、目的の合金となす。本発明における該合金前駆体は、目的の元素組成比で合金を形成しやすいといったことから、逆ミセル法を用いて作製することが好ましい。
Of the above 8 points, the methods (1) to (4) are preferred from the viewpoints of process simplicity and ease of construction of the target catalyst structure.
The alloy precursors such as the mixture X and the mixture Y used in the above (1), (2), (5), and (6) use a metal source (for example, a metal salt) of each metal M, A, and B as a raw material. The alloy can be produced by a reverse micelle method, a coprecipitation method, an impregnation method, an evaporation to dryness method, etc., and the alloy precursor is subsequently subjected to an appropriate firing step to obtain a target alloy. The alloy precursor in the present invention is preferably produced by a reverse micelle method because an alloy can be easily formed at a target elemental composition ratio.

逆ミセル法とは、ミセル内部に各金属源の水溶液を含有する逆ミセル溶液(A)と、ミセル内部に還元剤及び/又はpH調整剤を含有する逆ミセル溶液(B)との混在により、ミセル内部で反応を行うことで、金属M、金属A及び/又は(該金属Aの水酸化物、過酸
化物、酸化物から選択される1種以上のA’)等、金属B及び/又は(該金属Bの水酸化物、過酸化物、酸化物から選択される1種以上のB’)等の金属微粒子、金属化合物を作製する方法である。逆ミセル溶液とは、有機溶媒に界面活性剤を混合することにより、界面活性剤が集合して形成されるミセルを含有し、かつ該ミセル内部に金属イオン水溶液などを含有する溶液である。界面活性剤分子が、有機溶媒相内で、疎水性基を外側すなわち有機溶媒相側に向け、親水性基を内側に向けて配列し、疎水性基と親水性基の配列が水性溶媒相の場合と逆であるため、逆ミセル溶液と称する。このような逆ミセル溶液は、界面活性剤を有機溶媒に溶解した溶液に水溶液を加えて攪拌させることにより調整できる。親水性基が集合した部分には水などの極性溶媒を保持する能力がある。該水溶液は、ナノサイズの極めて小さな水滴となって有機溶媒中に安定して分散できるが、注入した水と界面活性剤のモル比によって、そのサイズをコントロールできる。
以上の方法で調整した金属M、金属A及び/又は(該金属Aの水酸化物、過酸化物、酸化物から選択される1種以上のA’)等、金属B及び/又は(該金属Bの水酸化物、過酸化物、酸化物から選択される1種以上のB’)等の逆ミセル溶液の逆ミセルを崩壊させた後、吸引ろ過等により取り出すことで、本発明の合金前駆体を得ることができる。
The reverse micelle method is a mixture of a reverse micelle solution (A) containing an aqueous solution of each metal source inside the micelle and a reverse micelle solution (B) containing a reducing agent and / or a pH adjuster inside the micelle. By reacting inside the micelle, metal B and / or metal M, metal A and / or (one or more A ′ selected from hydroxide, peroxide, oxide of metal A), etc. This is a method for producing metal fine particles and metal compounds such as (one or more B ′ selected from hydroxides, peroxides and oxides of the metal B). The reverse micelle solution is a solution containing a micelle formed by mixing a surfactant in an organic solvent and containing an aqueous metal ion solution or the like inside the micelle. Surfactant molecules are arranged in the organic solvent phase with the hydrophobic group facing outward, that is, toward the organic solvent phase, the hydrophilic group facing inward, and the arrangement of the hydrophobic group and the hydrophilic group in the aqueous solvent phase. Since it is the reverse of the case, it is called a reverse micelle solution. Such a reverse micelle solution can be prepared by adding an aqueous solution to a solution obtained by dissolving a surfactant in an organic solvent and stirring the solution. The portion where the hydrophilic groups are assembled has the ability to hold a polar solvent such as water. The aqueous solution can be stably dispersed in an organic solvent as nano-sized water droplets, but the size can be controlled by the molar ratio of the injected water and the surfactant.
Metal B and / or (the metal A, metal A and / or (one or more A ′ selected from hydroxide, peroxide, oxide of the metal A) prepared by the above method) The alloy precursor of the present invention is obtained by collapsing reverse micelles of a reverse micelle solution such as one or more B ′) selected from hydroxides, peroxides, and oxides of B, and then taking them out by suction filtration or the like. You can get a body.

上記(1)又は(2)において、逆ミセル法で合金前駆体を製造する場合には、逆ミセル法で合金前駆体を製造した後、炭素粉末を添加・分散させることで、逆ミセル溶液の逆ミセルを崩壊させると共に、該合金前駆体を炭素粉末に担持させることができ、目的の担持体を製造することができる。
一方、上記(3)、(4),(7),(8)における該合金は、上記記載の逆ミセル法等の各種手法により作製した合金前駆体に、適切な焼成を施すことで作製できる。又、逆ミセル法等のような湿式法ではなく、固相反応等でも構わない。スパッタ、蒸着などによる合金作製は、先述したように本発明のおける該合金の好ましい形態は、微粒子であるため、極力避ける。
上記(1)〜(8)における各種混合体の形成は、各化合物が均一に分散した状態での混合体を形成できれば、その手法に制限はないが、例えば、各化合物を溶媒中で、超音波ホモジナイザーにより分散させた後、溶媒をエバポレーター等により除去することで得られる。
In the above (1) or (2), when producing an alloy precursor by the reverse micelle method, after producing the alloy precursor by the reverse micelle method, by adding and dispersing the carbon powder, the reverse micelle solution While the reverse micelle is collapsed, the alloy precursor can be supported on the carbon powder, and the target support can be produced.
On the other hand, the alloys in the above (3), (4), (7), and (8) can be produced by subjecting an alloy precursor produced by various methods such as the above-described reverse micelle method to appropriate firing. . Further, a solid phase reaction or the like may be used instead of a wet method such as a reverse micelle method. Preparation of an alloy by sputtering or vapor deposition is avoided as much as possible because the preferred form of the alloy in the present invention is fine particles as described above.
The formation of the various mixtures in the above (1) to (8) is not limited as long as the mixture can be formed in a state in which each compound is uniformly dispersed. After dispersing with a sonic homogenizer, the solvent is removed by an evaporator or the like.

本発明における加熱処理とは、溶媒中における加熱反応により、該合金又は該合金前駆体に該有機化合物を化学反応により配位結合させるか、又は、分子間力等を用いた弱い結合をさせることにより、必要な量だけの該有機化合物を選択的に添加させることである。
上記溶媒は特に制限はないが、加熱下において該有機化合物に対する溶解度が高いものが好ましい。
上記加熱反応とは、該合金又は該合金前駆体と該有機化合物を溶媒中で、加熱させ、上記記載の目的の結合を行うものである。反応温度は、反応の促進のため、好ましくは室温以上、更に好ましくは還流反応が起こる温度である。反応の雰囲気は、該合金又は該合金前駆体の酸化防止のため、不活性ガスフロー下が好ましい。又、反応の促進のため、必要に応じて、酸又は塩基、脱プロトン化剤などの添加剤を加えても構わない。
上記加熱処理により、目的の結合が形成されているかの判断は、例えば、赤外分光法(FT−IR)、X線光電子分光分析法(XPS)、飛行時間型二次イオン質量分析法(TOF−SIMS)等を用いて行える。
尚、本発明の触媒は、原料に予め錯体化した遷移金属錯体を用いるのではなく、前もって合金又は合金前駆体を作製し、別に非共有電子対を持つ窒素原子を含有している有機化合物を添加することで製造されるため、触媒内の合金の結晶相は単相化しやすく、また、その組成も一定値をとりやすい。よって、合金本来の触媒活性と高耐久性を合わせて発現できると考えられる。
The heat treatment in the present invention means that the organic compound is coordinated to the alloy or the alloy precursor by a chemical reaction by a heat reaction in a solvent, or a weak bond using intermolecular force or the like is used. To selectively add the required amount of the organic compound.
Although the said solvent does not have a restriction | limiting in particular, A thing with high solubility with respect to this organic compound under a heating is preferable.
The heating reaction is to heat the alloy or the alloy precursor and the organic compound in a solvent to achieve the desired bonding described above. The reaction temperature is preferably room temperature or higher, more preferably a temperature at which a reflux reaction occurs, in order to promote the reaction. The reaction atmosphere is preferably an inert gas flow in order to prevent oxidation of the alloy or the alloy precursor. Moreover, in order to accelerate | stimulate reaction, you may add additives, such as an acid or a base, and a deprotonating agent, as needed.
For example, infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOF) can be determined by the heat treatment. -SIMS) or the like.
The catalyst of the present invention does not use a transition metal complex previously complexed as a raw material, but an alloy or an alloy precursor is prepared in advance, and an organic compound containing a nitrogen atom having an unshared electron pair is prepared separately. Since it is manufactured by adding, the crystal phase of the alloy in the catalyst is likely to be a single phase, and the composition is likely to take a constant value. Therefore, it is considered that the original catalytic activity of the alloy and high durability can be combined.

本発明の炭素粉末の添加比率について説明する。
炭素粉末が多すぎると、触媒としての性能が十分に発現できない恐れがあり、逆に炭素粉末が少なすぎると、電子伝導の役割を十分に発現できない恐れがあるので、適度な比率が必要である。よって、(該合金+該有機化合物+該炭素粉末)全質量に対して、(該合金+該有機化合物)が、好ましくは5質量%〜80質量%、更に好ましくは10質量%〜70質量%である。ここで、該合金前駆体を用いて作製する場合は、該合金前駆体が該合金となった場合に換算して、炭素粉末の添加量を決定すればよい。
The addition ratio of the carbon powder of the present invention will be described.
If the amount of carbon powder is too much, the performance as a catalyst may not be sufficiently developed. Conversely, if the amount of carbon powder is too small, the role of electron conduction may not be sufficiently exhibited, so an appropriate ratio is required. . Therefore, (the alloy + the organic compound) is preferably 5% by mass to 80% by mass, more preferably 10% by mass to 70% by mass with respect to the total mass of the (alloy + the organic compound + the carbon powder). It is. Here, when producing using the alloy precursor, the amount of carbon powder added may be determined in terms of the case where the alloy precursor becomes the alloy.

本発明の焼成について説明する。
本発明の焼成は、まず300℃〜600℃で第一段目の焼成を施し、引き続き700℃〜1000℃で第二段目の焼成を施すことを特徴とする。
本焼成工程は、例えば上記記載の調整法(1)、(2)のように該合金前駆体を用いる場合は、該合金の形成と、先述したような有機化合物が合金中の金属周りにおいて担体の炭素粉末と一体化すると思われる構造の形成(以下、炭化物層の形成と略す)といった2種の役目を担っており、例えば上記記載の調整法(3)、(4)のように該合金を用いる場合は、炭化物層の形成のみの役目を担う。
いずれの工程にも共通しているのが、炭化物層の形成であり、これを、より安定な構造で形成させるために本発明では上記記載の二段階での焼成工程を施す。そのメカニズムは定かではないが、第一段目の焼成において、有機化合物が融解することで、該合金又は該合金前駆体の表層をできるだけ隙間無く覆うことができると思われるので、第二段目の焼成後には、目的の構造を緻密に形成することができ、その結果、より安定な構造の形成が可能になると思われる。
The firing of the present invention will be described.
The firing of the present invention is characterized in that first-stage firing is first performed at 300 ° C. to 600 ° C., and then second-stage firing is performed at 700 ° C. to 1000 ° C.
In the firing step, for example, when the alloy precursor is used as in the adjustment methods (1) and (2) described above, the formation of the alloy and the organic compound as described above are supported around the metal in the alloy. It has two kinds of roles such as formation of a structure that is supposed to be integrated with the carbon powder (hereinafter abbreviated as formation of a carbide layer). For example, the alloy as in the adjustment methods (3) and (4) described above When is used, it plays the role of only the formation of the carbide layer.
What is common to both processes is formation of a carbide layer, and in order to form this with a more stable structure, the above-described two-stage firing process is performed in the present invention. Although the mechanism is not clear, it is considered that the surface of the alloy or the precursor of the alloy can be covered as much as possible by melting the organic compound in the first stage firing. After firing, the target structure can be densely formed, and as a result, a more stable structure can be formed.

従って、第一段目の焼成温度は300℃〜600℃、好ましくは400〜550℃であるが、上限は、選択する有機化合物の焼成雰囲気内における気化温度以下が好ましく、下限は、選択する有機化合物の焼成雰囲気内における融解温度以上が好ましい。
又、第二段目の焼成温度は、700℃〜1000℃、好ましくは750〜900℃である。上限は、合金の粒子サイズの増大による触媒実効面積の低下の防止や、担体の炭素粉末の焼失防止といった観点から1000℃以下であり、好ましくは900℃以下である。下限は、合金形成や、炭化物層の形成のために、700℃以上であり、好ましくは750℃以上である。
本発明において、第一段目の焼成と第二段目の焼成とは、その温度条件が上記温度範囲内にあることが重要であり、第一段目の焼成と第二段目の焼成との間に、一旦、温度を降温しても構わないが、生産性の面からは、第一段目の焼成温度を所定の時間維持した後、降温することなく昇温し第二段目の焼成を行うことが好ましい。
焼成雰囲気は、該合金の酸化防止や、該有機化合物及び担体である炭素粉末の酸化分解の防止といった観点から、水素ガス、水素ガス含有不活性ガス、不活性ガスのいずれかから選択される。ここで、該合金の形成には、合金中に卑金属が混在する場合は、その金属の金属化や酸化防止を促進する必要があるので、水素ガスが存在していることが好ましい。
各焼成の時間には特に制限はないが、上記記載の焼成による効果を十分とするために、好ましくは30分以上、6時間以下である。
又、昇温及び降温速度には、特に制限はないが、上記記載の焼成による効果を十分とするために、好ましくは5℃/分〜100℃/分である。
Accordingly, the firing temperature of the first stage is 300 ° C. to 600 ° C., preferably 400 to 550 ° C., but the upper limit is preferably equal to or lower than the vaporization temperature in the firing atmosphere of the organic compound to be selected, and the lower limit is the organic to be selected. The melting temperature or higher in the firing atmosphere of the compound is preferred.
The second stage baking temperature is 700 ° C. to 1000 ° C., preferably 750 to 900 ° C. The upper limit is 1000 ° C. or less, preferably 900 ° C. or less, from the viewpoint of preventing the reduction of the effective catalyst area due to the increase in the alloy particle size and preventing the carbon powder of the support from being burned out. The lower limit is 700 ° C. or higher, preferably 750 ° C. or higher, for alloy formation and carbide layer formation.
In the present invention, it is important that the first stage firing and the second stage firing are within the above temperature range, and the first stage firing and the second stage firing. During this period, the temperature may be lowered once, but from the standpoint of productivity, the first stage baking temperature is maintained for a predetermined time, and then the temperature is raised without lowering. It is preferable to perform firing.
The firing atmosphere is selected from hydrogen gas, hydrogen gas-containing inert gas, and inert gas from the viewpoint of preventing oxidation of the alloy and preventing oxidative decomposition of the organic compound and the carbon powder as the support. Here, in the formation of the alloy, when a base metal is mixed in the alloy, it is necessary to promote metallization and oxidation prevention of the metal, and therefore it is preferable that hydrogen gas is present.
The firing time is not particularly limited, but is preferably 30 minutes or longer and 6 hours or shorter in order to make the above-described firing effect sufficient.
Moreover, although there is no restriction | limiting in particular in temperature rising and temperature decreasing rate, In order to fully make the effect by the above-mentioned baking, Preferably it is 5 to 100 degreeC / min.

本発明の触媒は、本発明の触媒の性能を阻害しない又は向上させることができるならば、他の材料を混在させても構わない。例えば、金属、合金、ペロブスカイト型、ブロンズ型、パイロクロア型などの金属酸化物、金属窒化物、金属硫化物、配位高分子型錯体、大環状金属錯体などの1種以上が挙げられる。その混在割合は、本発明の触媒としての性能が十分に発現できるためには、本発明の触媒が全体の好ましくは70質量%以上が良く、更に好ましくは80質量%以上が良い。
本発明により得られた触媒の組成、構造決定は、粉末X線回折法(XRD)、蛍光X線
分析法(XRF)、X線光電子分光分析法(XPS)、誘導結合高周波プラズマ発光分光分析法(ICP発光法)、飛行時間型二次イオン質量分析法(TOF−SIMS)等を用いて決定することができる。
尚、本発明の触媒はDMFC(直接メタノール型PEFC)用に最適である。本発明の触媒をカソードに用いれば、クロスオーバーによりカソードへ移動してきたアノードで消費できなかったメタノールが、カソードで酸化されることを好適に防止し、効率よく酸素を還元できるからである。
The catalyst of the present invention may be mixed with other materials as long as the performance of the catalyst of the present invention is not impaired or improved. For example, one or more of metal oxides such as metals, alloys, perovskite types, bronze types, pyrochlore types, metal nitrides, metal sulfides, coordination polymer type complexes, macrocyclic metal complexes, and the like can be given. The mixing ratio of the catalyst of the present invention is preferably 70% by mass or more, and more preferably 80% by mass or more, so that the performance as the catalyst of the present invention can be sufficiently exhibited.
The composition and structure of the catalyst obtained by the present invention are determined by X-ray powder diffraction (XRD), X-ray fluorescence analysis (XRF), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma emission spectrometry (ICP emission method), time-of-flight secondary ion mass spectrometry (TOF-SIMS) and the like can be used.
The catalyst of the present invention is most suitable for DMFC (direct methanol type PEFC). This is because when the catalyst of the present invention is used for the cathode, methanol that could not be consumed by the anode that has moved to the cathode due to crossover is preferably prevented from being oxidized at the cathode, and oxygen can be reduced efficiently.

次に、本発明の触媒を、固体高分子型燃料電池として用いる方法について説明する。
燃料電池の形状などについては、電解質膜として固体高分子型電解質を使用すれば特に限定されるものではなく、任意形状の電解質膜上にアノード、カソードを密着させた電極接合体として用いることができる。
本発明の燃料電池としては、本発明の触媒をカソード電極に有する必要があるが、その構造は従来公知のものと同様でよく、又、アノード電極および固体高分子型電解質も、従来公知のものと同様でよい。例えば、アノード電極に使用する触媒は、白金、白金−ルテニウム合金などを使用することができ、固体高分子型電解質は、アシプレックス、ナフィオンなどの商標名で市販されているものを使用することができる。
本発明の触媒を用いて電極を形成するには、本発明の触媒にバインダーを添加して固体高分子型電解質のカソード側に触媒層を形成し、アノード側にも同様に公知の触媒をバインダーに添加して触媒層とすれば良い。必要に応じて、拡散層、集電体をホットプレスなどにより一体化して、電極接合体とする。
Next, a method for using the catalyst of the present invention as a polymer electrolyte fuel cell will be described.
The shape of the fuel cell is not particularly limited as long as a solid polymer electrolyte is used as the electrolyte membrane, and can be used as an electrode assembly in which an anode and a cathode are in close contact with an electrolyte membrane of an arbitrary shape. .
The fuel cell of the present invention needs to have the catalyst of the present invention in the cathode electrode, and the structure thereof may be the same as that of a conventionally known one, and the anode electrode and the solid polymer electrolyte are also conventionally known. Same as above. For example, platinum, a platinum-ruthenium alloy, or the like can be used as a catalyst used for the anode electrode, and a polymer electrolyte that is commercially available under a trade name such as Aciplex or Nafion can be used. it can.
In order to form an electrode using the catalyst of the present invention, a binder is added to the catalyst of the present invention to form a catalyst layer on the cathode side of the solid polymer electrolyte, and a known catalyst is similarly bonded to the anode side. The catalyst layer may be added to the catalyst layer. If necessary, the diffusion layer and the current collector are integrated by hot pressing or the like to form an electrode assembly.

次に本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。
実施例及び比較例において用いる測定法は以下のとおりである。
粉末X線回折法(XRD)は、RINT−2500(理学電機(株)製)を用い、測定条件は、線源がCu Kα線、走査軸が2θ/θ、ステップ間隔が0.01°、スキャンスピードが0.5°/min、加速電圧が40kV、加速電流が200mAで行い、測定の際に使用したスリットは、発散スリットが1°、散乱スリットが1°、受光スリットが0.15mmであり、検出器の前にグラファイトモノクロメーターを装着した。
走査型透過電子顕微鏡(STEM)による画像解析は、FE−SEM S−5500(日立製作所(株)製)を用い、加速電圧30KV、検出器は透過電子検出器、画像モードは走査透過電子像で行った。
電気化学試験は、ポテンシオガルバノスタット:Solartron1255WB又は1280Z(いずれも英国ソーラトロン社製)を用いて行った。測定条件等の詳細は実施例及び比較例内に記載する。
EXAMPLES Next, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these.
Measurement methods used in Examples and Comparative Examples are as follows.
For powder X-ray diffraction (XRD), RINT-2500 (manufactured by Rigaku Denki Co., Ltd.) was used, and the measurement conditions were a radiation source of Cu K α ray, a scanning axis of 2θ / θ, and a step interval of 0.01 °. The measurement was performed at a scan speed of 0.5 ° / min, an acceleration voltage of 40 kV, and an acceleration current of 200 mA. The slit used for the measurement was a diverging slit of 1 °, a scattering slit of 1 °, and a light receiving slit of 0.15 mm. A graphite monochromator was installed in front of the detector.
Image analysis with a scanning transmission electron microscope (STEM) was performed using an FE-SEM S-5500 (manufactured by Hitachi, Ltd.), an acceleration voltage of 30 KV, a detector as a transmission electron detector, and an image mode as a scanning transmission electron image. went.
The electrochemical test was conducted using a potentiogalvanostat: Solartron 1255WB or 1280Z (both manufactured by Solartron, UK). Details of measurement conditions and the like are described in Examples and Comparative Examples.

[実施例1]
まず、逆ミセル法を用いて、炭素粉末上に担持させたPdCoCr合金前駆体を以下のように作製した。
<逆ミセル溶液(A)の作製>
ビス(エチルヘキシル)スルホコハク酸ナトリウム(AOT)(和光純薬工業(株)製)46.2gを、ヘプタン(和光純薬工業(株)製)213mlに溶解させた。(NH[PdCl](和光純薬工業(株)製)0.179g、Co(NO・6HO(和光純薬工業(株)製)0.031g、Cr(NO・9HO(和光純薬工業(株)製)0.043gを25.01gの精製水に溶解させた。上記2種の溶液を混合し、氷浴中、窒素バブリングをしながら、約20分間超音波ホモジナイザー分散とマグネティックスターラーによる攪拌を両立させた状態を施し、逆ミセル溶液を作製した。作製後、更に約30分間の窒素バブリングを施し、溶存酸素を十分に除去した。
[Example 1]
First, using a reverse micelle method, a PdCoCr alloy precursor supported on carbon powder was prepared as follows.
<Preparation of reverse micelle solution (A)>
46.2 g of sodium bis (ethylhexyl) sulfosuccinate (AOT) (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 213 ml of heptane (manufactured by Wako Pure Chemical Industries, Ltd.). (NH 4) 2 [PdCl 6 ] ( manufactured by Wako Pure Chemical Industries (Ltd.)) 0.179g, Co (NO 3 ) ( manufactured by Wako Pure Chemical Industries (Ltd.)) 2 · 6H 2 O 0.031g , Cr (NO 3) 3 · 9H 2 O (Wako Pure Chemical Industries, Ltd. and made) 0.043 g was dissolved in purified water 25.01 g. The above two solutions were mixed and subjected to a state in which ultrasonic homogenizer dispersion and stirring with a magnetic stirrer were combined for about 20 minutes while performing nitrogen bubbling in an ice bath to prepare a reverse micelle solution. After fabrication, nitrogen bubbling was further performed for about 30 minutes to sufficiently remove dissolved oxygen.

<逆ミセル溶液(B)の作製>
ビス(エチルヘキシル)スルホコハク酸ナトリウム(AOT)(和光純薬工業(株)製)61.7gを、ヘプタン(和光純薬工業(株)製)213mlに溶解させた。NaBH(和光純薬工業(株)製)を0.218gと、NaOH(和光純薬工業(株)製)を1mol/lの水溶液に調製したもの1滴を25.01gの精製水に溶解させた。上記2種の溶液を混合し、氷浴中、窒素バブリングをしながら、約20分間超音波ホモジナイザー分散とマグネティックスターラーによる攪拌を両立させた状態を施し、逆ミセル溶液を作製した。作製後、更に約30分間の窒素バブリングを施し、溶存酸素を十分に除去した。
<Preparation of reverse micelle solution (B)>
61.7 g of sodium bis (ethylhexyl) sulfosuccinate (AOT) (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 213 ml of heptane (manufactured by Wako Pure Chemical Industries, Ltd.). NaBH 4 (manufactured by Wako Pure Chemical Industries, Ltd.) 0.218 g and NaOH (manufactured by Wako Pure Chemical Industries, Ltd.) prepared in a 1 mol / l aqueous solution 1 drop dissolved in 25.01 g of purified water I let you. The above two solutions were mixed and subjected to a state in which ultrasonic homogenizer dispersion and stirring with a magnetic stirrer were combined for about 20 minutes while performing nitrogen bubbling in an ice bath to prepare a reverse micelle solution. After fabrication, nitrogen bubbling was further performed for about 30 minutes to sufficiently remove dissolved oxygen.

<炭素粉末上に担持したPdCoCr合金前駆体の作製>
逆ミセル溶液(A)に逆ミセル溶液(B)を混合し、次いで12.5gの精製水を追加した後、60℃下、窒素バブリングをしながら、約30分間超音波ホモジナイザー分散とマグネティックスターラーによる攪拌を両立させた状態を施して、反応させた。次いで、炭素微粒子であるケッチェンブラック(登録商標)EC(ケッチェン・ブラック・インターナショナル株式会社製、表面積800m/g、一次粒径39.5nm)0.262gを加え、上記記載と同条件で約10分間超音波ホモジナイザー分散とマグネティックスターラーによる攪拌を両立させた状態を施した。更に、室温下でマグネティックスターラーによる攪拌を約1.5時間行った後、吸引ろ過により取り出した。精製水とアセトンで十分に洗浄した後、デシケーター中で乾燥させた。
<Preparation of PdCoCr alloy precursor supported on carbon powder>
The reverse micelle solution (B) was mixed with the reverse micelle solution (A), and then 12.5 g of purified water was added. Then, at 60 ° C., nitrogen bubbling was performed for about 30 minutes using an ultrasonic homogenizer dispersion and a magnetic stirrer. The reaction was carried out in a state in which stirring was achieved. Next, 0.262 g of Ketjen Black (registered trademark) EC (manufactured by Ketjen Black International Co., Ltd., surface area 800 m 2 / g, primary particle size 39.5 nm), which is carbon fine particles, was added, and about the same conditions as described above were added. A state in which ultrasonic homogenizer dispersion and stirring with a magnetic stirrer were both achieved for 10 minutes was applied. Furthermore, after stirring with a magnetic stirrer at room temperature for about 1.5 hours, it was taken out by suction filtration. After thoroughly washing with purified water and acetone, it was dried in a desiccator.

次に、上記にて作製した炭素粉末上に担持させた合金前駆体を用いて、本発明の触媒を作製した。
上記合金前駆体と、meso−Tetraphenylporphyrin(アルドリッチ社製)0.0665gとを、トルエン(和光純薬工業(株)製)100mlで混合させ、約10分間超音波ホモジナイザー分散を行った後、しばらく室温下で静置した。上記分散液を、エバポレーターを用い、約60℃で加熱しながら溶媒であるトルエンを除去した。次に、10%水素含有アルゴン気流下で、500℃で30分間の第一段目の焼成を施し、次いで、900℃で1時間の第二段目の焼成を施すことで触媒を得た。
XRDより、Pd、Co及びCr金属単体等の副生成物は存在せず、Pdの立方晶にCo及びCrを導入したPdCoCr三元合金が単相で形成していることが分かった。特に、Pd(111)ピークは2θ=40.80°で、合金化により回折ピークが高角度へシフトしている。
又、STEM観察より、PdCoCr三元単相合金の表層に、加えた有機化合物由来の炭化物層が、極薄膜で形成していることも分かった。
Next, the catalyst of this invention was produced using the alloy precursor carry | supported on the carbon powder produced above.
The alloy precursor and 0.0665 g of meso-tetraphenylporphyrin (manufactured by Aldrich) are mixed with 100 ml of toluene (manufactured by Wako Pure Chemical Industries, Ltd.) and subjected to ultrasonic homogenizer dispersion for about 10 minutes. Let stand under. Toluene as a solvent was removed while heating the dispersion at about 60 ° C. using an evaporator. Next, under a 10% hydrogen-containing argon stream, the first stage calcination was performed at 500 ° C. for 30 minutes, and then the second stage calcination was performed at 900 ° C. for 1 hour to obtain a catalyst.
From XRD, it was found that there was no by-product such as Pd, Co and Cr metal alone, and a PdCoCr ternary alloy in which Co and Cr were introduced into a cubic Pd crystal was formed in a single phase. In particular, the Pd (111) peak is 2θ = 40.80 °, and the diffraction peak is shifted to a high angle due to alloying.
Further, STEM observation revealed that the carbide layer derived from the added organic compound was formed as a very thin film on the surface layer of the PdCoCr ternary single phase alloy.

<触媒の活性評価>
上記によって得られた触媒の電気化学特性を下記の方法によって評価した。まず、触媒の粉末5mgに精製水を加え5gに調整し、超音波を印加して分散させ、0.1%触媒懸濁液を得た。この触媒懸濁液を回転ディスクカーボン電極上に15μl滴下し、乾燥機において50℃で乾燥させた。次に導電性樹脂溶液(アシプレックス、旭化成ケミカルズ登録商標、含有量0.15%エタノール溶液)を5μl滴下し、同じく乾燥機において50℃で約2時間乾燥させ、触媒試験電極を作製した。
<Evaluation of catalyst activity>
The electrochemical characteristics of the catalyst obtained as described above were evaluated by the following methods. First, purified water was added to 5 mg of catalyst powder to adjust to 5 g, and ultrasonic waves were applied and dispersed to obtain a 0.1% catalyst suspension. 15 μl of this catalyst suspension was dropped on a rotating disk carbon electrode and dried at 50 ° C. in a dryer. Next, 5 μl of a conductive resin solution (Aciplex, Asahi Kasei Chemicals registered trademark, ethanol solution with a content of 0.15%) was dropped, and dried in a dryer at 50 ° C. for about 2 hours to prepare a catalyst test electrode.

次に、得られた触媒試験電極について、以下の方法により0.5M硫酸水溶液中、60℃で3電極式の電気化学セル(回転ディスク電極測定セル)を用いて、電気化学試験を行った。以下、電位は、0.5M硫酸中水素電極に対する水素電極(RHE)に対する電位で示す。
硫酸水溶液中に酸素ガスを約30分間バブリングさせることにより、セル内の雰囲気を酸素飽和とした後、酸素ガスをフローしながら、電位サイクル(電位サイクル範囲:0.
05〜1.0V、走査速度100mV/s)を50回行った。次に、ディスク電極を2000r/mで回転させ、電位を1.0Vで15秒保持後、1.0Vから0.30Vまで電位を5mV/sの速度で変化させて酸素還元電流値を測定した。次いで、上記電位サイクルを50回(合計サイクル回数は100回)行った後、上記と同条件で酸素還元電流値を測定した。更に、上記電位サイクルを50回(合計サイクル回数は150回)行った後、上記と同条件で酸素還元電流値を測定した。以上により、電位サイクルを50、100、150回施した後の酸素還元電流値を測定したことになる。
ここで、本発明における触媒の耐久性の指標を以下のように設定した。酸素還元過電圧をηとした時、時間(電位サイクル数)(tとする)による変化は、ηに比例関係にあると仮定すると、定数Kを用いて、dη/dt=K・ηとおけ、ln|η|=K・t+c(c=定数、η=1.23−V)(式1)となる。式1より、Vは、上記より測定した電位サイクルを50、100、150回施した後の電極上のパラジウム1gあたりの酸素還元電流値が82A/gを超える電位とし、得られた直線の傾きから、式1の定数Kを求めた。定数Kから、初期(t=0)での電位を算出し、その初期電位が80%まで落ちるサイクル数を求め、このサイクル数が大きいものほど、高耐久性であると判断する。
上記より、初期電位が80%まで落ちるサイクル数は、1635回であった。
Next, the obtained catalyst test electrode was subjected to an electrochemical test in a 0.5 M sulfuric acid aqueous solution at 60 ° C. using a three-electrode electrochemical cell (rotating disk electrode measurement cell) by the following method. Hereinafter, the potential is shown as a potential with respect to a hydrogen electrode (RHE) with respect to a 0.5 M hydrogen electrode in sulfuric acid.
By bubbling oxygen gas into the sulfuric acid aqueous solution for about 30 minutes, the atmosphere in the cell was saturated with oxygen, and then the potential cycle (potential cycle range: 0.00.
(05 to 1.0 V, scanning speed 100 mV / s) was performed 50 times. Next, the disk electrode was rotated at 2000 r / m, the potential was held at 1.0 V for 15 seconds, and then the oxygen reduction current value was measured by changing the potential from 1.0 V to 0.30 V at a rate of 5 mV / s. . Next, after the potential cycle was performed 50 times (the total number of cycles was 100), the oxygen reduction current value was measured under the same conditions as described above. Furthermore, after the above potential cycle was performed 50 times (total number of cycles was 150), the oxygen reduction current value was measured under the same conditions as described above. As described above, the oxygen reduction current value after 50, 100, and 150 potential cycles were measured.
Here, the durability index of the catalyst in the present invention was set as follows. Assuming that the oxygen reduction overvoltage is η, the change due to time (number of potential cycles) (assumed to be t) is proportional to η, and using a constant K, dη / dt = K · η, ln | η | = K · t + c (c = constant, η = 1.23−V) (formula 1). From Equation 1, V is the slope of the straight line obtained, assuming that the oxygen reduction current value per gram of palladium on the electrode after applying the potential cycle measured 50, 100, 150 times above exceeds 82 A / g. From this, the constant K in Equation 1 was obtained. The potential at the initial stage (t = 0) is calculated from the constant K, the number of cycles in which the initial potential drops to 80% is obtained, and the larger the number of cycles, the higher the durability.
From the above, the number of cycles when the initial potential dropped to 80% was 1,635 times.

[比較例1]
焼成工程を、10%水素含有アルゴン気流下、900℃で1時間の一回焼成に変更する以外は、実施例1と同様な方法にて触媒を得た。
XRDより、Pd、Co及びCr金属単体等の副生成物は存在せず、Pdの立方晶にCo及びCrを導入したPdCoCr三元合金が単相で形成していることが分かった。特に、Pd(111)ピークは2θ=40.72°で、合金化により回折ピークが高角度へシフトしている。
又、STEM観察より、PdCoCr三元単相合金の表層に、加えた有機化合物由来の炭化物層が、極薄膜で形成していることも分かった。
上記によって得られた触媒の電気化学特性を実施例1と同様に測定したところ、初期電位が80%まで落ちるサイクル数は、602回であった。
以上、実施例1及び比較例1より、本発明における触媒及び製造方法が、固体高分子型燃料電池用カソード触媒として優れていることは明確である。
[Comparative Example 1]
A catalyst was obtained in the same manner as in Example 1 except that the calcination step was changed to one calcination for 1 hour at 900 ° C. in a 10% hydrogen-containing argon stream.
From XRD, it was found that there was no by-product such as Pd, Co and Cr metal alone, and a PdCoCr ternary alloy in which Co and Cr were introduced into a cubic Pd crystal was formed in a single phase. In particular, the Pd (111) peak is 2θ = 40.72 °, and the diffraction peak is shifted to a high angle due to alloying.
Further, STEM observation revealed that the carbide layer derived from the added organic compound was formed as a very thin film on the surface layer of the PdCoCr ternary single phase alloy.
When the electrochemical characteristics of the catalyst obtained as described above were measured in the same manner as in Example 1, the number of cycles when the initial potential dropped to 80% was 602 times.
As described above, it is clear from Example 1 and Comparative Example 1 that the catalyst and the production method in the present invention are excellent as a cathode catalyst for a polymer electrolyte fuel cell.

Claims (3)

(i)Pdである金属Mと、該金属M以外のCo、Cr,Auのいずれかから選ばれる金属A及び/又は(該金属Aの水酸化物、過酸化物、酸化物から選択される1種以上のA’)
からなる混合物X、
(ii)Pdである金属Mと、該金属M以外のCo、Cr,Auのいずれかから選ばれる金属A及び/又は(該金属Aの水酸化物、過酸化物、酸化物から選択される1種以上のA’)、そして、該金属M、A以外のCo、Cr,Auのいずれかから選ばれる金属B及び/又は(該金属Bの水酸化物、過酸化物、酸化物から選択される1種以上のB’)からなる混合物Y、そして
(iii)下記一般式(1)で表される合金(下記一般式(1)中、0<x<1、0<y<1、0≦z<1、MはPdを示し、AとBはCo、Cr,Auのいずれかから選ばれる互いに異なるM以外の金属を示す)、
から選ばれる一種以上と、
非共有電子対を持つ窒素原子を含有している有機化合物と、
及び炭素粉末と、
を少なくとも含有する組成物を、まず300℃〜600℃で第一段目の焼成を施し、その後、引き続き700℃〜1000℃まで昇温して第二段目の焼成を施して得られる固体高分子型燃料電池用カソード触媒であって、該有機化合物がmeso−Tetraphenylporphyrin、2,3,7,8,12,13,17,18−Octaethyl−21H,23H−porphine、Tetrakis(4−carboxyphenyl)porphineで表されるポルフィリン誘導体、Phthalocyanine、1,4,8,11,15,18,22,25−Octabutoxy−29H,31H−phthalocyanine、2,3,9,10,16,17,23,24−Octakis(octyloxy)−29H,31H−phthalocyanineで表されるフタロシアニン誘導体、N,N’−Bis(salicylidene)ethylenediamine、N,N’−Bis(salicylidene)1,3−propanediamineで表されるサレン誘導体、及びポリアクリロニトリル、ポリメタアクリロニトリルで表されるニトリル誘導体の中から選ばれることを特徴とする固体高分子型燃料電池用カソード触媒。
xyz (1)
(I) A metal M selected from Pd and a metal A selected from Co, Cr and Au other than the metal M and / or a hydroxide, a peroxide and an oxide of the metal A One or more A ')
A mixture X consisting of
(Ii) a metal M which is Pd and a metal A selected from Co, Cr and Au other than the metal M and / or a hydroxide, a peroxide and an oxide of the metal A One or more A ′), and metal B selected from any of Co, Cr, and Au other than the metals M and A and / or (selected from hydroxides, peroxides, and oxides of the metal B) (Iii) an alloy represented by the following general formula (1) (in the following general formula (1), 0 <x <1, 0 <y <1, 0 ≦ z <1, M represents Pd, and A and B represent different metals other than M selected from Co, Cr, and Au),
With one or more types selected from
An organic compound containing a nitrogen atom with an unshared electron pair;
And carbon powder,
Is obtained by first baking the first stage at 300 ° C. to 600 ° C. and then raising the temperature to 700 ° C. to 1000 ° C. and then baking the second stage. a cathode catalyst for molecular type fuel cell, the organic compound is meso-Tetraphenylporphyrin, 2,3,7,8,12,13,17,18-Octaethyl- 21H, 23H-porphine, Tetrakis (4-carbo xy phenyl ) Porphyrin derivative represented by porphine, Phthalocyanine, 1,4,8,11,15,18,22,25-Octabutoxy-29H, 31H-phthalocyanine, 2,3,9,10,16,17,23,24 -Octakis (octyro y) a phthalocyanine derivative represented by -29H, 31H-phthalocyanine, N, N'-Bis (salicylidene) ethylenediamine, a salen derivative represented by N, N'-Bis (salicylidene) 1,3-propandinemine, and polyacrylonitrile A cathode catalyst for a polymer electrolyte fuel cell, selected from nitrile derivatives represented by polymethacrylonitrile.
M x A y B z (1)
該焼成の雰囲気が水素ガス、水素ガス含有不活性ガス、不活性ガスのいずれかであることを特徴とする請求項1に記載の固体高分子型燃料電池用カソード触媒。   2. The cathode catalyst for a polymer electrolyte fuel cell according to claim 1, wherein the firing atmosphere is any one of hydrogen gas, hydrogen gas-containing inert gas, and inert gas. 炭素粉末上に担持された該混合物X、及び/又は該混合物Yの担持体を、非共有電子対を持つ窒素原子を含有している有機化合物と共に焼成する事を特徴とする請求項1又は2に記載の固体高分子型燃料電池用カソード触媒の製造方法。   The mixture X and / or the support Y of the mixture Y supported on carbon powder is baked together with an organic compound containing a nitrogen atom having an unshared electron pair. A method for producing a cathode catalyst for a polymer electrolyte fuel cell as described in 1 above.
JP2007148876A 2007-06-05 2007-06-05 Fuel cell electrode catalyst Expired - Fee Related JP4925926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007148876A JP4925926B2 (en) 2007-06-05 2007-06-05 Fuel cell electrode catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007148876A JP4925926B2 (en) 2007-06-05 2007-06-05 Fuel cell electrode catalyst

Publications (2)

Publication Number Publication Date
JP2008305561A JP2008305561A (en) 2008-12-18
JP4925926B2 true JP4925926B2 (en) 2012-05-09

Family

ID=40234118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007148876A Expired - Fee Related JP4925926B2 (en) 2007-06-05 2007-06-05 Fuel cell electrode catalyst

Country Status (1)

Country Link
JP (1) JP4925926B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277360A (en) * 2008-05-12 2009-11-26 Japan Carlit Co Ltd:The Catalyst carrier, catalyst body, and manufacturing method for them
TWI380988B (en) * 2009-12-31 2013-01-01 Univ Nat Cheng Kung Platinum complex and methods for making platinum complex and platinum catalyst therethrough
JP5489740B2 (en) * 2010-01-21 2014-05-14 トヨタ自動車株式会社 Method for producing ternary electrode catalyst for fuel cell, and polymer electrolyte fuel cell using the same
CA2796644C (en) * 2010-04-20 2018-10-02 Nisshinbo Holdings Inc. Carbon catalyst for direct fuel cell cathode, and direct fuel cell cathode and direct fuel cell using same
GB201309513D0 (en) 2013-05-28 2013-07-10 Ilika Technologies Ltd Metal alloy catalysts for fuel cell anodes
JP6411808B2 (en) * 2014-07-31 2018-10-24 ダイハツ工業株式会社 Oxygen reduction catalyst

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877694A (en) * 1987-05-18 1989-10-31 Eltech Systems Corporation Gas diffusion electrode
JP4802352B2 (en) * 1999-08-26 2011-10-26 株式会社豊田中央研究所 Fuel cell electrode catalyst and method for producing the same
JP2003109614A (en) * 2001-09-27 2003-04-11 Nippon Steel Corp Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same
JP4520833B2 (en) * 2004-11-26 2010-08-11 新日本製鐵株式会社 Polymer solid oxide fuel cell oxygen electrode catalyst
KR100919326B1 (en) * 2004-04-22 2009-09-25 신닛뽄세이테쯔 카부시키카이샤 Fuel cell and gas diffusion electrode for fuel cell
JP2005342579A (en) * 2004-06-01 2005-12-15 Sony Corp Catalyst material and its production method, catalyst electrode, and electrochemical device
JP4591504B2 (en) * 2005-02-03 2010-12-01 トヨタ自動車株式会社 Catalyst material and method for producing the same

Also Published As

Publication number Publication date
JP2008305561A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
Li et al. Surface oxygen-mediated ultrathin PtRuM (Ni, Fe, and Co) nanowires boosting methanol oxidation reaction
Xu et al. Platinum–cobalt alloy networks for methanol oxidation electrocatalysis
Lim et al. A new synthesis of a highly dispersed and CO tolerant PtSn/C electrocatalyst for low-temperature fuel cell; its electrocatalytic activity and long-term durability
JP4401059B2 (en) Process for preparing anode catalyst for fuel cell and anode catalyst prepared using the process
KR100728611B1 (en) Catalyst for fuel cell electrode and method of preparing the same
KR101048622B1 (en) Manufacturing Method of Platinum Alloy Catalyst for Fuel Cell Electrode Material
US7629285B2 (en) Carbon-based composite electrocatalysts for low temperature fuel cells
JP5138584B2 (en) Method for producing electrode catalyst for fuel cell
KR101197172B1 (en) Method for one-pot synthesizing of catalyst for fuel cell having nano structure shape
KR100754379B1 (en) Electrode catalyst containing two or more metal components, preparation method of the same and the fuel cell employing the electrode catalyst
US9761884B2 (en) Synthesis of alloy nanoparticles as a stable core for core-shell electrocatalysts
US20130149632A1 (en) Electrode catalyst for a fuel cell, method of preparing the same, and membrane electrode assembly and fuel cell including the electrode catalyst
JP4925793B2 (en) Fuel cell electrode catalyst
Rethinasabapathy et al. Quaternary PtRuFeCo nanoparticles supported N-doped graphene as an efficient bifunctional electrocatalyst for low-temperature fuel cells
JP5305699B2 (en) Catalyst, catalyst manufacturing method, membrane electrode assembly, and fuel cell
JP4925926B2 (en) Fuel cell electrode catalyst
JP2013154346A (en) Composite material, catalyst containing the same, fuel cell and lithium air cell containing the same
JP5540294B2 (en) Method for producing electrode catalyst for fuel cell
KR102255855B1 (en) Platinum-based alloy catalyst for oxygen reduction reaction, method of manufacturing the platinum alloy catalyst, and fuel cell having the platinum alloy catalyst
Wang et al. AgSn intermetallics as highly selective and active oxygen reduction electrocatalysts in membraneless alkaline fuel cells
JP2013073940A (en) Electrode catalyst for fuel cell, method of preparing the same, membrane electrode assembly including the electrode catalyst, and fuel cell
KR20130067476A (en) Electrode catalyst for fuel cell, method for preparing the same, membrane electrode assembly and fuel cell including the same
Meku et al. Concentration gradient Pd-Ir-Ni/C electrocatalyst with enhanced activity and methanol tolerance for oxygen reduction reaction in acidic medium
JP2015523694A (en) Carbendazim-based catalytic agent
KR20200043397A (en) Electrocatalysts, methods for their preparation, and their use for fuel cells

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4925926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees