JP4919613B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4919613B2
JP4919613B2 JP2005091261A JP2005091261A JP4919613B2 JP 4919613 B2 JP4919613 B2 JP 4919613B2 JP 2005091261 A JP2005091261 A JP 2005091261A JP 2005091261 A JP2005091261 A JP 2005091261A JP 4919613 B2 JP4919613 B2 JP 4919613B2
Authority
JP
Japan
Prior art keywords
active material
electrode
battery
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005091261A
Other languages
Japanese (ja)
Other versions
JP2006277990A (en
Inventor
徹夫 川合
龍 長井
拓 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2005091261A priority Critical patent/JP4919613B2/en
Publication of JP2006277990A publication Critical patent/JP2006277990A/en
Application granted granted Critical
Publication of JP4919613B2 publication Critical patent/JP4919613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、急速充電可能な高出力非水電解質二次電池に関するものである。   The present invention relates to a high-power nonaqueous electrolyte secondary battery that can be rapidly charged.

近年、高エネルギー密度を有する電池として、リチウムイオン二次電池などの非水電解質二次電池が注目されている。リチウムイオン二次電池は、例えば、以下のように構成されている。すなわち、密閉容器の内部に電極体が収容されており、該密閉容器の蓋体には、正負一対の電極端子機構が取り付けられていて、電極体が発生する電力を電極端子機構から外部に取り出すことが可能となっている。そして、各蓋体には圧力開閉式のガス排出弁が取り付けられている。   In recent years, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have attracted attention as batteries having high energy density. The lithium ion secondary battery is configured as follows, for example. That is, the electrode body is accommodated in the sealed container, and a pair of positive and negative electrode terminal mechanisms are attached to the lid body of the sealed container, and the electric power generated by the electrode body is taken out from the electrode terminal mechanism. It is possible. Each lid is provided with a pressure open / close type gas discharge valve.

電極体は、それぞれ帯状の正極と負極とを、セパレータを介して重ね合わせ、これらを巻回して構成されている。正極は、アルミニウム箔などからなる集電体と、該集電体表面に存在する正極活物質を含有する活物質含有層で構成されており、負極は,銅箔などからなる集電体と、該集電体表面に存在する負極活物質を含有する活物質含有層で構成されている。正極の活物質含有層は、セパレータを介して負極の活物質含有層と対向している。正極活物質は、例えば、リチウム遷移金属複合酸化物であり,負極活物質は黒鉛や、各種合金などの、リチウムイオンを吸蔵・放出できる材料である。   The electrode body is configured by stacking a belt-like positive electrode and a negative electrode via a separator and winding them. The positive electrode is composed of a current collector made of aluminum foil and the like, and an active material containing layer containing a positive electrode active material present on the current collector surface, and the negative electrode is made of a current collector made of copper foil and the like, The active material containing layer contains the negative electrode active material present on the current collector surface. The active material-containing layer of the positive electrode faces the active material-containing layer of the negative electrode with a separator interposed therebetween. The positive electrode active material is, for example, a lithium transition metal composite oxide, and the negative electrode active material is a material that can occlude and release lithium ions, such as graphite and various alloys.

上記リチウムイオン二次電池の充放電反応においては、リチウムイオンが、電解液を介して互いに対向する正極の活物質含有層と負極の活物質含有層の間を移動する。   In the charge / discharge reaction of the lithium ion secondary battery, lithium ions move between the active material containing layer of the positive electrode and the active material containing layer of the negative electrode facing each other through the electrolytic solution.

正極活物質として用いられるリチウム遷移金属複合酸化物としては、リチウム・コバルト複合酸化物(LiCoO)、リチウム・ニッケル複合酸化物(LiNiO)、リチウム・マンガン複合酸化物(LiMn)などが知られている。 Examples of the lithium transition metal composite oxide used as the positive electrode active material include lithium / cobalt composite oxide (LiCoO 2 ), lithium / nickel composite oxide (LiNiO 2 ), and lithium / manganese composite oxide (LiMn 2 O 4 ). It has been known.

ところで、携帯電話などの電源として用いられる非水電解液二次電池は、高容量化や貯蔵特性の改善および充放電サイクル特性の改善と共に、利便性に優れることが望まれる。充電に要する時間が長い二次電池を電源に用いると、機器の使用中に容量が無くなった場合に、すぐに充電が完了できず、機器が使用できなくなることが多々発生する。充電に要する時間はリチウムイオン二次電池の場合、満充電状態には2.5〜3時間もしくはそれ以上を要するのが一般的である。簡易的な充電器なども販売されているが、満充電に近い状態まで充電するのは短時間では難しい。緊急度の違いにもよるが、例えば、20分以下、好ましくは5分以下の充電時間によって実用容量が確保できるようになると、ユーザーは充電の煩雑さ、充電を待つ時間の長さを殆ど感じずにすむといえる。   By the way, a non-aqueous electrolyte secondary battery used as a power source for a cellular phone or the like is desired to have excellent convenience as well as higher capacity, improved storage characteristics, and improved charge / discharge cycle characteristics. When a secondary battery that takes a long time to charge is used as a power source, if the capacity is lost during use of the device, charging often cannot be completed immediately and the device cannot be used. In the case of a lithium ion secondary battery, the time required for charging is generally 2.5 to 3 hours or more in a fully charged state. Simple chargers are also on the market, but it is difficult to charge to near full charge in a short time. Depending on the level of urgency, for example, when a practical capacity can be secured with a charging time of 20 minutes or less, preferably 5 minutes or less, the user feels the complexity of charging and the length of time to wait for charging. It can be said that it is unnecessary.

また、リチウムイオン二次電池は有機溶剤を電解液に使用しており、更に高エネルギー密度であるが故に、異常時には発熱、発火などの危険性があることは否めない。リチウムイオン二次電池では、開発当初から薄いセパレータを用い、集電体にも金属箔体を用いて電極を大面積化することで、実用レベルの負荷特性、可逆性などを確保した経緯がある。リチウムイオン二次電池の現在の主な用途は、携帯電話やビデオカメラ、デジタルカメラなどであるが、これらの用途では、高容量(高エネルギー密度)が最も必要とされる要件であり、例えば、活物質の改良をメインとし、更に容量低下につながる電極表面積の増加を抑えることで集電体やセパレータの電池内における占有率を上げることなく高容量化を行ってきたといえる。そのため従来のリチウムイオン二次電池の場合は、単位面積当たりの充放電電流値が大きくなる方向にあり、使用している電解液の抵抗が高いこともあって、水溶液系の二次電池であるNi−Cd電池のような急速充電は難しく、短時間の充電を行うと、発熱や反応の不均一によるデンドライト発生に起因して短絡など充電異常によって安全面でのトラブルを起こす可能性が高まるため、少なくとも2、3時間を要する現状の充電時間を維持するのが限界であった。   In addition, since lithium ion secondary batteries use an organic solvent as an electrolyte and have a high energy density, there is a risk that heat and ignition may occur in abnormal situations. Lithium ion secondary batteries have a history of securing practical load characteristics and reversibility by using a thin separator from the beginning of development and using a metal foil as a current collector to increase the electrode area. . The current main applications of lithium ion secondary batteries are mobile phones, video cameras, digital cameras, etc., but in these applications, high capacity (high energy density) is the most required requirement. It can be said that the capacity has been increased without increasing the occupation ratio of the current collector and the separator in the battery by mainly improving the active material and further suppressing the increase in the electrode surface area that leads to a decrease in capacity. Therefore, in the case of a conventional lithium ion secondary battery, the charge / discharge current value per unit area tends to increase, and the resistance of the electrolyte used is high, so it is an aqueous secondary battery. Rapid charging like a Ni-Cd battery is difficult, and if charging is performed for a short time, there is an increased possibility of causing a safety problem due to abnormal charging such as a short circuit due to generation of dendrites due to heat generation and non-uniform reaction. However, it was the limit to maintain the current charging time that required at least a few hours.

このような事情の下、急速充電するに当たり、パルスでの充電を行うなど充電方法を工夫して充電時間を短縮する手法が種々提案されている(例えば、特許文献1)。   Under such circumstances, various techniques have been proposed for shortening the charging time by devising a charging method such as charging with a pulse in rapid charging (for example, Patent Document 1).

また、非水電解質電池に用いるシート状極板を形成するに当たり、導電性金属箔体上に、活物質などを含む塗布層の厚みを制御して、電極の反応面積を増やし、電池の短時間充電を達成する試みもなされている(特許文献2)。   Also, when forming a sheet-like electrode plate for use in a non-aqueous electrolyte battery, the thickness of the coating layer containing the active material is controlled on the conductive metal foil to increase the reaction area of the electrode, thereby shortening the battery time. Attempts have also been made to achieve charging (Patent Document 2).

特開2002−199605号公報JP 2002-199605 A 特開2004−296255号公報JP 2004-296255 A

このように、二次電池の構成部材の最適化によって、充電時間の短縮化が試みられているものの、こうした急速充電特性と、二次電池に要求される他の特性(例えば、生産性、容量や安全性の確保)との両立については、十分な検討がなされていないのが現状である。   As described above, although the charging time has been shortened by optimizing the components of the secondary battery, such rapid charging characteristics and other characteristics required for the secondary battery (for example, productivity, capacity, etc.). In addition, sufficient consideration has not been given to ensuring compatibility with safety.

特許文献2にも記載されているように、塗布厚みを薄くし、結果として電極面積を増やし、電極面積当たりの活物質量を減らす場合は、リチウムイオン電池で一般に用いられているシート状の電極を巻回する方式では、電極を長くすることになる。しかし、長い電極を巻回するためには、巻きずれが起こりやすくなり、電極の厚み精度なども改善する必要が生じることや、電極が長くなることで抵抗が高くなり通常は1箇所で十分であった集電タブ(リード端子)の取り出しについても複数個にする必要が生じるなど、通常の巻回式電池とは異なる製法が必要となるため、新たな設備の導入や精度アップのための手法が要求されるようになり、従来と同等の生産性で電池を製造することは困難となる。   As described in Patent Document 2, in the case of reducing the coating thickness and consequently increasing the electrode area and reducing the amount of active material per electrode area, a sheet-like electrode generally used in lithium ion batteries In the winding method, the electrode is lengthened. However, in order to wind a long electrode, winding deviation easily occurs, and it is necessary to improve the thickness accuracy of the electrode, etc., and the longer the electrode, the higher the resistance, and usually one place is sufficient. A method for introducing new equipment and improving accuracy is required because a manufacturing method different from ordinary winding batteries is required, such as the need to take out multiple current collecting tabs (lead terminals). Therefore, it becomes difficult to manufacture a battery with the same productivity as the conventional one.

本発明は、上記事情に鑑みてなされたものであり、従来と同等の生産性を保持しつつ、優れた安全性を確保でき、更には急速充電可能な非水電解質二次電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a non-aqueous electrolyte secondary battery that can secure excellent safety while maintaining productivity equivalent to that of the prior art, and can be rapidly charged. With the goal.

上記目的を達成し得た本発明の非水電解質二次電池は、マンガン、ニッケルおよびコバルトの少なくとも1種の金属元素とリチウムとを含有する複合酸化物を活物質とし、該活物質を含む活物質含有層が集電体表面に形成されてなる正極と、リチウムを吸蔵、排出可能な材料を活物質とし、該活物質を含む活物質含有層が集電体表面に形成されてなる負極とが、セパレータを介して渦巻状に巻回されてなる断面が円形状の巻回電極体を複数個、同一の電池外装体内に並べて配置しており、正極の集電体は、箔状のアルミニウムまたはアルミニウム合金で構成され且つ厚みが12〜40μmであり、負極の集電体は、箔状の銅または銅合金で構成され且つ厚みが6〜30μmであり、正極と負極との対向する部分において、正極の活物質含有層の厚みが3.9〜13.2μmであり、負極の活物質含有層の厚みが3.9〜12.9μmであることを特徴とするものである。
The non-aqueous electrolyte secondary battery of the present invention that has achieved the above object has a composite oxide containing at least one metal element of manganese, nickel and cobalt and lithium as an active material, and an active material containing the active material. A positive electrode in which a substance-containing layer is formed on the current collector surface; and a negative electrode in which a material capable of occluding and discharging lithium is used as an active material, and an active material-containing layer containing the active material is formed on the current collector surface; but a plurality of cross-section oval-shaped wound electrode body formed by winding spirally with the separator, and arranged side by side in the same battery case body, the current collector of the positive electrode, foil-like A portion made of aluminum or an aluminum alloy and having a thickness of 12 to 40 μm, and a negative electrode current collector made of foil-like copper or a copper alloy and having a thickness of 6 to 30 μm, and a portion where the positive electrode and the negative electrode face each other In the active material-containing layer of the positive electrode The thickness of the active material-containing layer of the negative electrode is 3.9 to 12.9 μm.

本発明によれば、生産性がよく、実用的な容量を備えつつ、安全性と急速充電特性に優れた非水電解質二次電池が提供できる。   According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery that is excellent in safety and quick charge characteristics while having good productivity and practical capacity.

一般的な電極反応においては、電極面積当たりの充放電電流が小さくなり且つ電極が薄くなると、反応速度が向上することが知られており、特に電極が厚くなると反応性の低下が顕著となる。本発明者らは、鋭意検討を重ねた結果、薄形の巻回電極体を複数個持たせた電池とすることで、急速充電と安全性を両立し得るように薄形の電極を使用しつつ、通常用いられている手法による電池の製造を可能として良好な生産性を確保し、本発明を完成させた。すなわち、本発明の非水電解質二次電池では、急速充電を可能とする構成を備えつつ、生産性の低下を可及的に抑制し、更に非常に優れた安全性も達成しており、例えば、過充電、短絡、加熱といった異常事態を想定した評価においても、従来公知のリチウムイオン電池と同等の安全性を有している。   In a general electrode reaction, it is known that when the charge / discharge current per electrode area is reduced and the electrode is thin, the reaction rate is improved, and particularly when the electrode is thick, the reactivity is significantly reduced. As a result of intensive studies, the present inventors have used a thin electrode so as to achieve both rapid charging and safety by providing a battery having a plurality of thin wound electrode bodies. However, the battery can be manufactured by a commonly used technique to ensure good productivity, and the present invention has been completed. That is, the non-aqueous electrolyte secondary battery of the present invention has a configuration that enables rapid charging, suppresses a decrease in productivity as much as possible, and also achieves extremely excellent safety. Even in an evaluation that assumes abnormal situations such as overcharge, short circuit, and heating, it has safety equivalent to that of a conventionally known lithium ion battery.

また、本発明の電池では、所定容積の電池を、1個の巻回体で構成するのではなく、前記巻回体より薄く作製された巻回電極体を複数個組み込み構成するため、セパレータや集電体が長くなり、容量はいくらか低下するものの、電極面積や集電タブ(リード端子)の個数をn倍にすることができ、急速充電に対応することができる。   Further, in the battery of the present invention, a battery having a predetermined volume is not constituted by a single wound body, but a plurality of wound electrode bodies made thinner than the wound body are incorporated and configured. Although the current collector becomes longer and the capacity is somewhat reduced, the electrode area and the number of current collecting tabs (lead terminals) can be increased by n times, and rapid charging can be supported.

本発明の電池に係る巻回電極体は、マンガン、ニッケルおよびコバルトの少なくとも1種の金属元素とリチウムとを含有する複合酸化物を活物質とし、該活物質を含む活物質含有層が集電体表面に形成されてなる正極と、リチウムを吸蔵、排出可能な材料を活物質とし、該活物質を含む活物質含有層が集電体表面に形成されてなる負極とが、セパレータを介して渦巻状に巻回されてなるものであるが、本発明では、これら巻回電極体を構成する正極、負極およびそれらの集電体が下記の構成を有しているところにも特徴がある。   The wound electrode body according to the battery of the present invention has a composite oxide containing at least one metal element of manganese, nickel and cobalt and lithium as an active material, and an active material containing layer containing the active material collects current A positive electrode formed on the surface of the body, and a negative electrode formed of a material capable of occluding and discharging lithium as an active material, and an active material-containing layer containing the active material formed on the surface of the current collector are interposed via a separator. Although it is wound in a spiral shape, the present invention is also characterized in that the positive electrode, the negative electrode and their current collectors constituting these wound electrode bodies have the following configuration.

本発明の電池では、正極の集電体は、箔状のアルミニウムもしくはアルミニウム合金で構成されており、且つその厚みが12μm以上、好ましくは14μm以上であって、40μm以下、好ましくは30μm以下である。更に、負極の集電体は、箔状の銅もしくは銅合金で構成されており、且つその厚みが6μm以上、好ましくは8μm以上であって、30μm以下、好ましくは20μm以下である。急速充電時には大きな電流が流れるために、集電体の抵抗が大きいと発熱などのトラブルを起こす。この点からは、集電体は厚いことが好ましいが、あまり厚すぎると電池のエネルギー密度を過大に低下させることになることから、適度の強度と電導性を確保できるように、上記上限値以下の厚みがあればよい。また、集電体が薄すぎると、抵抗が上がり、特性の低下を来すとともに発熱の原因となる他、電池組み立て時の強度を確保することが困難となり、電池の生産性が損なわれてしまう。なお、本明細書でいう正負極の集電体の厚みは、通常はマイクロメータを用いて測定されるが、材料の密度が既知である場合は、面積と重量を測定し計算により求めることもできる。   In the battery of the present invention, the positive electrode current collector is made of foil-like aluminum or an aluminum alloy, and has a thickness of 12 μm or more, preferably 14 μm or more, and 40 μm or less, preferably 30 μm or less. . Further, the negative electrode current collector is made of foil-like copper or copper alloy, and has a thickness of 6 μm or more, preferably 8 μm or more, and 30 μm or less, preferably 20 μm or less. Since a large current flows during rapid charging, problems such as heat generation occur if the current collector resistance is large. From this point, it is preferable that the current collector is thick, but if it is too thick, the energy density of the battery will be excessively lowered, so that an appropriate strength and electrical conductivity can be ensured, the upper limit value or less. If there is thickness of. In addition, if the current collector is too thin, the resistance increases, the characteristics are deteriorated and heat is generated, and it is difficult to ensure the strength when assembling the battery, and the productivity of the battery is impaired. . Note that the thickness of the positive and negative electrode current collectors in this specification is usually measured using a micrometer, but if the density of the material is known, the area and weight may be measured and calculated. it can.

加えて、本発明の電池では、正極と負極との対向する部分において、正極の活物質含有層が、3.9μm以上、好ましくは5μm以上で、13.2μm以下であり、負極の活物質含有層の厚みが、3.9μm以上、好ましくは5μm以上であり、12.9μm以下ある。正負極の合剤層が薄くなると巻回電極体の厚みも薄くなり、セパレータや集電体の占める体積が増えるため、充電時間の短縮は図れるものの、エネルギー密度が小さくなりすぎて実用的な電池とならない。他方、一般的なリチウムイオン電池の正負極の厚みは50〜100μm程度であるが、複数の巻回体を用いて同じ容積の電池を構成するには、上記の半分以下の厚みにする必要がある。つまり正負極の活物質含有層が厚くなりすぎると、複数個の巻回電極体を電池内部に組み込むことができなくなり、また、反応速度が低下して急速充電が困難となる。なお、本明細書でいう正極の活物質含有層および負極の活物質含有層の厚みは、シックネスゲージを用いて電極厚みを測定し、集電箔の厚みを引くことにより求めた値である。
In addition, the battery of the present invention, and have contact to the opposing portion between the positive electrode and the negative electrode, the active material-containing layer of the positive electrode, 3.9 .mu.m or more, preferably at 5μm or more and less 13.2Myuemu, utilization of the negative electrode the thickness of the material-containing layer, 3.9 [mu] m or more, preferably 5μm or more and 12.9 [mu] m or less. When the positive and negative electrode mixture layers become thinner, the thickness of the wound electrode body also becomes thinner, and the volume occupied by the separator and current collector increases. Therefore, although the charging time can be shortened, the energy density becomes too small, and the battery is practical. Not. On the other hand, the thickness of the positive and negative electrodes of a general lithium ion battery is about 50 to 100 μm, but in order to construct a battery having the same volume using a plurality of wound bodies, it is necessary to make the thickness less than half of the above. is there. That is, if the active material-containing layer of the positive and negative electrodes becomes too thick, it is impossible to incorporate a plurality of wound electrode bodies inside the battery, and the reaction rate is lowered and rapid charging becomes difficult. The thicknesses of the positive electrode active material-containing layer and the negative electrode active material-containing layer in this specification are values obtained by measuring the electrode thickness using a thickness gauge and subtracting the thickness of the current collector foil.

次に、本発明の非水電解質二次電池の構成を更に詳細に説明する。   Next, the configuration of the nonaqueous electrolyte secondary battery of the present invention will be described in more detail.

本発明の電池に係る正極は、集電体表面に、活物質、導電助剤および結着剤を含む正極合剤で構成される活物質含有層が形成されてなるものである。正極活物質としては、マンガン(Mn)、ニッケル(Ni)およびコバルト(Co)の少なくとも1種の金属元素とリチウム(Li)とを含有する複合酸化物、例えば、LiMO(Mは、Mn、NiおよびCoのうちの少なくとも1種の金属元素を含み、Mg、Al、Zrなど他の添加元素を含んでいてもよい)の一般式で示される複合酸化物である。このような正極活物質の採用により、活物質含有層、延いては正極を薄くしつつ、容量を高くすることができる。正極活物質は、上記の一般式で示される複合酸化物のうち、1種のみを使用してもよく、2種以上を併用しても構わない。 The positive electrode according to the battery of the present invention is obtained by forming an active material-containing layer composed of a positive electrode mixture containing an active material, a conductive additive and a binder on the surface of a current collector. As the positive electrode active material, a composite oxide containing at least one metal element of manganese (Mn), nickel (Ni), and cobalt (Co) and lithium (Li), for example, LiMO 2 (M is Mn, A composite oxide represented by the general formula: (which may include at least one metal element of Ni and Co, and may include other additive elements such as Mg, Al, and Zr). By adopting such a positive electrode active material, it is possible to increase the capacity while thinning the active material-containing layer and thus the positive electrode. Only 1 type may be used for a positive electrode active material among the complex oxide shown by said general formula, and 2 or more types may be used together.

なお、正極活物質である上記複合酸化物の比表面積は、例えば、0.1m/g以上、より好ましくは0.5m/g以上であって、5m/g以下、より好ましくは2m/g以下であることが望ましい。本明細書でいう上記複合酸化物の比表面積は、Nガス吸着を利用した1点式のBET測定装置(Mountech Co. Ltd社製「Macsorb HM−model−1201」を用いて測定した値である。 The specific surface area of the composite oxide as the positive electrode active material is, for example, 0.1 m 2 / g or more, more preferably 0.5 m 2 / g or more, and 5 m 2 / g or less, more preferably 2 m. 2 / g or less is desirable. The specific surface area of the composite oxide referred to in the present specification is a value measured using a one-point BET measuring apparatus (“Macsorb HM-model-1201” manufactured by Mounttech Co. Ltd) using N 2 gas adsorption. is there.

導電助剤としては、本発明の電極を用いた電池において、実質上、化学的に安定な電子伝導性材料であれば特に限定されない。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類;アセチレンブラック;ケッチェンブラック;チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類;炭素繊維;などの炭素材料の他、金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛;チタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの有機導電性材料;などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用しても構わない。これらの中でも、アセチレンブラック、ケッチェンブラック、カーボンブラックといった炭素材料が特に好ましい。   The conductive auxiliary agent is not particularly limited as long as it is a substantially chemically stable electron conductive material in the battery using the electrode of the present invention. For example, graphites such as natural graphite (flaky graphite, etc.) and artificial graphite; acetylene black; ketjen black; carbon blacks such as channel black, furnace black, lamp black, and thermal black; carbon fibers; Other conductive fibers such as metal fibers; carbon fluoride; metal powders such as aluminum; zinc oxide; conductive whiskers such as potassium titanate; conductive metal oxides such as titanium oxide; organics such as polyphenylene derivatives These may be used alone, or these may be used alone or in combination of two or more. Among these, carbon materials such as acetylene black, ketjen black, and carbon black are particularly preferable.

結着剤(バインダ)は、活物質含有層において、上記活物質や導電助剤を結着する役割を担うものである。本発明の電極に係る結着剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。具体的には、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体などのフッ素樹脂;スチレンブタジエンゴム(SBR);エチレン−アクリル酸共重合体または該共重合体のNaイオン架橋体;エチレン−メタクリル酸共重合体または該共重合体のNaイオン架橋体;エチレン−アクリル酸メチル共重合体または該共重合体のNaイオン架橋体;エチレン−メタクリル酸メチル共重合体または該共重合体のNaイオン架橋体;などが挙げられ、これらの材料を1種単独で用いてもよく、2種以上を併用しても構わない。これらの材料の中でも、PVDF、PTFEが特に好ましい。 The binder (binder) plays a role of binding the active material and the conductive additive in the active material-containing layer. The binder according to the electrode of the present invention may be either a thermoplastic resin or a thermosetting resin. Specifically, for example, polyolefins such as polyethylene and polypropylene; polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chloro Fluoropolymers such as trifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer; styrene butadiene rubber (SBR) ); Ethylene-acrylic acid copolymer or Na + ion crosslinked product of the copolymer; ethylene-methacrylic acid copolymer or Na + ion crosslinked product of the copolymer; ethylene-methyl acrylate copolymer or the copolymer Copolymer Na + ion cross-linked product; ethylene-methyl methacrylate copolymer or Na + ion cross-linked product of the copolymer; and the like, and these materials may be used alone or in combination. You may use the above together. Among these materials, PVDF and PTFE are particularly preferable.

正極の活物質含有層は、上記の活物質、導電助剤、結着剤を含む正極合剤を分散媒に分散させて調製される組成物(ペースト、スラリーなど)を、集電体表面に塗布し、乾燥して分散媒を除去することにより形成される。正極合剤の成分の一部(例えば、結着剤)は、分散媒中に溶解していても構わない。分散媒としては、N−メチル−2−ピロリドン(NMP)、トルエン、水などを用いることができる。   The active material-containing layer of the positive electrode has a composition (paste, slurry, etc.) prepared by dispersing a positive electrode mixture containing the above active material, conductive additive, and binder in a dispersion medium. It is formed by applying and drying to remove the dispersion medium. Part of the components of the positive electrode mixture (for example, the binder) may be dissolved in the dispersion medium. As the dispersion medium, N-methyl-2-pyrrolidone (NMP), toluene, water or the like can be used.

正極の活物質含有層の組成としては、例えば、活物質を90〜99質量%、導電助剤を0.5〜5質量%、結着剤を0.5〜5質量%とすることが好ましい。   As the composition of the active material-containing layer of the positive electrode, for example, the active material is preferably 90 to 99% by mass, the conductive additive is 0.5 to 5% by mass, and the binder is preferably 0.5 to 5% by mass. .

本発明の電池に係る負極は、リチウムを吸蔵、排出可能な材料を活物質とし、該活物質を含む活物質含有層が集電体表面に形成されてなるものである。負極活物質としては、例えば、天然黒鉛(鱗片状黒鉛)、人造黒鉛、膨張黒鉛などの黒鉛材料;難黒鉛化性炭素質材料;などの炭素材料が挙げられる。また、Si、Sn、Alなどのリチウムと合金化可能な元素;これらのリチウムと合金化可能な元素とCo、Ni、Mn、Ti、Feなどのリチウムと合金化しない元素などとの合金;なども負極活物質として使用できる。   The negative electrode according to the battery of the present invention comprises a material capable of inserting and extracting lithium as an active material, and an active material containing layer containing the active material is formed on the surface of the current collector. Examples of the negative electrode active material include carbon materials such as graphite materials such as natural graphite (flaky graphite), artificial graphite, and expanded graphite; non-graphitizable carbonaceous materials. In addition, elements that can be alloyed with lithium such as Si, Sn, and Al; alloys of these elements that can be alloyed with lithium and elements that do not alloy with lithium such as Co, Ni, Mn, Ti, and Fe; Can also be used as a negative electrode active material.

導電助剤は、電子伝導性材料であれば特に限定されないし、使用しなくても構わない。導電助剤の具体例としては、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類;アセチレンブラック;ケッチェンブラック;チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類;炭素繊維;などの炭素材料の他、金属繊維などの導電性繊維類;フッ化カーボン;銅、ニッケルなどの金属粉末類;ポリフェニレン誘導体などの有機導電性材料;などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用しても構わない。これらの中でも、ケチェンブラックやアセチレンブラックや炭素繊維が特に好ましい。   The conductive aid is not particularly limited as long as it is an electron conductive material, and may not be used. Specific examples of conductive aids include graphites such as natural graphite (flaky graphite, etc.) and artificial graphite; acetylene black; ketjen black; carbon blacks such as channel black, furnace black, lamp black and thermal black; carbon In addition to carbon materials such as fibers; conductive fibers such as metal fibers; carbon fluorides; metal powders such as copper and nickel; and organic conductive materials such as polyphenylene derivatives. Or two or more of them may be used in combination. Among these, ketjen black, acetylene black, and carbon fiber are particularly preferable.

負極の活物質含有層に係る結着剤は、負極の活物質含有層において、負極活物質や導電助剤などを結着する役割を担うものである。かかる結着剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。具体的には、例えば、上記の、正極の活物質含有層に係る結着剤と同じ材料が使用でき、それらの材料を1種単独で用いてもよく、2種以上を併用しても構わない。その中でも、PVDF、SBR、エチレン−アクリル酸共重合体または該共重合体のNaイオン架橋体、エチレン−メタクリル酸共重合体または該共重合体のNaイオン架橋体、エチレン−アクリル酸メチル共重合体または該共重合体のNaイオン架橋体、エチレン−メタクリル酸メチル共重合体または該共重合体のNaイオン架橋体が特に好ましい。 The binder related to the active material-containing layer of the negative electrode plays a role of binding the negative electrode active material, the conductive assistant, and the like in the active material-containing layer of the negative electrode. Such a binder may be either a thermoplastic resin or a thermosetting resin. Specifically, for example, the same materials as the binder relating to the active material-containing layer of the positive electrode described above can be used, and these materials may be used alone or in combination of two or more. Absent. Among them, PVDF, SBR, ethylene-acrylic acid copolymer or Na + ion crosslinked product of the copolymer, ethylene-methacrylic acid copolymer or Na + ion crosslinked product of the copolymer, ethylene-methyl acrylate A copolymer or a Na + ion crosslinked product of the copolymer, an ethylene-methyl methacrylate copolymer or a Na + ion crosslinked product of the copolymer is particularly preferred.

負極の活物質含有層は、上記の活物質および結着剤、更には必要に応じて導電助剤も含む負極合剤を分散媒に分散させて調製される組成物(ペースト、スラリーなど)を、集電体表面に塗布し、乾燥して分散媒を除去することにより形成される。負極合剤の成分の一部(例えば、結着剤)は、分散媒中に溶解していても構わない。分散媒としては、水、NMP、トルエンなどを用いることができる。   The active material-containing layer of the negative electrode comprises a composition (paste, slurry, etc.) prepared by dispersing a negative electrode mixture containing the above active material and binder and, if necessary, a conductive additive in a dispersion medium. It is formed by applying to the surface of the current collector and drying to remove the dispersion medium. A part of the components of the negative electrode mixture (for example, the binder) may be dissolved in the dispersion medium. As the dispersion medium, water, NMP, toluene or the like can be used.

負極の活物質含有層の組成としては、例えば、活物質を90〜99.5質量%、結着剤を0.5〜5質量%とすることが好ましい。また導電助剤を使用する場合には、活物質含有層中における導電助剤含有量を、例えば、0.5〜5質量%とすることが好ましい。   As the composition of the active material-containing layer of the negative electrode, for example, the active material is preferably 90 to 99.5% by mass and the binder is preferably 0.5 to 5% by mass. Moreover, when using a conductive support agent, it is preferable that the conductive support agent content in an active material content layer shall be 0.5-5 mass%, for example.

なお、正極および負極では、電気を取り出すためにリード端子を、例えば、集電体に設けるが、そのリード端子は、正極および負極のそれぞれについて、少なくとも1本必要である。充電時間を短くするには、充電電流を大きくする必要があるが、例えば同じ抵抗値の場合には、充電電流をあげると、電流の2乗に比例して発熱が大きくなるため、電池内温度の上昇が大きくなる虞がある。よって、特に長尺の電極(正極および負極)を用いる場合には、リード端子の数を増やすことが好ましい。リード端子の数は、多ければ多いほど1本のリード端子に集中する電流値が低下するためその間に存在する電極反応剤からの分極を小さくすることができ、電池特性向上、発熱の低下などを図り得ることから好ましい。しかし、リード端子を外部に取り出すため、外部端子と溶接などの方法で接続する必要があり、その信頼性を確保することが難しく、工程が煩雑になる。巻回電極体の場合には、電極が巻き込まれるためリード端子の位置を制御するのが難しく、リード端子の数を増やそうとすると取り出すリード端子の位置を調整しなければならず、作業が煩雑となる。   In the positive electrode and the negative electrode, a lead terminal is provided, for example, on a current collector for taking out electricity. At least one lead terminal is required for each of the positive electrode and the negative electrode. In order to shorten the charging time, it is necessary to increase the charging current. For example, in the case of the same resistance value, increasing the charging current increases heat generation in proportion to the square of the current. May increase. Therefore, it is preferable to increase the number of lead terminals, particularly when using long electrodes (positive electrode and negative electrode). The larger the number of lead terminals, the lower the current value concentrated on one lead terminal, so that the polarization from the electrode reactant present in the meantime can be reduced, improving battery characteristics, reducing heat generation, etc. It is preferable because it can be achieved. However, in order to take out the lead terminal to the outside, it is necessary to connect to the external terminal by a method such as welding, and it is difficult to ensure the reliability, and the process becomes complicated. In the case of a wound electrode body, it is difficult to control the position of the lead terminal because the electrode is wound, and if the number of lead terminals is increased, the position of the lead terminal to be taken out must be adjusted, and the work is complicated. Become.

これに対し、同一長さの電極を巻回した巻回電極体を複数個用いれば、各巻回電極体において同じ位置にリード端子が設定されるので、外部への端子の取り出し工程が簡素化でき、電池の生産性が向上する。よって、本発明の電池では、複数個の巻回電極体が、各巻回電極体から取り出されたリード端子を接続することで一体化されており、且つ電池外装体内において、一体化された複数の巻回電極体が外部に通じるリード部と接続されていることが好ましい。   On the other hand, if a plurality of wound electrode bodies in which electrodes of the same length are wound are used, lead terminals are set at the same position in each wound electrode body, so that the process of taking out terminals to the outside can be simplified. , Battery productivity is improved. Therefore, in the battery of the present invention, the plurality of wound electrode bodies are integrated by connecting the lead terminals taken out from each of the wound electrode bodies, and the plurality of the integrated winding electrode bodies are integrated in the battery exterior body. It is preferable that the wound electrode body is connected to a lead portion that communicates with the outside.

リード端子の形状は、流す電流値により適宜選択可能であるが、幅が狭く、薄ければ抵抗が高く、分極が大きくなり、短絡などで大電流が流れた場合の発熱が大きくなる。幅を広く、厚くすれば抵抗が低下し、大電流が流れた場合の信頼性が増加する。しかし、リード端子の体積、重量が増加し、電池のエネルギー密度を低下させてしまう。リード端子の厚みは、0.05〜0.5mm程度が好ましく、幅は、2〜10mm程度が好ましい。さらに好ましくは、厚みが0.1〜0.2mm、幅は3mm〜6mm程度である。   The shape of the lead terminal can be appropriately selected depending on the value of the current to flow. However, if the width is narrow and thin, the resistance is high, the polarization is large, and the heat generation is large when a large current flows due to a short circuit or the like. Increasing the width and thickness reduces the resistance and increases the reliability when a large current flows. However, the volume and weight of the lead terminal increase, and the energy density of the battery decreases. The thickness of the lead terminal is preferably about 0.05 to 0.5 mm, and the width is preferably about 2 to 10 mm. More preferably, the thickness is about 0.1 to 0.2 mm, and the width is about 3 mm to 6 mm.

本発明の非水電解質二次電池に係る非水電解質としては、例えば、下記の非水系溶媒中に、下記の無機イオン塩を溶解させることで調製した溶液(非水電解液)が使用できる。   As the nonaqueous electrolyte according to the nonaqueous electrolyte secondary battery of the present invention, for example, a solution (nonaqueous electrolyte) prepared by dissolving the following inorganic ion salt in the following nonaqueous solvent can be used.

溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート(MEC)、γ−ブチロラクトン、1,2−ジメトキシエタン、プロピレンカーボネート誘導体、1,3−プロパンサルトンなどなどの非プロトン性有機溶媒を1種単独で、または2種以上を混合した混合溶媒として用いることができる。   Examples of the solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate (MEC), γ-butyrolactone, 1,2-dimethoxyethane, propylene carbonate. Aprotic organic solvents such as derivatives and 1,3-propane sultone can be used singly or as a mixed solvent in which two or more are mixed.

非水電解質に係る無機イオン塩としては、例えば、LiClO 、LiPF 、LiBF、LiCFSO 、LiCFCO 、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などのリチウム塩から選ばれる少なくとも1種が挙げられる。このリチウム塩の電解液中の濃度としては、0.5〜2mol/lとすることが好ましく、0.8〜1.2mol/lとすることがより好ましい。 Examples of the inorganic ion salt related to the non-aqueous electrolyte include LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] and at least one selected from lithium salts Can be mentioned. The concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 2 mol / l, and more preferably 0.8 to 1.2 mol / l.

本発明の非水電解質二次電池内では、正極(本発明の電極)と上記負極との間に、上記の非水電解質を含ませたセパレータが配される。セパレータとしては、大きなイオン透過度および所定の機械的強度を有する絶縁性の微多孔性薄膜が用いられる。また、セパレータとしては、一定温度以上(例えば100〜140℃)で構成材料の溶融によって孔が閉塞するといったシャットダウン現象を発現することで、抵抗を上げる機能を有するもの(すなわち、シャットダウン機能を有するもの)が好ましい。セパレータの具体例としては、耐有機溶剤性および疎水性を有するポリオレフィン系ポリマー(ポリエチレン、ポリプロピレンなど)、またはガラス繊維などの材料で構成されるシート(多孔質シート)、不織布若しくは織布;該ポリオレフィン系ポリマーの微粒子を接着剤で固着したもの;などの各種多孔体が挙げられる。セパレータの孔径は、正負極より脱離した正負極の活物質、導電助剤および結着剤などが通過しない程度であることが好ましく、例えば、0.01〜1μmであることが好ましい。また、セパレータの空孔率は、電子やイオンの透過性、構成材料や厚みに応じて決定されるが、30〜80%であることが一般的である。   In the non-aqueous electrolyte secondary battery of the present invention, a separator containing the non-aqueous electrolyte is disposed between the positive electrode (the electrode of the present invention) and the negative electrode. As the separator, an insulating microporous thin film having a large ion permeability and a predetermined mechanical strength is used. In addition, the separator has a function of increasing resistance by exhibiting a shutdown phenomenon in which pores are blocked by melting of constituent materials at a certain temperature or higher (for example, 100 to 140 ° C.) (that is, having a shutdown function) ) Is preferred. Specific examples of the separator include a polyolefin polymer (polyethylene, polypropylene, etc.) having resistance to organic solvents and hydrophobicity, or a sheet (porous sheet) made of a material such as glass fiber, a nonwoven fabric or a woven fabric; the polyolefin And various porous materials such as those obtained by fixing fine particles of a polymer with an adhesive. The pore diameter of the separator is preferably such that the active material of the positive and negative electrodes, the conductive auxiliary agent, the binder and the like detached from the positive and negative electrodes do not pass through, for example, preferably 0.01 to 1 μm. Further, the porosity of the separator is determined according to the permeability of electrons and ions, the constituent material, and the thickness, but is generally 30 to 80%.

上記セパレータの厚みは、10μm以上であることが好ましく、より好ましくは15μm以上であって、30μm以下であることが好ましく、より好ましくは25μm以下である。セパレータが厚すぎると、電池のエネルギー密度の低下を引き起こすため、急速に充電できるメリットが失われてしまう。すなわち、セパレータを薄くすることは、エネルギー密度向上の点では有利であるが、急速充電時には短時間に多くのイオンが移動しなければ、充電反応の分極が大きくなる。そのため、セパレータが薄すぎると充電反応が円滑に進行しない虞があり、また、セパレータ本来の機能である正負極の隔離機能が損なわれて短絡の原因ともなる。なお、本発明においては、安全性確保の点から、セパレータの厚みは、正極の活物質含有層の厚み、および負極の活物質含有層の厚みよりも大きいことが好ましい。本明細書でいうセパレータの厚みは、紙、不織布などを測定するためのダイアル式シックネスゲージを用いて測定したものである。   The thickness of the separator is preferably 10 μm or more, more preferably 15 μm or more, and preferably 30 μm or less, more preferably 25 μm or less. If the separator is too thick, the energy density of the battery is reduced, and the merit of being able to be charged quickly is lost. In other words, making the separator thinner is advantageous in terms of improving the energy density, but if a large number of ions do not move in a short time during rapid charging, the polarization of the charging reaction increases. For this reason, if the separator is too thin, the charging reaction may not proceed smoothly, and the separator function of the positive and negative electrodes, which is the original function of the separator, is impaired, causing a short circuit. In the present invention, from the viewpoint of ensuring safety, the thickness of the separator is preferably larger than the thickness of the active material-containing layer of the positive electrode and the thickness of the active material-containing layer of the negative electrode. The thickness of the separator referred to in this specification is measured using a dial-type thickness gauge for measuring paper, nonwoven fabric, and the like.

本発明の非水電解質二次電池としては、角形または角筒形などの形態を有する電池が携帯電話などの電源として好適であり、好ましく用いられる。このような電池の外装体としては、例えば、スチール缶やアルミニウム缶などの金属製の外装缶を使用することができ、また、アルミニウム箔などの金属箔のラミネート外装体を用いることもできる。   As the non-aqueous electrolyte secondary battery of the present invention, a battery having a rectangular shape or a rectangular tube shape is suitable and preferably used as a power source for a cellular phone or the like. For example, a metal outer can such as a steel can or an aluminum can can be used as the outer casing of such a battery, and a laminated outer casing of a metal foil such as an aluminum foil can also be used.

図1に本発明の非水電解質二次電池の要部の断面概略図を示すが、図1に示すように、上記の角形または角筒形の形態を有する電池では、断面が円形状の巻回電極体2を複数個並べて用いることにより、外装体1内部の空隙を少なくし、デッドスペースによる容量低下を減らすことができる。また、厚みがおよそ3mm〜8mmのものが携帯電子機器の電源として適しており、上記厚みの電池を構成する場合、急速充電特性と容量とを両立させるためには、巻回電極体の個数は2〜5個であることが好ましい。なお図1では外装体1内における巻回電極体2の配置の状況の理解を容易にするために、巻回電極体2内の詳細な構造や、外装体1内に装填されている他の要素については省略している。ちなみに、図2は、外装体1内に1個の巻回電極体2を有している従来の非水電解質二次電池の要部の断面概略図である。
It shows a cross-sectional schematic view of a main part of the non-aqueous electrolyte secondary battery of the present invention in FIG. 1, as shown in FIG. 1, in the battery having the form of the prismatic or rectangular tube shape, cross-section oval-shaped By using a plurality of the wound electrode bodies 2 side by side, it is possible to reduce the voids in the exterior body 1 and reduce the capacity reduction due to the dead space. In addition, a thickness of about 3 mm to 8 mm is suitable as a power source for portable electronic devices. When a battery with the above thickness is configured, in order to achieve both quick charge characteristics and capacity, the number of wound electrode bodies is 2 to 5 are preferable. In FIG. 1, in order to easily understand the state of arrangement of the wound electrode body 2 in the exterior body 1, the detailed structure in the wound electrode body 2 and other structures loaded in the exterior body 1 are shown. Elements are omitted. Incidentally, FIG. 2 is a schematic cross-sectional view of a main part of a conventional nonaqueous electrolyte secondary battery having one wound electrode body 2 in the exterior body 1.

なお、急速充電を行うためには、充電電流を大きくする必要があり、一般に充電器は流せる電流が大きくなると大型化と同時に高価格となる。必然的に、大容量の電池を充電するには大きな充電器が必要であるが、携帯用機器の電源の場合などでは、大型の質量の大きな充電器は現実的ではない。充電時間および充電器の大きさ(能力)を考慮した場合、小型で低コストの充電器を用いることができ、また、短時間での充電にも対応しやすくするために、電池の容量を200〜700mAh程度とするのが望ましく、400mAh以下とするのがより望ましい。なお、本明細書でいう電気容量は、電池を定電流−定電圧充電(定電流:1C、定電圧:4.2V、総充電時間:3時間)の条件で充電し、0.2Cで終止電圧を3Vとして放電させた際の放電容量である。   In order to perform rapid charging, it is necessary to increase the charging current. Generally, when the current that can be supplied to the charger increases, the charger becomes larger and the price increases. Inevitably, a large charger is required to charge a large-capacity battery, but in the case of a power source for a portable device, a large charger with a large mass is not practical. In consideration of the charging time and the size (capability) of the charger, a small and low-cost charger can be used, and the battery capacity is set to 200 in order to make it easy to handle charging in a short time. ˜700 mAh is desirable, and 400 mAh or less is more desirable. In this specification, the electric capacity refers to charging the battery under constant current-constant voltage charging conditions (constant current: 1 C, constant voltage: 4.2 V, total charging time: 3 hours), and termination at 0.2 C. This is the discharge capacity when discharging with a voltage of 3V.

通常の非水電解質二次電池では充電時間が2〜3時間であり、1時間の充電では、充電可能な容量の60%程度の容量しか充電することができない。本発明の非水電解質二次電池では、例えば、5分以内、好ましくは3分以内という短時間で、容量の80%以上を充電することができる。   A normal nonaqueous electrolyte secondary battery has a charging time of 2 to 3 hours, and charging for 1 hour can charge only about 60% of the chargeable capacity. In the nonaqueous electrolyte secondary battery of the present invention, 80% or more of the capacity can be charged in a short time, for example, within 5 minutes, preferably within 3 minutes.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

参考例1
正極の作製:
活物質であるLiCoO:95質量部に、導電助剤であるケッチェンブラック:3質量部、および結着剤であるPVDF:2質量部を加え、NMPに分散させて正極合剤含有ペーストを調製し、これを厚みが15μmのアルミニウム箔(集電体)表面に塗布し、NMPを除去することにより活物質含有層を形成した。その後、スリットして、厚み4mm、幅34mm、高さ50mmの角形電池の中に入れ得るように、長さ405mmで、集電体の表面には390mm、裏面には320mmの合剤厚みを変えた塗布を行い、幅を43mmにした正極を複数個作製した。正極合剤含有ペーストの塗布量は、活物質含有量形成後に、容量密度(単位面積当たりの電気容量)が表1に示す値となるように調整した。更に、正極活物質には、粒子径が、後記のセパレータの厚みの1/2以下であり、また、正極の活物質含有層の厚みの70%以下のものを篩い分けにより選別して使用した。リード端子は、幅3mm、厚み0.1mmのアルミニウムリボンを正極に超音波溶接して取り付け、正極リード部との接続に用いた。
Reference example 1
Production of positive electrode:
Add 95 parts by mass of LiCoO 2 as an active material, 3 parts by mass of Ketjen black as a conductive additive, and 2 parts by mass of PVDF as a binder, and disperse in NMP to obtain a positive electrode mixture-containing paste. The active material containing layer was formed by applying this to the surface of an aluminum foil (current collector) having a thickness of 15 μm and removing NMP. After that, slitting and changing the mixture thickness of 405 mm in length, 390 mm on the current collector surface, and 320 mm on the back surface so that it can be put into a square battery with a thickness of 4 mm, a width of 34 mm, and a height of 50 mm. A plurality of positive electrodes having a width of 43 mm were produced. The coating amount of the positive electrode mixture-containing paste was adjusted so that the capacity density (electric capacity per unit area) became the value shown in Table 1 after the active material content was formed. Furthermore, the positive electrode active material has a particle size of 1/2 or less of the thickness of the separator described later, and 70% or less of the thickness of the active material-containing layer of the positive electrode is used after being screened. . The lead terminal was attached to the positive electrode by ultrasonic welding of an aluminum ribbon having a width of 3 mm and a thickness of 0.1 mm, and used for connection with the positive electrode lead portion.

負極の作製:
活物質である黒鉛:96質量部に、結着剤であるPVDF:4部を加え、NMPに分散させて負極合剤含有ペーストを調製し、これを厚みが8μm、長さが404mmの銅箔(集電体)の表面には394mm、裏面には335mm塗布し、NMPを除去して所定電気量の活物質含有層を形成した。その後、スリットして、幅44mmの負極を複数個作製した。なお、負極合剤含有ペーストの塗布量は、活物質含有量形成後に、容量密度(単位面積当たりの電気容量)が表1に示す値となるように調整した。更に、負極活物質には、粒子径が、後記のセパレータの厚みの1/2以下であり、また、負極の活物質含有層の厚みの70%以下のものを使用した。負極のリード端子には、幅3mm、厚み0.1mmの銅リボンを、負極に超音波溶接して取り付け、負極リード部との接続に用いた。
Production of negative electrode:
Graphite as an active material: 96 parts by mass, 4 parts of PVDF as a binder is added and dispersed in NMP to prepare a paste containing a negative electrode mixture, and this is a copper foil having a thickness of 8 μm and a length of 404 mm 394 mm was applied to the surface of (current collector) and 335 mm was applied to the back surface, and NMP was removed to form an active material-containing layer having a predetermined amount of electricity. Thereafter, slitting was performed to produce a plurality of negative electrodes having a width of 44 mm. The coating amount of the negative electrode mixture-containing paste was adjusted so that the capacity density (electric capacity per unit area) became the value shown in Table 1 after the active material content was formed. In addition, a negative electrode active material having a particle size of 1/2 or less of the thickness of the separator described later and 70% or less of the thickness of the active material-containing layer of the negative electrode was used. A copper ribbon having a width of 3 mm and a thickness of 0.1 mm was attached to the negative electrode lead terminal by ultrasonic welding to the negative electrode and used for connection to the negative electrode lead portion.

電池組み立て:
セパレータに、厚みが18μmのポリエチレン製微孔性フィルム(旭化成社製「ハイポア)を、幅46mmにスリットして用い、正極と負極とをこのセパレータを介して重ね合わせ、渦巻状に巻回して巻回電極体を得た。この巻回電極体を2個用意し、これらを重ね合わせて、正極リード端子同士、および負極リード端子同士を溶接して一体化した後、アルミニウム製の外装缶(電池容器)に所定数挿入し、一体化した2個の巻回電極体の正極リード端子を電池外装体の正極リード部に、負極リード端子を電池外装体の負極リード部に溶接して接続した。その後、電池外装体内に、電解質を2.3mL注入し、封止して、厚み4mm、幅34mm、高さ50mmの463450タイプ(体積が約7.8cm)の非水電解質二次電池を得た。なお、電解質には、ECとMECの体積比が1:2の混合溶媒に、LiPFを1mol/lの濃度で溶解させた溶液を用いた。
Battery assembly:
A polyethylene microporous film ("Hypore" manufactured by Asahi Kasei Co., Ltd.) with a thickness of 18 μm is used as a separator, slit into a width of 46 mm, and the positive electrode and negative electrode are overlapped via this separator and wound in a spiral shape. Two wound electrode bodies were prepared and overlapped, and the positive electrode lead terminals and the negative electrode lead terminals were welded and integrated, and then an aluminum outer can (battery The positive electrode lead terminals of two integrated wound electrode bodies were welded to the positive electrode lead portion of the battery exterior body, and the negative electrode lead terminals were welded to the negative electrode lead portion of the battery exterior body. Thereafter, 2.3 mL of electrolyte is injected into the battery casing and sealed to obtain a 463450-type non-aqueous electrolyte secondary battery having a thickness of 4 mm, a width of 34 mm, and a height of 50 mm (volume is about 7.8 cm 3 ). It was. As the electrolyte, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l in a mixed solvent having a volume ratio of EC and MEC of 1: 2 was used.

実施例参考例2、3、比較例1〜5
電池に用いた巻回電極体の個数と、その電極、セパレータ構成を表1および表2に示すようにした他は、参考例1と同様にして非水電解質二次電池を作製した。
Examples 1 to 4 , Reference Examples 2 and 3, Comparative Examples 1 to 5
A nonaqueous electrolyte secondary battery was produced in the same manner as in Reference Example 1 except that the number of wound electrode bodies used in the battery, the electrodes and separator configurations thereof were as shown in Tables 1 and 2.

実施例1〜4、参考例1〜3および比較例1〜5の非水電解質二次電池の構成について、表1および表2にまとめた。
The configurations of the non-aqueous electrolyte secondary batteries of Examples 1 to 4, Reference Examples 1 to 3 and Comparative Examples 1 to 5 are summarized in Tables 1 and 2.

Figure 0004919613
Figure 0004919613

Figure 0004919613
Figure 0004919613

なお、表1および表2における「巻回電極体1個当たりのリード端子の個数」は、巻回電極体が有する正極または負極についての個数を示している。従って、巻回電極体1個当たりのリード端子の個数が1個の場合には、この巻回電極体が有する正極・負極の夫々が1個のリード端子を有しており、巻回電極体全体で見れば2個のリード端子を有していることを意味している。   In Tables 1 and 2, “Number of lead terminals per wound electrode body” indicates the number of positive electrodes or negative electrodes included in the wound electrode body. Therefore, when the number of lead terminals per wound electrode body is one, each of the positive electrode and the negative electrode of the wound electrode body has one lead terminal, and the wound electrode body Overall, this means that it has two lead terminals.

実施例1〜4、参考例1〜3および比較例1〜5の非水電解質二次電池について、以下の評価を行った。結果を表3および表4に示す。
The following evaluation was performed on the nonaqueous electrolyte secondary batteries of Examples 1 to 4, Reference Examples 1 to 3 and Comparative Examples 1 to 5. The results are shown in Table 3 and Table 4.

<放電容量およびエネルギー密度>
実施例、参考例および比較例の各電池について、20℃で、定電流−定電圧充電(定電流:1C、定電圧:4.2V、総充電時間:3時間)の条件で充電し、0.2Cで終止電圧を3Vとして放電した際の放電容量を測定し、この値から、各電池について、電気容量(正極と負極の活物質含有層の対向する部分における単位面積当たりの放電容量)および体積エネルギー密度を求めた。なお、本発明において体積エネルギー密度は、電池の作動電圧を3.7Vと仮定し、〔放電容量×作動電圧(3.7V)÷電池の容積(7.8cm)〕により求め、単位を(Wh/l)で表した値である。
<Discharge capacity and energy density>
About each battery of an Example , a reference example, and a comparative example, it charged at 20 degreeC on the conditions of constant current-constant voltage charge (constant current: 1C, constant voltage: 4.2V, total charge time: 3 hours), 0 Measure the discharge capacity when discharging at 2 C with a final voltage of 3 V, and from this value, for each battery, the electric capacity (discharge capacity per unit area in the facing portion of the active material containing layer of the positive electrode and the negative electrode) and Volume energy density was determined. In the present invention, the volume energy density is obtained by [discharge capacity × operating voltage (3.7 V) ÷ battery volume (7.8 cm 3 )] assuming that the operating voltage of the battery is 3.7 V, and the unit is ( (Wh / l).

<急速充電特性>
さらに、各電池について、上記充電条件の定電流部分を、それぞれの電池の12Cに相当する電流値に設定し、総充電時間を5分間として充電を行った。このときの各電池の充電電気量(mAh)を測定し、上記放電容量に対する百分率を求め、この値で急速充電性能を評価した。
<Quick charging characteristics>
Further, for each battery, the constant current portion of the charging condition was set to a current value corresponding to 12C of each battery, and charging was performed with a total charging time of 5 minutes. The amount of charge electricity (mAh) of each battery at this time was measured, the percentage with respect to the discharge capacity was determined, and the rapid charge performance was evaluated with this value.

<短絡試験>
上記の放電容量の測定時と同様の充電条件で、定電流−定電圧充電により電池を充電し、正極リード部と負極リード部の間を10mΩのリード線で接続して電池を短絡させ、1時間放置した際の電池の状況を評価した。
<Short-circuit test>
The battery is charged by constant current-constant voltage charging under the same charging conditions as in the measurement of the discharge capacity, and the battery is short-circuited by connecting the positive electrode lead portion and the negative electrode lead portion with a 10 mΩ lead wire. The state of the battery when left for a period of time was evaluated.

<組み立ての不良発生率>
電極をセパレータと共に巻回する際に、セパレータや電極に破断が生じたり、巻きずれを生じた場合を不良と判断し、その発生率を求めた。
<Assembly defect rate>
When the electrode was wound together with the separator, the case where the separator or the electrode was broken or wound was judged as defective, and the occurrence rate was determined.

Figure 0004919613
Figure 0004919613

Figure 0004919613
Figure 0004919613

なお、表3および表4における「容量密度」は、正極と負極の対向する部分における単位面積当たりの電気容量を意味している。また、表3および表4の「エネルギー密度」は、電池容積エネルギー密度である。更に表3および表4の「充電率」は、5分間で充電できた容量(%)を示している。   The “capacity density” in Tables 3 and 4 means the electric capacity per unit area in the portion where the positive electrode and the negative electrode face each other. “Energy density” in Tables 3 and 4 is a battery volume energy density. Furthermore, “Charging rate” in Tables 3 and 4 indicates the capacity (%) that can be charged in 5 minutes.

表1〜表4から以下のことが分かる。実施例1〜4および参考例1〜3の電池は、単一の電池外装体内に、正負極の活物質含有層の厚みを変えて作製した巻回電極体を、2〜5個組み込んで構成した非水電解質二次電池である。これらの結果を見ると、電池内の巻回電極体の数を増やすと容量自体は低下していくが、電極面積あたり(長さあたり)のリード端子の数は同じであり、充放電時のリード端子に加わる負荷は容量が低下する分緩和され、重負荷(急速充電)に対応可能になっており、充電できる容量は、巻回電極体1個の場合が30%程度のものが、巻回電極体2個で65%になり、さらに巻回電極体の数が増えるに従って、12Cで5分間の充電時間で充電できる比率が増加し、急速充電に対応できる構成となっている。電池の設計、組み立てに当たっても、活物質含有層の厚みを除き、従来と同様の構成の巻回電極体を用いるため、工程が煩雑にならず、作業上の不良などの発生もほとんどないことがわかった。
The following can be understood from Tables 1 to 4. The batteries of Examples 1 to 4 and Reference Examples 1 to 3 are configured by incorporating 2 to 5 wound electrode bodies produced by changing the thickness of the active material-containing layer of the positive and negative electrodes in a single battery casing. Nonaqueous electrolyte secondary battery. Looking at these results, the capacity itself decreases as the number of wound electrode bodies in the battery increases, but the number of lead terminals per electrode area (per length) is the same, The load applied to the lead terminal is relaxed as the capacity is reduced, and it is possible to handle heavy loads (rapid charging). The capacity that can be charged is about 30% in the case of one wound electrode body. As the number of the wound electrode bodies becomes 65% and the number of the wound electrode bodies further increases, the ratio of charging at 12 C in a charging time of 5 minutes increases, so that the structure can cope with rapid charging. Even when designing and assembling batteries, except for the thickness of the active material-containing layer, a wound electrode body having the same structure as the conventional one is used, so the process is not complicated, and there are almost no occurrences of work defects. all right.

これに対し、従来と同様の厚い活物質含有層を有する電極を用いた比較例1および2の電池では、容量は大きいが、12Cでの充電では、5分間に充電できる比率が小さく、かつサイクルを繰り返すと急激な容量低下を示し、充放電後の電池を分解すると負極表面にデンドライトの形成が認められ、好ましくないことがわかった。比較例3では、比較例1や比較例2と同じ長さの電極から5本のリード端子を取り出して構成した巻回電極体を1個有する電池を示しているが、ここでは、容量低下はないものの、充電率はほとんど改善されていない。また比較例1および2と同様サイクルを繰り返すと急激な容量低下を示し、充放電後の電池を分解すると負極表面にデンドライトの形成が認められ、好ましくないことがわかった。   On the other hand, in the batteries of Comparative Examples 1 and 2 using the electrode having the thick active material containing layer as in the conventional case, the capacity is large, but charging at 12 C has a small ratio that can be charged in 5 minutes, and the cycle. When the process was repeated, a rapid capacity decrease was observed. When the battery after charge / discharge was disassembled, dendrite formation was observed on the negative electrode surface, which was not preferable. Comparative Example 3 shows a battery having one wound electrode body formed by taking out five lead terminals from electrodes having the same length as in Comparative Example 1 and Comparative Example 2, but here the capacity reduction is Although not, the charging rate has hardly improved. Moreover, when the cycle was repeated as in Comparative Examples 1 and 2, it was found that when the battery after charge / discharge was disassembled, dendrite formation was observed on the negative electrode surface, which was not preferable.

また、実施例の巻回電極体3個に相当する電極面積の電極(すなわち、実施例の電池に係る1個の巻回電極体に用いた電極の3倍の長さ)を用いて構成した巻回電極体を1個有する比較例4の電池は、容量は実施例の電池とほぼ同じであるものの、巻回電極体の巻回時に巻きずれを生じたものが約10%あった。更に、リード端子が1箇所であるため12Cでの充電での充電率が幾分低下すること、0.2Cで充電した電池の1Cレベルでの放電では差が認められないが、放電の電流値を上げると容量低下をきたすことがわかった。比較例5の電池は、比較例4の電池と同じ長さの電極を用い、これの3箇所にリード端子を設けて構成したものである。比較例5の電池の特性は、実施例の電池とほぼ同等であるが、巻回電極体を巻回するときにリード端子の位置がずれ、次工程のリード端子溶接がうまく行なえないものが5%程度発生した。また、巻回ずれによる不良も約10%発生した。
Further, by using the electrodes of the electrode area which corresponds to the three wound electrode body of Example 1 (i.e., 3 times the length of the electrodes used in one of the wound electrode body according to the battery of Example 1) The battery of Comparative Example 4 having one constructed wound electrode body had approximately the same capacity as that of the battery of Example 1 , but about 10% had a winding slip when winding the wound electrode body. It was. Furthermore, since there is only one lead terminal, the charging rate in charging at 12 C is somewhat reduced, and no difference is observed in discharging at 1 C level of a battery charged at 0.2 C, but the current value of discharging It has been found that raising the value causes a decrease in capacity. The battery of Comparative Example 5 is configured by using electrodes having the same length as the battery of Comparative Example 4 and providing lead terminals at three locations. The characteristics of the battery of Comparative Example 5 are almost the same as those of the battery of Example 1 , but the lead terminals are misaligned when winding the wound electrode body, and the lead terminal welding in the next process cannot be performed well. About 5% occurred. Further, about 10% of defects due to winding deviation occurred.

以上のように、巻回電極体を複数個用いて、角形などの筒形電池やラミネートタイプの電池を作ることで、容易に重負荷対応、急速充電対応の電池を作ることができる。本実施例では、同じ形状の外装缶に複数個の巻回電極体を組み込む例を示したが、同一の巻回電極体を用いてラミネートタイプの電池を作る場合には、電池の厚みを比較的自由に設定できる。そのため、金属缶に組み込む場合と比べ、巻回体の厚みなどに自由度が広がり、より、電池のコスト低減、延いては生産性の向上にも有効である。   As described above, by using a plurality of wound electrode bodies to make a cylindrical battery such as a square or a laminate type battery, it is possible to easily produce a heavy load compatible battery and a quick charge compatible battery. In this example, an example in which a plurality of wound electrode bodies are incorporated into an outer can of the same shape has been shown, but when making a laminate type battery using the same wound electrode body, the thickness of the battery is compared. Can be set freely. Therefore, compared with the case where it is incorporated in a metal can, the degree of freedom is widened in the thickness of the wound body, and it is more effective in reducing the cost of the battery and improving the productivity.

本発明の非水電解質二次電池の一例における要部の断面概略図である。It is the cross-sectional schematic of the principal part in an example of the nonaqueous electrolyte secondary battery of this invention. 従来の非水電解質二次電池の要部の断面概略図である。It is the cross-sectional schematic of the principal part of the conventional nonaqueous electrolyte secondary battery.

符号の説明Explanation of symbols

1 外装体
2 巻回電極体
1 exterior body 2 wound electrode body

Claims (5)

マンガン、ニッケルおよびコバルトの少なくとも1種の金属元素とリチウムとを含有する複合酸化物を活物質とし、該活物質を含む活物質含有層が集電体表面に形成されてなる正極と、リチウムを吸蔵、排出可能な材料を活物質とし、該活物質を含む活物質含有層が集電体表面に形成されてなる負極とが、セパレータを介して渦巻状に巻回されてなる断面が円形状の巻回電極体を複数個、同一の電池外装体内に並べて配置しており、
正極の集電体は、箔状のアルミニウムまたはアルミニウム合金で構成され且つ厚みが12〜40μmであり、負極の集電体は、箔状の銅または銅合金で構成され且つ厚みが6〜30μmであり、
正極と負極との対向する部分において、正極の活物質含有層の厚みが3.9〜13.2μmであり、負極の活物質含有層の厚みが3.9〜12.9μmであることを特徴とする非水電解質二次電池。
A positive electrode in which a composite oxide containing at least one metal element of manganese, nickel and cobalt and lithium is used as an active material, and an active material-containing layer containing the active material is formed on the current collector surface; occlusion, the drainable material as an active material, active material-containing layer containing active substance and a negative electrode formed formed on the current collector surface, cross section length yen consisting wound spirally through a separator A plurality of spirally wound electrode bodies are arranged side by side in the same battery exterior body,
The positive electrode current collector is made of foil-like aluminum or aluminum alloy and has a thickness of 12 to 40 μm, and the negative electrode current collector is made of foil-like copper or copper alloy and has a thickness of 6 to 30 μm. Yes,
The thickness of the active material-containing layer of the positive electrode is 3.9 to 13.2 μm and the thickness of the active material-containing layer of the negative electrode is 3.9 to 12.9 μm at the portion where the positive electrode and the negative electrode face each other. Non-aqueous electrolyte secondary battery characterized.
上記巻回電極体を2〜5個有する請求項1に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, which has 2 to 5 wound electrode bodies. 上記複数個の巻回電極体が、各巻回電極体から取り出されたリード端子を接続することで一体化されており、且つ電池外装体内において、一体化された複数の巻回電極体が外部に通じるリード部と接続されている請求項1または2に記載の非水電解質二次電池。   The plurality of wound electrode bodies are integrated by connecting lead terminals taken out from each of the wound electrode bodies, and the plurality of wound electrode bodies integrated in the battery exterior body are externally provided. The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous electrolyte secondary battery is connected to a lead portion that communicates. 各巻回電極体が有する正極および負極のそれぞれが有するリード端子の個数が1個である請求項3に記載の非水電解質二次電池。The nonaqueous electrolyte secondary battery according to claim 3, wherein each of the positive electrode and the negative electrode included in each wound electrode body has one lead terminal. 電池の容量が200〜700mAhである請求項1〜4のいずれかに記載の非水電解質二次電池。The nonaqueous electrolyte secondary battery according to claim 1, wherein the battery has a capacity of 200 to 700 mAh.
JP2005091261A 2005-03-28 2005-03-28 Nonaqueous electrolyte secondary battery Active JP4919613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091261A JP4919613B2 (en) 2005-03-28 2005-03-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091261A JP4919613B2 (en) 2005-03-28 2005-03-28 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2006277990A JP2006277990A (en) 2006-10-12
JP4919613B2 true JP4919613B2 (en) 2012-04-18

Family

ID=37212564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091261A Active JP4919613B2 (en) 2005-03-28 2005-03-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4919613B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7983021B2 (en) * 2007-10-31 2011-07-19 Corning Incorporated Oblong electrochemical double layer capacitor
JP2009199825A (en) * 2008-02-20 2009-09-03 Sumitomo Chemical Co Ltd Device with electrode group
JP6290175B2 (en) * 2012-04-05 2018-03-07 エー123 システムズ, リミテッド ライアビリティ カンパニー Lithium ion prismatic cell containing multiple jelly rolls with additional material between jelly rolls
WO2019039436A1 (en) 2017-08-21 2019-02-28 株式会社村田製作所 Battery, battery pack, electronic apparatus, electric vehicle, electricity storage device, and electric power system
KR20210011245A (en) * 2019-07-22 2021-02-01 주식회사 엘지화학 Method for manufacturing secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283183A (en) * 1996-04-18 1997-10-31 Murata Mfg Co Ltd Non-aqueous electrolyte secondary battery
JPH10261440A (en) * 1997-03-19 1998-09-29 Hitachi Ltd Lithium secondary battery, and manufacture thereof and battery system thereof
JPH11329409A (en) * 1998-05-15 1999-11-30 Nissan Motor Co Ltd Lithium ion secondary battery
JP2003031202A (en) * 2001-07-18 2003-01-31 Furukawa Battery Co Ltd:The Square storage battery
JP4374829B2 (en) * 2002-05-24 2009-12-02 株式会社ジーエス・ユアサコーポレーション Battery manufacturing method
JP2005025973A (en) * 2003-06-30 2005-01-27 Nissan Motor Co Ltd Lithium-ion secondary battery

Also Published As

Publication number Publication date
JP2006277990A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP5081886B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
WO2010053157A1 (en) Lithium secondary battery and use thereof
JP6754768B2 (en) Non-aqueous electrolyte secondary battery
US10505215B2 (en) Method of manufacturing non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10707539B2 (en) Battery
JP4222519B2 (en) Lithium ion secondary battery and equipment using the same
JP2015195172A (en) lithium ion secondary battery
JP2006344505A (en) Electrolyte solution and battery
JP2010123331A (en) Nonaqueous electrolyte secondary battery
JP4919613B2 (en) Nonaqueous electrolyte secondary battery
JP2011192541A (en) Nonaqueous secondary battery
KR20060052502A (en) Battery
JP2008159280A (en) Nonaqueous electrolyte battery
JP2001273880A (en) Nonaqueous electrolyte secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2006260786A (en) Nonaqueous electrolyte secondary battery
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same
JP2006024392A (en) Charging method of lithium-ion secondary battery
JP2001102051A (en) Electrode and lithium secondary cell
JP2023112393A (en) All-solid battery
JP5786137B2 (en) Cylindrical lithium ion secondary battery
JP5165875B2 (en) Non-aqueous electrolyte battery
JP2007166698A (en) Charging type power unit
JP4983124B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110518

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4919613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250