JP4915719B2 - ZnS-CuX solid solution photocatalyst exhibiting high activity in hydrogen production from aqueous solution containing sulfur compound under sunlight irradiation - Google Patents

ZnS-CuX solid solution photocatalyst exhibiting high activity in hydrogen production from aqueous solution containing sulfur compound under sunlight irradiation Download PDF

Info

Publication number
JP4915719B2
JP4915719B2 JP2005341952A JP2005341952A JP4915719B2 JP 4915719 B2 JP4915719 B2 JP 4915719B2 JP 2005341952 A JP2005341952 A JP 2005341952A JP 2005341952 A JP2005341952 A JP 2005341952A JP 4915719 B2 JP4915719 B2 JP 4915719B2
Authority
JP
Japan
Prior art keywords
zns
solid solution
cucl
photocatalyst
cux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005341952A
Other languages
Japanese (ja)
Other versions
JP2007144304A (en
Inventor
昭彦 工藤
一誠 辻
英樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2005341952A priority Critical patent/JP4915719B2/en
Publication of JP2007144304A publication Critical patent/JP2007144304A/en
Application granted granted Critical
Publication of JP4915719B2 publication Critical patent/JP4915719B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、助触媒未担持でも疑似太陽光照射下で、還元剤である硫黄化合物、例えばS2−とSO 2−イオンを含む化合物の水溶液からの水素生成反応において、助触媒未担持の条件で、CdS光触媒や本発明者らが報告したCuドーピングZnS光触媒よりも高い活性を示すZnSとCuX、特にXはCl又は/及びBrである、との固溶体からなる光触媒に関する。 In the hydrogen generation reaction from an aqueous solution of a sulfur compound that is a reducing agent, for example, a compound containing S 2− and SO 3 2− ions under pseudo sunlight irradiation even when the promoter is not supported, the promoter is not supported. The present invention relates to a photocatalyst composed of a solid solution of ZnS and CuX exhibiting higher activity than the CdS photocatalyst and the Cu-doped ZnS photocatalyst reported by the present inventors, in particular, X is Cl or / and Br.

化石資源は無尽蔵とは言えないことから、これらを化学原料などに振り向けることが資源の有効利用の観点から好ましい。また、地球温暖化などの環境問題などの観点から、COの発生を伴わないクリーンなエネルギーへの変換が熱望されている。前記のような環境問題を引き起こさないエネルギーへの変換が取りざたされるなかで、光触媒を用いた水の分解反応は、太陽光を利用して、水を水素と酸素に分解する水素製造のためのクリーンなエネルギーシステムとして期待されている。そして、次世代エネルギー源として水素の利用に大きな注目が集まっている。また、水素をエネルギー源とする、エネルギー変換のための手段として、水素用燃料電池の研究開発や水素を社会や暮らしに取り入れるためのシステムや施設の検討が精力的に行われている。しかしながら、効率的な水素の製造には、現在のところ二酸化炭素の排出を伴う化石燃料に大きく依存しており、高効率な水蒸気改質技術や燃料電池の開発も根本的な環境問題を解決するまでには至っていない。
前記光触媒を用いた水の分解反応は、太陽光を利用して、水を水素と酸素に分解する水素製造のための実用的なクリーンなエネルギーシステムを構築するものとして期待されている。
Since fossil resources cannot be said to be inexhaustible, it is preferable to allocate them to chemical raw materials from the viewpoint of effective use of resources. In addition, from the viewpoint of environmental problems such as global warming, conversion to clean energy without generating CO 2 is eagerly desired. While the conversion to energy that does not cause environmental problems as described above has been pursued, the water decomposition reaction using a photocatalyst is for the production of hydrogen that uses sunlight to decompose water into hydrogen and oxygen. Expected to be a clean energy system. And much attention has been focused on the use of hydrogen as a next-generation energy source. In addition, as a means for energy conversion using hydrogen as an energy source, research and development of hydrogen fuel cells and studies of systems and facilities for incorporating hydrogen into society and daily life have been vigorously conducted. However, efficient hydrogen production currently relies heavily on fossil fuels with carbon dioxide emissions, and the development of highly efficient steam reforming technologies and fuel cells also solves the fundamental environmental problems. It has not yet reached.
The water decomposition reaction using the photocatalyst is expected to construct a practical clean energy system for hydrogen production using sunlight to decompose water into hydrogen and oxygen.

文献1:Kato,H.;Kudo,A.Catal.Today 2003,78,561、Reference 1: Kato, H .; Kudo, A .; Catal. Today 2003, 78, 561, 文献2:Kato, H.;Asakura,K.;Kudo,A.J.Am.Chem.Soc.2003,125,3082.Reference 2: Kato, H. et al. Asakura, K .; Kudo, A .; J. Am. Chem. Soc. 2003, 125, 3082. 文献3:Hwang,D.W.;Kim,H.G.;Kim,J.;Cha,K.Y.;Kim,Y.G.;Lee,J.S.J.Catal.2000,193,40.Reference 3: Hwang, D.H. W. Kim, H .; G. Kim, J .; Cha, K .; Y. Kim, Y .; G. Lee, J .; S. J. Catal. 2000, 193, 40. 文献4:Maeda,K.;Takata,T.;Hara, M.;Saito,N.;Inoue,Y.;Kobayashi,H.;Domen,K.J.Am..Chem.Soc.2005,127,8286)Reference 4: Maeda, K .; Takata, T .; Hara, M .; Saito, N .; Inoue, Y .; Kobayashi, H .; Domen, K .; J. Am ... Chem. Soc. 2005, 127, 8286) 文献5:Sayama,K.; Mukasa,K.;Abe,R.;Abe,Y.;Arakawa,H.Chem.Commun.2001,2416.Reference 5: Sayama, K .; Mukasa, K .; Abe, R .; Abe, Y .; Arakawa, H .; Chem. Commun. 2001, 2416. 文献6:Abe R.; Takata T.; Sugihara H.; Domen K.Chem.Commun. 2005, 3829.Reference 6: Abe R .; Takata T .; Sugihara H .; Domen K. Chem. Commun. 2005, 3829. 文献7:、Abe R.; Sayama K.; Sugihara H. J. Phys. Chem. B 2005, 109, 16052、Reference 7: Abe R .; Sayama K .; Sugihara H. J. Phys. Chem. B 2005, 109, 16052, 文献8:Kato, H.; Hori, M.; Konta, R.; Shimodaira, Y.; Kudo, A. Chem. Lett. 2004, 331348.Reference 8: Kato, H .; Hori, M .; Konta, R .; Shimodaira, Y .; Kudo, A. Chem. Lett. 2004, 331348. 特開2005-199187、特許請求の範囲JP 2005-199187, CLAIMS 文献9:Kudo, A.; Sekizawa, M. Catal. Lett. 1999,58、241、Reference 9: Kudo, A .; Sekizawa, M. Catal. Lett. 1999, 58, 241, 文献10:Kudo, A.; Sekizawa, M. Chem. Comm.2000, 1371Reference 10: Kudo, A .; Sekizawa, M. Chem. Comm. 2000, 1371 文献11:Tsuji, I.; Kudo, A. J. Photochem. Photobiol., A 2003, 156, 249Reference 11: Tsuji, I .; Kudo, A. J. Photochem. Photobiol., A 2003, 156, 249 特開2004-255355、特許請求の範囲JP2004-255355, CLAIMS 文献13:Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. J. Am. Chem. Soc. 2004, 126, 13406.、Reference 13: Tsuji, I .; Kato, H .; Kobayashi, H .; Kudo, A. J. Am. Chem. Soc. 2004, 126, 13406. 文献14:Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. J. Phys. Chem. B 2005, 109, 7323、Reference 14: Tsuji, I .; Kato, H .; Kobayashi, H .; Kudo, A. J. Phys. Chem. B 2005, 109, 7323, 文献15:Tsuji, I.; Kato, H.; Kudo, A. Angew. Chem. Int. Ed. 2005, 44, 3565.Reference 15: Tsuji, I .; Kato, H .; Kudo, A. Angew. Chem. Int. Ed. 2005, 44, 3565. 特開2005-199222、特許請求の範囲JP 2005-199222, CLAIMS

一方、太陽光のほぼ95%以上が可視光およびそれより長波長側領域であることから、太陽光エネルギーを有効利用して水を分解し水素を得る新しいエネルギーシステムの構築には可視光応答性光触媒の開発が不可欠である。これまでに、紫外光照射下であれば水を水素と酸素に分解できる高効率な光触媒がいくつか見出されている(非特許文献1−3)。可視光照射下においては,効率は現在のところ低いが、GaN:ZnS固溶体(非特許文献4)や水素または酸素生成の半反応に活性を示す光触媒を組み合わせたIO3−/IレドックスPt/SrTiO:Cr、Ta−Pt/W0、Pt/TaON:Pt/WOや Fe3+/Fe2+レドックスPt/SrTiO:Rh−BiVOなどのZスキーム系により水の完全分解が成功している(非特許文献5−8、特許文献1)。
このような中で、本発明者のグループは,犠牲試薬としてS2−やSO 2−などの還元剤を用いた水からの水素生成、すなわち水分解の半反応において、可視光照射下で高活性を示す硫化物光触媒の開発をおこなっている(非特許文献9−10)。また、NiやCuなどの遷移金属イオンをドーピングしたZnSは、これらの金属によるバンド構造の変化により、Ptのような貴金属助触媒が未担持でも可視光照射下で高活性を示すことを報告している(非特許文献11)。更に、カルコパイライト構造のAgGaSはRhを担持することで,量子収率25%(波長:440nm)の高活性が得られることが報告している(特許文献2)。更に、ZnSとCuInS、AgInSとの固溶体光触媒においては、Ruを助触媒として担持した(CuAg)15In0.3Zn1.55固溶体光触媒が疑似太陽光照射下においても水素生成反応において高い活性(見掛けの量子収率及び水素発生速度の特性において。)示すことを報告している(非特許文献12−14、特許文献3)。
On the other hand, almost 95% or more of sunlight is in the visible light and longer wavelength region, so visible light responsiveness is necessary for the construction of a new energy system that effectively utilizes sunlight energy to decompose water. Development of photocatalyst is essential. So far, several highly efficient photocatalysts that can decompose water into hydrogen and oxygen under ultraviolet light irradiation have been found (Non-Patent Documents 1-3). Under visible light irradiation, the efficiency is currently low, but IO 3 / I - redox Pt / combined with a GaN: ZnS solid solution (Non-Patent Document 4) and a photocatalyst exhibiting activity in the half reaction of hydrogen or oxygen generation. SrTiO 3 : Cr, Ta—Pt / W0 3 , Pt / TaON: Pt / WO 3 and Fe 3+ / Fe 2 + Redox Pt / SrTiO 3 : Rh—BiVO 4 succeeded in complete decomposition of water (Non-patent Documents 5-8, Patent Document 1).
Under such circumstances, the group of the present inventor is able to generate hydrogen from water using a reducing agent such as S 2− or SO 3 2− as a sacrificial reagent, that is, in the half reaction of water splitting under visible light irradiation. A sulfide photocatalyst exhibiting high activity is being developed (Non-patent Documents 9-10). In addition, ZnS doped with transition metal ions such as Ni and Cu has been reported to show high activity under visible light irradiation even when a noble metal promoter such as Pt is not supported, due to changes in the band structure caused by these metals. (Non-Patent Document 11). Furthermore, it has been reported that AgGaS 2 having a chalcopyrite structure can obtain a high activity with a quantum yield of 25% (wavelength: 440 nm) by carrying Rh (Patent Document 2). Furthermore, in the solid solution photocatalyst of ZnS, CuInS 2 , and AgInS 2 , the (CuAg) 15 In 0.3 Zn 1.55 S 2 solid solution photocatalyst supported with Ru as a cocatalyst is capable of generating hydrogen even under simulated sunlight irradiation. Have high activity (in terms of the characteristics of the apparent quantum yield and hydrogen generation rate) (Non-patent Documents 12-14 and Patent Document 3).

本発明の課題は、基本的には、助触媒なしにおいてもより活性な水素生成反応を示し、長波長の可視光で水分解活性を有するZnSを用いた光触媒を提供することである。そこでZnSとCuXとの固溶体を、前記原料の調製と焼成温度(673K〜873K)などを工夫して作製し、合成条件と得られた固溶体の特定(粉末X線パターン)、走査電子顕微鏡像)と光触媒活性を検討し、基本的な結晶構造がZinc blende型の結晶構造である、ZnSとCuClやCuBrとのヘテロ固溶体を形成することで、Cu3d軌道が価電子帯の形成に関与することにより、硫黄化合物を犠牲薬とする水素生成光触媒活性の高い光触媒が得られることを発見し、前記課題を解決することができた。 An object of the present invention is basically to provide a photocatalyst using ZnS which exhibits a more active hydrogen generation reaction without a cocatalyst and has water splitting activity with visible light having a long wavelength. Therefore, a solid solution of ZnS and CuX was prepared by devising the preparation of the raw materials and the firing temperature (673K to 873K), etc., and synthesis conditions and identification of the obtained solid solution (powder X-ray pattern), scanning electron microscope image) And the photocatalytic activity, and the formation of a heterosolid solution of ZnS and CuCl or CuBr, whose basic crystal structure is a Zinc blende type crystal structure, the Cu3d orbital is involved in the formation of the valence band. The present inventors have found that a photocatalyst having a high hydrogen-producing photocatalytic activity using a sulfur compound as a sacrificial agent can be obtained, thereby solving the above problems.

本発明は、(1)(ZnS)1−Y(CuX)(ここでYは0.01≦Y≦0.2、好ましくは0.05≦Y≦0.2であり、Xはハロゲン元素である)の組成の太陽光照射下で還元剤を含む水溶液の光水分解により水素を生成する活性を有する固溶体からなる光触媒である。好ましくは、(2)固溶体の結晶構造が基本的にはZinc blende型である前記(1)に記載の光触媒であり、より好ましくは、(3)固溶体がZnSとして酸素存在下(空気)において400℃±100℃において2±1時間焼成しXRDスペクトルにおいてZnO及びZnSO4に帰属するピークが見られないものを用いCuXと混合し673K〜873Kの範囲で焼成することにより得られたものである前記(1)又は(2)に記載の光触媒である。また、本発明は(4)
CuXがCuClおよび/又はCuBrであり還元剤が硫黄化合物である前記(1)、(2)及び(3)に記載の固溶体からなる光触媒である。
In the present invention, (1) (ZnS) 1-Y (CuX) Y (where Y is 0.01 ≦ Y ≦ 0.2, preferably 0.05 ≦ Y ≦ 0.2, and X is a halogen element. The photocatalyst is composed of a solid solution having an activity of generating hydrogen by photo-water decomposition of an aqueous solution containing a reducing agent under irradiation with sunlight having a composition of Preferably, (2) the photocatalyst according to (1) above, wherein the solid solution has a Zinc blende type crystal structure, and more preferably (3) the solid solution is 400 as ZnS in the presence of oxygen (air). It is obtained by baking at ± 100 ° C. for 2 ± 1 hour, mixing with CuX using a powder in which no peaks attributed to ZnO and ZnSO 4 are observed in the XRD spectrum, and baking in the range of 673K to 873K ( It is a photocatalyst as described in 1) or (2). The present invention also provides (4)
A photocatalyst comprising the solid solution according to (1), (2) and (3), wherein CuX is CuCl and / or CuBr and the reducing agent is a sulfur compound.

発明の効果として、助触媒未担持において疑似太陽光照射下において、安定で450nmまでの広い波長域の可視光を利用できる水の光分解水素生成触媒系を構築できたことを挙げることができる。 As an effect of the invention, it is possible to construct a photodecomposition hydrogen generation catalyst system of water that can stably use visible light in a wide wavelength range up to 450 nm under pseudo-sunlight irradiation with no promoter supported.

先ず、本発明の評価機器、測定装置などを説明する。
A.測定機器、実験装置の概要;
調製された硫黄固溶体類の分析;
1)硫化物固溶体の粉末の同定;X線回折(Rigaku;MiniFlex)による。
2)触媒の比表面積の測定;BET等温吸着法 (Coulter;SA3100) による。
3)紫外-可視-近赤外拡散反射スペクトル(DRS);紫外可視近赤外分光光度計(Jascow;UbestV-570)で測定。得られた拡散反射スペクトルは,Kubelka-Munk法により、吸収モードに変換
4)発光測定;蛍光強度計(Spex;Fluorolog)
5)走査電子顕微鏡;JEOL;JSW-7400F
B.光触媒の活性測定:
1)図1に記載の、循環系C、発生水素ガス排気系V.L、発生ガス分析ガスクロマトグラフィーG、C、撹拌子MX、高温糟T.B、光源Lを配置した反応器R.Vを備えた閉鎖循環系。
2)水素生成光分解実験溶液;硫黄化合物を含む水溶液、好ましくは、SO 2−とS2−イオンが存在する水溶液、より好ましくは、還元剤であるKSOとNaSとの混合水溶液中(0.5M KSO+0.1M NaSまたは、0.25M KSO+ 0.35M NaS)
3)生成した水素の定量;ガスクロマトグラフG.C(Shimazu; GC-8A, MS-5A column, TCD, Ar carrier)
4)光源L;300WのXe ランプ(ILC technology;CERMAX LX-300)とCut-off filter (HOYA L42)を組み合わせた、420nmより長波長の光源
5)太陽光シミュレーター(YAMASHITA DENSO;YSS−80QA,AM1.5,100mW/cm)の光源を用いた活性の評価。(この場合、反応は開放系で行い、生成したガスは水上置換で定量した。)
6)みかけの量子収率(QY)(%)の測定には、前記Cut−offフィルター(HOYA)とband−passフィルター(Kenko)により単色光を照射して行った。光量測定は,フォトダイオード(OPHIR;a PD300−UV SH head and a NOVA energy monitor)を用いて行った。
なおQY(%)は、
QY={(生成物の生成に要した電指数又は正孔数)/(入射光子数)}×100
で算出される。
First, an evaluation device, a measurement device, and the like of the present invention will be described.
A. Outline of measuring equipment and experimental equipment;
Analysis of prepared sulfur solid solutions;
1) Identification of sulfide solid solution powder; by X-ray diffraction (Rigaku; MiniFlex).
2) Measurement of specific surface area of catalyst; by BET isothermal adsorption method (Coulter; SA3100).
3) Ultraviolet-visible-near infrared diffuse reflectance spectrum (DRS); measured with an ultraviolet-visible near-infrared spectrophotometer (Jascow; UbestV-570). The obtained diffuse reflectance spectrum is converted into an absorption mode by the Kubelka-Munk method. 4) Luminescence measurement; Fluorescence intensity meter (Spex; Fluorolog)
5) Scanning electron microscope; JEOL; JSW-7400F
B. Photocatalytic activity measurement:
1) Circulation system C, generated hydrogen gas exhaust system V. L, evolved gas analysis gas chromatography G, C, stirrer MX, high-temperature soot T. B, reactor R. with light source L. Closed circulatory system with V.
2) Hydrogen generation photolysis experimental solution; an aqueous solution containing a sulfur compound, preferably an aqueous solution containing SO 3 2− and S 2− ions, more preferably, K 2 SO 3 and Na 2 S as reducing agents. In mixed aqueous solution (0.5 M K 2 SO 3 +0.1 M Na 2 S or 0.25 M K 2 SO 3 + 0.35 M Na 2 S)
3) Quantification of produced hydrogen; gas chromatograph G. C (Shimazu; GC-8A, MS-5A column, TCD, Ar carrier)
4) Light source L; 300 W Xe lamp (ILC technology; CERMAX LX-300) and cut-off filter (HOYA L42) combined with a light source having a wavelength longer than 420 nm 5) Solar simulator (YAMASHITA DENSO; YSS-80QA, Evaluation of activity using a light source of AM 1.5, 100 mW / cm 2 ). (In this case, the reaction was carried out in an open system, and the generated gas was quantified by water replacement.)
6) The apparent quantum yield (QY) (%) was measured by irradiating monochromatic light with the cut-off filter (HOYA) and the band-pass filter (Kenko). The light quantity was measured using a photodiode (OPHIR; a PD300-UV SH head and a NOVA energy monitor).
QY (%) is
QY = {(electric exponent or number of holes required for production of product) / (number of incident photons)} × 100
Is calculated by

A.ZnS−CuCl固溶体:(ZnS)1−Y(CuCl)(ここでYは0.01≦Y≦0.20である)の合成;
(1)CuClは、CuClとCu金属片を含む塩酸水溶液を熱して合成した。
(2)ZnS(Kojundo)は空気中において400℃で1−3時間焼成処理したXDRからZnOやZnSOに帰属するピークが観察されないものを用いた。
(3)前記合成した原料を混練し、石英アンプルに入れ673K−873Kで熱処理することによりZnS−CuCl固溶体を得た。
この工程において、混練時間はCuClが硫化されない程度の長さ(色が茶色くならない程度に混錬:見た目で判断)とすることにより光触媒活性の良い固溶体が得られた。前記(2)の処理も混練時のCuClの硫化を進めないために重要なファクターである。
B.ZnS−CuBr固溶体の合成;
前記ZnS−CuCl固溶体の場合と同様の方法により合成できる。
A. Synthesis of ZnS—CuCl solid solution: (ZnS) 1-Y (CuCl) Y (where Y is 0.01 ≦ Y ≦ 0.20);
(1) CuCl was synthesized by heating an aqueous hydrochloric acid solution containing CuCl 2 and Cu metal pieces.
(2) ZnS (Kojundo) was used in which no peaks attributed to ZnO or ZnSO 4 were observed from XDR fired at 400 ° C. for 1-3 hours in air.
(3) The synthesized raw materials were kneaded, put into a quartz ampule, and heat-treated at 673K-873K to obtain a ZnS-CuCl solid solution.
In this step, the kneading time was set to such a length that CuCl was not sulfided (kneading to such an extent that the color did not turn brown: judged by appearance), whereby a solid solution with good photocatalytic activity was obtained. The treatment (2) is also an important factor for preventing CuCl sulfidation during kneading.
B. Synthesis of ZnS-CuBr solid solution;
It can be synthesized by the same method as in the case of the ZnS-CuCl solid solution.

C.比較サンプルとして、
1)ZnSとCuSまたはCuSとの固相反応により得られたZn1−YCuS、
2)前記非特許文献9に記載のCuドーピングZnS合成方法、すなわち、Zn(NOとCu(NOの混合水溶液中に、NaS水溶液を添加して沈澱を得た後、その状態で15時間程度撹拌・熟成した。得られたペースト状の沈殿物を純水を用いて洗浄し、乾燥せずに光触媒「Cu(4.5mol%)光触媒」とした。及び
3)CdS触媒;高純度化学から購入したCdSを石英アンプル中で1023Kで熱処理し、Wurtzite型としたもの。
C. As a comparative sample,
1) Zn 1-Y Cu Y S obtained by solid phase reaction between ZnS and CuS or Cu 2 S,
2) Cu doping ZnS synthesis method described in Non-Patent Document 9, that is, after adding a Na 2 S aqueous solution to a mixed aqueous solution of Zn (NO 3 ) 2 and Cu (NO 3 ) 2 to obtain a precipitate In this state, the mixture was stirred and aged for about 15 hours. The obtained paste-like precipitate was washed with pure water, and was not dried and used as a photocatalyst “Cu (4.5 mol%) photocatalyst”. And 3) CdS catalyst: CdS purchased from high-purity chemistry was heat treated at 1023 K in a quartz ampule to form a Wurtzite type.

試料の特性;
図2及び図3に(ZnS)1−Y(CuCl)(Y=0.01−0.2)の固溶体(b−f)、ZnS(a)、CuCl(g)、CuSから合成したZn0.9Cu0.1Sの触媒(h)、及びCuSから合成したZn0.9Cu0.1Sの触媒(i)の粉末X線回折パターン(図2)及び拡散反射スペクトル(図3)を示す。これらの試料は段落〔0010〕で説明した合成法に従って作製した。得られた(ZnS)1−Y(CuCl)固溶体の回折パターンは、28.7度および47.7度付近に特徴的なピークを示しており、得られた試料の結晶構造はZnSやCuClと同じZinc blende型であることがわかった。わずかにWurtziteの結晶相が現れているサンプルもあった。Y=0.01以外の固溶体は,不純物として不定比のCuS(▽印)が確認され固溶量の増加に伴いそのピーク強度は大きくなっていた。しかし、このCuSのZnSに対するピーク比は非常に小さく、ほとんどのCuClはZnSとの固溶体を形成していると考えられる。(ZnS)1−Y(CuCl)固溶体は,結晶性が良く、同じ固溶量で比較した場合、(ZnS)0.9(CuCl)0.1はCuSやCuSから合成したZn0.9Cu0.1S固溶体よりも半値幅が狭くなっていた。これはCuClがフラックスとして働いているためだと考えられる。図3の固溶体の拡散反射スペクトルは、(a)ZnSおよび(g)CuClは400nm以下の紫外光しか吸収を示さないが、ZnSとCuClとを固溶することで可視光領域まで吸収を示した。 (ZnS)0.9(CuCl)0.1、(ZnS)0.85CuCl)0.15、(ZnS)0.8(CuCl)0.2は可視光領域にはっきりとした吸収端を持つスペクトルとなった。Zn0.9Cu0.1S固溶体のスペクトル(h)(i)は、ZnS基礎吸収から可視光領域に裾がのびたブロードなスペクトルとなり、同じCuの固溶量の(ZnS)0.9(CuCl)0.1とは異なっていた。
Sample characteristics;
FIG. 2 and FIG. 3 are synthesized from (ZnS) 1-Y (CuCl) Y (Y = 0.01-0.2) solid solution (bf), ZnS (a), CuCl (g), and Cu 2 S. X-ray diffraction pattern (FIG. 2) and diffuse reflectance spectrum of Zn 0.9 Cu 0.1 S catalyst (h) and Zn 0.9 Cu 0.1 S catalyst (i) synthesized from CuS ( FIG. 3) is shown. These samples were prepared according to the synthesis method described in paragraph [0010]. The diffraction pattern of the obtained (ZnS) 1-Y (CuCl) Y solid solution shows characteristic peaks around 28.7 degrees and 47.7 degrees, and the crystal structure of the obtained sample is ZnS or CuCl. The same Zinc blende type was found. Some samples showed a slight Wurtzite crystal phase. In solid solutions other than Y = 0.01, non-stoichiometric Cu Y S (() was confirmed as an impurity, and the peak intensity increased as the amount of solid solution increased. However, the peak ratio of Cu Y S to ZnS is very small, and most of CuCl is considered to form a solid solution with ZnS. (ZnS) 1-Y (CuCl) Y solid solution has good crystallinity, and when compared with the same solid solution amount, (ZnS) 0.9 (CuCl) 0.1 is Zn 0 synthesized from CuS or Cu 2 S. .9 The full width at half maximum was narrower than that of the Cu 0.1 S solid solution. This is probably because CuCl works as a flux. The diffuse reflection spectrum of the solid solution in FIG. 3 shows that (a) ZnS and (g) CuCl absorb only ultraviolet light of 400 nm or less, but absorbed up to the visible light region by dissolving ZnS and CuCl in solid solution. . (ZnS) 0.9 (CuCl) 0.1 , (ZnS) 0.85 CuCl) 0.15 , and (ZnS) 0.8 (CuCl) 0.2 have spectra having distinct absorption edges in the visible light region. It became. The spectrum (h) (i) of the Zn 0.9 Cu 0.1 S solid solution becomes a broad spectrum with a tail extending from the basic absorption of ZnS to the visible light region, and (ZnS) 0.9 ( CuCl) 0.1 .

図4は石英アンプル中において773Kで5時間熱処理することにより得られた(ZnS)0.9(CuCl)0.1固溶体の走査型電子顕微鏡(SEM)による観察写真である。粒子サイズが100−300nm程度の結晶性のよい微粒子が観察された。SEM−EDSの測定からは,固溶体粒子中にCuとClとが1:1に近い比で存在していることが確認された。この固溶体のBET比表面積は4.1m−1であった。 FIG. 4 is a scanning electron microscope (SEM) observation photograph of (ZnS) 0.9 (CuCl) 0.1 solid solution obtained by heat treatment at 773 K for 5 hours in a quartz ampule. Fine crystalline particles having a particle size of about 100-300 nm were observed. From the SEM-EDS measurement, it was confirmed that Cu and Cl were present in the solid solution particles at a ratio close to 1: 1. The BET specific surface area of this solid solution was 4.1 m 2 g −1 .

図5に、室温で測定した(ZnS)1−Y(CuX)固溶体の励起・発光スペクトルを示す。365nmの光で励起すると558nm付近に極大値をもつ鮮やかな黄色い発光を示した。これらの黄色い発光は良く知られた蛍光体である、付活剤としてCu、共付活剤としてClを共ドーピングしたZnSのD−A間の青または緑色の発光とは異なっていた。
図5の(ZnS)1−Y(CuCl)固溶体の励起スペクトル側は、Y=0.01(a)、Y=0.05(b)、Y=0.10(c)、Y=0.15(d)、およびY=0.20(e)であり、発光側は、Y=0.01(a’)、Y=0.05(b’)、Y=0.10(c’)、Y=0.15(d’)、およびY=0.20(e’)である。
FIG. 5 shows the excitation / emission spectrum of the (ZnS) 1-Y (CuX) Y solid solution measured at room temperature. When excited with 365 nm light, it showed bright yellow emission with a maximum near 558 nm. These yellow luminescences were different from the blue or green luminescence between well-known phosphors, ZnS DA, co-doped with Cu as activator and Cl as coactivator.
The excitation spectrum side of the (ZnS) 1 -Y (CuCl) Y solid solution in FIG. 5 is Y = 0.01 (a), Y = 0.05 (b), Y = 0.10 (c), Y = 0. .15 (d) and Y = 0.20 (e), and the light emission side is Y = 0.01 (a ′), Y = 0.05 (b ′), Y = 0.10 (c ′ ), Y = 0.15 (d ′), and Y = 0.20 (e ′).

光触媒反応;
図1に示す閉鎖循環系の実験装置を用いた。
パイレックス製の上方照射型反応容器R.Vに表1に示す触媒を0.3g挿入し、反応溶液として、還元剤として0.5mol/LのKSO及び0.1mol/LのNaS加えた水150mLを加え、撹拌・循環させ、前記300W Xeランプ(λ≧420nm)を照射してH生成速度を循環系に配設された前記のガスクロマトグラフで定量した。
結果を表1に示す。
触媒の比表面積BET(m/g)、及びバンドギャップエネルギー(BG)も記載した。
Photocatalytic reaction;
The experimental apparatus of the closed circulatory system shown in FIG. 1 was used.
Pyrex upward irradiation reaction vessel 0.3 g of the catalyst shown in Table 1 was inserted into V, and 150 mL of water containing 0.5 mol / L K 2 SO 3 and 0.1 mol / L Na 2 S as a reducing agent was added as a reaction solution. Circulating, irradiating with the 300 W Xe lamp (λ ≧ 420 nm), the H 2 production rate was quantified by the gas chromatograph provided in the circulation system.
The results are shown in Table 1.
The specific surface area BET (m 2 / g) and band gap energy (BG) of the catalyst were also described.

Figure 0004915719
Figure 0004915719

表1から、ZnS単独ではほとんど活性を示さないが、CuClと固溶することで高い水素生成活性を示すことが分かる。光触媒活性はYが0から0.1の間ではCuClの割合の増加に伴い向上した。固溶量の大きなY=0.15,0.2では活性が若干低下した。これはXRDからも明らかなように、固溶量の増加に伴い硫化銅の遊離の程度が大きくなることが原因であると考えられる。Y=0.1の時に最も高い水素生成活性を示した。CuSおよびCuSから固相法により合成したZn0.9Cu0.1S固溶体の活性は,同じ量のCuを固溶した(ZnS)0.9(CuCl)0.1と比べると低活性であった。以上の結果から、ZnSとCuClとを固溶した触媒のみが,可視光照射下において水素生成反応に高活性を示すことが明らかとなった。特にY=0.05−0.2の範囲で比較的活性の高い固溶体が得られることがわかった。
(ZnS)0.9(CuBr)0.1固溶体(BG;2.77eV)も可視光領域に吸収を示し、673μmol/hと高い水素生成活性を示した。
(ZnS)0.9(CuCl)0.1光触媒による水素生成反応の量子収率(QY)は、460nm単色光照射下においても量子収率(QY)3.1%と比較的高い値を示した。バンドギャップ遷移である420nmの単色光照射下では、量子収率16.3%と高い値を示した。この値は以前に報告したCuドーピングZnS光触媒(QY=3.7%)よりも高く(前記非特許文献7)、発明者らの知る限り助触媒未担持という条件においては,可視光照射下での水素生成反応で最も高い値と見なせる。
From Table 1, it can be seen that ZnS alone shows little activity, but shows high hydrogen generation activity when dissolved in CuCl. The photocatalytic activity improved with increasing the proportion of CuCl when Y was between 0 and 0.1. The activity was slightly reduced at Y = 0.15 and 0.2 where the solid solution amount was large. As is clear from XRD, this is considered to be caused by an increase in the degree of liberation of copper sulfide as the amount of solid solution increases. The highest hydrogen production activity was exhibited when Y = 0.1. The activity of Zn 0.9 Cu 0.1 S solid solution synthesized from CuS and Cu 2 S by solid phase method is lower than that of (ZnS) 0.9 (CuCl) 0.1 in which the same amount of Cu is dissolved. It was active. From the above results, it has been clarified that only the catalyst in which ZnS and CuCl are dissolved is highly active in the hydrogen generation reaction under irradiation with visible light. In particular, it was found that a solid solution having a relatively high activity was obtained in the range of Y = 0.05-0.2.
(ZnS) 0.9 (CuBr) 0.1 solid solution (BG; 2.77 eV) also showed absorption in the visible light region and a high hydrogen generation activity of 673 μmol / h.
(ZnS) 0.9 (CuCl) 0.1 The quantum yield (QY) of the hydrogen production reaction with a photocatalyst shows a relatively high value of 3.1% quantum yield (QY) even under irradiation with monochromatic light at 460 nm. It was. Under a monochromatic light irradiation of 420 nm which is a band gap transition, the quantum yield was as high as 16.3%. This value is higher than the previously reported Cu-doped ZnS photocatalyst (QY = 3.7%) (Non-patent Document 7), and as far as the inventors know, under the condition that no promoter is supported under visible light irradiation. It can be regarded as the highest value in the hydrogen production reaction.

(ZnS)0.9(CuCl)0.1固溶体を製造する際の熱処理条件と、得られる固溶体の比表面積及び水素生成活性との相関;
表2に様々な条件で熱処理をして合成した(ZnS)0.9(CuCl)0.1固溶体の比表面積と水素生成反応活性の結果を示す。
(ZnS) 0.9 (CuCl) 0.1 Correlation between heat treatment conditions when producing a solid solution and the specific surface area and hydrogen generation activity of the resulting solid solution;
Table 2 shows the results of specific surface area and hydrogen generation reaction activity of (ZnS) 0.9 (CuCl) 0.1 solid solution synthesized by heat treatment under various conditions.

Figure 0004915719
Figure 0004915719

673Kの熱処理では,比表面積は大きいものの結晶性が悪く,触媒の色もくすんでおり低活性であった。773Kで熱処理した場合にもっとも高い活性を示し,活性は焼成時間にはあまり依存性がなかった。一方,比較的高温の873Kでの熱処理では活性が低下してしまった。 In the heat treatment at 673 K, although the specific surface area was large, the crystallinity was poor, the color of the catalyst was dull, and the activity was low. When the heat treatment was performed at 773 K, the highest activity was shown, and the activity was not very dependent on the firing time. On the other hand, the activity decreased in the heat treatment at 873 K at a relatively high temperature.

水溶液の組成と光触媒の水素生成反応との相関の測定;
還元剤としてS2−またはSO 2−を含む水溶液、S2−とSO 2−をともに含む水溶液(触媒0.3g)からの水素生成反応と、良く知られたCdS(d、溶液組成は0.1M NaS+0.5M KSO)との比較を図6に示す。(a)0.5M KSO下ではほとんど活性を示さなかった。(b)0.1M NaSの反応では、反応初期で400μmol/hほどの高い水素生成活性を示したが2時間目以降から失活してしまった。一方、(c)の0.1M NaS+0.5M KSOの反応では,ほぼ定常的に水素を生成し続けた(460μmol/h)。よく知られている高活性な光触媒であるCdSと比較した場合、(c)(ZnS)0.9(CuCl)0.1の方が4倍以上もの高い水素生成活性を示した。また,以前我々が報告したCu(4.5mol%)ドーピングZnSを(c)と同じ反応条件下で測定すると、活性は98μmol/hであり,今回報告見出したZnS−CuCl固溶体の方が高い活性を示した。
Measurement of the correlation between the composition of the aqueous solution and the hydrogen production reaction of the photocatalyst;
Hydrogen generation reaction from an aqueous solution containing S 2− or SO 3 2− as a reducing agent, an aqueous solution containing both S 2− and SO 3 2− (catalyst 0.3 g), and well-known CdS (d, solution composition) FIG. 6 shows a comparison with 0.1 M Na 2 S + 0.5 M K 2 SO 3 ). (A) Almost no activity was observed under 0.5M K 2 SO 3 . (B) In the reaction of 0.1 M Na 2 S, hydrogen production activity as high as 400 μmol / h was shown at the beginning of the reaction, but it was deactivated after the second hour. On the other hand, in the reaction of 0.1 M Na 2 S + 0.5 M K 2 SO 3 in (c), hydrogen was generated almost constantly (460 μmol / h). When compared with CdS, which is a well-known highly active photocatalyst, (c) (ZnS) 0.9 (CuCl) 0.1 showed a hydrogen production activity four times higher. Moreover, when Cu (4.5 mol%) doped ZnS previously reported by us was measured under the same reaction conditions as in (c), the activity was 98 μmol / h, and the ZnS—CuCl solid solution found this time has higher activity. showed that.

疑似太陽光照射下の水素生成反応活性の測定;
(ZnS)0.9(CuCl)0.1固溶体触媒は、図7に示すように、疑似太陽光照射下においても高い活性を示し、比較的安定に水素を生成し続けた。因みに、反応溶液には0.3gの光触媒を加え、前記溶液の組成は0.1mol/L KSO+0.5mol/L NaSであり、溶液の量は150mL、光源は300W Xeランプ(AM1.5フィルター)、照射面積33cmである。照射面積から換算した1平方メートル当たりの水素生成量は、反応初期で3.1Lh−1であった。反応後の触媒はXRD観察から触媒の状態の変化は見られなかった。
Measurement of hydrogen production reaction activity under simulated sunlight irradiation;
As shown in FIG. 7, the (ZnS) 0.9 (CuCl) 0.1 solid solution catalyst showed high activity even under simulated sunlight irradiation, and continued to generate hydrogen relatively stably. Incidentally, 0.3 g of photocatalyst was added to the reaction solution, the composition of the solution was 0.1 mol / L K 2 SO 3 +0.5 mol / L Na 2 S, the amount of the solution was 150 mL, and the light source was a 300 W Xe lamp (AM1.5 filter), irradiation area 33 cm 2 . The amount of hydrogen generated per square meter converted from the irradiation area was 3.1 Lh −1 m 2 at the beginning of the reaction. As for the catalyst after the reaction, no change in the state of the catalyst was observed from XRD observation.

ZnSとCuClから調製された(ZnS)1−Y(CuCl)固溶体が高活性な可視光応答性光触媒であることが明らかとなり、すなわち、これらの固溶体はPtやRuといった貴金属助触媒を担持しなくても水素生成反応において高い活性を示した。疑似太陽光照射下においても水素生成反応に活性を示し、また、CdSや以前報告したCuドーピングZnS光触媒と比較してもより高い活性を示すことは、より産業上の利用性を可能としたものである。更に、CuClがフラックスとして働くことやCuとClの共置換による電荷補償効果がCuの安定な価電子帯の形成に寄与していることが高活性の要因として考えられ、また、ZnSとCuBrとの固溶体においてもZnS−CuCl固溶体と同様に可視光照射下で、水素生成反応に高い活性を示すことの発見は、水素生成反応に高い活性を示す光触媒の開発の方向性を示したことにおいても、産業上の効果は顕著である。 (ZnS) 1-Y (CuCl) Y solid solution prepared from ZnS and CuCl was found to be a highly active visible light responsive photocatalyst, that is, these solid solutions carry noble metal promoters such as Pt and Ru. Even without it, it showed high activity in the hydrogen production reaction. It shows activity in hydrogen generation reaction even under simulated sunlight irradiation, and higher activity compared to CdS and the previously reported Cu-doped ZnS photocatalyst enables more industrial applicability. It is. Further, it is considered that CuCl works as a flux, and that the charge compensation effect by co-substitution of Cu + and Cl contributes to the formation of a stable valence band of Cu +. As in the case of the ZnS-CuCl solid solution, the discovery of high activity in the hydrogen generation reaction also showed the direction of the development of a photocatalyst exhibiting high activity in the hydrogen generation reaction. Even in this case, the industrial effect is remarkable.

可視光応答性光水分解水素生成系光触媒の評価用閉鎖循環型反応装置Closed-circulation reactor for evaluation of photocatalysts that are responsive to visible-light photohydrolysis hydrogen generation (ZnS)1−Y(CuCl)(Y=0.01−0.2)の固溶体(b−f)、ZnS(a)、CuCl(g)、CuSから合成したZn0.9Cu0.1Sの触媒(h)、及びCuSから合成したZn0.9Cu0.1Sの触媒(i)の粉末X線回折パターンZn 0.9 Cu synthesized from (ZnS) 1-Y (CuCl) Y (Y = 0.01-0.2) solid solution (bf), ZnS (a), CuCl (g), Cu 2 S Powder X-ray diffraction pattern of 0.1 S catalyst (h) and Zn 0.9 Cu 0.1 S catalyst (i) synthesized from CuS (ZnS)1−Y(CuCl)(Y=0.01−0.2)の固溶体(b−f)、ZnS(a)、CuCl(g)、CuSから合成したZn0.9Cu0.1Sの触媒(h)、及びCuSから合成したZn0.9Cu0.1Sの触媒(i)の拡散反射スペクトルZn 0.9 Cu synthesized from (ZnS) 1-Y (CuCl) Y (Y = 0.01-0.2) solid solution (bf), ZnS (a), CuCl (g), Cu 2 S Diffuse reflectance spectrum of 0.1 S catalyst (h) and Zn 0.9 Cu 0.1 S catalyst (i) synthesized from CuS 石英アンプル中において773Kで5時間熱処理することにより得られた(ZnS)0.9(CuCl)0.1固溶体の走査型電子顕微鏡(SEM)による観察写真Scanning electron microscope (SEM) observation photograph of (ZnS) 0.9 (CuCl) 0.1 solid solution obtained by heat treatment at 773 K for 5 hours in a quartz ampule 室温で測定した(ZnS)1−Y(CuX)固溶体の励起・発光スペクトル。(ZnS)1−Y(CuCl)固溶体の励起スペクトル側は、Y=0.01(a)、Y=0.05(b)、Y=0.10(c)、Y=0.15(d)、およびY=0.20(e)であり、発光側は、Y=0.01(a’)、Y=0.05(b’)、Y=0.10(c’)、Y=0.15(d’)、およびY=0.20(e’)であるExcitation / emission spectrum of (ZnS) 1-Y (CuX) Y solid solution measured at room temperature. The excitation spectrum side of the (ZnS) 1-Y (CuCl) Y solid solution has Y = 0.01 (a), Y = 0.05 (b), Y = 0.10 (c), Y = 0.15 ( d) and Y = 0.20 (e), and the light emission side is Y = 0.01 (a ′), Y = 0.05 (b ′), Y = 0.10 (c ′), Y = 0.15 (d ') and Y = 0.20 (e') 水溶液の組成と(ZnS)0.9(CuCl)0.1固溶体光触媒の水素生成反応との相関:水溶液の組成の組成は(a)0.5M KSO、(b)0.1M NaS、及び(c)の0.5M KSO+0.1M NaSである。(d)はCdS(溶液組成は0.5M KSO+0.1M NaS)Correlation between the composition of the aqueous solution and the hydrogen generation reaction of the (ZnS) 0.9 (CuCl) 0.1 solid solution photocatalyst: The composition of the aqueous solution is (a) 0.5 M K 2 SO 3 , (b) 0.1 M Na 2 S, and (c) 0.5 M K 2 SO 3 +0.1 M Na 2 S. (D) is CdS (solution composition is 0.5M K 2 SO 3 + 0.1M Na 2 S) (ZnS)0.9(CuCl)0.1固溶体触媒の疑似太陽光照射下の水素生成反応活性(ZnS) 0.9 (CuCl) 0.1 Solid solution catalyst hydrogen production reaction activity under simulated sunlight irradiation

符号の説明Explanation of symbols

V.L 真空ライン G 圧力計 C 循環器 T.B 高温槽 S スターラー
MX 撹拌子 L 可視光(λ>420nm) R.V 反応容器
L.C リービッヒ冷却管 G.C ガスクロマトグラフィー
V. L Vacuum line G Pressure gauge C Circulator T. B High-temperature bath S Stirrer MX Stirrer L Visible light (λ> 420 nm) V reaction vessel C. Liebig cooling pipe C Gas chromatography

Claims (4)

(ZnS)1−Y(CuX)(ここでYは0.01≦Y≦0.2であり、Xはハロゲン元素である)の組成の太陽光照射下で還元剤を含む水溶液の光水分解により水素を生成する活性を有する固溶体からなる光触媒。 (ZnS) 1-Y (CuX) Y (where Y is 0.01 ≦ Y ≦ 0.2 and X is a halogen element) A photocatalyst comprising a solid solution having an activity of generating hydrogen by decomposition. 固溶体の基本結晶構造がZinc blende型である請求項1に記載の光触媒。 The photocatalyst according to claim 1, wherein the basic crystal structure of the solid solution is a Zinc blende type. 固溶体がZnSとして酸素存在下(空気)において400℃±100℃において2±1時間焼成しXRDスペクトルにおいてZnO及びZnSOに帰属するピークが見られないものを用いCuXと混合し673K〜873Kの範囲で焼成することにより得られたものである請求項1又は2に記載の光触媒。 The solid solution was sintered as ZnS in the presence of oxygen (air) at 400 ° C. ± 100 ° C. for 2 ± 1 hour and mixed with CuX using the XRD spectrum in which no peaks attributed to ZnO and ZnSO 4 were observed. Range of 673K to 873K The photocatalyst according to claim 1 or 2, wherein the photocatalyst is obtained by calcining at a temperature. CuXがCuClおよび/又はCuBrであり還元剤が硫黄化合物である請求項1、2又は3に記載の固溶体からなる光触媒。
The photocatalyst comprising a solid solution according to claim 1, wherein CuX is CuCl and / or CuBr and the reducing agent is a sulfur compound.
JP2005341952A 2005-11-28 2005-11-28 ZnS-CuX solid solution photocatalyst exhibiting high activity in hydrogen production from aqueous solution containing sulfur compound under sunlight irradiation Expired - Fee Related JP4915719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005341952A JP4915719B2 (en) 2005-11-28 2005-11-28 ZnS-CuX solid solution photocatalyst exhibiting high activity in hydrogen production from aqueous solution containing sulfur compound under sunlight irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005341952A JP4915719B2 (en) 2005-11-28 2005-11-28 ZnS-CuX solid solution photocatalyst exhibiting high activity in hydrogen production from aqueous solution containing sulfur compound under sunlight irradiation

Publications (2)

Publication Number Publication Date
JP2007144304A JP2007144304A (en) 2007-06-14
JP4915719B2 true JP4915719B2 (en) 2012-04-11

Family

ID=38206345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341952A Expired - Fee Related JP4915719B2 (en) 2005-11-28 2005-11-28 ZnS-CuX solid solution photocatalyst exhibiting high activity in hydrogen production from aqueous solution containing sulfur compound under sunlight irradiation

Country Status (1)

Country Link
JP (1) JP4915719B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104667932A (en) * 2015-01-21 2015-06-03 西安建筑科技大学 Preparation of graphene-enhanced and toughened porous solid waste catalyst and application of graphene-enhanced and toughened porous solid waste catalyst in hydrogen production

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5696334B2 (en) * 2010-05-27 2015-04-08 国立大学法人山梨大学 Photocatalyst composition and method for producing photocatalyst composition
US9305736B2 (en) 2011-07-15 2016-04-05 Tazmo Co., Ltd. Phosphor for dispersion-type EL, dispersion-type EL device, and method of manufacturing the same
CN102688764B (en) * 2012-05-25 2013-10-09 西安建筑科技大学 Steel-slag-base cementing material and zinc oxide semiconductor composite catalyst and application thereof in solar photocatalytic water splitting to produce hydrogen
CN102671664B (en) * 2012-05-25 2013-12-04 西安建筑科技大学 Slag-based cementitious material-iron oxide semi-conductor composite catalyst and application in solar photocatalytic hydrogen production through water decomposition
WO2020003464A1 (en) 2018-06-28 2020-01-02 富士通株式会社 Photocatalyst, gas sensor device, gas sensor, and measuring method
CN110201681A (en) * 2018-09-30 2019-09-06 湖北工业大学 A kind of preparation method of air cleaning ZnO/CuS/Ag catalysis material
CN113289645B (en) * 2021-06-09 2022-03-25 淮北师范大学 One-dimensional self-assembly composite photocatalyst and preparation method and application thereof
CN115501897B (en) * 2022-09-15 2023-06-27 齐鲁工业大学 Nanocomposite, preparation method and application thereof in hydrogen production by visible light catalysis

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310770A (en) * 1997-03-10 1998-11-24 Sony Corp Production of luminophor
JP3421627B2 (en) * 2000-02-29 2003-06-30 韓国化学研究所 Method for producing photocatalyst for zinc sulfide based hydrogen generation
JP4070516B2 (en) * 2002-06-06 2008-04-02 独立行政法人科学技術振興機構 Visible light-responsive sulfide photocatalyst for hydrogen production from water
JP2005120117A (en) * 2003-10-14 2005-05-12 Sumitomo Electric Ind Ltd Phosphor, and porous body and filter obtained using the same
JP2005199222A (en) * 2004-01-19 2005-07-28 Tokyo Univ Of Science Visible light active sulfide solid solution photocatalyst improved in activity efficiency and activity stability and producing hydrogen by optical decomposition of water and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104667932A (en) * 2015-01-21 2015-06-03 西安建筑科技大学 Preparation of graphene-enhanced and toughened porous solid waste catalyst and application of graphene-enhanced and toughened porous solid waste catalyst in hydrogen production
CN104667932B (en) * 2015-01-21 2016-09-28 西安建筑科技大学 The preparation of Graphene reinforcing and toughening permeability solid waste base catalyst and the application in hydrogen manufacturing

Also Published As

Publication number Publication date
JP2007144304A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4915719B2 (en) ZnS-CuX solid solution photocatalyst exhibiting high activity in hydrogen production from aqueous solution containing sulfur compound under sunlight irradiation
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
JP4803414B2 (en) Novel Z-scheme-type photocatalytic system for complete decomposition of visible light active water and method for complete decomposition of water using said catalyst
JP6370371B2 (en) NATAO3: LA2O3 catalyst with cocatalyst composition for photocatalytic reduction of carbon dioxide
CN104324733B (en) The preparation method of non precious metal high activity photolytic hydrogen production catalyst
Fu et al. Efficient photocatalytic H2 evolution over Cu and Cu3P co-modified TiO2 nanosheet
JP2009066529A (en) Photocatalyst, its manufacturing method, and method for generating hydrogen gas
Liu et al. Correlation between band structures and photocatalytic activities of CdxCuyZn1–x–yS solid solution
Kaga et al. Solar hydrogen production over novel metal sulfide photocatalysts of AGa 2 In 3 S 8 (A= Cu or Ag) with layered structures
Sarwar et al. Synergistic effect of photo-reduced Ni–Ag loaded g-C3N4 nanosheets for efficient visible Light‐Driven photocatalytic hydrogen evolution
CN101811044A (en) Potassium niobate nanotube photocatalyst and preparation method and application thereof
JP2013180245A (en) Photocatalyst for water decomposition and hydrogen production method
Umer et al. Self-doped Ti3+ mediated TiO2/In2O3/SWCNTs heterojunction composite under acidic/basic heat medium for boosting visible light induced H2 evolution
Parnicka et al. Experimental and theoretical investigations of the influence of carbon on a Ho3+-TiO2 photocatalyst with Vis response
JP4528944B2 (en) Photocatalyst carrying Ir oxide cocatalyst in oxidative atmosphere in the presence of nitrate ion and method for producing the same
CN103657687A (en) Compound type semiconductor photocatalyst and preparation method thereof as well as photocatalytic system and hydrogen production method
Madi et al. Fabricating V2AlC/g‐C3N4 nanocomposite with MAX as electron moderator for promoting photocatalytic CO2‐CH4 reforming to CO/H2
CN103381367B (en) Photocatalytic water splitting hydrogen production material CdS/Ba0.9Zn0.1TiO3 and preparation method thereof
JP2004008922A (en) Visible light responsive sulfide photocatalyst for producing hydrogen from water
JP6521316B2 (en) Semiconductor photocatalyst having characteristic absorption band and method of manufacturing the same
Jia et al. Effects of Pt3Ni alloy polyhedral and its de-alloying on CdS's performance in hydrogen evolution from water-splitting under visible light
JP4608693B2 (en) Black photocatalyst for hydrogen production with total absorption of visible light
Mohamed et al. Facile Fabrication of Pt-Doped Mesoporous ZnS as High Efficiency for Photocatalytic CO 2 Conversion
CN100351015C (en) Method for preparing photocatalyst of platinum-carried cadmium sulfide
JP4312471B2 (en) A photocatalyst comprising AgGaS2 for generating hydrogen from an aqueous solution containing a sulfur compound under irradiation with visible light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees