JP2005199222A - Visible light active sulfide solid solution photocatalyst improved in activity efficiency and activity stability and producing hydrogen by optical decomposition of water and its manufacturing method - Google Patents

Visible light active sulfide solid solution photocatalyst improved in activity efficiency and activity stability and producing hydrogen by optical decomposition of water and its manufacturing method Download PDF

Info

Publication number
JP2005199222A
JP2005199222A JP2004010374A JP2004010374A JP2005199222A JP 2005199222 A JP2005199222 A JP 2005199222A JP 2004010374 A JP2004010374 A JP 2004010374A JP 2004010374 A JP2004010374 A JP 2004010374A JP 2005199222 A JP2005199222 A JP 2005199222A
Authority
JP
Japan
Prior art keywords
solid solution
photocatalyst
cuag
sulfide solid
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004010374A
Other languages
Japanese (ja)
Inventor
Akihiko Kudo
昭彦 工藤
Kazumasa Tsuji
一誠 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2004010374A priority Critical patent/JP2005199222A/en
Publication of JP2005199222A publication Critical patent/JP2005199222A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical water decomposing photocatalyst capable of effectively converting visible spectrum light of solar rays to H<SB>2</SB>. <P>SOLUTION: The optical water decomposing photocatalyst comprising a sulfide solid solution comprises a composition represented by the formula: (CuAg)<SB>x</SB>In<SB>2x</SB>Zn<SB>2(1-2x)</SB>S<SB>2</SB>(wherein x is 0.15±0.02) obtained under a synthesizing condition including a heat treatment process of a combination condition of a temperature range of 800±150°C and a treatment time of 3-37 hr and has characteristics wherein a specific surface area due to a BET isothermal adsorption method is 0.9-3.6 m<SP>2</SP>/g and a band gap is 2.0±0.1 and activity producing hydrogen by the optical decomposition of an aqueous solution containing a sulfur compound. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、活性特性及び活性安定性を改善した可視光活性硫化物固溶体系からなる光水分解触媒系及びその製造方法に関する。   The present invention relates to a photohydrolysis catalyst system comprising a visible light activated sulfide solid solution system with improved activity characteristics and activity stability, and a method for producing the same.

化石資源は無尽蔵とは言えないことから、これらを化学原料に振り向けることが資源の有効利用の観点から好ましい。また、地球温暖化などの環境問題などの観点から、COの発生を伴わないクリーンなエネルギーへの変換が熱望されている。また、石炭の燃焼の際にはCOの発生だけでなく、白雲母として石炭中に含まれている化合物からのフッ素の発生も有ると言われている。前記問題ないエネルギー供給手段として登場して来た原子力利用の発電技術も、燃料物質を製造する工程、及び使用後の処理において生成する物質の兵器としての使用などによる世界秩序の破壊が懸念されるという事態に至り、大きな問題を抱えることになった。このような中で、環境に優しく、安全性が高く、かつ設備コストも比較的かからないエネルギー資源の開発が望まれている。最近、風力発電に、無尽蔵なエネルギー資源の利用の観点、及び設備費も比較的小さいなどから、多くの投資が向けられている。また、太陽電池もクリーンで、利用性の高いエネルギーを生産することから、実用化され、かつ更に効率性の向上と、安定したエネルギー供給に向けて多数の研究が行われている。また、太陽光を利用するエネルギー変換技術として、光触媒を利用した水の光分解反応に興味が持たれている。ここで利用される水の光分解反応に活性を示す光触媒は、光吸収、電荷分離、表面での酸化還元反応といった機能を備えた高度な光機能材料であり、多くのものが提案されている。 Since fossil resources cannot be said to be inexhaustible, it is preferable to allocate them to chemical raw materials from the viewpoint of effective use of resources. In addition, from the viewpoint of environmental problems such as global warming, conversion to clean energy without generating CO 2 is eagerly desired. Further, it is said that not only the generation of CO 2 but also the generation of fluorine from a compound contained in the coal as muscovite when the coal is burned. The nuclear power generation technology that has emerged as a non-problematic energy supply means is also concerned about the destruction of the world order due to the use of substances produced in the process of manufacturing fuel materials and the processing after use as weapons. This led to a big problem. Under such circumstances, development of energy resources that are environmentally friendly, high in safety, and relatively low in equipment costs is desired. Recently, many investments have been directed to wind power generation because of its infinite use of energy resources and relatively low equipment costs. In addition, since solar cells produce clean and highly usable energy, they have been put into practical use, and many studies have been conducted for further improving efficiency and supplying stable energy. In addition, as an energy conversion technology using sunlight, there is an interest in water photolysis using a photocatalyst. The photocatalyst active in the photolysis reaction of water used here is an advanced photofunctional material having functions such as light absorption, charge separation, and surface oxidation-reduction reaction, and many have been proposed. .

M.Matsumura,S.Furukawa,Y.Saho and H.Tsubomura,J.Phys.Chem.,1985,89,1327.M. Matsumura, S. Furukawa, Y. Saho and H. Tsubomura, J.A. Phys. Chem. 1985, 89, 1327. J.F.Reber and K. Meier, J.Phys.Chem..1986,90,824.J. F. Reber and K. Meier, J. Phys. Chem. 1986, 90, 824. J.F.Reber and K. Meier,J.Phys.Chem.,1984、88,5903.J. F. Reber and K. Meier, J.A. Phys. Chem. , 1984, 88, 5903. N.Zeug,J.Bucheler and H.Kisch、J.Am.Chem.Soc.1985,107,1495.N. Zeug, J. et al. Bucheler and H. Kisch, J.A. Am. Chem. Soc. 1985, 107, 1495. 辻 一誠・加藤英樹・小林久芳・工藤昭彦, 日本化学会第81春季年会, 東京, 2002年 3月.Kazuyoshi Tsuji, Hideki Kato, Hisayoshi Kobayashi, Akihiko Kudo, The 81st Annual Meeting of the Chemical Society of Japan, Tokyo, March 2002. A. Kudo,I.Tsuji and H.Kato,Chem.Comm.,2002, 1958.A. Kudo, I. Tsuji and H. Kato, Chem. Comm. , 2002, 1958. A.Kudo and M.Sekizawa,Catal.Lett.,1999,58,241.A. Kudo and M. Sekizawa, Catal. Lett. 1999, 58, 241. A.Kudo and M.Sekizawa,Chem.Commun.,2000,1371.A. Kudo and M. Sekizawa, Chem. Commun. 2000, 1371. I. Tsuji and A. Kudo, J. Photochem.Photobiol.A.2003, 156, 249.I. Tsuji and A. Kudo, J. Photochem. Photobiol. A. 2003, 156, 249. 辻 一誠・加藤英樹・小林久芳・工藤昭彦, 第90回触媒討論会, 浜松, 2002年9月.Kazuyoshi Tsuji, Hideki Kato, Hisayoshi Kobayashi, Akihiko Kudo, The 90th Catalysis Conference, Hamamatsu, September 2002. 辻 一誠・加藤英樹・小林久芳・工藤昭彦, 第92回触媒討論会, 徳島, 2003年 9月.Kazuyoshi Tsuji, Hideki Kato, Hisayoshi Kobayashi, Akihiko Kudo, 92nd Catalysis Conference, Tokushima, September 2003. 長根 聖・辻 一誠・加藤英樹・小林久芳・工藤昭彦, 日本化学会第83春季年会, 東京, 2003年 3月.Satoshi Nagane, Kazuaki Tsuji, Hideki Kato, Hisayoshi Kobayashi, Akihiko Kudo, The 83rd Annual Meeting of the Chemical Society of Japan, Tokyo, March 2003. A.Kudo,A.Nagane,I.Tsuji,H.Kato,Chem.Lett., 2002,9,882.A. Kudo, A.A. Nagane, I. Tsuji, H. Kato, Chem. Lett. , 2002, 9, 882.

前記太陽光エネルギーを有効利用して水を分解し水素を得る新しいエネルギーシステムの構築には、太陽光のほぼ95%以上が可視光およびそれより長波長側領域であることの観点から、可視光応答性光触媒の開発が強く望まれている。しかしながら可視光照射下で水の分解に高効率な光触媒は未だ見出されていない。犠牲試薬存在下においては可視光を利用可能な2.4eVのバンドギャップを持つCdSが白金を担持することで、可視光照射下での水素生成反応に高活性を示す光触媒を構成できることがこれまでに報告されている(非特許文献1、2)。ZnSは紫外光照射下ではあるがPtのような助触媒を担持しなくても水素生成反応に高活性を示す光触媒であることが知られている(非特許文献3、4)。このような中で、本発明者らのグループでは、これまでに金属イオンをドーピングしたZnS光触媒やZnS光触媒とAgInSまたはCuInSとの固溶体が可視光照射下で水素生成反応に高い活性を示すことに関して多くの報告をしている(非特許文献5−10)。また、前記研究の中で、ZnSにAgInSとCuInSを共に固溶することで、より長波長領域の可視光の利用が可能になることも報告した(非特許文献11)。更に、他の硫化物光触媒として、ZnS類似のカルコパイラト型構造をもつAgGaS、層状構造のNaInSも可視光照射下において犠牲試薬存在下で水素生成に高活性を示すことを報告してきた(非特許文献12、13)。しかし、これらの硫化物光触媒は、水素生成反応に高い活性を示すものの光触媒反応過程において徐々に失活してしまうという欠点がある。また、利用できる波長領域も満足できるものではない。 For the construction of a new energy system that effectively utilizes the solar energy to decompose water and obtain hydrogen, visible light is used from the viewpoint that almost 95% or more of sunlight is in the visible light and longer wavelength side region. Development of a responsive photocatalyst is strongly desired. However, a highly efficient photocatalyst for the decomposition of water under visible light irradiation has not yet been found. In the presence of a sacrificial reagent, CdS having a band gap of 2.4 eV that can use visible light supports platinum, so that a photocatalyst exhibiting high activity in the hydrogen generation reaction under visible light irradiation can be constructed so far. (Non-Patent Documents 1 and 2). ZnS is known to be a photocatalyst exhibiting high activity in the hydrogen generation reaction even when it does not carry a promoter such as Pt under ultraviolet light irradiation (Non-patent Documents 3 and 4). Under these circumstances, in our group, ZnS photocatalyst doped with metal ions or a solid solution of ZnS photocatalyst and AgInS 2 or CuInS 2 shows high activity in hydrogen generation reaction under visible light irradiation. Many reports have been made on this matter (Non-patent Documents 5-10). Further, the in studies, that together solid solution AgInS 2 and CuInS 2 to ZnS, also reported that it allows the use of visible light having a longer wavelength region (Non-Patent Document 11). Further, as another sulfide photocatalyst, AgGaS 2 with Karukopairato structure of ZnS similar to NaInS 2 layered structures have reported to exhibit high activity in hydrogen generation in the presence of a sacrificial reagent under visible light irradiation (non Patent Documents 12 and 13). However, although these sulfide photocatalysts exhibit high activity in the hydrogen generation reaction, there is a drawback that they are gradually deactivated during the photocatalytic reaction process. Also, the usable wavelength region is not satisfactory.

本発明の課題は、基本的には、より長波長の可視光で水分解活性を有し、更に前記光水分解活性の劣化を改善した組成(CuAg)In2XZn2(1−2X)(ここで、Xは0.15±0.02)で表される固溶体を提供することである。更に、前記光水分解活性を向上させた触媒を提供することである。前記基本特性の改善が如何にしたら実現できるか、最も基本に戻り前記固溶体の製造条件を見出すべく多くの製造条件を試行錯誤の実験を試みた。その中で、前記固溶体の製造工程における熱処理条件として、比較的低い温度と処理時間を長時間とすることにより、また、硫黄雰囲気中で熱処理することで、表面積を維持したまま結晶性のよい粒子が合成でき、Pt助触媒を用いた場合においても光水分解活性に改善が見られ、更に、助触媒としてRuを担持させることにより前記水素生成反応の活性が顕著に向上させることができることを発見し、前記課題を解決することができた。 The subject of the present invention is basically a composition (CuAg) X In 2X Zn 2 (1-2X) having water decomposition activity with visible light having a longer wavelength and further improving the degradation of the photowater decomposition activity. This is to provide a solid solution represented by S 2 (where X is 0.15 ± 0.02). Furthermore, it is providing the catalyst which improved the said photo-water decomposition activity. In order to find out how the improvement of the basic characteristics can be realized, the most basic conditions were tried and trial and error experiments were conducted to find out the manufacturing conditions of the solid solution. Among them, as a heat treatment condition in the manufacturing process of the solid solution, the particles having good crystallinity while maintaining the surface area by making the temperature relatively low and the treatment time long, and also by heat treatment in a sulfur atmosphere. It was discovered that even when Pt cocatalyst was used, the photohydrolysis activity was improved, and further, the activity of the hydrogen generation reaction could be significantly improved by supporting Ru as a cocatalyst. And the said subject was able to be solved.

本発明第1は、(1)温度800℃±150℃の範囲及び処理時間3以上37時間以下の範囲の組み合わせ条件の熱処理行程を含む合成条件で得られる(CuAg)In2XZn2(1−2X)(ここで、Xは0.15±0.02)の組成、BET等温吸着法の比表面積が0.9〜3.6m/g、及びバンドギャップ2.0±0.1eVの特性を有し、硫黄化合物を含む水溶液の光水分解により水素を生成する活性を有する硫化物固溶体からなる光触媒である。好ましくは、(2)熱処理を硫黄雰囲気中実施する前記(1)に記載の硫化物固溶体からなる光触媒であり、より好ましくは、(3)熱処理前に硫黄を焼成前の前駆体に対し10±2重量%を添加する前記(2)に記載の硫化物固溶体からなる光触媒である。また、好ましくは、(4)熱処理の処理時間が昇温時間2.0以上15時間以下の昇温時間を含み、全焼成時間が3時間以上37時間以下の範囲である前記(1)、(2)または(3)に記載の硫化物固溶体からなる光触媒であり、より好ましくは、(5)Ru、Pt、RhまたはIr助触媒を担持させた前記(1)、(2)、(3)または(4)に記載の硫化物固溶体からなる光触媒であり、一層好ましくは、(6)(CuAg)In2XZn2(1−2X)固溶体及びRu、Pt、RhまたはIrの塩化物を硫化物固溶体光触媒水素生成光分解溶液に添加される少なくともSO 2−イオンが存在する水溶液に添加し、前記硫化物固溶体光触媒水素生成反応を進行させる光照射による光電着により前記固溶体に助触媒を担持させた前記(5)に記載の光触媒である。また、好ましくは、(7)硫黄化合物を含む水溶液がSO 2−とS2−イオンが存在する水溶液である前記(1)乃至(6)の1つである光触媒である。 The present invention first is (1) obtained in Synthesis conditions including heat treatment step of conditions the combination of range and treatment time 3 to 37 hours or less in the range of temperature of 800 ℃ ± 150 ℃ (CuAg) X In 2X Zn 2 (1-2X) S 2 (where X is 0.15 ± 0.02), the specific surface area of the BET isothermal adsorption method is 0.9 to 3.6 m 2 / g, and the band gap is 2.0 ±. It is a photocatalyst composed of a sulfide solid solution having a characteristic of 0.1 eV and having an activity of generating hydrogen by photohydrolysis of an aqueous solution containing a sulfur compound. Preferably, (2) the photocatalyst comprising the sulfide solid solution according to the above (1), wherein the heat treatment is performed in a sulfur atmosphere, and more preferably (3) 10 ±± of the sulfur before the heat treatment with respect to the precursor before firing. A photocatalyst comprising the sulfide solid solution according to (2), wherein 2% by weight is added. Preferably, (4) the heat treatment time includes a temperature rising time of 2.0 to 15 hours, and the total baking time is in the range of 3 to 37 hours (1), ( 2) or a photocatalyst comprising the sulfide solid solution according to (3), more preferably (5) the above (1), (2), (3) carrying Ru, Pt, Rh or Ir promoter Or a photocatalyst comprising the sulfide solid solution according to (4), more preferably (6) (CuAg) X In 2X Zn 2 (1-2X) S 2 solid solution and a chloride of Ru, Pt, Rh or Ir Is added to the aqueous solution containing at least SO 3 2- ion added to the sulfide solid solution photocatalyst hydrogen generation photodecomposition solution, and the solid solution is co-catalyzed by photo-irradiation by light irradiation to advance the sulfide solid solution photocatalyst hydrogen generation reaction. Carrying It was a photocatalyst according to (5). Preferably, (7) the photocatalyst is one of the above (1) to (6), wherein the aqueous solution containing a sulfur compound is an aqueous solution in which SO 3 2− and S 2− ions are present.

本発明の第2は、(8)(CuAg)In2XZn2(1−2X)(ここで、Xは0.15±0.02)を温度800℃±150℃の範囲及び処理時間3以上37時間以下の範囲の組み合わせた処理条件で熱処理し、BET等温吸着法の比表面積が0.9m/g以上3.6m/g以上、及びバンドギャップ2.0±0.1eVの特性を有し、硫黄化合物を含む水溶液の光水分解により水素を生成する活性を有する(CuAg)In2XZn2(1−2X)(ここで、Xは0.15±0.02)の組成の硫化物固溶体からなる光触媒を製造する方法である。好ましくは、(9)(CuAg)In2XZn2(1−2X)固溶体及びRu、Pt、RhまたはIrの塩化物を硫化物固溶体光触媒水素生成光分解溶液に添加される少なくともSO 2−イオンが存在する水溶液に添加し、前記硫化物固溶体光触媒水素生成反応を進行させる光照射による光電着により前記固溶体にRu、Pt、RhまたはIr担持させRu、Pt、RhまたはIr担持(CuAg)In2XZn2(1−2X)固溶体からなる光触媒を製造する方法であり、より好ましくは、(10)光電着による(CuAg)In2XZn2(1−2X)固溶体へRu、Pt、RhまたはIr担持させる行程を前記固溶体光触媒によりSO 2−とS2−イオンが存在する水溶液から水素生成光分解を実施する前工程または行程中で進行させる前記(9)に記載のRu、Pt、RhまたはIr担持(CuAg)In2XZn2(1−2X)固溶体からなる光触媒を製造する方法である。 The second of the present invention, (8) (CuAg) X In 2X Zn 2 (1-2X) S 2 ( where, X is 0.15 ± 0.02) range and the processing temperature 800 ° C. ± 0.99 ° C. The Heat treatment is performed under combined treatment conditions in the range of 3 hours or more and 37 hours or less, the specific surface area of the BET isothermal adsorption method is 0.9 m 2 / g or more and 3.6 m 2 / g or more, and the band gap is 2.0 ± 0.1 eV. (CuAg) X In 2X Zn 2 (1-2X) S 2 (where X is 0.15 ± 0. 0), and has the activity of generating hydrogen by photohydrolysis of an aqueous solution containing a sulfur compound. This is a method for producing a photocatalyst comprising a sulfide solid solution having the composition (02). Preferably, (9) (CuAg) X In 2X Zn 2 (1-2X) S 2 solid solution and Ru, Pt, at least SO 3 added chlorides Rh or Ir sulfide solid solution photocatalyst hydrogen generation photolysis solution 2- sulfide solid solution photocatalyst is added to an aqueous solution, and the solid solution is supported by Ru, Pt, Rh, or Ir by photo-deposition by light irradiation to advance the hydrogen-catalyzed hydrogen generation reaction. Ru, Pt, Rh, or Ir is supported (CuAg ) X In 2X Zn 2 (1-2X) S 2 solid solution, more preferably, (10) (CuAg) X In 2X Zn 2 (1-2X) S 2 solid solution by photo-deposition to Ru, Pt, Rh or hydrogen generation optical branching stroke to Ir supported from an aqueous solution to the presence of SO 3 2-and S 2- ions by the solid solution photocatalyst In the method for producing Ru, Pt, and Rh or Ir supported (CuAg) X In 2X Zn 2 (1-2X) photocatalyst comprising S 2 solid solution according to (9) By proceeding in a previous step or step in carrying out the is there.

発明の効果として、615nmまでの広い波長域の可視光を利用できる水の光分解水素生成触媒系を構築できたことを挙げることができる。高効率な水素生成による光エネルギー変換系としてこのような長波長域までの光を利用できる系が見出されたことは全く驚くべきことである。 As an effect of the invention, it can be mentioned that a water photolysis hydrogen generation catalyst system capable of using visible light in a wide wavelength range up to 615 nm could be constructed. It is quite surprising that a system that can use light up to such a long wavelength range has been found as a light energy conversion system by highly efficient hydrogen generation.

先ず、本発明の評価機器、測定装置などを説明する。
A.測定機器、実験装置の概要;
調製された硫黄固溶体類の分析;
1)硫化物固溶体の粉末の同定;X線回折(Rigaku;MiniFlex)による。
2)触媒の比表面積の測定;BET等温吸着法 (Coulter;SA3100) による。
3)紫外-可視-近赤外拡散反射スペクトル(DRS);紫外可視近赤外分光光度計(Jascow;UbestV-570)で測定。得られた拡散反射スペクトルは,Kubelka-Munk法により、吸収モードに変換
B.光触媒の活性測定:
1)図1に記載の、循環系C、発生水素ガス排気系V.L、発生ガス分析ガスクロマトグラフィーG、C、撹拌子MX、高温糟T.B、光源Lを配置した反応器R.Vを備えた閉鎖循環系。
2)水素生成光分解実験溶液;硫黄化合物を含む水溶液、好ましくは、SO 2−とS2−イオンが存在する水溶液、より好ましくは、還元剤であるKSOとNaSとの混合水溶液中(0.5M KSO+0.1M NaSまたは、0.25MKSO+ 0.35M NaS)
3)生成した水素の定量;ガスクロマトグラフG.C(Shimazu; GC-8A, MS-5A column, TCD, Ar carrier)
4)光源L;300WのXe ランプ(ILC technology;CERMAX LX-300)とCut-off filter (HOYA L42)を組み合わせた、420nmより長波長の光源
5)太陽光シュミレーター(YAMASHITA DENSO;YSS−80QA,AM1.5,100mW/cm)の光源を用いた活性の評価。(この場合、反応は開放系で行い、生成したガスは水上置換で定量した。)
First, an evaluation device, a measurement device, and the like of the present invention will be described.
A. Outline of measuring equipment and experimental equipment;
Analysis of prepared sulfur solid solutions;
1) Identification of sulfide solid solution powder; by X-ray diffraction (Rigaku; MiniFlex).
2) Measurement of specific surface area of catalyst; by BET isothermal adsorption method (Coulter; SA3100).
3) Ultraviolet-visible-near infrared diffuse reflectance spectrum (DRS); measured with an ultraviolet-visible near-infrared spectrophotometer (Jascow; UbestV-570). The obtained diffuse reflectance spectrum is converted into an absorption mode by the Kubelka-Munk method. Photocatalytic activity measurement:
1) Circulation system C, generated hydrogen gas exhaust system V. L, evolved gas analysis gas chromatography G, C, stirrer MX, high-temperature soot T. B, reactor R. with light source L. Closed circulatory system with V.
2) Hydrogen generation photolysis experimental solution; an aqueous solution containing a sulfur compound, preferably an aqueous solution containing SO 3 2− and S 2− ions, more preferably, K 2 SO 3 and Na 2 S as reducing agents. mixed solution (0.5M K 2 SO 3 + 0.1M Na 2 S or, 0.25MK 2 SO 3 + 0.35M Na 2 S)
3) Quantification of produced hydrogen; gas chromatograph G. C (Shimazu; GC-8A, MS-5A column, TCD, Ar carrier)
4) Light source L; 300 W Xe lamp (ILC technology; CERMAX LX-300) and Cut-off filter (HOYA L42) combined with a light source having a wavelength longer than 420 nm 5) Solar simulator (YAMASHITA DENSO; YSS-80QA, Evaluation of activity using a light source of AM 1.5, 100 mW / cm 2 ). (In this case, the reaction was carried out in an open system, and the generated gas was quantified by water replacement.)

硫黄固溶体の調製;
A.(CuAg)0.15In0.3Zn1.4固溶体の調製;
AgNO(Tanaka Kikinzoku;99.8%)1.91g、In(NO・3.6HO(Kojundo-kagaku;99.9%)0.823−0.905g(0−20%過剰),Zn(NO・6HO(Wako−Chemicals;99.0%) 0.324gの混合水溶液150mL中にCuCl(Kanto-kagaku;95% または その場で合成)1.11gを添加した後、HSガスを導入して硫化物の沈殿を生成した。15時間攪拌熟成した後、純水により濾過洗浄し、空気中で風乾させ、これを前駆体とした。得られた前駆体は後に示す表1−3に処理温度と処理時間〔()内は昇温時間(h)〕の熱処理条件で処理した。
表1−3では石英製アンプル中に真空封入して、また表2と3では、前駆体に硫黄を混合し、硫黄雰囲気中で熱処理した場合を示した。表3には、(CuIn)0.09Zn1.82固溶体及び(CuGa)0.09Zn1.82固溶体について、対比のために記載した。
各表中にはバンドギャップ(eV)及びH生成活性を、また、表1及び2には比表面積(m/g)も記載した。
Preparation of sulfur solid solution;
A. Preparation of (CuAg) 0.15 In 0.3 Zn 1.4 S 2 solid solution;
AgNO 3 (Tanaka Kikinzoku; 99.8% ) 1.91g, In (NO 3) 3 · 3.6H 2 O (Kojundo-kagaku; 99.9%) 0.823-0.905g (0-20% excess ), Zn (NO 3) 2 · 6H 2 O (Wako-Chemicals; 99.0%) mixed solution 150mL during CuCl of 0.324g (Kanto-kagaku; 95%, or synthesized in situ) added 1.11g After that, H 2 S gas was introduced to form a sulfide precipitate. After stirring and aging for 15 hours, the solution was filtered and washed with pure water and air-dried in air to obtain a precursor. The obtained precursor was processed under the heat treatment conditions shown in Table 1-3, which will be described later, with the processing temperature and processing time [() is the temperature rising time (h)].
Table 1-3 shows a case where a vacuum ampule is enclosed in a quartz ampule, and Tables 2 and 3 show a case where sulfur is mixed with the precursor and heat-treated in a sulfur atmosphere. Table 3 shows the (CuIn) 0.09 Zn 1.82 S 2 solid solution and the (CuGa) 0.09 Zn 1.82 S 2 solid solution for comparison.
In each table, band gap (eV) and H 2 production activity are shown, and in Tables 1 and 2, specific surface area (m 2 / g) is also shown.

図2に熱処理条件700℃(973K)で35時間で得られた(CuAg)0.15In0.3Zn1.4固溶体の拡散反射スペクトルを示した。 FIG. 2 shows a diffuse reflection spectrum of a (CuAg) 0.15 In 0.3 Zn 1.4 S 2 solid solution obtained in a heat treatment condition of 700 ° C. (973 K) in 35 hours.

B.表3に記載の比較実験用固溶体の調製;
1)(CuIn)0.09Zn1.82固溶体の調製;
In(NO・5HO(Kojundo-kagaku;99.99%)0.352g、Zn(NO・6HO(Wako−Chemicals;99.0%)0.352g、CuCl(Kanto-kagaku;95% または その場で合成)0.089gを溶かした混合水溶液150mL中に、HSガスを導入して硫化物の沈殿を生成し、15時間攪拌熟成した。その後は、(CuAg)0.15In0.3Zn1.4固溶体の合成と同様の手順で行った。
2)(CuGa)0.09Zn1.82固溶体の調製;
原料となる硫化物CuS(Kojundo-kagaku;99%)0.076g、 Ga(Kojundo-kagaku;99.99%)0.117g(10%過剰)、ZnS (Kojundo-kagaku;99.999%)1.773gを混合した後、石英アンプル中に真空封入して950℃(1223K)で10時間の熱処理を行った。
B. Preparation of solid solutions for comparative experiments as described in Table 3;
1) Preparation of (CuIn) 0.09 Zn 1.82 S 2 solid solution;
In (NO 3) 3 · 5H 2 O (Kojundo-kagaku; 99.99%) 0.352g, Zn (NO 3) 2 · 6H 2 O (Wako-Chemicals; 99.0%) 0.352g, CuCl ( Kanto-kagaku (95% or synthesized in situ) Into 150 mL of a mixed aqueous solution in which 0.089 g was dissolved, H 2 S gas was introduced to form a sulfide precipitate, and the mixture was aged and stirred for 15 hours. Thereafter, the same procedure as the synthesis of (CuAg) 0.15 In 0.3 Zn 1.4 S 2 solid solution was performed.
2) Preparation of (CuGa) 0.09 Zn 1.82 S 2 solid solution;
0.076 g of sulfide Cu 2 S (Kojundo-kagaku; 99%) as a raw material, 0.117 g (10% excess) of Ga 2 S 2 (Kojundo-kagaku; 99.99%), ZnS (Kojundo-kagaku; 99 .999%) 1.773 g was mixed, and then vacuum sealed in a quartz ampoule and heat-treated at 950 ° C. (1223 K) for 10 hours.

前記固溶体にPt及びRu助触媒を担持させた触媒の調製;
光生成した電荷の分離、酸化還元反応の反応場を分離することや速度論的因子を有利にさせるので、Pt、Ru、Rhなどの貴金属を助触媒として担持させることは行われているが、光分解触媒系と助触媒との組み合わせの水の光分解における酸化還元反応に対する理論は確立されていない。このことは、これまでに見出されている水素生成反応に高活性を示す硫化物固溶体光触媒においても同様である。硫化物固溶体光触媒ではPtを助触媒として担持することで活性が飛躍的に向上することがわかっている。しかし、Pt以外の助触媒を担持させた場合の効果については、詳しく調べられていない。また、AgGaS光触媒は、PtではなくRhを助触媒として担持することで水素生成活性がより高くなることがわかっている(前記非特許文献12)。そこで、(CuAg)0.15In0.3Zn1.4固溶体をベースとして、先ずPt助触媒の、そしてRuの助触媒の担持効果について調べた。これによりRhまたはIr助触媒について類推した。
Preparation of a catalyst having Pt and Ru promoters supported on the solid solution;
Although separation of photogenerated charges, separation of the reaction field of redox reaction and kinetic factors are made advantageous, noble metals such as Pt, Ru, Rh are supported as promoters. No theory has been established for the redox reaction in the photolysis of water in the combination of photolysis catalyst system and cocatalyst. The same applies to sulfide solid solution photocatalysts that have been found to be highly active in the hydrogen production reaction. It has been found that the activity of the sulfide solid solution photocatalyst is dramatically improved by supporting Pt as a promoter. However, the effect of loading a promoter other than Pt has not been investigated in detail. In addition, it has been found that the AgGaS 2 photocatalyst has higher hydrogen generation activity by supporting Rh instead of Pt as a cocatalyst (Non-patent Document 12). Therefore, based on the (CuAg) 0.15 In 0.3 Zn 1.4 S 2 solid solution, first, the supporting effect of the Pt promoter and the Ru promoter was examined. This gave an analogy for Rh or Ir promoters.

Pt助触媒の(CuAg)0.15In0.3Zn1.4固溶体への担持は、前記水素生成光分解実験溶液混合水溶液(0.5M KSO+0.1M NaS)中にて光触媒反応中に光電着する処方により行った。表1に、Pt(0.5重量%)/(CuAg)0.15In0.3Zn1.4固溶体触媒0.3gを添加し、前記水素生成光分解実験溶液を充填した図1に記載の閉鎖循環系において、前記光源として300WのXe ランプを用い、前記カットフィルターを介して420nmより長波長側の光を照射して水素生成を測定した結果を示す。 The Pt cocatalyst supported on (CuAg) 0.15 In 0.3 Zn 1.4 S 2 solid solution was mixed with the hydrogen generation photolysis experimental solution mixed aqueous solution (0.5M K 2 SO 3 + 0.1M Na 2 S). It was carried out according to a formulation that photo-deposits during the photocatalytic reaction. 1 in which 0.3 g of Pt (0.5 wt%) / (CuAg) 0.15 In 0.3 Zn 1.4 S 2 solid solution catalyst was added and filled with the hydrogen generation photolysis experimental solution. In the closed circulation system described in 1), the result of measuring hydrogen generation by using a 300 W Xe lamp as the light source and irradiating light having a wavelength longer than 420 nm through the cut filter is shown.

Figure 2005199222
Figure 2005199222

前記従来の850℃(1123K)よりも低温の、750℃(1023K)(実験2),650℃(923K)(実験3)で熱処理した固溶体では、それぞれ表面積が大きくなった。表1の実験1−3では水素生成活性はより低温で合成するに従い、低下した。これは、低温の熱処理により、粒子サイズは小さくなるが、結晶性が低下してしまうことが原因でるものと考えられた。そこで低温熱処理においても、結晶性の高い粒子を得るために、熱処理時間を比較的長時間の20時間(実験4)または35時間(実験5)の熱処理を行った。その結果、表1から理解されるように、比較的大きな表面積を維持し、かつ水素生成活性が向上した。   In the solid solutions heat-treated at 750 ° C. (1023 K) (Experiment 2) and 650 ° C. (923 K) (Experiment 3), which are lower than the conventional 850 ° C. (1123 K), the surface area was increased. In Experiment 1-3 of Table 1, the hydrogen generation activity decreased as it was synthesized at a lower temperature. This was thought to be due to the decrease in crystallinity, although the particle size was reduced by low-temperature heat treatment. Therefore, in order to obtain particles having high crystallinity even in the low temperature heat treatment, heat treatment was performed for a relatively long heat treatment time of 20 hours (experiment 4) or 35 hours (experiment 5). As a result, as understood from Table 1, a relatively large surface area was maintained and the hydrogen generation activity was improved.

熱処理温度を比較的低下させ、比表面積の大きな(CuAg)In2XZn2(1−2X)固溶体を、焼成持の硫黄の消失を防ぐ硫黄雰囲気で熱処理して得たものの水素生成活性活性効果を測定した結果を表2に示す。 Heat treatment temperature relatively decreases the, big specific surface area (CuAg) X In 2X Zn 2 (1-2X) S 2 solid solution, baking lifting of those obtained by heat treatment at a sulfur atmosphere to prevent the loss of sulfur hydrogen generation activity The results of measuring the activity effect are shown in Table 2.

Figure 2005199222
Figure 2005199222

実験6と実験7−9との対比から、(CuAg)0.15In0.3Zn1.4固溶体の前駆体に硫黄添加し、硫黄雰囲気中で熱処理することにより、比表面積は少し低下するが、H生成活性が向上することが分かった。 From the comparison between Experiment 6 and Experiment 7-9, the specific surface area is slightly increased by adding sulfur to the precursor of (CuAg) 0.15 In 0.3 Zn 1.4 S 2 solid solution and heat-treating it in a sulfur atmosphere. reduced to, but it was found that H 2 generation activity is improved.

本発明の(CuAg)In2XZn2(1−2X)固溶体にRu助触媒を担持させた場合の、助触媒Ruと組み合わせた場合の水素生成活性に対する効果を調べた。Ruを種々の熱処理条件により得られた固溶体光触媒に担持させ、それを用いて可視光照射下で水素生成反応を実施した場合のH生成活性の測定結果を表3に示す。従来の熱処理条件〔850℃(1123K)で5時間〕で合成した(CuAg)0.15In0.3Zn1.4固溶体光触媒(表3 の実験10)では、図3に示す水素生成反応の経時変化のように、助触媒未担持でほとんど水素生成に活性を示さないが、Ruを助触媒として担持することで、飛躍的に活性が向上することがわかった。反応初期での水素生成活性は592μmol/hでありPt担持の場合と同様に高い活性が得られた。しかし、反応初期で失活してしまい、反応5時間目以降では240μmol/hと半分以下まで活性が低下してしまった。 The effect on the hydrogen generation activity when the Ru promoter was supported on the (CuAg) X In 2X Zn 2 (1-2X) S 2 solid solution of the present invention in combination with the promoter Ru was investigated. Table 3 shows the measurement results of the H 2 production activity when Ru is supported on a solid solution photocatalyst obtained under various heat treatment conditions and a hydrogen production reaction is carried out under irradiation with visible light. (CuAg) 0.15 In 0.3 Zn 1.4 S 2 solid solution photocatalyst (experiment 10 in Table 3) synthesized under conventional heat treatment conditions [850 ° C. (1123 K) for 5 hours] produces hydrogen as shown in FIG. It was found that, as with the change over time of the reaction, the cocatalyst was not loaded and showed little activity for hydrogen generation, but by loading Ru as a cocatalyst, the activity was dramatically improved. The hydrogen generation activity at the initial stage of the reaction was 592 μmol / h, and a high activity was obtained as in the case of carrying Pt. However, it was deactivated at the initial stage of the reaction, and after 5 hours of the reaction, the activity dropped to 240 μmol / h, which was less than half.

Figure 2005199222
Figure 2005199222

Ruの担持方法によるH活性、特に失活特性に対する効果の考察;
通常、Ru助触媒の担持は、KSOとNaSの混合水溶液に必要量のRuCl水溶液(RuClは溶けていない)を添加し、光触媒反応中に触媒表面上に光電着させている。
しかし、濃度の高いNaS水溶液中では、Ruがしっかりと触媒上へ光電着されていない可能性が考えられる。そこで、あらかじめKSO水溶液中で光電着し、その後NaSを加えて反応を行った(表3、実験11)。その結果を図4に示す。初期活性で比較すると、図3の通常の担持条件よりも活性は若干低下しているが、比較的高い活性で水素を生成し、通常の担持条件で見られるような反応初期での極端な失活が抑制されていた。
Consideration of the effect on the H 2 activity, particularly the deactivation characteristics, by the Ru loading method;
Usually, the Ru promoter is supported by adding a necessary amount of RuCl 3 aqueous solution (RuCl 3 is not dissolved) to a mixed aqueous solution of K 2 SO 3 and Na 2 S, and performing photo-adsorption on the catalyst surface during the photocatalytic reaction. ing.
However, in a high concentration Na 2 S aqueous solution, there is a possibility that Ru is not photo-adhered firmly onto the catalyst. Therefore, photo-deposition was carried out in advance in a K 2 SO 3 aqueous solution, and then reaction was performed by adding Na 2 S (Table 3, Experiment 11). The result is shown in FIG. When compared with the initial activity, the activity is slightly lower than the normal loading conditions in FIG. 3, but hydrogen is generated at a relatively high activity, resulting in an extreme loss at the initial stage of the reaction as seen under normal loading conditions. Life was suppressed.

次に、従来の合成条件(熱処理:850℃(1123K)、5時間)とは異なり、より低温で長時間で熱処理、または硫黄雰囲気中でより低温で熱処理して合成した固溶体光触媒に関しても、Ruを同様の手順で担持して反応を行った。図5(表3、実験12),6(表3、実験13)に示すように、合成方法を改良しRuをあらかじめKSO水溶液中で光電着させた(CuAg)0.15In0.3Zn1.4固溶体光触媒では、非常に高い活性で、失活せずに水素を生成することがわかった。このように高い活性を維持したまま水素を生成し続けることが可能な他の光触媒としては、Ptを担持したCdSのみ知られている。しかし、この触媒は有毒なCdを含むことからも、有害な物質を含まないRuを担持した(CuAg)0.15In0.3Zn1.4固溶体光触媒の発見は、非常に興味深い。 Next, unlike conventional synthesis conditions (heat treatment: 850 ° C. (1123 K), 5 hours), a solid solution photocatalyst synthesized by heat treatment at a lower temperature for a longer time or heat treatment at a lower temperature in a sulfur atmosphere is also used for Ru. Was carried out in the same procedure to carry out the reaction. As shown in FIGS. 5 (Table 3, Experiment 12) and 6 (Table 3, Experiment 13), the synthesis method was improved, and Ru was previously photo-deposited in a K 2 SO 3 aqueous solution (CuAg) 0.15 In 0 .3 Zn 1.4 S 2 solid solution photocatalyst was found to produce hydrogen with very high activity and without deactivation. As another photocatalyst capable of continuously generating hydrogen while maintaining high activity in this way, only CdS carrying Pt is known. However, since this catalyst contains toxic Cd, the discovery of a (CuAg) 0.15 In 0.3 Zn 1.4 S 2 solid solution photocatalyst carrying Ru that does not contain harmful substances is very interesting.

次に、Ru助触媒の担持効果が、他の固溶体光触媒においても同じように発現するかを(CuIn)0.09Zn1.82固溶体(熱処理:850℃(1123K)、5時間)(表3、実験15)および(CuGa)0.09Zn1.82(熱処理:850℃(1123K 5時間)固溶体(表3、実験16)について調べてみた。それぞれの水素生成反応の経時変化を図7,8に示す。RuをあらかじめKSO水溶液中で光電着させたこれらの固溶体は、比較的定常的に水素を生成し続けることが可能であり、Ru助触媒の担持効果が発現することがわかった。水素生成活性は、(CuIn)0.09Zn1.82固溶体で706μmol/hと高い活性を示した。
以上の結果から、Ruを助触媒として担持することで、Ptを助触媒として担持した場合と同様に、水素生成活性が飛躍的に向上することがわかった。
Next, whether the loading effect of the Ru cocatalyst appears in the same manner in other solid solution photocatalysts (CuIn) 0.09 Zn 1.82 S 2 solid solution (heat treatment: 850 ° C. (1123 K), 5 hours) ( Table 3, Experiment 15) and (CuGa) 0.09 Zn 1.82 S 2 (Heat treatment: 850 ° C. (1123 K, 5 hours) solid solution (Table 3, Experiment 16) were examined. 7 and 8. These solid solutions in which Ru has been photo-deposited in advance in a K 2 SO 3 aqueous solution can continue to generate hydrogen relatively stably, and the effect of supporting the Ru promoter is effective. The hydrogen generation activity of the (CuIn) 0.09 Zn 1.82 S 2 solid solution was as high as 706 μmol / h.
From the above results, it was found that by supporting Ru as a cocatalyst, the hydrogen generation activity is dramatically improved, as in the case of supporting Pt as a cocatalyst.

次に、Ru(0.5重量%)をあらかじめKSO水溶液中で光電着させた(CuAg)0.15In0.3Zn1.4固溶体光触媒(熱処理:700℃(973K 35時間)による擬似太陽光照射下での水素生成反応の結果を図9に示す。擬似太陽光照射下においても比較的高い活性で水素を生成した(10.3mL/h)。40時間の光照射でもほとんど失活せずに水素を生成し続けた。この水素生成反応に高い活性を示す(CuAg)0.15In0.3Zn1.4固溶体光触媒の拡散反射スペクトルを図2に示す。この固溶体は、615nmまでの幅広い可視光を利用することができる。吸収端から見積もられたバンドギャップは2.0eVとなった。 Next, Ru (0.5 wt%) was photo-deposited in advance in a K 2 SO 3 aqueous solution (CuAg) 0.15 In 0.3 Zn 1.4 S 2 solid solution photocatalyst (heat treatment: 700 ° C. (973K 35 9 shows the result of the hydrogen generation reaction under simulated sunlight irradiation (time), and produced hydrogen with relatively high activity even under simulated sunlight irradiation (10.3 mL / h). However, it continued to produce hydrogen with almost no deactivation, and the diffuse reflection spectrum of the (CuAg) 0.15 In 0.3 Zn 1.4 S 2 solid solution photocatalyst showing high activity in this hydrogen production reaction is shown in FIG. This solid solution can utilize a wide range of visible light up to 615 nm, and the band gap estimated from the absorption edge is 2.0 eV.

本発明の活用例として、太陽光の大部分を構成する可視光、特に615nmまでの可視光を利用できる、将来有望なクリーンなエネルギー系を構築できる水素の生成系を、クリーンなエネルギー変換系を設計できる極めて有望なエネルギー技術に適用できる。疑似太陽光照射下で得られた水素生成反応の安定性は、実用性を示すものである。   As an application example of the present invention, a hydrogen generation system capable of constructing a promising clean energy system that can use visible light that constitutes most of sunlight, particularly visible light up to 615 nm, and a clean energy conversion system. It can be applied to highly promising energy technologies that can be designed. The stability of the hydrogen production reaction obtained under simulated sunlight irradiation shows practicality.

可視光応答性光水分解水素生成系光触媒の評価用閉鎖循環型反応装置Closed circulation reactor for evaluation of visible light responsive photohydrolysis hydrogen generation system photocatalyst 擬似太陽光照射下での水素生成反応に用いた(CuAg)0.15In0.3Zn1.4固溶体光触媒(熱処理:700℃(973K 35時間)の拡散反射スペクトル ( CuAg) 0.15 In 0.3 Zn 1.4 S 2 solid solution photocatalyst (heat treatment: 700 ° C. (973K 35 hours) diffuse reflection spectrum used for hydrogen generation reaction under simulated sunlight irradiation 表3 の実験10のRu(0.2重量%)/(CuAg)0.15In0.3Zn1.4固溶体光触媒を用いた、λ>420nm照射の光水分解水素生成特性Table 3 Experiment 10 of Ru (0.2 wt%) / (CuAg) 0.15 In 0.3 Zn 1.4 S 2 solid solution light catalysts used, lambda> light water decomposition hydrogen generation characteristics of 420nm radiation 表3 の実験11のKSO の水溶液に必要量のRuCl水溶液(RuClは溶けていない)を添加し、光触媒反応中に触媒表面上に光電着させたRu(0.重量%)/(CuAg)0.15In0.3Zn1.4固溶体光触媒のλ>420nm照射の光水分解水素生成特性Table 3 RuCl 3 aqueous solution comprising the necessary amount of water a solution of K 2 SO 3 experiments 11 (RuCl 3 is undissolved) was added, Ru (0 obtained by optical electrodeposition in the photocatalytic reaction on the catalyst surface. 2 weight %) / (CuAg) 0.15 in 0.3 Zn 1.4 S 2 light water hydrocracked product properties of lambda> 420 nm irradiation of solid solution light catalytic 表3 の実験12のKSO水溶液中でRu助触媒を光電着したRu(0.5重量%)/(CuAg)0.15In0.3Zn1.4固溶体光触媒のλ>420nm照射の光水分解水素生成特性Table 3 Experiment 12 of K 2 SO 3 Ru was light electrodeposited Ru promoter in aqueous solution (0.5 wt%) / (CuAg) 0.15 In 0.3 Zn 1.4 S 2 solid solutions light catalytic Photohydrolysis hydrogen generation characteristics at λ> 420nm irradiation 表3、実験13のKSO水溶液中でRu助触媒を光電着したRu(0.5重量%)/(CuAg)0.15In0.3Zn1.4固溶体光触媒のλ>420nm照射の光水分解水素生成特性Table 3, λ of Ru (0.5 wt%) / (CuAg) 0.15 In 0.3 Zn 1.4 S 2 solid solution photocatalyst photo-deposited with Ru promoter in the aqueous K 2 SO 3 solution of Experiment 13> Characteristics of photohydrolysis hydrogen generation at 420nm irradiation 表3、実験15のKSO水溶液中でRu助触媒を光電着したRu(0.5重量%)/(CuIn)0.07Zn1.82固溶体光触媒のλ>420nm照射の光水分解水素生成特性Light of λ> 420 nm irradiation of Ru (0.5 wt%) / (CuIn) 0.07 Zn 1.82 S 2 solid solution photocatalyst photo-deposited with Ru promoter in the K 2 SO 3 aqueous solution of Table 3, Experiment 15 Water splitting hydrogen production characteristics 表3、実験16のRu(0.5重量%)/(CuGa)0.09Zn1.82固溶体触媒のλ>420nm照射の光水分解水素生成特性Table 3, Photo-hydrolysis hydrogen generation characteristics of Ru (0.5 wt%) / (CuGa) 0.09 Zn 1.82 S 2 solid solution catalyst in λ> 420 nm irradiation in Experiment 16 実施例4の擬似太陽光照射下での、Ru(0.5重量%)/(CuAg)0.15In0.3Zn1.4固溶体光触媒(熱処理:700℃(973K 35時間)の水素生成反応特性Ru (0.5 wt%) / (CuAg) 0.15 In 0.3 Zn 1.4 S 2 solid solution photocatalyst (heat treatment: 700 ° C. (973 K, 35 hours) under simulated sunlight irradiation of Example 4 Hydrogen generation reaction characteristics

符号の説明Explanation of symbols

V.L 真空ライン G 圧力計 C 循環器 T.B 高温槽 S スターラー
MX 撹拌子 L 可視光(λ>420nm) R.V 反応容器
L.C リービッヒ冷却管 G.C ガスクロマトグラフィー

V. L Vacuum line G Pressure gauge C Circulator T. B High-temperature bath S Stirrer MX Stirrer L Visible light (λ> 420 nm) V reaction vessel C. Liebig cooling pipe C Gas chromatography

Claims (10)

温度800℃±150℃の範囲及び処理時間3以上37時間以下の範囲の組み合わせ条件の熱処理行程を含む合成条件で得られる(CuAg)In2XZn2(1−2X)(ここで、Xは0.15±0.02)の組成、BET等温吸着法の比表面積が0.9〜3.6m/g、及びバンドギャップ2.0±0.1eVの特性を有し、硫黄化合物を含む水溶液の光水分解により水素を生成する活性を有する硫化物固溶体からなる光触媒。 (CuAg) X In 2X Zn 2 (1-2X) S 2 (wherein the temperature is in the range of 800 ° C. ± 150 ° C. and the synthesis conditions include the combined heat treatment process in the range of 3 to 37 hours. X is a composition of 0.15 ± 0.02), a BET isothermal adsorption specific surface area of 0.9 to 3.6 m 2 / g, and a band gap of 2.0 ± 0.1 eV, a sulfur compound A photocatalyst comprising a sulfide solid solution having an activity of generating hydrogen by photohydrolysis of an aqueous solution containing. 熱処理を硫黄雰囲気中で実施する請求項1に記載の硫化物固溶体からなる光触媒。 The photocatalyst comprising the sulfide solid solution according to claim 1, wherein the heat treatment is performed in a sulfur atmosphere. 熱処理前に硫黄を焼成前の前駆体にたいし10±2重量%を添加する請求項2に記載の硫化物固溶体からなる光触媒。 The photocatalyst comprising a sulfide solid solution according to claim 2, wherein sulfur is added in an amount of 10 ± 2% by weight to the precursor before calcination before the heat treatment. 熱処理の処理時間が昇温時間2.0以上15時間以下の昇温時間を含み、全焼成時間が3時間以上37時間以下の範囲である請求項1、2または3に記載の硫化物固溶体からなる光触媒。 The sulfide solid solution according to claim 1, 2 or 3, wherein the heat treatment time includes a temperature rising time of 2.0 to 15 hours, and a total firing time is in the range of 3 to 37 hours. A photocatalyst. Ru、Pt、RhまたはIr助触媒を担持させた請求項1、2、3または4に記載の硫化物固溶体からなる光触媒。 The photocatalyst comprising the sulfide solid solution according to claim 1, 2, 3, or 4 supporting Ru, Pt, Rh, or Ir promoter. (CuAg)In2XZn2(1−2X)固溶体及びRu、Pt、RhまたはIrの塩化物を硫化物固溶体光触媒水素生成光分解溶液に添加される少なくともSO 2−イオンが存在する水溶液に添加し、前記硫化物固溶体光触媒水素生成反応を進行させる光照射による光電着により前記固溶体に助触媒を担持させた請求項5に記載の光触媒。 (CuAg) X In 2X Zn 2 (1-2X) S 2 solid solution and Ru, Pt, Rh, or Ir chloride are added to the sulfide solid solution photocatalytic hydrogen generation photolysis solution at least SO 3 2- ions are present. 6. The photocatalyst according to claim 5, wherein a cocatalyst is supported on the solid solution by photo-deposition by light irradiation which is added to an aqueous solution and causes the sulfide solid solution photocatalytic hydrogen generation reaction to proceed. 硫黄化合物を含む水溶液がSO 2−とS2−イオンが存在する水溶液である請求項1乃至6の1つである光触媒。 The photocatalyst according to any one of claims 1 to 6, wherein the aqueous solution containing a sulfur compound is an aqueous solution containing SO 3 2- and S 2- ions. (CuAg)In2XZn2(1−2X)(ここで、Xは0.15±0.02)を温度800℃±150℃の範囲及び処理時間3以上37時間以下の範囲の組み合わせた処理条件で熱処理し、BET等温吸着法の比表面積が0.9m/g以上3.6m/g以上、及びバンドギャップ2.0±0.1eVの特性を有し、硫黄化合物を含む水溶液の光水分解により水素を生成する活性を有する(CuAg)In2XZn2(1−2X)(ここで、Xは0.15±0.02)の組成の硫化物固溶体からなる光触媒を製造する方法。 (CuAg) X In 2X Zn 2 (1-2X) S 2 (where X is 0.15 ± 0.02) in a range of temperature 800 ° C. ± 150 ° C. and processing time 3 to 37 hours The specific surface area of the BET isothermal adsorption method is 0.9 m 2 / g or more and 3.6 m 2 / g or more, and the band gap is 2.0 ± 0.1 eV, and contains a sulfur compound. (CuAg) X In 2X Zn 2 (1-2X) S 2 (where X is 0.15 ± 0.02) and has a composition that produces hydrogen by photohydrolysis of an aqueous solution. A method for producing a photocatalyst. (CuAg)In2XZn2(1−2X)固溶体及びRu、Pt、RhまたはIrの塩化物を硫化物固溶体光触媒水素生成光分解溶液に添加される少なくともSO 2−イオンが存在する水溶液に添加し、前記硫化物固溶体光触媒水素生成反応を進行させる光照射による光電着により前記固溶体にRu、Pt、RhまたはIr担持させRu、Pt、RhまたはIr担持(CuAg)In2XZn2(1−2X)固溶体からなる光触媒を製造する方法。 (CuAg) X In 2X Zn 2 (1-2X) S 2 solid solution and Ru, Pt, Rh, or Ir chloride are added to the sulfide solid solution photocatalytic hydrogen generation photolysis solution at least SO 3 2- ions are present. Ru, Pt, Rh, or Ir supported (CuAg) X In 2X Zn 2 supported by Ru, Pt, Rh, or Ir on the solid solution by photo-deposition by light irradiation that is added to an aqueous solution and promotes the sulfide solid solution photocatalytic hydrogen generation reaction. (1-2X) A method for producing a photocatalyst comprising an S 2 solid solution. 光電着による(CuAg)In2XZn2(1−2X)固溶体へRu、Pt、RhまたはIr担持させる行程を前記固溶体光触媒によりSO 2−とS2−イオンが存在する水溶液から水素生成光分解を実施する前工程または行程中で進行させる請求項9に記載のRu、Pt、RhまたはIr担持(CuAg)In2XZn2(1−2X)固溶体からなる光触媒を製造する方法。

The process of supporting Ru, Pt, Rh, or Ir on (CuAg) X In 2X Zn 2 (1-2X) S 2 solid solution by photo- deposition is carried out from an aqueous solution containing SO 3 2− and S 2− ions by the solid solution photocatalyst. producing Ru, Pt, and Rh or Ir supported (CuAg) X in 2X Zn 2 (1-2X) photocatalyst comprising S 2 solid solution according to generate photodecomposition to claim 9 by proceeding in a previous step or step in implementing Method.

JP2004010374A 2004-01-19 2004-01-19 Visible light active sulfide solid solution photocatalyst improved in activity efficiency and activity stability and producing hydrogen by optical decomposition of water and its manufacturing method Pending JP2005199222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004010374A JP2005199222A (en) 2004-01-19 2004-01-19 Visible light active sulfide solid solution photocatalyst improved in activity efficiency and activity stability and producing hydrogen by optical decomposition of water and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004010374A JP2005199222A (en) 2004-01-19 2004-01-19 Visible light active sulfide solid solution photocatalyst improved in activity efficiency and activity stability and producing hydrogen by optical decomposition of water and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005199222A true JP2005199222A (en) 2005-07-28

Family

ID=34823117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004010374A Pending JP2005199222A (en) 2004-01-19 2004-01-19 Visible light active sulfide solid solution photocatalyst improved in activity efficiency and activity stability and producing hydrogen by optical decomposition of water and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005199222A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144304A (en) * 2005-11-28 2007-06-14 Tokyo Univ Of Science Zns-cux solid solution photocatalyst showing high activity for hydrogen generation under sunlight irradiation from aqueous solution containing sulfur compound
CN100384739C (en) * 2006-05-23 2008-04-30 南开大学 ZnIn2S4 nano materials and their synthesis method and application
CN110302805A (en) * 2019-07-16 2019-10-08 福建师范大学福清分校 A kind of single layer composite visible light catalytic material and preparation method thereof
CN115090299A (en) * 2022-07-25 2022-09-23 陕西科技大学 ZnIn with sulfur defect 2 S 4 Preparation method of photocatalyst and application of photocatalyst in degrading antibiotics

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144304A (en) * 2005-11-28 2007-06-14 Tokyo Univ Of Science Zns-cux solid solution photocatalyst showing high activity for hydrogen generation under sunlight irradiation from aqueous solution containing sulfur compound
CN100384739C (en) * 2006-05-23 2008-04-30 南开大学 ZnIn2S4 nano materials and their synthesis method and application
CN110302805A (en) * 2019-07-16 2019-10-08 福建师范大学福清分校 A kind of single layer composite visible light catalytic material and preparation method thereof
CN110302805B (en) * 2019-07-16 2022-06-07 福建技术师范学院 Single-layer composite visible light catalytic material and preparation method thereof
CN115090299A (en) * 2022-07-25 2022-09-23 陕西科技大学 ZnIn with sulfur defect 2 S 4 Preparation method of photocatalyst and application of photocatalyst in degrading antibiotics

Similar Documents

Publication Publication Date Title
Wang et al. Efficient photocatalytic CO2 conversion over 2D/2D Ni-doped CsPbBr3/Bi3O4Br Z-scheme heterojunction: Critical role of Ni doping, boosted charge separation and mechanism study
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
Chen et al. Rapid self-decomposition of g-C3N4 during gas–solid photocatalytic CO2 reduction and its effects on performance assessment
JP4803414B2 (en) Novel Z-scheme-type photocatalytic system for complete decomposition of visible light active water and method for complete decomposition of water using said catalyst
Lou et al. Promoting effects of In2O3 on Co3O4 for CO oxidation: tuning O2 activation and CO adsorption strength simultaneously
CN103240130B (en) TiO2 / MIL-101 composite catalyst for photocatalytic water splitting and preparation method and applications thereof
JP6370371B2 (en) NATAO3: LA2O3 catalyst with cocatalyst composition for photocatalytic reduction of carbon dioxide
Wang et al. Photocatalytic reduction of CO2 to methane over PtOx-loaded ultrathin Bi2WO6 nanosheets
Wang et al. Ag NPs decorated C–TiO2/Cd0. 5Zn0. 5S Z-scheme heterojunction for simultaneous RhB degradation and Cr (VI) reduction
JP2009066529A (en) Photocatalyst, its manufacturing method, and method for generating hydrogen gas
JP4915719B2 (en) ZnS-CuX solid solution photocatalyst exhibiting high activity in hydrogen production from aqueous solution containing sulfur compound under sunlight irradiation
CN107983371B (en) Photocatalytic material Cu2-xS/Mn0.5Cd0.5S/MoS2And preparation method and application thereof
Sarwar et al. Synergistic effect of photo-reduced Ni–Ag loaded g-C3N4 nanosheets for efficient visible Light‐Driven photocatalytic hydrogen evolution
Cheng et al. Spatially confined iron single-atom and potassium ion in carbon nitride toward efficient CO2 reduction
Do et al. Dramatic CO2 photoreduction with H2O vapors for CH4 production using the TiO2 (bottom)/Fe–TiO2 (top) double-layered films
CN113058617B (en) Photocatalyst and preparation method and application thereof
Xing et al. Synchronous fabrication of Ru single atoms and RuO2 on hierarchical TiO2 spheres for enhanced photocatalytic coproduction of H2 and benzaldehyde
JP4528944B2 (en) Photocatalyst carrying Ir oxide cocatalyst in oxidative atmosphere in the presence of nitrate ion and method for producing the same
CN113908829A (en) High-dispersion platinum-titanium dioxide photocatalyst and preparation method and application thereof
Tan et al. Photocatalytic carbon dioxide reduction coupled with benzylamine oxidation over Zn-Bi 2 WO 6 microflowers
Das et al. Synergistic effect of metal complex and dual doped graphitic carbon nitride for superior photocatalytic hydrogen evolution
Kumar et al. Epigrammatic status and perspective of sequestration of carbon dioxide: Role of TiO2 as photocatalyst
JP2003275599A (en) Composite photocatalyst for reducing carbon dioxide and carbon dioxide photo-reducing method using the same
Kavinkumar et al. Dual-Functional CuO-Decorated Bi3. 84W0. 16O6. 24/Bi2WO6 Nanohybrids for Enhanced Electrochemical Hydrogen Evolution Reaction and Photocatalytic Cr (VI) Reduction Performance
Li et al. Photocatalytic CO2RR for gas fuel production: Opportunities and challenges

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622