JP4914273B2 - 水素製造方法および水素製造システム - Google Patents

水素製造方法および水素製造システム Download PDF

Info

Publication number
JP4914273B2
JP4914273B2 JP2007096329A JP2007096329A JP4914273B2 JP 4914273 B2 JP4914273 B2 JP 4914273B2 JP 2007096329 A JP2007096329 A JP 2007096329A JP 2007096329 A JP2007096329 A JP 2007096329A JP 4914273 B2 JP4914273 B2 JP 4914273B2
Authority
JP
Japan
Prior art keywords
hydrogen
fuel
supply amount
oxidant
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007096329A
Other languages
English (en)
Other versions
JP2008254942A (ja
Inventor
武  哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007096329A priority Critical patent/JP4914273B2/ja
Publication of JP2008254942A publication Critical patent/JP2008254942A/ja
Application granted granted Critical
Publication of JP4914273B2 publication Critical patent/JP4914273B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、水素元素を含む燃料から水素を製造するための水素製造方法および水素製造システムに関する。
従来の水素製造システムの構成を説明する。図4は従来の水素製造システムの一構成例を示すブロック図である。図4に示す水素製造システムは、天然ガスから水素を製造するシステムである。
図4に示すように、水素製造システムは、脱硫器2と、水蒸気発生器9と、改質器3と、COシフトコンバータ4と、水素分離器53と、水素貯蔵器59とを有する構成である。水蒸気発生器9には、水蒸気発生器バーナ10が設けられ、また、補給水6を供給するための補給水ポンプ7が接続されている。改質器3には、改質器起動用バーナ11および改質器バーナ19が設けられている。水素貯蔵器59には、水素貯蔵量検出器60、制御部65および水素供給設備63が設けられている。水素供給設備63は水素ガス供給配管を介して水素消費手段64に接続されている。
外部から水素製造システムに天然ガス1を供給するための配管が3つに分岐されている。3つの分岐配管のうちの1本が遮断弁69および流量制御弁74を介して脱硫器2に接続されている。他の2本のうちの1本が遮断弁75および流量制御弁18を介して水蒸気発生器バーナ10に接続されている。そして、残りの1本が遮断弁13および流量制御弁15を介して改質器起動用バーナ11に接続されている。
流量制御弁74により流量が制御された天然ガス34が脱硫器2に供給される。流量制御弁18により流量が制御された天然ガス70が水蒸気発生器バーナ10に供給される。流量制御弁15により流量が制御された天然ガス32が改質器起動用バーナ11に供給される。
また、燃焼の際に必要な空気14を各種バーナに供給するための空気供給用ブロワ12が設けられ、空気供給用ブロワ12に接続された空気供給配管が3つに分岐されている。3つの分岐配管のうちの1本が遮断弁76および流量制御弁20を介して水蒸気発生器バーナ10に接続されている。他の2本のうちの1本が遮断弁17および流量制御弁78を介して改質器起動用バーナ11に接続されている。そして、残りの1本が遮断弁77および流量制御弁73を介して改質器バーナ19に接続されている。
流量制御弁73により流量が制御された空気72が改質器バーナ19に供給される。流量制御弁78により流量が制御された空気33が改質器起動用バーナ11に供給される。流量制御弁20により流量が制御された空気71が水蒸気発生器バーナ10に供給される。
水蒸気発生器バーナ10、改質器起動用バーナ11および改質器バーナ19のそれぞれは、燃焼による排出ガス30,29,31のそれぞれを排出する。
脱硫器2と改質器3との間に接続されたガス配管の途中に、水蒸気発生器9から伸びる水蒸気供給配管が接続されている。水蒸気供給配管には、遮断弁8および流量制御弁28が設けられている。脱硫器24から供給される脱硫天然ガス24に水蒸気5が混合され、その混合ガス23が改質器3に導入される。
改質器3とCOシフトコンバータ4との間がガス配管で接続され、改質器3から供給される改質ガス22がそのガス配管を介してCOシフトコンバータ4に導入される。
水素分離器53は、COシフトコンバータ4とガス配管で接続され、改質器バーナ19とガス排出配管で接続されている。COシフトコンバータ4からそのガス配管を介して、一酸化炭素濃度を1%以下に低減させた改質ガス21が水素分離器53に供給される。水素分離器53からの排出ガス54がガス排出配管を介して改質器バーナ19に供給される。
水素分離器53と水素貯蔵器59との間がガス配管で接続され、水素分離器53から供給される水素ガス58がそのガス配管を介して水素貯蔵器59に導入される。
制御部65は、図に示さない信号線を介して遮断弁69,75,13,8,77,17,76のそれぞれと、流量制御弁74,18,15,28,73,78,20のそれぞれに接続されている。また、図に示さない信号線を介して水蒸気発生器バーナ10、改質器起動用バーナ11および改質器バーナ19のそれぞれと接続されている。制御部65には、プログラムにしたがって所定の処理を実行するCPU(Central Processing Unit)(不図示)と、プログラムを格納するためのメモリ(不図示)とが設けられている。制御部65は、水素貯蔵量検出器60をモニタし、水素貯蔵量に応じて遮断弁および流量制御弁に制御信号を送信する。また、水素貯蔵量に応じて、起動を指示するための信号である起動制御信号、または燃焼停止を指示するための停止制御信号を各バーナに送信する。さらに、図に示さない信号線を介して改質器3と接続され、改質器3の温度をモニタする。
なお、制御部65におけるCPUの代わりにPLC(Programmable Logic Controller)を用いてもよい。
次に、図4に示す従来の水素製造システムの制御方法について説明する。
制御部65は、水素貯蔵器59の水素貯蔵量が所定の値まで減少したことを示す検出信号を水素貯蔵量検出器60から受信すると、遮断弁13,17に対してバルブを開かせるための制御信号を送信し、改質器起動用バーナ11に起動制御信号を送信する。制御信号にしたがって遮断弁13,17が開くと、改質器起動用バーナ11に天然ガス32と空気33が供給され、起動制御信号により改質器起動用バーナ11が起動すると、天然ガス32が燃焼を始める。改質器起動用バーナ11の燃焼により改質器3が昇温する。なお、改質器起動用バーナ11への天然ガス32および空気33の供給量のそれぞれは、流量制御弁15,78により予め設定された所定の値になるように制御される。
また、制御部65は、水素貯蔵量検出器60から上記検出信号を受信すると、遮断弁75,76に対してバルブを開かせるための制御信号を送信し、水蒸気発生器9に起動制御信号を送信する。制御信号にしたがって遮断弁75,76が開くと、水蒸気発生器バーナ10に天然ガス70と空気71が供給され、起動制御信号により水蒸気発生器9が起動する。そして、補給水ポンプ7から水蒸気発生器9に補給水6が供給される。水蒸気発生器9では、天然ガス70の燃焼により補給水7から水蒸気5を発生させる。
改質器3が所定の温度まで昇温すると、制御部65は、遮断弁69に対してバルブを開かせるための制御信号を送信し、遮断弁13,17に対してバルブを閉めさせるための制御信号を送信し、改質器起動用バーナ11に停止信号を送信する。制御信号にしたがって遮断弁69が開くと、天然ガス34が脱硫器2に供給される。また、制御信号にしたがって遮断弁13,17が閉じると、改質器起動用バーナ11への天然ガス32および空気33の供給が停止され、停止制御信号にしたがって改質器起動用バーナ11が燃焼を止める。
脱硫器2に供給される天然ガス34の供給量は、水素貯蔵量検出器60で検出された水素貯蔵量の値が小さいほど流量制御弁74の開度を大きくするという関係に基づいて、制御部65が流量制御弁74の開度を水素貯蔵量に見合った値に設定することで、決定される。流量制御弁74の開度が大きいほど、天然ガス34の供給量が多くなる。
脱硫器2では、天然ガス1中の硫黄分を吸着し、天然ガス1から硫黄分を除去する。硫黄分は天然ガス1中のメルカプタン等の腐臭剤に含まれ、改質器3の改質触媒の劣化原因となる。脱硫器2で脱硫された脱硫天然ガス24は、水蒸気5と混合された後、水蒸気と脱硫天然ガスの混合ガス23として改質器3に供給される。
脱硫天然ガス24と混合される水蒸気5の供給量は、後述する式(1)の反応に即した所定のスチームカーボン比となるような天然ガス34の供給量と水蒸気5の供給量の関係、すなわち流量制御弁74の開度と流量制御弁28の開度の関係が予め求められ、その関係に基づいて制御部65が流量制御弁28の開度を設定することによって、天然ガス34の供給量に対応して所定のスチームカーボン比となるように決定される。
また、制御部65は、遮断弁77に対してバルブを開かせるための制御信号を送信し、改質器バーナ19に起動制御信号を送信する。制御信号にしたがって遮断弁77が開くと、空気72が改質器バーナ19に供給される。水素分離器53から排出ガス54が改質器バーナ19に供給される。起動制御信号により改質器バーナ19は排出ガス54と空気72の燃焼を開始する。
改質器バーナ19の空気72の供給量は、所定の空燃比となるような天然ガス34の供給量と空気72の供給量の関係、すなわち流量制御弁74の開度と流量制御弁73の開度の関係に基づいて、制御部65が流量制御弁73の開度を設定することによって、天然ガス34の供給量に対応して所定の空燃比となるように決定される。
改質器3では、充填されたニッケル系触媒またはルテニウム系触媒等の改質触媒の働きにより天然ガス1に含まれる炭化水素の水蒸気改質反応が行われ、主成分として一酸化炭素と水素を含む改質ガス22が生成される。ここで、天然ガス1の主成分であるメタンの水蒸気改質反応は次の(1)式で表される。
(メタンの水蒸気改質反応)
CH4+H2O → CO+3H2 (1)
この(1)式に示したメタンの水蒸気改質反応等の炭化水素の水蒸気改質反応は吸熱反応であり、効率的に水素を生成させるためには、改質器3の外部から必要な反応熱を供給し、改質器3の温度を700〜750℃に維持することが必要である。このため、改質器バーナ19で排出ガス54と空気72を燃焼させることによって、水蒸気改質反応に必要な反応熱を改質器3に供給する。改質器3で生成された一酸化炭素、水素、未反応水蒸気、メタン、および二酸化炭素等を含む改質ガス22は、銅−亜鉛系触媒等のシフト触媒が充填されたCOシフトコンバータ4に供給される。
COシフトコンバータ4では、シフト触媒の働きにより発熱反応である次の(2)式に示す水性シフト反応を行わせることによって、改質ガス22の一酸化炭素濃度を1%以下まで低減させる。
(水性シフト反応)
CO+H2O → CO2+H2 (2)
COシフトコンバータ4で生成され、一酸化炭素濃度を1%以下に低減させた改質ガス21は、水素分離器53に供給される。
水素分離器53では、改質ガス21中の水素(高純度水素)58を分離する。水素分離器53は、改質ガス21中の水素58をパラジウム膜等の水素分離膜を用いて分離するものであってもよく、PSA(Pressure Swing Adsorption:圧力スイング吸着)を用いて改質ガス21中の不純物を除去して精製することによって水素58を分離するものであってもよい。水素分離器53で改質ガス21中の水素58を分離するにあたっては、効率的な水素分離を行うために、必要に応じて昇圧手段(不図示)を用いて改質ガス21の昇圧を行う。
水素分離器53で分離された水素58は、水素貯蔵器59に供給され、そこに貯蔵される。水素貯蔵器59は、貯蔵圧力1MPa未満の水素吸蔵合金を用いた水素吸蔵ユニットであってもよく、貯蔵圧力40MPa程度の高圧貯蔵ユニットであってもよい。水素貯蔵器59に水素58を貯蔵するにあたっては、必要に応じて昇圧手段(不図示)を用いて水素58の昇圧を行う。水素貯蔵器59に貯蔵された水素58の貯蔵量は、水素貯蔵量検出器60が検出することで監視される。水素貯蔵量検出器60は、例えば、貯蔵された水素58の重量を検出する重量検出手段であってもよく、貯蔵された水素58の圧力を検出する圧力検出手段であってもよい。
水素貯蔵器59に貯蔵された水素58は、必要に応じて水素供給手段であるディスペンサー(水素58を低圧で貯蔵した場合)または高圧ディスペンサー(水素を高圧で貯蔵した場合)等の水素供給設備63を介して燃料電池自動車および定置用燃料電池等の水素消費手段64に供給される。
一方、水素分離器53で改質ガス21から水素58を分離した後の排出ガス54は、水素分離器53から排出される。排出ガス54中には、水素分離器53で分離されなかった水素が含まれているので、前述したように改質器バーナ19に排出ガス54を供給し、排出ガス54を空気72と燃焼させることによって、改質器3での天然ガスの水蒸気改質反応に必要な反応熱が改質器3に供給される。
水素製造システムの一例が非特許文献1に開示されている。
森哲哉,水素利用社会への取り組み:大阪ガス,クリーンエネルギー,2003年5月号,pp.22−26(2003)
図4に示した従来の水素製造システムによる水素製造方法の問題点を説明する。問題点をより明らかにするために、以下に、水素を製造するまでの手順を改めて説明する。
従来の水素製造システムの制御方法では、水素貯蔵量検出器60で水素貯蔵器59の水素貯蔵量が所定の値まで減少したことを検出した場合には、改質器起動用バーナ11に天然ガス32と空気33を供給し燃焼させることによって改質器3を昇温させるとともに、水蒸気発生器バーナ10に天然ガス70と空気71を供給し燃焼させることによって水蒸気発生器9で水蒸気5を発生させる。
改質器3が所定の温度に到達したら、改質器起動用バーナ11への天然ガス32と空気33の供給を停止し、改質器起動用バーナ11の燃焼を止めるとともに、脱硫器2への天然ガス34の供給を開始し、改質器3で天然ガス1の水蒸気改質反応により水素と一酸化炭素を生成させる。改質器3で生成された水素および一酸化炭素を含む改質ガス22をCOシフトコンバータ4に供給し、改質ガス22中の一酸化炭素と水蒸気を反応させることによって水素と二酸化炭素を生成させる。
COシフトコンバータ4で一酸化炭素濃度を1%以下に低減させた改質ガス21を水素分離器53に供給し、水素58を分離する。水素分離器53で分離された水素58を、水素貯蔵器59に貯蔵する。水素、メタン等を含む排出ガス54は、改質器バーナ19に供給され、改質器バーナ19で空気72と燃焼させることによって、天然ガス1の水蒸気改質反応に必要な反応熱を改質器3に供給するのに用いられる。
一方、水素貯蔵量検出器60で水素貯蔵器59の水素貯蔵量が所定の値まで増加したことを検出した場合には、脱硫器2への天然ガス34の供給を停止するとともに、水蒸気発生器バーナ10への天然ガス70と空気71の供給を停止し、改質器3での水素製造と水蒸気発生器9での水蒸気発生をやめ、水素58の水素貯蔵器59への貯蔵を終了する。
従来の水素製造システムの制御方法では、水素貯蔵器59の水素貯蔵量に合わせて水蒸気発生器9での水蒸気発生と改質器3での水素製造を行う必要がある。単位時間あたりの水素使用量が少ないと、水蒸気発生器9での水蒸気発生と停止、および改質器3での水素製造と停止が短時間に頻繁に繰り返されることになる。この場合、停止した水素製造システムを起動させる度に水蒸気発生器9と改質器3の昇温のために多くエネルギーが費やされることになる。このように、水素製造システムの稼動率が低いと、システムが起動する度に発熱のためのエネルギーが消費され、消費エネルギーが大きいという問題があった。
本発明は上述したような従来の技術が有する問題点を解決するためになされたものであり、水素の製造を安定して効率的に行うことが可能な水素製造方法および水素製造システムを提供することを目的とする。
上記目的を達成するための本発明の水素製造方法は、
水素元素を含む燃料から水素を含む改質ガスを吸熱反応により生成する燃料改質工程と、
改質ガスおよび酸化剤を用いて発電と吸熱反応のための熱の発生を行う工程と、
改質ガス中の一酸化炭素と水蒸気を水素と二酸化炭素に変換するシフト反応工程と、
シフト反応工程による水素と二酸化炭素を含むガスから水素を分離する水素分離工程と、
水素分離工程で分離された水素を貯蔵する水素貯蔵工程と、
貯蔵される水素の貯蔵量を検出する水素貯蔵量検出工程と、
水素貯蔵量検出工程による検出値を監視し、検出値が所定の値よりも減少する場合、酸化剤の供給量を減少させるとともに燃料の供給量を増加させ、水素貯蔵量検出手段の検出値が所定の値まで増加する場合、酸化剤の供給量を増加させるとともに燃料の供給量を減少させる工程と、
を有するものである。
本発明では、水素の貯蔵量が所定の値よりも減った場合には、酸化剤の供給量を減少させるとともに燃料の供給量を増加させることで、燃料電池の発電に必要な水素を生成させ所定の温度と出力で燃料電池による発電を継続しながら、同時に貯蔵に必要な水素を生成させることが可能となり、水素の貯蔵量が所定の値まで満たされた場合には、酸化剤の供給量を増加させるとともに燃料の供給量を減少させることで、燃料電池の発電に必要な水素を生成させ所定の温度と出力で燃料電池による発電を継続しながら、同時に貯蔵に必要な水素の生成を停止することが可能である。また、本発明では、燃料改質工程の反応に必要な熱を発生させるためのバーナを設ける必要がない。
また、上記目的を達成するための本発明の水素製造システムは、
水素元素を含む燃料が供給されると、吸熱反応により水素を含む改質ガスを燃料から生成する燃料改質手段と、
改質ガスおよび酸化剤を用いて発電と吸熱反応のための熱の発生を行う燃料電池と、
改質ガスが供給されると、改質ガス中の一酸化炭素と水蒸気を水素と二酸化炭素に変換するシフト反応手段と、
シフト反応手段による水素と二酸化炭素を含む排出ガスから水素を分離する水素分離手段と、
水素分離手段で分離された水素を貯蔵する水素貯蔵手段と、
水素貯蔵手段に貯蔵される水素の貯蔵量を検出する水素貯蔵量検出手段と、
水素貯蔵量検出手段による検出値を監視し、検出値が所定の値よりも減少する場合、酸化剤の供給量を減少させるとともに燃料の供給量を増加させ、検出値が所定の値まで増加する場合、酸化剤の供給量を増加させるとともに燃料の供給量を減少させる制御部と、
を有する構成である。
本発明によれば、水素を貯蔵する必要がないときは、燃料電池の発電に使用される水素のみが生成され、貯蔵に必要な水素が生成されないので、水素の貯蔵の必要性の有無により水素製造システムの起動と停止を繰り返す必要がなく、水素製造システムを安定して、かつ効率的に稼動させることができる。
本発明の水素製造システムは、貯蔵する水素と発電に使用する水素を生成させるとともに、所定の温度と出力で継続的に発電する燃料電池が設けられ、水素の貯蔵量の残量に応じて、酸化剤の供給量と燃料の供給量を変化させ、所定の温度と出力で燃料電池による発電を継続しながら貯蔵する水素の生成を制御することを特徴とする。以下に本発明の実施例を説明する。
本実施例の水素製造システムは、水素製造を行うとともに、固体酸化物形燃料電池を用いて発電を行うものである。
本実施例の水素製造システムの構成を説明する。図1は本実施例の水素製造システムの一構成例を示すブロック図である。なお、従来と同様な構成については同一の符号を付し、その詳細な説明を省略する。
図1に示すように、本実施例の水素製造システムは、脱硫器2と、燃料改質手段に相当する改質器3と、シフト反応手段に相当するCOシフトコンバータ4と、燃料電池に相当する固体酸化物形燃料電池38と、空気予熱器61と、水素分離手段に相当する水素分離器53と、水素貯蔵手段に相当する水素貯蔵器59とを有する構成である。
固体酸化物形燃料電池38は、燃料極35、固体酸化物電解質36および酸化剤極37を有する。固体酸化物形燃料電池38には、負荷49への出力を調整するための出力調整装置48が接続されている。
空気予熱器61には空気予熱器バーナ62が設けられている。また、空気供給用ブロワ12と空気供給配管を介して接続されている。空気供給配管には、空気予熱器61に供給される空気の流量を制御するための流量制御弁43が設けられている。
水素貯蔵器59には、水素貯蔵量検出手段に相当する水素貯蔵量検出器60と、制御部70と、水素供給設備63とが設けられている。水素供給設備63は水素ガス供給配管を介して水素消費手段64に接続されている。
次に、装置間に設けられた配管の接続について説明する。
流量制御弁27が設けられたガス供給配管が脱硫器2に接続され、そのガス供給配管を介して外部から天然ガス1が脱硫器2に供給される。脱硫器2は改質器3とガス配管で接続されている。
改質器3とCOシフトコンバータ4は改質ガス供給配管で接続され、改質ガス供給配管には、遮断弁79および流量制御弁47が設けられている。改質器3から供給される改質ガス22がそのガス供給配管を介してCOシフトコンバータ4に導入される。改質ガス供給配管において、改質器3と遮断弁79との間で配管が分岐され、分岐された配管が燃料極35に接続されている。これにより、改質器3からの改質ガス22が燃料極35に供給される。
COシフトコンバータ4と水素分離器53とがガス配管で接続され、一酸化炭素濃度を1%以下に低減させた改質ガス21がCOシフトコンバータ4からそのガス配管を介して水素分離器53に供給される。水素分離器53と水素貯蔵器59とがガス配管で接続され、水素分離器53から供給される水素58がそのガス配管を介して水素貯蔵器59に導入される。
燃料極35と空気予熱器バーナ62は、燃料極35の排出ガス42を空気予熱器バーナ62に供給するためのガス排出配管で接続されている。また、そのガス排出配管が途中で分岐され、分岐された配管が流量制御弁40を介して、脱硫器2および改質器3を結ぶガス配管に接続されている。脱硫器2から供給される脱硫天然ガス24と燃料極35から供給される排出ガス41とが混合され、その混合ガス23が改質器3に導入される。
水素分離器53と空気予熱器バーナ62とは、水素分離器53の排出ガス54を空気予熱器バーナ62に供給するためのガス排出配管で接続されている。酸化剤極37と空気予熱器バーナ62とは、酸化剤極37の排出ガス44を空気予熱器バーナ62に供給するためのガス排出配管で接続されている。空気予熱器61と酸化剤極37とは、酸化剤としての役目を果たす空気39を酸化剤極37に供給するための空気供給配管で接続されている。
次に、固体酸化物形燃料電池38について詳細に説明する。図1では説明のために、固体電解質形燃料電池38が燃料極35、固体酸化物電解質36および酸化剤極37からなる一組の単セルによって構成されているように示しているが、実際の固体酸化物形燃料電池38は上記単セルを複数積層したスタック構造になっている。
酸化剤極37には金属酸化物系電極触媒が用いられている。酸化剤極37では、空気予熱器61から供給される空気39中の酸素が、金属酸化物系電極触媒の働きで、次の(3)式に示す酸化剤極反応により電子と反応して酸化物イオン(O2-)に変わる。
(酸化剤極反応)
(1/2)O2+2e- → O2- (3)
酸化剤極37で生成された酸化物イオンは、安定化ジルコニア(YSZ)等の固体酸化物電解質36の内部を移動し、燃料極35に到達する。燃料極35では、ニッケル−YSZサーメット、ルテニウム−YSZサーメット等の金属系電極触媒の働きで、酸化物イオンが、次の(4)式および(5)式に示す反応により、燃料極35に供給される水素リッチの改質ガス22中の水素および一酸化炭素と反応し、水蒸気または二酸化炭素と電子が生成される。
(燃料極反応)
2+O2- → H2O+2e- (4)
CO+O2- → CO2+2e- (5)
燃料極35で生成された電子は、外部回路(不図示)を移動し、酸化剤極37に到達する。酸化剤極37に到達した電子は、(3)式に示した酸化剤極反応により酸素と反応する。この電子が外部回路を移動する過程で、電力を燃料電池直流出力50として取り出すことができる。
固体酸化物形燃料電池38の発電によって得られた燃料電池直流出力50は、負荷49に合わせて出力調整装置48で電圧の変換と直流から交流への変換を行った後に、送電端交流出力51として負荷49に供給する。なお、本実施例では、出力調整装置48が直流から交流への変換を行っているが、出力調整装置48で電圧変換のみを行い、送電端直流出力を負荷49に供給してもよい。
固体酸化物燃料電池38の発電温度は、一般的に800〜1000℃であり、電池反応による発熱によりその範囲の温度が維持される。このため、固体酸化物燃料電池38の高温排熱を、改質器3での炭化水素の水蒸気改質反応の反応熱として利用する。これにより、改質器3の温度を700〜750℃に維持することが可能となる。
(3)式と(4)式をまとめ、(3)式と(5)式をまとめると、固体酸化物形燃料電池38の電池反応は、次の(6)式に示す“水素と酸素から水蒸気ができる水の電気分解の逆反応”と、次の(7)式に示す“一酸化炭素と酸素から二酸化炭素を生成する反応”として表される。
(電池反応)
2+(1/2)O2 → H2O (6)
CO+(1/2)O2 → CO2 (7)
燃料極35で電池反応により生成された水蒸気を含む排出ガス42の一部は、上述したように、改質器3での炭化水素の水蒸気改質反応に必要な水蒸気を供給するために、排出ガス41として脱硫天然ガス24と混合され、その混合ガス23が改質器3に供給される。排出ガス42の残りは、未反応水素と未反応一酸化炭素を含んでいるので、排出ガス45として、酸化剤極37からの排出ガス44とともに空気予熱器バーナ62に供給される。
次に、空気予熱器バーナ62について説明する。
空気予熱器バーナ62は、固体酸化物形燃料電池38からの排出ガス45,44と水素分離器53からの排出ガス54とを燃焼させて熱を発生させる。そして、発生した熱を、空気予熱器61に空気供給ブロワ12から供給される空気14と熱交換させることによって、酸化剤極37に供給するための空気39の予熱に利用する。空気予熱器バーナ62での燃焼による排出ガス80は、給湯、暖房、吸収式冷凍機による冷房の熱源等に利用することが可能である。
次に、制御部70について説明する。
制御部70は、図に示さない信号線を介して遮断弁79と、流量制御弁27,40,47,43のそれぞれに接続されている。また、図に示さない信号線を介して空気予熱器バーナ62と接続されている。制御部70には、プログラムにしたがって所定の処理を実行するCPU(不図示)と、プログラムを格納するためのメモリ(不図示)とが設けられている。なお、CPUの代わりにPLCを用いてもよい。
制御部70は、水素貯蔵量検出器60の検出値を監視し、検出値が所定の値よりも減少すると、酸化剤の供給量を減少させるとともに燃料の供給量を増加させる。また、水素貯蔵量検出器60の検出値が所定の値まで増加すると、酸化剤の供給量を増加させるとともに燃料の供給量を減少させる。酸化剤の供給量の制御は、流量制御弁43の開度で行う。流量制御弁43の開度を大きくすると酸化剤の供給量が増え、開度を小さくすると酸化剤の供給量が少なくなる。燃料の供給量の制御は、流量制御弁27の開度で行う。流量制御弁27の開度を大きくすると燃料の供給量が増え、開度を小さくすると燃料の供給量が少なくなる。さらに、水素貯蔵量に対応して流量制御弁40,47の開度を制御する。
なお、脱硫器2、改質器3、COシフトコンバータ4、水素分離器53、および水素貯蔵器59については従来と同様な構成のため、その詳細な説明を省略する。
次に、本実施例の水素製造システムの制御方法を説明する。
水素貯蔵量検出器60は水素貯蔵器59に貯蔵された水素58の貯蔵量を検出し、検出値が所定の値よりも小さくならないかを監視する。水素貯蔵器59に貯蔵された水素58は、水素供給手段に相当するディスペンサーまたは高圧ディスペンサー等の水素供給設備63を介して、必要に応じて燃料電池自動車および定置用燃料電池等の水素消費手段64に供給される。
水素の消費により貯蔵量が減り、水素貯蔵量検出器60の検出値が所定の値より小さくなると、制御部70が流量制御弁27の開度を調整する。すなわち、天然ガス1の供給量は、燃料電池直流出力50の電池電流および水素の貯蔵量と流量制御弁27の開度の関係に基づいて、制御部70が流量制御弁27の開度を電池電流および水素の貯蔵量に見合った値に設定することで、決定される。ここでは、水素の消費により水素の貯蔵量が減り、水素貯蔵量検出器60の検出値が所定の値より小さくなると、制御部70が流量制御弁27の開度を電池電流および水素の貯蔵量に見合った値に設定することで、流量制御弁27の開度が大きくなり、脱硫器2に供給される天然ガス1の供給量が増加する。その際、制御部70が流量制御弁27の開度を水素の貯蔵量に反比例して小さくしてもよいし、制御部70が流量制御弁27の開度を所定の割合で大きくしてもよい。また、水素の貯蔵量が増え、水素貯蔵量検出器60の検出値が所定の値に増加すると、制御部70が流量制御弁27の開度を電池電流に見合った値に設定することで、流量制御弁27の開度が小さくなり、脱硫器2に供給される天然ガス1の供給量が減少する。
さらに、制御部70は、水素の消費により水素の貯蔵量が減り、水素貯蔵量検出器60の検出値が所定の値より小さくなると、脱硫器2に供給される天然ガス1の供給量を増加させ貯蔵に必要な水素を生成させるために、流量制御弁40、47、43の開度を調整する。それぞれの流量制御弁の制御についての詳細は、それぞれの動作箇所で説明する。
脱硫器2は、供給される天然ガス1中の硫黄分を吸着し、天然ガス1から硫黄分を除去する。硫黄分は、天然ガス1中のメルカプタン等の腐臭剤に含まれ、改質器3の改質触媒および固体酸化物形燃料電池38の燃料極35での電極触媒の劣化原因となる。
脱硫器2で脱硫された脱硫天然ガス24は、固体酸化物形燃料電池38で電池反応により生成された水蒸気を含む排出ガス41と混合され、水蒸気と脱硫天然ガス24の混合ガス23が改質器3に供給される。排出ガス41の供給量は、式(1)の反応に即した所定のスチームカーボン比となるような天然ガス1の供給量と排出ガス41の供給量の関係、すなわち流量制御弁27の開度と流量制御弁40の開度の関係が予め求められ、その関係に基づいて制御部70が流量制御弁40の開度を設定することによって、天然ガス1の供給量に対応して所定のスチームカーボン比となるように決定される。
改質器3は、固体酸化物形燃料電池38による高温排熱により700〜750℃に維持され、充填されたニッケル系触媒またはルテニウム系触媒等の改質触媒の働きにより天然ガス1に含まれる炭化水素の水蒸気改質反応が行われ、主成分として一酸化炭素と水素を含む改質ガス22を生成する。これは、(1)式に示したメタンの水蒸気改質反応等の炭化水素の水蒸気改質反応は吸熱反応であり、改質器3の温度を700〜750℃に維持することで効率的に水素が生成されるためである。
水素の消費により水素の貯蔵量が減り、水素貯蔵量検出器60の検出値が所定の値より小さくなると、制御部70が遮断弁79を開け、改質器3で生成された改質ガスの一部は、改質ガス25として固体酸化物形燃料電池38の燃料極35に供給され、残りはCOシフトコンバータ4に供給される。COシフトコンバータ4への改質ガス26の供給量は、水素の貯蔵量と流量制御弁47の開度の関係に基づいて、制御部70が流量制御弁47の開度を水素の貯蔵量に見合った値に設定することで、決定される。その際、制御部70が流量制御弁27の開度を水素の貯蔵量に反比例して小さくしてもよいし、制御部70が流量制御弁27の開度を所定の値に設定してもよい。流量制御弁47の開度が大きいほど、改質ガス26の供給量が多くなる。水素の貯蔵量が増え、水素貯蔵量検出器60の検出値が所定の値に増加すると、制御部70が遮断弁79を閉め、改質器3で生成された改質ガスは、改質ガス25としてすべて固体酸化物形燃料電池38の燃料極35に供給される。
ここで、固体酸化物形燃料電池38での作用を説明する。
固体酸化物形燃料電池38の酸化剤極37には、空気供給用ブロワ12を用いて取り込まれた空気14の一部が空気39として供給される。空気39の供給量は、固体酸化物形燃料電池38の燃料電池直流出力50の直流電流が大きいほど空気39の供給量を大きくし、COシフトコンバータ4への改質ガス26の供給量が大きいほど空気39の供給量を小さくするという関係、言い換えると、燃料電池直流出力50の直流電流および流量制御弁47の開度と流量制御弁43の開度の関係に基づいて、制御部70が流量制御弁43の開度を燃料電池直流出力50の直流電流と改質ガス26の供給量に見合った値に設定することで、決定される。なお、燃料電池直流出力50の直流電流が一定であれば、流量制御弁47の開度と流量制御弁43の開度の関係に基づいて、制御部70が流量制御弁43の開度を改質ガス26の供給量に見合った値に設定することで、空気39の供給量は決定される。
固体酸化物形燃料電池38では、上述したように、金属酸化物系電極触媒の働きで、空気39中の酸素が(3)式に示した反応により電子と反応して酸化物イオン(O2-)に変わる。酸化物イオンは、固体酸化物電解質36の内部を移動し、燃料極35に到達する。燃料極35では、酸化物イオンが、金属系電極触媒の働きで(4)式および(5)式に示した反応により水素および一酸化炭素と反応し、水蒸気または二酸化炭素と電子が生成される。
燃料極35で生成された電子は、外部回路を移動し、酸化剤極37に到達する。酸化剤極37に到達した電子は、(3)式に示した酸化剤極反応により酸素と反応する。この電子が外部回路を移動する過程で、燃料電池直流出力50として電力が取り出される。燃料電池直流出力50は、負荷49に合わせて出力調整装置48で電圧の変換と直流から交流への変換が行われた後に、送電端交流出力51として負荷49に供給される。
固体酸化物燃料電池38の発電温度は、一般的に800〜1000℃であり、電池反応による発熱により発電温度が維持されている。このため、固体酸化物燃料電池38の高温排熱は、前述したように改質器3での炭化水素の水蒸気改質反応の反応熱として利用することができる。
(3)式および(4)式をまとめた(6)式の反応により水蒸気が生成され、(3)式と(5)式をまとめた(7)式の反応により二酸化炭素が生成される。生成された水蒸気を含む排出ガス42の一部は、排出ガス41として脱硫天然ガス24と混合され、その混合ガス23が改質器3に供給される。排出ガス42の残りは、排出ガス45として空気予熱器バーナ62に供給される。
一方、改質器3から供給される改質ガス26は、銅−亜鉛系触媒等のシフト触媒が充填されたCOシフトコンバータ4に供給され、シフト触媒の働きにより発熱反応である(2)式に示した水性シフト反応が行われる。これにより、改質ガス26の一酸化炭素濃度が1%以下まで低減する。COシフトコンバータ4により一酸化炭素濃度が1%以下まで低減した改質ガス21が水素分離器53に供給されると、水素分離器53が改質ガス21中の水素(高純度水素)58を分離する。水素分離器53は、パラジウム膜等の水素分離膜を用いて改質ガス21中の水素58を分離するものであってもよく、PSAを用いて改質ガス21中の不純物を除去して精製することによって水素58を分離するものであってもよい。水素分離器53で改質ガス21中の水素58を分離するにあたっては、効率的な水素分離を行うために、必要に応じて昇圧手段(不図示)を用いて改質ガス21の昇圧を行う。
水素分離器53で分離された水素58は、水素貯蔵器59に供給され、そこに貯蔵される。水素貯蔵器59は、貯蔵圧力1MPa未満の水素吸蔵合金を用いた水素吸蔵ユニットであってもよく、貯蔵圧力40MPa程度の高圧貯蔵ユニットであってもよい。水素貯蔵器59に水素58を貯蔵するにあたっては、必要に応じて昇圧手段(不図示)を用いて水素58の昇圧を行う。
また、水素分離器53で改質ガス21から水素58を分離した排出ガス54は、水素分離器53で分離されなかった水素が含まれているので、上述したように排出ガス44,45とともに空気予熱器バーナ62に供給される。空気予熱器バーナ62は、排出ガス54中の水素を排出ガス44,45と燃焼させて熱を発生させる。そして、発生した熱を空気予熱器61で空気14と熱交換させることによって、酸化剤極37に供給するための空気39が暖められる。
なお、図1に示した水素製造システムでは、改質ガス26中の一酸化炭素を水蒸気と反応させることによって(2)式に示した水性シフト反応により水素を生成させるために、シフト反応手段としてCOシフトコンバータ4を設けたが、水素生成量の減少が許容される場合には、COシフトコンバータ4は必ずしも設ける必要はなく省略してもよい。COシフトコンバータ4を省略する場合には、COシフトコンバータ用の改質ガス26を水素分離器53にそのまま供給すればよい。
本実施例の水素製造システムでは、固体酸化物形燃料電池38による所定の出力での発電を継続すると同時に、水素貯蔵器59への水素貯蔵を行うことが可能である。これは、次のような制御によるものである。
水素貯蔵量検出器60で水素貯蔵器59の貯蔵量が所定の値まで減少したことを検出すると、流量制御弁43の開度を制御することによって固体酸化物形燃料電池38の酸化剤極37への空気39の供給量を減少させるとともに、流量制御弁27の開度を制御することによって脱硫器2への天然ガス1の供給量を増加させ、固体酸化物形燃料電池38の発電に使用する量以上の水素と一酸化炭素を改質器3で生成させる。
また、改質器3で生成された過剰の水素と一酸化炭素を含む改質ガス22を、遮断弁79を開けることによってCOシフトコンバータ用の改質ガス26としてCOシフトコンバータ4に供給する。続いて、改質ガス26中の一酸化炭素を水蒸気と反応させることによって二酸化炭素と水素を生成させ、その一酸化炭素濃度を1%以下まで低減する。COシフトコンバータ4での反応により一酸化炭素濃度を1%以下に低減させた改質ガス21を水素分離器53に供給して水素58を分離し、この水素58を水素貯蔵器59に貯蔵する。
天然ガス1の供給量を増加させると、改質器3における天然ガスの水蒸気改質反応による吸熱量が増加するが、空気39の供給量を減少させるので、空気39による固体酸化物形燃料電池38の冷却が抑制される。これにより、それまで空気39による冷却により排出ガス45とともに捨てられていた固体酸化物形燃料電池38の排熱を、改質器3で供給量が増加した分の天然ガス1の水蒸気改質反応の反応熱として利用することができる。その結果、天然ガス1の供給量が増加しても、固体酸化物形燃料電池38や改質器3の反応温度が低下することを防ぎ、固体酸化物形燃料電池38の発電性能が低下することはない。
次に、本実施例の水素製造システムにおいて、水素貯蔵量が所定の値まで戻った場合の制御方法を簡単に説明する。
水素貯蔵量検出器60で水素貯蔵器59の貯蔵量が所定の値まで増加したことを検出すると、流量制御弁43の開度を制御することによって固体酸化物形燃料電池38の酸化剤極37への空気39の供給量を増加させるとともに、流量制御弁27の開度を制御することによって脱硫器2への天然ガス1の供給量を減少させ、固体酸化物形燃料電池38の発電に使用する量の水素と一酸化炭素を改質器3で生成させる。また、遮断弁79を閉じることによって改質ガス26のCOシフトコンバータ4への供給を停止し、水素貯蔵器59への水素58の貯蔵をやめる。
天然ガス1の供給量を減少させると、改質器3での天然ガスの水蒸気改質反応による吸熱量が減少するが、空気39の供給量を増加させるので、空気39による固体酸化物形燃料電池38の冷却が促進され、それまで天然ガス1の水蒸気改質反応に使われていた固体酸化物形燃料電池38の排熱を排出ガス44とともに外部に放出することができる。その結果、天然ガス1の供給量が減少しても、固体酸化物形燃料電池38や改質器3の反応温度が上昇することを防ぎ、改質器3や固体酸化物形燃料電池38の劣化を引き起こしたり、システムの寿命や信頼性の低下を生じたりすることはない。
一般的に、固体酸化物形燃料電池38の酸化剤極37での酸素利用率は20%であり、空気39の大部分は固体酸化物形燃料電池38の冷却に使用されている。このため、燃料である天然ガス1の供給量が増減しても、空気39の供給量を増減させることによって、固体酸化物形燃料電池38の反応温度を所定の温度範囲に維持しながら、天然ガス1の水蒸気改質反応に必要な反応熱を確保することができる。
本実施例は、COシフトコンバータ4への改質ガスの供給を改質器3の代わりに燃料極35から行うようにしたものである。
図2は本実施例の水素製造システムの一構成例を示すブロック図である。実施例1と同様な構成については同一の符号を付し、その詳細な説明を省略する。
図2に示すように、本実施例の水素製造システムでは、図1に示した水素製造システムにおいて改質器3からCOシフトコンバータ4に改質ガス26を供給する配管を設けていない。また、燃料極35からの排出ガス42が供給される配管が3本に分岐されている。このうちの2本は図1に示した水素製造システムと同様である。残りの1本は、COシフトコンバータ4に接続されている。この配管により、燃料極35からの排出ガス42を分流した排出ガス65をCOシフトコンバータ4に供給するようにしている。
固体酸化物形燃料電池38の燃料極35で電池反応により生成した水蒸気を含む排出ガス42の一部は、改質器3での炭化水素の水蒸気改質反応に必要な水蒸気を供給するために、排出ガス41として改質器3にリサイクルされ、脱硫天然ガス24と混合することによって水蒸気と脱硫天然ガスの混合ガス23を生成させ、生成した水蒸気と脱硫天然ガスの混合ガス23は改質器3に供給される。残りは、空気予熱器バーナ用の排出ガス45として空気予熱器バーナ62に供給されるか、COシフトコンバータ用の排出ガス65としてCOシフトコンバータ4に供給される。
燃料極35と空気予熱器バーナ62とを結ぶ配管には遮断弁82が設けられ、燃料極35とCOシフトコンバータ4とを結ぶ配管には遮断弁81が設けられている。遮断弁81,82は、信号線(不図示)を介して制御部70と接続され、制御部70からの制御信号にしたがって開閉する。
次に、図2を参照して、本実施例の水素製造システムの制御方法を説明する。
本実施例の水素製造システムは、上述したように、図1に示した水素製造システムとは、COシフトコンバータ用の改質ガスとして、改質器3から供給される改質ガス26の代わりに固体酸化物形燃料電池燃料38の燃料極35からの排出ガス65を用いている点が大きく異なる。実施例1と異なる点を中心に説明する。
水素貯蔵量検出器60が水素貯蔵器59の水素貯蔵量が所定の値まで増加したことを検出する場合、制御部70からの制御信号により遮断弁81が閉じ、遮断弁82が開く。これにより、排出ガス45が空気予熱器バーナ62に供給される。一方、水素貯蔵量検出器60が水素貯蔵器59の水素貯蔵量が所定の値まで減少したことを検出する場合には、制御部70からの制御信号により遮断弁81が開き、遮断弁82が閉じる。これにより、排出ガス65がCOシフトコンバータ4に供給される。
COシフトコンバータ4では、(2)式に示した水性シフト反応を行わせることによって、排出ガス65の一酸化炭素濃度を1%以下まで低減させる。一酸化炭素の濃度を1%以下に低減させた排出ガス66は水素分離器53に供給され、水素分離器53は排出ガス66から水素58を分離する。水素分離器53で排出ガス66から水素58を分離した後の排出ガス54は水素分離器53で分離されなかった水素が含まれているので、排出ガス54を空気予熱器バーナ62に供給する。
空気予熱器61では、水素貯蔵量検出器60が水素貯蔵器59の水素貯蔵量が所定の値まで増加したことを検出する場合には、空気予熱器バーナ62に排出ガス45と排出ガス44を供給して燃焼させ、空気予熱器61に供給した空気14と熱交換させることによって空気39の予熱を行う。一方、水素貯蔵量検出器60が水素貯蔵器59の水素貯蔵量が所定の値まで減少したことを検出する場合には、空気予熱器バーナ62に排出ガス54と排出ガス44を供給して燃焼させ、空気予熱器61に供給した空気14と熱交換させることによって空気39の予熱を行う。
なお、図2に示した水素製造システムでは、排出ガス65中の一酸化炭素を水蒸気と反応させることによって(2)式に示した水性シフト反応により水素を生成させるために、シフト反応手段としてCOシフトコンバータ4を設けたが、水素生成量の減少が許容される場合には、COシフトコンバータ4は必ずしも設ける必要はなく省略してもよい。COシフトコンバータ4を省略する場合には、排出ガス65を水素分離器53にそのまま供給すればよい。
本実施例の水素製造システムにおいても、固体酸化物形燃料電池38による所定の出力での発電を継続すると同時に、水素貯蔵器59への水素貯蔵を行うことが可能である。すなわち、水素貯蔵量検出器60が水素貯蔵器59の貯蔵量が所定の値まで減少したことを検出する場合には、流量制御弁43の開度を制御することによって固体酸化物形燃料電池38の酸化剤極37への空気39の供給量を減少させるとともに、流量制御弁27の開度を制御することによって脱硫器2への天然ガス1の供給量を増加させ、固体酸化物形燃料電池38の発電に使用する量以上の水素と一酸化炭素を改質器3で生成させる。
また、改質器3で生成した過剰の水素と一酸化炭素を含む排出ガス42は、遮断弁81を開けることによって排出ガス65としてCOシフトコンバータ4に供給され、COシフトコンバータ用固体酸化物形燃料電池燃料極排出ガス65中の一酸化炭素を水蒸気と反応させることによって二酸化炭素と水素を生成させ、その一酸化炭素濃度を1%以下まで低減させる。
COシフトコンバータ4で生成した、一酸化炭素濃度を1%以下に低減させた排出ガス66が水素分離器53に供給されると、排出ガス66から水素58が分離され、この水素58が水素貯蔵器59に貯蔵される。天然ガス1の供給量を増加させると、改質器3における天然ガスの水蒸気改質反応による吸熱量が増加するが、空気39の供給量を減少させるので、空気39による固体酸化物形燃料電池38の冷却が抑制され、それまで空気39による冷却により排出ガス44とともに捨てられていた固体酸化物形燃料電池38の排熱を改質器3で、供給量が増加した分の天然ガス1の水蒸気改質反応の反応熱として利用することができる。その結果、天然ガス1の供給量が増加しても、固体酸化物形燃料電池38や改質器3の反応温度が低下し、固体酸化物形燃料電池38の発電性能が低下することを防げる。
一方、水素貯蔵量検出器60が水素貯蔵器59の貯蔵量が所定の値まで増加したことを検出する場合には、流量制御弁43の開度を制御することによって固体酸化物形燃料電池38の酸化剤極37への空気39の供給量を増加させるとともに、流量制御弁27の開度を制御することによって脱硫器2への天然ガス1の供給量を減少させ、固体酸化物形燃料電池38の発電に使用する量の水素と一酸化炭素を改質器3で生成させる。
また、遮断弁81を閉じることによって、排出ガス65のCOシフトコンバータ4への供給を停止し、水素貯蔵器59への水素58の貯蔵をやめる。天然ガス1の供給量を減少させると、改質器3における天然ガスの水蒸気改質反応による吸熱量が減少するが、空気39の供給量を増加させるので、空気39による固体酸化物形燃料電池38の冷却が促進され、それまで改質器3で天然ガス1の水蒸気改質反応に使われていた固体酸化物形燃料電池38の排熱が排出ガス44とともに外部に放出される。その結果、天然ガス1の供給量が減少しても、固体酸化物形燃料電池38や改質器3の反応温度が上昇することを防ぎ、改質器3や固体酸化物形燃料電池38の劣化を引き起こしたり、システムの寿命や信頼性の低下を生じたりすることはない。
一般的に、固体酸化物形燃料電池38の酸化剤極37での酸素利用率は20%であり、空気39の大部分は固体酸化物形燃料電池38の冷却に使用されている。このため、燃料である天然ガス1の供給量が増減しても、空気39の供給量を増減させることによって、固体酸化物形燃料電池38の反応温度を所定の温度範囲に維持しながら、天然ガス1の水蒸気改質反応に必要な反応熱を確保することができる。
本実施例では、実施例1および2で設けられていた改質器3を省略し、水蒸気と脱硫天然ガスの混合ガスをそのまま固体酸化物形燃料電池の燃料極に供給し、燃料極で天然ガスに含まれる炭化水素の水蒸気改質反応を行わせるものである。
図3は本実施例の水素製造システムの一構成例を示すブロック図である。実施例2と同様な構成については同一の符号を付し、その詳細な説明を省略する。
図3に示すように、本実施例の水素製造システムでは、図2に示した水素製造システムの改質器3が設けられておらず、排出ガス68および脱硫天然ガス24を含む混合ガス23を供給するための配管が燃料極35に接続された構成である。
次に、図3を参照して、本実施例の水素製造システムの制御方法を説明する。
本実施例の水素製造システムは、上述したように、図2に示した水素製造システムとは、改質器3が設けられておらず、水蒸気と脱硫天然ガスの混合ガス23をそのまま固体酸化物形燃料電池38の燃料極35に供給し、燃料極35で天然ガス1に含まれる炭化水素の水蒸気改質反応を行わせる点が大きく異なる。実施例2と異なる点について中心に説明する。
上述したように、水蒸気と脱硫天然ガスの混合ガス23を固体酸化物形燃料電池38の燃料極35に供給する。固体酸化物形燃料電池38の燃料極35では、燃料極触媒の働きにより天然ガス1に含まれる炭化水素(主にメタン)の水蒸気改質反応が行われ、水素と一酸化炭素が生成される。燃料極35で生成された水素と一酸化炭素がその場で(3)式および(4)式に示した燃料極反応により消費され、固体酸化物形燃料電池38の発電が行われる。炭化水素の水蒸気改質反応は吸熱反応であるので、固体酸化物形燃料電池38の発熱を、炭化水素の水蒸気改質反応に必要な反応熱として利用する。
固体酸化物燃料電池38の発電温度は、一般的に800〜1000℃であり、電池反応による発熱により発電温度が維持されている。このため、固体酸化物燃料電池38の発熱が、前述したように燃料極35での炭化水素の水蒸気改質反応の反応熱として利用することができる。水蒸気改質反応に必要な水蒸気は、固体酸化物形燃料電池38の燃料極35で(3)式に示した燃料極反応で生成された水蒸気を含む排出ガス68を燃料極35にリサイクルすることによって供給される。
なお、図3に示した水素製造システムでは、排出ガス65中の一酸化炭素を水蒸気と反応させることによって(2)式に示した水性シフト反応により水素を生成させるために、シフト反応手段としてCOシフトコンバータ4を設けたが、水素生成量の減少が許容される場合には、COシフトコンバータ4は必ずしも設ける必要はなく省略してもよい。COシフトコンバータ4を省略する場合には、排出ガス65を水素分離器53にそのまま供給すればよい。
本実施例の水素製造システムでは、固体酸化物形燃料電池38による所定の出力での発電を継続すると同時に、水素貯蔵器59への水素貯蔵を行うことが可能である。すなわち、水素貯蔵量検出器60が水素貯蔵器59の貯蔵量が所定の値まで減少したことを検出する場合には、流量制御弁43の開度を制御することによって固体酸化物形燃料電池38の酸化剤極37への空気39の供給量を減少させるとともに、流量制御弁27の開度を制御することによって脱硫器2への天然ガス1の供給量を増加させ、固体酸化物形燃料電池38の発電に使用する量以上の水素と一酸化炭素を固体酸化物形燃料電池38の燃料極35で生成させる。
また、固体酸化物形燃料電池38の燃料極35で生成した過剰の水素と一酸化炭素を含む排出ガス42は、遮断弁81を開けることによって排出ガス65としてCOシフトコンバータ4に供給され、排出ガス65中の一酸化炭素を水蒸気と反応させることによって二酸化炭素と水素を生成させ、その一酸化炭素濃度を1%以下まで低減させる。COシフトコンバータ4で生成された、一酸化炭素濃度を1%以下に低減させた排出ガス66は水素分離器53に供給され、そこで排出ガス66から水素58が分離され、この水素58が水素貯蔵器59に貯蔵される。天然ガス1の供給量を増加させると、固体酸化物形燃料電池38の燃料極35における天然ガスの水蒸気改質反応による吸熱量が増加するが、空気39の供給量を減少させるので、空気39による固体酸化物形燃料電池38の冷却が抑制され、それまで空気39による冷却により排出ガス44とともに捨てられていた固体酸化物形燃料電池38の排熱を供給量が増加した分の天然ガス1の水蒸気改質反応の反応熱として利用することができる。その結果、天然ガス1の供給量が増加しても、固体酸化物形燃料電池38の反応温度が低下し、固体酸化物形燃料電池38の発電性能が低下することはない。
一方、水素貯蔵量検出器60が水素貯蔵器59の貯蔵量が所定の値まで増加したことを検出する場合には、流量制御弁43の開度を制御することによって固体酸化物形燃料電池38の酸化剤極37への空気39の供給量を増加させるとともに、流量制御弁27の開度を制御することによって脱硫器2への天然ガス1の供給量を減少させ、固体酸化物形燃料電池38の発電に使用する量の水素と一酸化炭素を固体酸化物形燃料電池38の燃料極35で生成させる。
また、遮断弁81を閉じることによって固体酸化物形燃料電池38の燃料極35で生成した排出ガス65のCOシフトコンバータ4への供給を停止し、水素貯蔵器59への水素58の貯蔵をやめる。天然ガス1の供給量を減少させると、固体酸化物形燃料電池38の燃料極35における天然ガスの水蒸気改質反応による吸熱量が減少するが、空気39の供給量を増加させるので、空気39による固体酸化物形燃料電池38の冷却が促進され、それまで天然ガス1の水蒸気改質反応に使われていた固体酸化物形燃料電池38の排熱が排出ガス44とともに外部に放出される。その結果、天然ガス1の供給量が減少しても、固体酸化物形燃料電池38の反応温度が上昇することを防ぎ、固体酸化物形燃料電池38の劣化を引き起こしたり、システムの寿命や信頼性の低下を生じたりすることはない。
一般的に、固体酸化物形燃料電池38の酸化剤極37での酸素利用率は20%であり、空気39の大部分は固体酸化物形燃料電池38の冷却に使用されている。このため、燃料である天然ガス1の供給量が増減しても、空気39の供給量を増減させることによって、固体酸化物形燃料電池38の反応温度を所定の温度範囲に維持しながら、天然ガス1の水蒸気改質反応に必要な反応熱を確保することができる。
なお、上述の実施例1から実施例3では、燃料電池としてすべて固体酸化物形燃料電池38を用いているが、固体酸化物形燃料電池38の代わりに溶融炭酸塩形燃料電池を用いてもよい。
また、制御部70を水素貯蔵器59に設けていたが、制御部70の設置場所は水素貯蔵器59に限定されない。
本発明は、前述の実施形態にのみ限定されるものではなく、本発明の趣旨を逸脱しない範囲内において種々の変更を加えることは勿論である。
本発明の実施例1の水素製造システムの一構成例を示すブロック図である。 本発明の実施例2の水素製造システムの一構成例を示すブロック図である。 本発明の実施例3の水素製造システムの一構成例を示すブロック図である。 従来の水素製造システムの一構成例を示すブロック図である。
符号の説明
1、32、34、70 天然ガス
2 脱硫器
3 改質器
4 COシフトコンバータ
5 水蒸気
6 補給水
7 補給水ポンプ
8、13、17、69、75、76、77、79、81、82 遮断弁
9 水蒸気発生器
10 水蒸気発生器バーナ
11 改質器起動用バーナ
12 空気供給用ブロワ
14、33、39、71、72 空気
15、18、20、27、28、40、43、47、73、74、78、83 流量制御弁
19 改質器バーナ
21、22 改質ガス
23 混合ガス
24 脱硫天然ガス
25 改質ガス
26 改質ガス
29、30、31、41、42、44、45、54、65、66、68、80 排出ガス
35 燃料極
36 固体酸化物電解質
37 酸化剤極
38 固体酸化物形燃料電池
48 出力調整装置
49 負荷
50 燃料電池直流出力
51 送電端交流出力
53 水素分離器
58 水素
59 水素貯蔵器
60 水素貯蔵量検出器
61 空気予熱器
62 空気予熱器バーナ
63 水素供給設備
64 水素消費手段
65、70 制御部

Claims (16)

  1. 水素元素を含む燃料から水素を含む改質ガスを吸熱反応により生成する燃料改質工程と、
    前記改質ガスおよび酸化剤を用いて発電と前記吸熱反応のための熱の発生を行う工程と、
    前記改質ガス中の一酸化炭素と水蒸気を水素と二酸化炭素に変換するシフト反応工程と、
    前記シフト反応工程による前記水素と前記二酸化炭素を含むガスから水素を分離する水素分離工程と、
    前記水素分離工程で分離された前記水素を貯蔵する水素貯蔵工程と、
    貯蔵される前記水素の貯蔵量を検出する水素貯蔵量検出工程と、
    前記水素貯蔵量検出工程による検出値を監視し、該検出値が所定の値よりも減少する場合、前記酸化剤の供給量を減少させるとともに前記燃料の供給量を増加させ、前記水素貯蔵量検出手段の検出値が所定の値まで増加する場合、前記酸化剤の供給量を増加させるとともに前記燃料の供給量を減少させる工程と、
    を有する水素製造方法。
  2. 水素元素を含む燃料から水素を含む改質ガスを吸熱反応により生成する燃料改質工程と、
    前記改質ガスおよび酸化剤を用いて発電と前記吸熱反応のための熱の発生を行う工程と、
    前記改質ガスから水素を分離する水素分離工程と、
    前記水素分離工程で分離された前記水素を貯蔵する水素貯蔵工程と、
    貯蔵される前記水素の貯蔵量を検出する水素貯蔵量検出工程と、
    前記水素貯蔵量検出工程による検出値を監視し、該検出値が所定の値よりも減少する場合、前記酸化剤の供給量を減少させるとともに前記燃料の供給量を増加させ、前記水素貯蔵量検出手段の検出値が所定の値まで増加する場合、前記酸化剤の供給量を増加させるとともに前記燃料の供給量を減少させる工程と、
    を有する水素製造方法。
  3. 水素元素を含む燃料から水素を含む改質ガスを吸熱反応により生成する燃料改質工程と、
    前記改質ガスおよび酸化剤を用いて発電と前記吸熱反応のための熱の発生を行い、一酸化炭素と水蒸気を含むガスを生成する工程と、
    前記一酸化炭素と前記水蒸気を水素と二酸化炭素に変換するシフト反応工程と、
    前記シフト反応工程による前記水素と前記二酸化炭素を含むガスから水素を分離する水素分離工程と、
    前記水素分離工程で分離された前記水素を貯蔵する水素貯蔵工程と、
    貯蔵される前記水素の貯蔵量を検出する水素貯蔵量検出工程と、
    前記水素貯蔵量検出工程による検出値を監視し、該検出値が所定の値よりも減少する場合、前記酸化剤の供給量を減少させるとともに前記燃料の供給量を増加させ、前記水素貯蔵量検出手段の検出値が所定の値まで増加する場合、前記酸化剤の供給量を増加させるとともに前記燃料の供給量を減少させる工程と、
    を有する水素製造方法。
  4. 水素元素を含む燃料から水素を含む改質ガスを吸熱反応により生成する燃料改質工程と、
    前記改質ガスおよび酸化剤を用いて発電と前記吸熱反応のための熱の発生を行い、水素を含むガスを生成する工程と、
    前記水素を含むガスから水素を分離する水素分離工程と、
    前記水素分離工程で分離された前記水素を貯蔵する水素貯蔵工程と、
    貯蔵される前記水素の貯蔵量を検出する水素貯蔵量検出工程と、
    前記水素貯蔵量検出工程による検出値を監視し、該検出値が所定の値よりも減少する場合、前記酸化剤の供給量を減少させるとともに前記燃料の供給量を増加させ、前記水素貯蔵量検出手段の検出値が所定の値まで増加する場合、前記酸化剤の供給量を増加させるとともに前記燃料の供給量を減少させる工程と、
    を有する水素製造方法。
  5. 水素元素を含む燃料と酸化剤とを用いて発電を行い、一酸化炭素と水蒸気を含むガスを生成する工程と、
    前記一酸化炭素と水蒸気を含むガスの該一酸化炭素と水蒸気を水素と二酸化炭素に変換するシフト反応工程と、
    前記シフト反応工程による前記水素と前記二酸化炭素を含むガスから水素を分離する水素分離工程と、
    前記水素分離工程で分離された前記水素を貯蔵する水素貯蔵工程と、
    貯蔵される前記水素の貯蔵量を検出する水素貯蔵量検出工程と、
    前記水素貯蔵量検出工程による検出値を監視し、該検出値が所定の値よりも減少する場合、前記酸化剤の供給量を減少させるとともに前記燃料の供給量を増加させ、前記水素貯蔵量検出手段の検出値が所定の値まで増加する場合、前記酸化剤の供給量を増加させるとともに前記燃料の供給量を減少させる工程と、
    を有する水素製造方法。
  6. 水素元素を含む燃料と酸化剤とを用いて発電を行い、水素を含むガスを生成する工程と、
    前記水素を含むガスから水素を分離する水素分離工程と、
    前記水素分離工程で分離された前記水素を貯蔵する水素貯蔵工程と、
    貯蔵される前記水素の貯蔵量を検出する水素貯蔵量検出工程と、
    前記水素貯蔵量検出工程による検出値を監視し、該検出値が所定の値よりも減少する場合、前記酸化剤の供給量を減少させるとともに前記燃料の供給量を増加させ、前記水素貯蔵量検出手段の検出値が所定の値まで増加する場合、前記酸化剤の供給量を増加させるとともに前記燃料の供給量を減少させる工程と、
    を有する水素製造方法。
  7. 請求項1から6のいずれか1項記載の水素製造方法であって、
    前記水素貯蔵量検出手段が圧力検出手段または重量検出手段である水素製造方法。
  8. 請求項1から7のいずれか1項記載の水素製造方法であって、
    前記燃料電池が固体酸化物形燃料電池または溶融炭酸塩形燃料電池である水素製造方法。
  9. 水素元素を含む燃料が供給されると、吸熱反応により水素を含む改質ガスを該燃料から生成する燃料改質手段と、
    前記改質ガスおよび酸化剤を用いて発電と前記吸熱反応のための熱の発生を行う燃料電池と、
    前記改質ガスが供給されると、該改質ガス中の一酸化炭素と水蒸気を水素と二酸化炭素に変換するシフト反応手段と、
    前記シフト反応手段による前記水素と前記二酸化炭素を含む排出ガスから水素を分離する水素分離手段と、
    前記水素分離手段で分離された前記水素を貯蔵する水素貯蔵手段と、
    前記水素貯蔵手段に貯蔵される前記水素の貯蔵量を検出する水素貯蔵量検出手段と、
    前記水素貯蔵量検出手段による検出値を監視し、該検出値が所定の値よりも減少する場合、前記酸化剤の供給量を減少させるとともに前記燃料の供給量を増加させ、前記検出値が所定の値まで増加する場合、前記酸化剤の供給量を増加させるとともに前記燃料の供給量を減少させる制御部と、
    を有する水素製造システム。
  10. 水素元素を含む燃料が供給されると、吸熱反応により水素を含む改質ガスを該燃料から生成する燃料改質手段と、
    前記改質ガスおよび酸化剤を用いて発電と前記吸熱反応のための熱の発生を行う燃料電池と、
    前記改質ガスが供給されると、前記改質ガス中の水素を分離する水素分離手段と、
    前記水素分離手段で分離された前記水素を貯蔵する水素貯蔵手段と、
    前記水素貯蔵手段に貯蔵される前記水素の貯蔵量を検出する水素貯蔵量検出手段と、
    前記水素貯蔵量検出手段による検出値を監視し、該検出値が所定の値よりも減少する場合、前記酸化剤の供給量を減少させるとともに前記燃料の供給量を増加させ、前記検出値が所定の値まで増加する場合、前記酸化剤の供給量を増加させるとともに前記燃料の供給量を減少させる制御部と、
    を有する水素製造システム。
  11. 水素元素を含む燃料が供給されると、吸熱反応により水素を含む改質ガスを該燃料から生成する燃料改質手段と、
    前記改質ガスおよび酸化剤を用いて発電と前記吸熱反応のための熱の発生を行い、一酸化炭素と水蒸気を生成する燃料電池と、
    前記燃料電池から前記一酸化炭素と前記水蒸気を含む排出ガスが供給されると、該排出ガス中の一酸化炭素と水蒸気を水素と二酸化炭素に変換するシフト反応手段と、
    前記シフト反応手段による前記水素と前記二酸化炭素を含む排出ガス中の水素を分離する水素分離手段と、
    前記水素分離手段で分離された前記水素を貯蔵する水素貯蔵手段と、
    前記水素貯蔵手段に貯蔵される前記水素の貯蔵量を検出する水素貯蔵量検出手段と、
    前記水素貯蔵量検出手段による検出値を監視し、該検出値が所定の値よりも減少する場合、前記酸化剤の供給量を減少させるとともに前記燃料の供給量を増加させ、前記検出値が所定の値まで増加する場合、前記酸化剤の供給量を増加させるとともに前記燃料の供給量を減少させる制御部と、
    を有する水素製造システム。
  12. 水素元素を含む燃料が供給されると、吸熱反応により水素を含む改質ガスを該燃料から生成する燃料改質手段と、
    前記改質ガスおよび酸化剤を用いて発電と前記吸熱反応のための熱の発生を行い、水素を含むガスを生成する燃料電池と、
    前記燃料電池から前記水素を含む排出ガスが供給されると、該排出ガス中の水素を分離する水素分離手段と、
    前記水素分離手段で分離された前記水素を貯蔵する水素貯蔵手段と、
    前記水素貯蔵手段に貯蔵される前記水素の貯蔵量を検出する水素貯蔵量検出手段と、
    前記水素貯蔵量検出手段による検出値を監視し、該検出値が所定の値よりも減少する場合、前記酸化剤の供給量を減少させるとともに前記燃料の供給量を増加させ、前記検出値が所定の値まで増加する場合、前記酸化剤の供給量を増加させるとともに前記燃料の供給量を減少させる制御部と、
    を有する水素製造システム。
  13. 水素元素を含む燃料と酸化剤とが供給されると、該燃料および該酸化剤を用いて発電を行い、一酸化炭素と水蒸気を含むガスを生成する燃料電池と、
    前記燃料電池から前記一酸化炭素と前記水蒸気を含む排出ガスが供給されると、該排出ガス中の一酸化炭素と水蒸気を水素と二酸化炭素に変換するシフト反応手段と、
    前記シフト反応手段による前記水素と二酸化炭素を含む排出ガスから水素を分離する水素分離手段と、
    前記水素分離手段で分離された前記水素を貯蔵する水素貯蔵手段と、
    前記水素貯蔵手段に貯蔵される前記水素の貯蔵量を検出する水素貯蔵量検出手段と、
    前記水素貯蔵量検出手段による検出値を監視し、該検出値が所定の値よりも減少する場合、前記酸化剤の供給量を減少させるとともに前記燃料の供給量を増加させ、前記検出値が所定の値まで増加する場合、前記酸化剤の供給量を増加させるとともに前記燃料の供給量を減少させる制御部と、
    を有する水素製造システム。
  14. 水素元素を含む燃料と酸化剤とが供給されると、該燃料および該酸化剤を用いて発電を行い、水素を含むガスを生成する燃料電池と、
    前記燃料電池から前記水素を含む排出ガスが供給されると、該排出ガス中の水素を分離する水素分離手段と、
    前記水素分離手段で分離された前記水素を貯蔵する水素貯蔵手段と、
    前記水素貯蔵手段に貯蔵される前記水素の貯蔵量を検出する水素貯蔵量検出手段と、
    前記水素貯蔵量検出手段による検出値を監視し、該検出値が所定の値よりも減少する場合、前記酸化剤の供給量を減少させるとともに前記燃料の供給量を増加させ、前記検出値が所定の値まで増加する場合、前記酸化剤の供給量を増加させるとともに前記燃料の供給量を減少させる制御部と、
    を有する水素製造システム。
  15. 請求項9から14のいずれか1項記載の水素製造システムであって、
    前記水素貯蔵量検出手段が圧力検出手段または重量検出手段である水素製造システム。
  16. 請求項9から15のいずれか1項記載の水素製造システムであって、
    前記燃料電池が固体酸化物形燃料電池または溶融炭酸塩形燃料電池である水素製造システム。
JP2007096329A 2007-04-02 2007-04-02 水素製造方法および水素製造システム Expired - Fee Related JP4914273B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007096329A JP4914273B2 (ja) 2007-04-02 2007-04-02 水素製造方法および水素製造システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007096329A JP4914273B2 (ja) 2007-04-02 2007-04-02 水素製造方法および水素製造システム

Publications (2)

Publication Number Publication Date
JP2008254942A JP2008254942A (ja) 2008-10-23
JP4914273B2 true JP4914273B2 (ja) 2012-04-11

Family

ID=39978898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007096329A Expired - Fee Related JP4914273B2 (ja) 2007-04-02 2007-04-02 水素製造方法および水素製造システム

Country Status (1)

Country Link
JP (1) JP4914273B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101919068B (zh) 2007-12-18 2013-05-01 马莱克·T·麦克尔维兹 量子隧道光电检测器阵列
JP5614611B2 (ja) * 2009-11-09 2014-10-29 剛正 山田 2次電池と固体酸化物型燃料電池とを備えた電動式移動体
NO332984B1 (no) * 2009-12-22 2013-02-11 Zeg Power As Fremgangsmåte og anordning for samtidig produksjon av energi i form av elektrisitet, varme og hydrogengass
JP6117838B2 (ja) * 2015-03-17 2017-04-19 東京瓦斯株式会社 高圧水素製造システム、および、高圧水素製造システムの運転方法
JP6719915B2 (ja) * 2016-02-08 2020-07-08 三菱日立パワーシステムズ株式会社 燃料電池−水素製造システムおよびその運転方法
KR102326948B1 (ko) 2016-04-21 2021-11-16 퓨얼 셀 에너지, 인크 이산화탄소 포획을 위해 용융 탄산염 연료 전지 애노드 배기를 후가공처리하는 방법
JP6516393B1 (ja) * 2018-02-09 2019-05-22 アドバンス理工株式会社 水素生成装置及び水素充填装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134865A (ja) * 1984-07-27 1986-02-19 Hitachi Ltd 燃料電池発電装置
US4532192A (en) * 1984-11-06 1985-07-30 Energy Research Corporation Fuel cell system
US20020114984A1 (en) * 2001-02-21 2002-08-22 Edlund David J. Fuel cell system with stored hydrogen
JP3872006B2 (ja) * 2002-12-11 2007-01-24 日本電信電話株式会社 燃料電池発電システム
JP4246053B2 (ja) * 2003-12-17 2009-04-02 日本電信電話株式会社 燃料電池発電システムの起動法
JP4523297B2 (ja) * 2004-02-10 2010-08-11 株式会社豊田中央研究所 燃料電池システム及びその発電方法
US8691462B2 (en) * 2005-05-09 2014-04-08 Modine Manufacturing Company High temperature fuel cell system with integrated heat exchanger network

Also Published As

Publication number Publication date
JP2008254942A (ja) 2008-10-23

Similar Documents

Publication Publication Date Title
JP6397502B2 (ja) 水素製造のための改質装置・電解装置・精製装置(rep)組立体、同組立体を組み込むシステムおよび水素製造方法
JP4914273B2 (ja) 水素製造方法および水素製造システム
US10680265B2 (en) Energy storage using an REP with an engine
JP6639577B2 (ja) 部分酸化とともにrepを用いる水素および一酸化炭素生成
JP2008108619A (ja) 燃料電池発電システムとその二酸化炭素回収方法
JP2009048854A (ja) 燃料電池発電装置およびその制御方法
JP3784775B2 (ja) 燃料電池発電システムの制御方法
JP5002220B2 (ja) 燃料電池システム
JP5134309B2 (ja) 燃料電池発電装置およびその制御方法
JP4620399B2 (ja) 燃料電池発電システムの制御方法
JP2005108509A (ja) 燃料電池発電システム
JP2008204784A (ja) 燃料電池発電システム及び燃料電池発電方法
JP2008108621A (ja) 燃料電池発電システムとその二酸化炭素回収方法
JP3872006B2 (ja) 燃料電池発電システム
JP4467929B2 (ja) 燃料電池発電システム
JP2005056775A (ja) 燃料電池発電システム
JP2005056777A (ja) 燃料電池発電システム
JP2008108620A (ja) 燃料電池発電システムとその二酸化炭素回収方法
JP2010160928A (ja) 燃料改質装置の起動方法、燃料改質装置、及び燃料電池発電装置
WO2013027415A1 (ja) 燃料電池システム及びその運転方法
JP2005056735A (ja) 燃料電池発電システム
JP2023139726A (ja) 燃料電池システム
JP2005056730A (ja) 燃料電池発電システム
JP2005056666A (ja) 燃料電池発電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees