JP4914065B2 - Nickel powder for multilayer ceramic capacitor electrode, electrode forming paste and multilayer ceramic capacitor - Google Patents

Nickel powder for multilayer ceramic capacitor electrode, electrode forming paste and multilayer ceramic capacitor Download PDF

Info

Publication number
JP4914065B2
JP4914065B2 JP2005367885A JP2005367885A JP4914065B2 JP 4914065 B2 JP4914065 B2 JP 4914065B2 JP 2005367885 A JP2005367885 A JP 2005367885A JP 2005367885 A JP2005367885 A JP 2005367885A JP 4914065 B2 JP4914065 B2 JP 4914065B2
Authority
JP
Japan
Prior art keywords
nickel powder
multilayer ceramic
ceramic capacitor
electrode
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005367885A
Other languages
Japanese (ja)
Other versions
JP2007173450A (en
Inventor
竜祐 上山
智公 安藤
昭雄 原田
良樹 橋詰
忠昭 青木
太郎 森光
英男 高取
剛 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO ALMINIUM KABUSHIKI KAISHA
Daiken Kagaku Kogyo KK
Toho Titanium Co Ltd
Original Assignee
TOYO ALMINIUM KABUSHIKI KAISHA
Daiken Kagaku Kogyo KK
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO ALMINIUM KABUSHIKI KAISHA, Daiken Kagaku Kogyo KK, Toho Titanium Co Ltd filed Critical TOYO ALMINIUM KABUSHIKI KAISHA
Priority to JP2005367885A priority Critical patent/JP4914065B2/en
Publication of JP2007173450A publication Critical patent/JP2007173450A/en
Application granted granted Critical
Publication of JP4914065B2 publication Critical patent/JP4914065B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、積層セラミックコンデンサの電極に使用されるニッケル粉末に関する。   The present invention relates to a nickel powder used for an electrode of a multilayer ceramic capacitor.

従来、積層セラミックコンデンサの内部電極には、Pd粉末が使用されていた。近年においては、コストダウンのために上記電極にニッケル粉末の使用が検討されている。ニッケル粉末を使用した積層セラミックコンデンサの内部電極の製造方法は、次のとおりである。ニッケル粉末とバインダと溶剤とを混合してペースト化した後、誘電体セラミックのグリーンシートにスクリーン印刷などにより塗布する。次いで、このグリーンシートを積層圧着工程により多層化し、所定の大きさに裁断した後、焼成して、積層セラミックコンデンサとする方法である。 Conventionally, Pd powder has been used for internal electrodes of multilayer ceramic capacitors. In recent years, the use of nickel powder for the electrode has been studied for cost reduction. The manufacturing method of the internal electrode of the multilayer ceramic capacitor using nickel powder is as follows. Nickel powder, a binder and a solvent are mixed to form a paste, which is then applied to a dielectric ceramic green sheet by screen printing or the like. Next, this green sheet is multi-layered by a multi-layer press-bonding process, cut into a predetermined size, and then fired to form a multi-layer ceramic capacitor.

ところで、近年は、積層セラミックコンデンサの小型化、多層化および大容量化が進んでおり、誘電体セラミックグリーンシートおよび内部電極層の厚みを極限まで薄くしようとすることが検討されている。   Incidentally, in recent years, multilayer ceramic capacitors have been reduced in size, multilayered, and increased in capacity, and it has been studied to reduce the thickness of the dielectric ceramic green sheet and the internal electrode layer to the limit.

特許第3197454号公報、特開2001−101926、特開2000−100251、特開平11−251173号公報、特開平11−16766号公報および特開平10−50551号公報には、平均粒径が0.01〜1μmのニッケル粉末を上記用途に使用することを開示している。しかしながら、粒径が0.5〜1μmの粗い粉末は、内部電極層の厚みが薄くなると誘電体グリーンシートを突き破りショート不良などの問題を生じやすい。また、粒径が0.5μm以下の微細な粉末は分散が困難であるという問題がある。   Japanese Patent No. 3197454, Japanese Patent Application Laid-Open No. 2001-101926, Japanese Patent Application Laid-Open No. 2000-100251, Japanese Patent Application Laid-Open No. 11-251173, Japanese Patent Application Laid-Open No. 11-16766, and Japanese Patent Application Laid-Open No. 10-50551 have an average particle size of 0.001. It discloses the use of 01-1 μm nickel powder for the above applications. However, a coarse powder having a particle size of 0.5 to 1 μm tends to break through the dielectric green sheet and cause problems such as short-circuit defects when the thickness of the internal electrode layer is reduced. Further, there is a problem that a fine powder having a particle size of 0.5 μm or less is difficult to disperse.

上記技術の問題を解決する方法として、特開2004−84055には、磨砕メディアと、ニッケル粉末と、有機溶媒とからなる混合物を磨砕装置を用いてフレーク化することによって得られる、平均粒径が0.5〜10μm、平均厚み0.03〜0.5μm、アスペクト比が10〜100である積層セラミックコンデンサ電極用ニッケルフレークが開示されている。   As a method for solving the above technical problem, Japanese Patent Application Laid-Open No. 2004-84055 discloses average grains obtained by flaking a mixture of grinding media, nickel powder, and an organic solvent using a grinding device. A nickel flake for multilayer ceramic capacitor electrodes having a diameter of 0.5 to 10 μm, an average thickness of 0.03 to 0.5 μm, and an aspect ratio of 10 to 100 is disclosed.

しかしながら、この方法においては、磨砕の際にニッケル粉末の酸化が進行しながらフレーク化されるので、磨砕後のニッケルフレークの含有酸素量が高くなってしまう。このニッケルフレークをペースト化した後、グリーンシートに印刷し積層工程、裁断工程を経て焼成を行うとニッケルフレーク中の含有酸素量が高いために焼成時の収縮が大きくなり、その結果、電極層と誘電体層との収縮率の差が大きくなり、電極層の剥離(デラミネーション)や割れ(クラック)、積層セラミックコンデンサの電気特性の劣化が発生する。また、一般的にグリーンシート上への電極層の印刷はスクリーン印刷で行われるが、平均粒径が大きいものはスクリーンのメッシュを粒子が立った状態で通過しそのまま印刷面が形成されるので印刷面上へのフレークの突き出しが生じ、印刷面の平滑性が損なわれ、電極層と誘電体層を交互に形成する時に電極のショート不良の危険性があった。
特許第3197454号公報 特開2001−101926号公報 特開2000−100251号公報 特開平11−251173号公報 特開平11−16766号公報 特開平10−50551号公報 特開2004−84055号公報
However, in this method, since the nickel powder is flaked during the grinding, the oxygen content of the nickel flake after grinding becomes high. After making this nickel flake into a paste, printing on a green sheet and firing through a laminating step and a cutting step, the amount of oxygen contained in the nickel flake is high, so the shrinkage during firing is increased, and as a result, the electrode layer The difference in shrinkage rate from the dielectric layer becomes large, causing electrode layer peeling (delamination) and cracking (crack), and deterioration of the electrical characteristics of the multilayer ceramic capacitor. In general, printing of the electrode layer on the green sheet is performed by screen printing. However, if the average particle size is large, the printing surface is formed as it passes through the screen mesh with particles standing. Flakes stick out on the surface, the smoothness of the printed surface is impaired, and there is a risk of short-circuiting of the electrodes when the electrode layers and the dielectric layers are alternately formed.
Japanese Patent No. 3197454 JP 2001-101926 A JP 2000-1000025 A Japanese Patent Laid-Open No. 11-251173 Japanese Patent Laid-Open No. 11-16766 Japanese Patent Laid-Open No. 10-50551 JP 2004-84055 A

本発明は、上記技術の問題を解決するものであり、安価でかつ環境への負荷を抑制した、簡便な工程で製造でき、ニッケル粉末中の含有酸素量が少なく、かつ焼成後の電極切れなどの構造欠陥を生じにくい積層セラミックコンデンサ電極用ニッケル粉末を提供することを目的とする。 The present invention solves the above-described technical problems, can be manufactured by a simple process that is inexpensive and suppresses environmental burden, has a small amount of oxygen contained in nickel powder, and has run out of electrodes after firing. An object of the present invention is to provide a nickel powder for a multilayer ceramic capacitor electrode that is less likely to cause structural defects.

本発明の積層セラミックコンデンサ電極用ニッケル粉末は、比表面積が3〜10m/gであり、含有酸素量が3重量%以下であり、下記式1で規定する形状因子が3〜30(μm・m/g)であることを特徴とする。
形状因子(μm・m/g)
=比表面積(m/g)×ニッケル粉末の平均粒子径D50(μm)
・・・式1
(比表面積はBET法により測定した比表面積であり、平均粒子径D50は、レーザー回折法により粒径とその粒径に該当する粒子の数を求めて表してなる粒度分布曲線の全粒子数の50%目に該当する粒子の粒子径を示す。)
The nickel powder for multilayer ceramic capacitor electrodes of the present invention has a specific surface area of 3 to 10 m 2 / g, an oxygen content of 3% by weight or less, and a shape factor defined by the following formula 1 of 3 to 30 (μm · m 2 / g).
Form factor (μm · m 2 / g)
= Specific surface area (m 2 / g) × average particle diameter of nickel powder D 50 (μm)
... Formula 1
(The specific surface area is a specific surface area measured by the BET method, average particle diameter D 50 is the total number of particles having a particle size distribution curve consisting represents seeking the number of particles corresponding to the particle size and particle size by laser diffraction method The particle diameter of the particles corresponding to the 50% of the above is shown.)

好ましくは、前記ニッケル粉末は、粒状のニッケル粉末と鱗片状のニッケル粉末とが混在していることを特徴とする。   Preferably, the nickel powder is a mixture of granular nickel powder and scaly nickel powder.

好ましくは、前記ニッケル粉末は、最大厚みが0.2μm以下であることを特徴とする。   Preferably, the nickel powder has a maximum thickness of 0.2 μm or less.

好ましくは、磨砕メディアを有する磨砕装置を使用して、有機溶媒中で原料ニッケル粉を磨砕することによって得られることを特徴とする。   Preferably, it is obtained by grinding raw material nickel powder in an organic solvent using a grinding device having grinding media.

好ましくは、前記ニッケル粉末は、レーザー回折法により粒径とその粒径に該当する粒子の数を求めて表してなる粒度分布曲線の全粒子数の50%目に該当する粒子の粒子径D50が0.13〜0.6μmであり上記曲線の全粒子数の90 %目に該当する粒子の粒子径D90が1.5μm以下である球状原料ニッケル粉を磨砕することにより得られることを特徴とする。 Preferably, the nickel powder has a particle size D 50 corresponding to 50% of the total number of particles in a particle size distribution curve obtained by determining the particle size and the number of particles corresponding to the particle size by laser diffraction. Is 0.13 to 0.6 μm, and is obtained by grinding spherical raw material nickel powder in which the particle diameter D 90 of the particles corresponding to 90% of the total number of particles in the above curve is 1.5 μm or less. Features.

本発明はまた、前記積層セラミックコンデンサ電極用ニッケル粉末とバインダと溶媒とを含むことを特徴とする電極形成用ペーストを提供する。   The present invention also provides an electrode forming paste comprising the nickel powder for a multilayer ceramic capacitor electrode, a binder, and a solvent.

さらに本発明は前記積層セラミックコンデンサ電極用ニッケル粉末により内部電極を形成したことを特徴とする積層セラミックコンデンサを提供する。   Furthermore, the present invention provides a multilayer ceramic capacitor characterized in that an internal electrode is formed from the nickel powder for a multilayer ceramic capacitor electrode.

本発明の積層セラミックコンデンサ電極用ニッケル粉末は、含有酸素量が少なく比表面積が所定の範囲でありかつ式1で規定する形状因子が一定の範囲内であるので、電極形成用ペーストに使用した場合に焼成時の収縮が少なくなるだけでなく、印刷面の平滑性がよく電極層の切断や剥離がおこらなくなる。また、ニッケル粉末の最大厚みが0.2μm以下なので、さらなる電極層の薄膜化が可能となる。加えて、このニッケル粉末は主として積層セラミックコンデンサ内部電極用であるが、外部電極に使用しても、薄くて均一な薄膜の電極層を得ることができ、それによって抵抗値のバラツキの少ない安定した品質の積層セラミックコンデンサを得ることができる。   The nickel powder for multilayer ceramic capacitor electrode of the present invention has a small oxygen content and a specific surface area within a predetermined range, and the shape factor defined by Formula 1 is within a certain range. In addition to reducing shrinkage during firing, the printed surface is smooth and the electrode layer is not cut or peeled off. Further, since the maximum thickness of the nickel powder is 0.2 μm or less, the electrode layer can be further thinned. In addition, this nickel powder is mainly used for multilayer ceramic capacitor internal electrodes, but even when used as an external electrode, it is possible to obtain a thin and uniform thin electrode layer, which is stable with little variation in resistance. A quality multilayer ceramic capacitor can be obtained.

本発明の積層セラミックコンデンサ電極用ニッケル粉末は、磨砕メディアを有する磨際装置を使用して有機溶媒中で原料ニッケル粉を磨砕することによって得られ、比表面積が3〜10m/gであり、含有酸素量が3重量%以下であり、式1で規定する形状因子が3〜30(μm・m/g)であることを特徴とする。 The nickel powder for multilayer ceramic capacitor electrodes of the present invention is obtained by grinding raw material nickel powder in an organic solvent using a grinding apparatus having grinding media, and has a specific surface area of 3 to 10 m 2 / g. And the oxygen content is 3% by weight or less, and the shape factor defined by Formula 1 is 3 to 30 (μm · m 2 / g).

(原料ニッケル粉)
本発明において使用可能な原料ニッケル粉としては、特に限定はないが、気相法(PVD法、CVD法)と液相法から製造されたニッケル粉が好適に使用でき、具体的方法としては、カルボニル法ニッケル粉、アトマイズドニッケル粉および湿式法ニッケル粉が挙げられる。特に、CVD法による球状原料ニッケル粉が好適である。本実施形態においては、CVD法により原料ニッケル粉を製造した。CVD法による原料ニッケル粉の製造方法としては、ニッケルカルボニルの熱分解反応による場合、ニッケルアルコキシドの還元反応による場合、塩化ニッケル(NiCl)の還元反応による場合などがあるが、本実施形態ではNiClの還元反応により製造した。特に、CVD法によれば、本発明に好適な原料ニッケル粉が製造できる利点がある。本発明の原料ニッケル粉は、原料ニッケル粉の粒径のD50が0.13〜0.6μmでありD90が1.5μm以下であり、より好ましくはD50が0.15〜0.3μmでありD90が0.8μm以下である。前記範囲内の原料ニッケル粉を使用することで磨砕後のニッケル粉末に粗大なニッケル粉末が含まれ難くなり印刷面の平滑性もさらに向上する。
(Raw material nickel powder)
The raw material nickel powder that can be used in the present invention is not particularly limited, but nickel powder produced by a vapor phase method (PVD method, CVD method) and a liquid phase method can be suitably used. As a specific method, Examples include carbonyl method nickel powder, atomized nickel powder, and wet method nickel powder. In particular, spherical raw material nickel powder by the CVD method is suitable. In this embodiment, the raw material nickel powder was manufactured by the CVD method. The raw material nickel powder can be produced by CVD using a thermal decomposition reaction of nickel carbonyl, a reduction reaction of nickel alkoxide, or a reduction reaction of nickel chloride (NiCl 2 ). Prepared by a reduction reaction of 2 . In particular, the CVD method has an advantage that a raw material nickel powder suitable for the present invention can be produced. In the raw material nickel powder of the present invention, the particle size D 50 of the raw material nickel powder is 0.13 to 0.6 μm and D 90 is 1.5 μm or less, more preferably D 50 is 0.15 to 0.3 μm. by and D 90 of at 0.8μm or less. By using the raw material nickel powder within the above range, it is difficult for coarse nickel powder to be contained in the nickel powder after grinding, and the smoothness of the printed surface is further improved.

(有機溶媒)
上記磨砕メディアを有する磨砕装置を使用して有機溶媒中で原料ニッケル粉を磨砕することにより、本発明の積層セラミックコンデンサ電極用ニッケル粉末を得ることができる。本発明において磨砕時に使用可能な有機溶媒は、炭化水素系溶媒、アルコール系溶媒、グリコールエーテル系溶媒、エステル系溶媒、ケトン系溶媒、テルペン系溶媒などが挙げられる。また、磨砕時には磨砕助剤として、脂肪酸、脂肪族アミン、脂肪族アルコール、酸性リン酸エステル等を有機溶媒中に混合することができる。磨砕助剤を混合することにより、磨砕を促進するとともに、磨砕中の被磨砕物の凝集を防止することができる。
(Organic solvent)
The nickel powder for multilayer ceramic capacitor electrodes of the present invention can be obtained by grinding the raw material nickel powder in an organic solvent using a grinding apparatus having the grinding media. Examples of the organic solvent that can be used in the grinding in the present invention include hydrocarbon solvents, alcohol solvents, glycol ether solvents, ester solvents, ketone solvents, and terpene solvents. Further, at the time of grinding, fatty acid, aliphatic amine, aliphatic alcohol, acidic phosphate ester and the like can be mixed in an organic solvent as grinding aids. By mixing the grinding aid, grinding can be promoted and aggregation of the material to be ground during grinding can be prevented.

(混合比)
上記原料ニッケル粉と有機溶媒との混合比率は、質量比で1:0.2〜1:10、好ましくは、1:1〜1:5がよい。1:0.2の比率よりも有機溶媒が少ない場合、磨砕過程でニッケル粉末が凝集してしまい、さらにはグリーンシート上に平滑な印刷面が得られなくなる。また、有機溶媒の量が1:10の比率よりも多くなると磨砕効率が低下し、磨砕時間が長くなり、経済的に不都合が生じる。
(mixing ratio)
The mixing ratio of the raw material nickel powder and the organic solvent is 1: 0.2 to 1:10, preferably 1: 1 to 1: 5 in terms of mass ratio. When the organic solvent is less than the ratio of 1: 0.2, the nickel powder aggregates during the grinding process, and furthermore, a smooth printed surface cannot be obtained on the green sheet. On the other hand, if the amount of the organic solvent is larger than the ratio of 1:10, the grinding efficiency is lowered, the grinding time is lengthened, and economical inconvenience occurs.

上記原料ニッケル粉と磨砕メディアとの混合比率は、質量比で1:10〜1:100、より好ましくは1:20〜1:50程度が好適である。原料ニッケル粉の比率が、1:100よりも少なくなると磨砕効率が低下してしまい、一方、1:10の比率より多いと十分に偏平化出来ないニッケル粉末の含有量が多くなり、電極印刷面の平滑性が悪くなってしまう。 The mixing ratio of the raw material nickel powder and the grinding media is preferably about 1:10 to 1: 100, more preferably about 1:20 to 1:50 in terms of mass ratio. When the ratio of the raw material nickel powder is less than 1: 100, the grinding efficiency is lowered. On the other hand, when the ratio is more than 1:10, the content of the nickel powder that cannot be sufficiently flattened increases, and electrode printing is performed. The smoothness of the surface will deteriorate.

(磨砕装置)
上述したように、上記磨砕メディアおよび原料ニッケル粉を有機溶媒中に混合したものを、磨砕装置を用いて磨砕することにより、本発明のニッケル粉末を得ることができる。本明細書中において、磨砕とは、被磨砕物が粉砕または分断されるか否かにかかわらず、鱗片化されることをいうが、磨砕は被磨砕物が分断されない方が電極印刷面の平滑性を考慮すると好ましい。本発明のニッケル粉末は、粒状のニッケル粉末と鱗片状のニッケル粉末とが混在していることが好ましいので、磨砕工程は原料ニッケル粉全てが鱗片化されない程度に短時間で行った方がよい。さらに原料ニッケル粉の鱗片化による酸化を抑えるためにも磨砕工程は短時間で行った方がよい。原料ニッケル粉の粒度分布は本発明で規定する数値範囲を満たす一般的なものであれば使用できるが、原料ニッケル粉の製造上の手間や原料コストを考慮すると粒度分布が狭い原料ニッケル粉よりも粒度分布の広い原料ニッケル粉の方が原料ニッケル粉の製造が簡便であり経済的である。本発明おいて、磨砕工程で原料ニッケル粉に粒度分布の広いものを使用した場合は、粒子径が大きいものから小さいものまでが含まれているので、磨砕工程を短時間で行なうことにより粒子径が大きい原料ニッケル粉は短時間でも磨砕されて鱗片状になり、粒子径が小さい原料ニッケル粉は磨砕されずに球状を保ったままであるか若干磨砕されるが粒状になる程度の磨砕であるので、粒状ニッケル粉末と鱗片状ニッケル粉末とが混在したものとなる。粒状と鱗片状が混在した状態で、磨砕後のニッケル粉末の最大厚みを0.2μm以下にコントロールすることにより電極形成用ペーストとして使用した場合に後述するように印刷面の平滑性と薄膜化に効果がある。磨砕時間は、使用する原料ニッケル粉や磨砕装置、磨砕条件等により異なるが30分〜3時間程度の短時間で終了するのが好ましい。本発明において使用する磨砕装置は、特に限定されないが、有機溶媒を内蔵し、この有機溶媒中で磨砕を行なう機構を有していればよい。使用可能な磨砕装置としては、媒体攪拌ミル、振動ミル、チューブミル、ボールミル、アトライターのような湿式粉砕機が好ましい。
(Grinding equipment)
As described above, the nickel powder of the present invention can be obtained by grinding a mixture of the grinding media and raw material nickel powder in an organic solvent using a grinding apparatus. In this specification, grinding means that the material to be ground is scaled regardless of whether or not the material to be ground is crushed or divided. In view of the smoothness, it is preferable. Since the nickel powder of the present invention is preferably a mixture of granular nickel powder and scaly nickel powder, it is better to perform the grinding process in a short time so that not all raw material nickel powder is scaled. . Further, the grinding process should be performed in a short time in order to suppress oxidation due to scaly conversion of the raw material nickel powder. The particle size distribution of the raw material nickel powder can be used as long as it satisfies the numerical range defined in the present invention, but considering the labor and raw material cost of the raw material nickel powder, the particle size distribution is narrower than the raw material nickel powder. The raw material nickel powder having a wider particle size distribution is easier and more economical to produce the raw material nickel powder. In the present invention, when the raw material nickel powder having a wide particle size distribution is used in the grinding process, since the particles having a large particle size are included in the grinding process, the grinding process is performed in a short time. Raw material nickel powder with a large particle size is ground and scaled even in a short time, while raw material nickel powder with a small particle size remains spherical without being ground or is slightly ground but becomes granular Therefore, granular nickel powder and scaly nickel powder are mixed. When using as a paste for electrode formation by controlling the maximum thickness of the nickel powder after grinding to 0.2 μm or less in a state where particles and scales coexist, the smoothness and thinning of the printed surface will be described later. Is effective. The grinding time varies depending on the raw material nickel powder used, the grinding device, grinding conditions, and the like, but it is preferable that the grinding time is completed in a short time of about 30 minutes to 3 hours. Although the grinding apparatus used in the present invention is not particularly limited, it is sufficient that an organic solvent is built in and a mechanism for grinding in the organic solvent is provided. As a grinding apparatus that can be used, a wet grinding machine such as a medium stirring mill, a vibration mill, a tube mill, a ball mill, and an attritor is preferable.

(ニッケル粉末)
上記のように製造された本発明のニッケル粉末は、比表面積が3〜10m/gであり、かつ含有酸素量が3重量%以下であり、下記式1で規定する形状因子が3〜30(μm・m/g)であることが好ましい。さらに好ましくは、比表面積が4〜6m/gであり、かつ含有酸素量が1.5重量%以下であり、形状因子が6〜20(μm・m/g)であるとよい。
形状因子(μm・m/g)
=比表面積(m/g)×ニッケル粉末の平均粒子径D50(μm)
・・・式1
ニッケル粉末の比表面積が3m/g未満の場合には、粒径の大きい原料ニッケル粉の鱗片化が進行していないので磨砕後のニッケル粉末の厚さが大きくなり、電極層の薄膜化ができないこと及び印刷面の平滑性の低下による電極切れが発生する恐れがある。10m/gを越える場合、または含有酸素量が3重量%以上の場合は、ニッケル粉末の酸化が進行しているので、電極形成用ペーストに使用した場合に焼成時の収縮が大きくなることにより電極層と誘電体層との収縮率の差が大きくなり、電極層の切断や剥離が発生する。形状因子が3(μm・m/g)以下の場合は磨砕が軽微の傾向があり磨砕後のニッケル粉末の厚みが大きいものがふくまれることになるので電極層を薄くすることが困難となる。形状因子が30(μm・m/g)以上の場合は、磨砕が進行し過ぎる傾向となり酸素量が多くなるので焼成時の電極膜の収縮が大きくなり電極切れが発生する恐れがあり、さらに原料ニッケル粉のD50が比較的大きいものを使用した場合には薄く磨砕されたニッケル粉末が破断して破断部周辺が平滑な性状でないニッケル粉末が含まれることになりこの破断が原因として塗膜粗度が荒くなり電極ショート不良が発生する恐れがある。
(Nickel powder)
The nickel powder of the present invention produced as described above has a specific surface area of 3 to 10 m 2 / g, an oxygen content of 3% by weight or less, and a shape factor defined by the following formula 1 of 3 to 30 (Μm · m 2 / g) is preferable. More preferably, the specific surface area of 4-6 m 2 / g, and has the oxygen content 1.5 wt% or less, the shape factor is 6~20 (μm · m 2 / g ).
Form factor (μm · m 2 / g)
= Specific surface area (m 2 / g) × average particle diameter of nickel powder D 50 (μm)
... Formula 1
When the specific surface area of the nickel powder is less than 3 m 2 / g, since the sizing of the raw material nickel powder having a large particle size has not progressed, the thickness of the nickel powder after grinding becomes large, and the electrode layer becomes thin. May not be possible, and electrode breakage may occur due to a decrease in the smoothness of the printed surface. When it exceeds 10 m 2 / g, or when the oxygen content is 3% by weight or more, the oxidation of nickel powder has progressed, and when used as an electrode forming paste, the shrinkage during firing increases. The difference in shrinkage between the electrode layer and the dielectric layer is increased, and the electrode layer is cut or peeled off. When the shape factor is 3 (μm · m 2 / g) or less, grinding tends to be minor and it is difficult to make the electrode layer thin because the nickel powder after grinding is thick. It becomes. When the shape factor is 30 (μm · m 2 / g) or more, grinding tends to progress too much, and the amount of oxygen increases, so the electrode film shrinks during firing and the electrode may break. Furthermore cause this break will be included nickel powder not smooth nature breaks near to break thin milled nickel powder when using those D 50 of relatively large material nickel powder There is a possibility that the coating film roughness becomes rough and an electrode short circuit failure may occur.

また、本発明のニッケル粉末は、粒状のニッケル粉末と鱗片状のニッケル粉末とが混在していることが好ましい。粒状のニッケル粉末とは磨砕工程において原料ニッケル粉が完全に鱗片状までは磨砕されていない粒状のものをいい、全く磨砕されていない球状のものから鱗片状ではないがかなり扁平化した粒状のものが含まれる。また、磨砕後の鱗片状のニッケル粉末に所望の粒状のニッケル粉末を混合することにより、本発明のニッケル粉末を得ることもできる。粒状のニッケル粉末と鱗片状のニッケル粉末とが混在しても、それぞれの最大厚さは0.2μm以下なので、ペースト化した際に鱗片状のニッケル粉末が平行配列した隙間に粒状のニッケル粉末が入り込み、印刷面の平滑性の低下を回避できると共に、焼成によりニッケル粒子間の好適な接触状態が実現され、形成される電極層に良好な電気的導通性が付与されるという利点がある。   The nickel powder of the present invention preferably contains a mixture of granular nickel powder and scaly nickel powder. The granular nickel powder is a granular material in which the raw nickel powder has not been completely crushed in the grinding process, and it has been flattened from a spherical powder that has not been ground at all, but is not flat. Granular material is included. Moreover, the nickel powder of this invention can also be obtained by mixing desired granular nickel powder with the scale-like nickel powder after grinding. Even if granular nickel powder and flaky nickel powder are mixed, the maximum thickness of each is 0.2 μm or less, so when the paste is formed, the granular nickel powder is in the gap where the flaky nickel powder is arranged in parallel. In addition to avoiding a decrease in the smoothness of the printed surface, it is possible to achieve a favorable contact state between the nickel particles by firing and to impart good electrical conductivity to the formed electrode layer.

さらに、本発明のニッケル粉末は、最大厚みが0.2μm以下であることが好ましく、最大厚みが0.1μm以下であることがさらに好ましい。最大厚みが0.2μm以上であると、内部電極層の厚みを極限まで薄くしたもの、例えば電極層の厚みが0.5μm以下の超薄膜電極層の形成においてはペースト化したニッケル粉末をグリーンシートへ電極層を印刷した場合にグリーンシート表面の凹部においてニッケル粉末の存在しない確率が増え、電極切れの原因となるが、最大厚みが0.2μm以下の場合は、上記危険性が低下し、かつ電極層の平滑性が向上するので焼成後の電極切れを回避でき、さらなる電極層の薄膜化が可能である。   Furthermore, the nickel powder of the present invention preferably has a maximum thickness of 0.2 μm or less, and more preferably a maximum thickness of 0.1 μm or less. When the maximum thickness is 0.2 μm or more, the internal electrode layer is made as thin as possible. For example, in the formation of an ultra-thin electrode layer having an electrode layer thickness of 0.5 μm or less, paste-like nickel powder is used as a green sheet. When the electrode layer is printed, the probability that nickel powder does not exist in the concave portion on the surface of the green sheet is increased, causing the electrode to be cut off, but when the maximum thickness is 0.2 μm or less, the above-mentioned risk is reduced, and Since the smoothness of the electrode layer is improved, electrode breakage after firing can be avoided, and the electrode layer can be further thinned.

(電極形成用ペースト)
電極形成用ペーストは本発明のニッケル粉末と誘電体微粒子からなる誘電体物質及び/又はこの誘電体物質と同組成の誘電体前駆物質とバインダと溶媒とを混合することにより得られる。
(Paste for electrode formation)
The electrode forming paste is obtained by mixing a dielectric material comprising the nickel powder of the present invention and dielectric fine particles and / or a dielectric precursor having the same composition as the dielectric material, a binder and a solvent.

誘電体微粒子は微細なセラミック微粒子で、グリーンシートを焼成して形成されるセラミック基板と同材質で構成される。例えば、セラミック基板の主成分がBaTiOであれば、誘電体微粒子としてBaTiOのセラミック微粒子が選択される。誘電体微粒子のサイズはD50が0.5μm以下であれば好ましくより好ましくはナノサイズの粒子でれば好適であり、粒子の形態も乾燥した粉末でもよく乾燥前のスラリーであってもかまわない。 The dielectric fine particles are fine ceramic fine particles and are made of the same material as the ceramic substrate formed by firing the green sheet. For example, if the main component of the ceramic substrate is BaTiO 3 , BaTiO 3 ceramic particles are selected as the dielectric particles. As for the size of the dielectric fine particles, D 50 is preferably 0.5 μm or less, more preferably nano-sized particles, and the particle shape may be a dry powder or a slurry before drying. .

誘電体前駆物質は、焼成することによって誘電体を生成する分子状の化合物を意味している。誘電体前駆物質は分子状であるから、その粒子サイズは極めて小さく、どのような局所領域にも侵入することができる。つまり、誘電体前駆物質は、ニッケル粉末によって形成される微小間隙・超微小間隙にも簡単に進入し、微細な領域を充填することができる。   The dielectric precursor means a molecular compound that generates a dielectric by firing. Since the dielectric precursor is molecular, its particle size is very small and can penetrate any local region. That is, the dielectric precursor can easily enter the micro-gap / ultra-gap formed by the nickel powder and fill the fine region.

誘電体微粒子と誘電体前駆物質の材質は、グリーンシートを構成する誘電体の主成分と同組成に設定される。この誘電体には、チタン酸バリウム(BaTiO)、チタン酸ジルコン酸バリウム、チタン酸ストロンチウム(SrTiO)、チタン酸ジルコン酸鉛(Pb(Ti/Zr)O)、チタン酸カルシウム、ジルコン酸バリウム、ニオブ酸リチウム、タンタル酸リチウム、酸化亜鉛、アルミナ、ジルコニア、窒化アルミニウム、窒化ケイ素などがある。これらの中でも、セラミックコンデンサのグリーンシートの主成分はチタン酸バリウム(BaTiO)であることが多い。 The materials of the dielectric fine particles and the dielectric precursor are set to the same composition as the main component of the dielectric constituting the green sheet. This dielectric includes barium titanate (BaTiO 3 ), barium zirconate titanate, strontium titanate (SrTiO 3 ), lead zirconate titanate (Pb (Ti / Zr) O 3 ), calcium titanate, zirconate Examples include barium, lithium niobate, lithium tantalate, zinc oxide, alumina, zirconia, aluminum nitride, and silicon nitride. Among these, the main component of the ceramic capacitor green sheet is often barium titanate (BaTiO 3 ).

誘電体物質及び/又は誘電体前駆物質は同積層焼結持に電極形成用ペーストとグリーンシートとの収縮率の相違を緩和し電極層の剥離(デラミネーション)、割れ(クラック)を抑制する。 The dielectric material and / or the dielectric precursor material alleviates the difference in shrinkage rate between the electrode forming paste and the green sheet while maintaining the same lamination sintering, and suppresses peeling (delamination) and cracking (cracking) of the electrode layer.

バインダを添加することにより、塗膜強度が向上し、スクリーン印刷後に塗膜が傷ついたり剥がれたりすることを防止することができる。バインダには、セルロース系、メタクリレート系、ポリスチレン系、ビニル系、アクリル系樹脂等が使用できる。   By adding the binder, the coating film strength is improved, and the coating film can be prevented from being damaged or peeled off after screen printing. Cellulose-based, methacrylate-based, polystyrene-based, vinyl-based, and acrylic-based resins can be used for the binder.

溶媒としては、誘電体前駆物質を均一に分散できる全ての溶媒が使用できる。例えば、アルコール、アセトン、プロパノール、エーテル、石油エーテル、ベンゼン、酢酸エチル、ミネラルスピリット、その他の石油系溶剤、ターピネオール、ジヒドロターピネオール、ジヒドロターピネオールアセテート、ターピニルアセテート、リナリールアセテート、ブチルカルビトール、ブチルカルビトールアセテート、セロソルブ類、芳香族類、ジエチルフタレートなどが使用できる。   As the solvent, any solvent that can uniformly disperse the dielectric precursor can be used. For example, alcohol, acetone, propanol, ether, petroleum ether, benzene, ethyl acetate, mineral spirit, other petroleum solvents, terpineol, dihydroterpineol, dihydroterpineol acetate, terpinyl acetate, linalyl acetate, butyl carbitol, butyl Carbitol acetate, cellosolves, aromatics, diethyl phthalate and the like can be used.

(積層セラミックコンデンサ)
本発明のニッケル粉末から作製した電極形成用ペーストを用いて、内部電極層を形成することができる。具体的には、電極形成用ペーストを用いてセラミック誘電体グリーンシート上に印刷し、セラミック誘電体グリーンシートと電極形成用ペースト層とが交互に層状になるように複数層積層し、加圧圧着して積層間の密着性を高めた後、切断してグリーンチップを作製する。さらに、このグリーンチップを低酸素分圧雰囲気中で加熱し、バインダを分解飛散させた後、還元性雰囲気中で、高温にて焼成し、セラミック誘電体層と内部電極層とを一体化焼成させる。その焼結体の両端面に外部電極を形成して、積層セラミックコンデンサを作製することができる。
(Multilayer ceramic capacitor)
An internal electrode layer can be formed using the electrode forming paste prepared from the nickel powder of the present invention. Specifically, printing is performed on a ceramic dielectric green sheet using an electrode forming paste, and a plurality of layers are laminated so that the ceramic dielectric green sheet and the electrode forming paste layer are alternately layered, and pressure bonding is performed. Then, after improving the adhesion between the stacked layers, it is cut to produce a green chip. Further, the green chip is heated in a low oxygen partial pressure atmosphere to decompose and scatter the binder, and then fired at a high temperature in a reducing atmosphere to integrally fire the ceramic dielectric layer and the internal electrode layer. . A multilayer ceramic capacitor can be produced by forming external electrodes on both end faces of the sintered body.

本発明における積層セラミックコンデンサは従来のニッケル粉末およびニッケルフレークを使用したものに比べ、内部電極層を画期的に薄くできるので小型化および多層化することができ、更にコストダウンにも貢献する。 In the multilayer ceramic capacitor according to the present invention, the internal electrode layer can be remarkably thinned as compared with the conventional one using nickel powder and nickel flakes. Therefore, the multilayer ceramic capacitor can be downsized and multilayered, and further contributes to cost reduction.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

(実施例1)
後述する測定方法で測定したD50=0.2μm、D90=0.8μmのCVD法原料ニッケル粉30g、ステアリン酸0.3g、ミネラルスピリット80gを、直径0.6mmのジルコニアボール800gを挿入した内容量1リットルのジルコニア製磨砕容器に入れて、媒体攪拌ミルにより回転数1000RPMで40分磨砕し、本発明のニッケル粉末を得た。後述する各測定方法で測定した結果、D50=1.7μm、D90=3.3μm、比表面積=5.2m/g 、酸素量=1.4重量%、最大厚み=0.1μmであった。また、式1から算出した形状因子は8.8(μm・m/g)であった。結果を表1に示す。また、実施例1のニッケル粉末を走査電子顕微鏡(SEM)にて観察し粒状ニッケル粉末と鱗片状ニッケル粉末が混在していることを示した写真(×20000)を図1に示す。SEMによる観察方法は以下のとおりである。実施例1で得たニッケル粉末の少量をアセトンに分散し、濾取、乾燥した後、走査電子顕微鏡サンプル台上にカーボンテープを貼り付け、乾燥したニッケル粉末を固定し、このニッケル粉末を日本電子株式会社製の走査電子顕微鏡JSM-5510を用いて、20,000倍で撮影した。図1中で、丸で囲まれた部分のニッケル粉末は磨砕されておらずほぼ球状、四角で囲まれた部分のニッケル粉末は磨砕され鱗片状になっており、このことから実施例1のニッケル粉末は粒状のニッケル粉末と鱗片状のニッケル粉末が混在していることがわかる。
Example 1
CVD method raw material nickel powder 30 g, stearic acid 0.3 g, mineral spirit 80 g of D 50 = 0.2 μm, D 90 = 0.8 μm measured by the measurement method described later, and 800 g of zirconia balls having a diameter of 0.6 mm were inserted. The nickel powder of the present invention was obtained by putting it in a zirconia grinding container having an internal volume of 1 liter and grinding it with a medium stirring mill at a rotational speed of 1000 RPM for 40 minutes. As a result of measurement by each measuring method described later, D 50 = 1.7 μm, D 90 = 3.3 μm, specific surface area = 5.2 m 2 / g, oxygen content = 1.4 wt%, maximum thickness = 0.1 μm there were. In addition, the shape factor calculated from Equation 1 was 8.8 (μm · m 2 / g). The results are shown in Table 1. Moreover, the photograph (x20000) which observed the nickel powder of Example 1 with the scanning electron microscope (SEM), and showed that the granular nickel powder and the scaly nickel powder were mixed is shown in FIG. The observation method by SEM is as follows. A small amount of the nickel powder obtained in Example 1 was dispersed in acetone, filtered and dried, and then a carbon tape was pasted on the scanning electron microscope sample stage, and the dried nickel powder was fixed. Images were taken at 20,000 magnifications using a scanning electron microscope JSM-5510 manufactured by Co., Ltd. In FIG. 1, the nickel powder surrounded by a circle is not crushed and is almost spherical, and the nickel powder surrounded by a square is crushed into a scaly shape. It can be seen that the nickel powder is a mixture of granular nickel powder and scaly nickel powder.

(実施例2)
50=0.2μm、D90=1.2μmのCVD法原料ニッケル粉30g、ステアリン酸0.3g、ミネラルスピリット80gを、直径0.6mmのジルコニアボール800gを挿入した内容量1リットルのジルコニア製磨砕容器に入れて、媒体攪拌ミルにより回転数1000RPMで3時間磨砕し、D50=2.3μm、D90=4.1μm、比表面積=9.2m/g 、酸素量=3.0重量%、最大厚み=0.1μm、形状因子=21.2(μm・m/g)の本発明のニッケル粉末を得た。各測定方法および算出方法は実施例1と同様である。結果を表1に示す。
(Example 2)
Made of zirconia with an internal capacity of 1 liter, with 30 g of CVD method raw material nickel powder of D 50 = 0.2 μm and D 90 = 1.2 μm, 0.3 g of stearic acid and 80 g of mineral spirit inserted with 800 g of zirconia balls having a diameter of 0.6 mm put the grinding vessel, and 3 hours triturated with rotational speed 1000RPM by medium stirring mill, D 50 = 2.3μm, D 90 = 4.1μm, specific surface area = 9.2 m 2 / g, oxygen content = 3. A nickel powder of the present invention having 0% by weight, maximum thickness = 0.1 μm, and shape factor = 21.2 (μm · m 2 / g) was obtained. Each measurement method and calculation method are the same as those in the first embodiment. The results are shown in Table 1.

(実施例3)
50=0.3μm、D90=1.5μmのCVD法原料ニッケル粉30g、ステアリン酸0.3g、ミネラルスピリット80gを、直径0.6mmジルコニアボール800gを挿入した内容量1リットルのジルコニア製磨砕容器に入れて、媒体攪拌ミルにより回転数1000RPMで40分磨砕し、D50=1.8μm、D90=3.6μm、比表面積=6.3m/g、酸素量=1.3重量%、最大厚み=0.1μm、形状因子=11.3(μm・m/g)の本発明のニッケル粉末を得た。各測定方法および算出方法は実施例1と同様である。結果を表1に示す。
(Example 3)
Polishing of zirconia with an internal capacity of 1 liter, with 30 g of CVD raw material nickel powder of D 50 = 0.3 μm and D 90 = 1.5 μm, 0.3 g of stearic acid and 80 g of mineral spirit inserted with 800 g of zirconia balls having a diameter of 0.6 mm put the砕容unit, and 40 BunMigaku砕at a rotational speed 1000RPM by medium stirring mill, D 50 = 1.8μm, D 90 = 3.6μm, specific surface area = 6.3 m 2 / g, oxygen content = 1.3 A nickel powder of the present invention having a weight%, maximum thickness = 0.1 μm, and shape factor = 11.3 (μm · m 2 / g) was obtained. Each measurement method and calculation method are the same as those in the first embodiment. The results are shown in Table 1.

(比較例1)
50=2.5μm、D90=5.0μmのアトマイズド原料ニッケル粉500g、オレイン酸5.0g及びミネラルスピリット400ccを、直径1.2mmのスチールボール40kgを挿入した直径500mm、長さ180mmの円筒状ボールミルに投入し、回転数60RPMで15時間磨砕し、D50=7.6μm、D90=14.8μm、比表面積=14.5m/g、酸素量=5.2重量%、最大厚み=0.1μm、形状因子=110(μm・m/g)のニッケル粉末を得た。各測定方法および算出方法は実施例1と同様である。結果を表1に示す。
(Comparative Example 1)
Cylinder having a diameter of 500 mm and a length of 180 mm in which D 50 = 2.5 μm and D 90 = 5.0 μm of atomized raw material nickel powder 500 g, oleic acid 5.0 g and mineral spirit 400 cc are inserted into a steel ball 40 mm in diameter 1.2 mm. And then ground for 15 hours at 60 RPM, D 50 = 7.6 μm, D 90 = 14.8 μm, specific surface area = 14.5 m 2 / g, oxygen content = 5.2 wt%, maximum Nickel powder having a thickness of 0.1 μm and a shape factor of 110 (μm · m 2 / g) was obtained. Each measurement method and calculation method are the same as those in the first embodiment. The results are shown in Table 1.

(比較例2)
50=0.1μm、D90=0.3μmの湿式化学還元法による原料ニッケル粉を何らの処理も施さずに用いた。この原料ニッケル粉は比表面積=6.7m/g、酸素量=1.8重量%、最大厚み=0.5μm、形状因子=0.67(μm・m/g)であった。各測定方法および算出方法は実施例1と同様である。結果を表1に示す。
(Comparative Example 2)
The raw material nickel powder by the wet chemical reduction method with D 50 = 0.1 μm and D 90 = 0.3 μm was used without any treatment. This raw material nickel powder had a specific surface area of 6.7 m 2 / g, an oxygen content of 1.8% by weight, a maximum thickness of 0.5 μm, and a shape factor of 0.67 (μm · m 2 / g). Each measurement method and calculation method are the same as those in the first embodiment. The results are shown in Table 1.

〈電極形成用ペーストの作製〉
金属質量比Ba:Ti=1.0:1.0になるよう混合された、オクチル酸バリウムとオクチル酸チタンからなる混合有機金属レジネートを用意する。この混合有機金属レジネート15重量部にターピネオール40重量部を混合させて誘電体前駆物質溶液を調整し、これに誘電体物質をニッケル粉末に対し20重量%添加した。この溶液に実施例1〜3、比較例1,2のニッケル粉末を別々に45重量部と溶剤(ターピネオール)35重量部とバインダ(エチルセルロースで溶解)20重量部を添加し、3本ロールミルで混練して電極形成用ペーストを得た。
<Preparation of electrode forming paste>
A mixed organometallic resinate composed of barium octylate and titanium octylate mixed to have a metal mass ratio Ba: Ti = 1.0: 1.0 is prepared. A dielectric precursor solution was prepared by mixing 15 parts by weight of this mixed organometallic resinate with 40 parts by weight of terpineol, and 20% by weight of the dielectric substance was added to the nickel powder. 45 parts by weight of the nickel powders of Examples 1 to 3 and Comparative Examples 1 and 2, 35 parts by weight of a solvent (terpineol) and 20 parts by weight of a binder (dissolved in ethyl cellulose) were added to this solution and kneaded by a three-roll mill. Thus, an electrode forming paste was obtained.

〈塗膜評価(塗膜粗度の測定)〉
得られたペーストを500メッシュスクリーンにてガラス板上に印刷し100℃で30分乾燥した。印刷面の表面粗さ(塗膜粗度:Ra)を接触法にて測定した。結果を表1に示す。
<Evaluation of coating film (measurement of coating film roughness)>
The obtained paste was printed on a glass plate with a 500 mesh screen and dried at 100 ° C. for 30 minutes. The surface roughness (coating roughness: Ra) of the printed surface was measured by a contact method. The results are shown in Table 1.

〈塗膜評価(収縮率の測定)〉
又同ペーストを剥離剤コートPETフィルム上に、4millドクターブレードにて塗布乾燥した後、直径20.0mmΦの円盤に打ち抜き、フィルムから剥離して塗膜円盤を得た。同円盤を1300℃還元雰囲気炉中で焼成した。焼成円盤の直径を測定し、収縮率(収縮長さ/20.0mm×100)を求めた。結果を表1に示す。
<Evaluation of coating film (measurement of shrinkage)>
The paste was applied and dried on a release agent-coated PET film with a 4 milliliter doctor blade, punched into a disk having a diameter of 20.0 mmΦ, and peeled from the film to obtain a coating film disk. The disk was fired in a 1300 ° C. reducing atmosphere furnace. The diameter of the fired disk was measured and the shrinkage rate (shrinkage length / 20.0 mm × 100) was determined. The results are shown in Table 1.

〈積層セラミックコンデンサの評価(MLCC評価)〉
更に同ペーストを、塗布後のニッケル厚さが1.0μm程度になるようにペースト付着量を決定し、3μmのチタン酸バリウムグリーンシート上に500メッシュスクリーンにて電極パターン状に塗布し、乾燥し、ニッケル/チタン酸バリウム積層グリーンシートを得た。所定パターンに裁断した同シートを、複数枚圧着後、大気炉中で脱バインダし、1250℃雰囲気炉中で同時焼成し、更にその後、外部電極ペーストを塗布、乾燥、焼成し積層セラミックコンデンサのテストピースを得た。そして積層セラミックコンデンサの電気特性を測定し、焼成ニッケル電極膜に電極途切れやショート不良の異常が無いかを判定(MLCC電極状態を観察)した。その結果を表1に示す。ここで、MLCC容量は50nF以上の容量を有する場合は「○」、50nF未満の場合または電極途切れのために測定不能の場合は「×」とした。
<Evaluation of multilayer ceramic capacitor (MLCC evaluation)>
Furthermore, the paste adhesion amount was determined so that the nickel thickness after application was about 1.0 μm, and applied to a 3 μm barium titanate green sheet in an electrode pattern with a 500 mesh screen and dried. A nickel / barium titanate laminated green sheet was obtained. Test the multilayer ceramic capacitor by bonding multiple sheets of the same sheet cut into a predetermined pattern, removing the binder in an atmospheric furnace, co-firing in a 1250 ° C atmosphere furnace, and then applying, drying and firing external electrode paste. I got a piece. Then, the electrical characteristics of the multilayer ceramic capacitor were measured, and it was determined whether the fired nickel electrode film had any electrode interruption or short-circuit abnormality (observed the MLCC electrode state). The results are shown in Table 1. Here, the MLCC capacity was “◯” when the capacity was 50 nF or more, and “X” when the capacity was less than 50 nF or measurement was impossible due to electrode breakage.

表1の結果より、本発明の範囲内のニッケル粉末は、ペースト化した場合に、塗膜粗度が小さく、しかも焼成後の収縮率が小さいので、内部電極層の厚みを薄くしても電極層が平滑で切断や剥離が起こらず、電極膜切れが生じることもない。   From the results shown in Table 1, the nickel powder within the scope of the present invention has a low coating film roughness and a small shrinkage ratio after firing when formed into a paste, so that even if the thickness of the internal electrode layer is reduced, the electrode The layer is smooth, no cutting or peeling occurs, and no electrode film breakage occurs.

本実施例および比較例において使用した測定方法については、以下のとおりである。
・レーザー回折法による原料ニッケル粉及びニッケル粉末の粒径の測定方法
レーザー回折式粒度分布測定装置(マイクロトラックHRA)を用いて以下の条件にて測定した。
原料ニッケル粉又はニッケル粉末0.5gとヘキサメタリン酸0.01gと混合し、この混合物をガラス棒で攪拌した後、測定系内循環水に投入した。これを超音波ホモジナイザーで2分間分散させた後、粒径のD50及びD90を測定した。
About the measuring method used in a present Example and the comparative example, it is as follows.
-Measuring method of raw material nickel powder and particle diameter of nickel powder by laser diffraction method Measurement was performed under the following conditions using a laser diffraction particle size distribution measuring device (Microtrac HRA).
Raw material nickel powder or 0.5 g of nickel powder and 0.01 g of hexametaphosphoric acid were mixed, and this mixture was stirred with a glass rod and then poured into circulating water in the measurement system. This was dispersed with an ultrasonic homogenizer for 2 minutes, and the particle size D 50 and D 90 were measured.

・BET法による比表面積
BET比表面積測定装置を使用して、N気流下、350℃×30分の前処理後、1点流動法で測定した。
-Specific surface area by BET method Using a BET specific surface area measuring device, measurement was performed by a one-point flow method after pretreatment at 350 ° C for 30 minutes in a N 2 airflow.

・酸素・窒素分析装置による酸素量の測定
不活性ガス中で試料を溶解し、出てきたCO量を赤外線吸収法で測定する。
・ Measurement of oxygen content by oxygen / nitrogen analyzer Dissolve the sample in an inert gas and measure the amount of CO 2 that has come out by the infrared absorption method.

・ ニッケル粉末の最大厚み測定
少量のニッケル粉末をエタノールに分散し、シリコンウエハー上に塗布。エタノールを除去した後、原子間力顕微鏡(Seiko Instrument Inc.製Nanopics1000)を用い、ダンピングモードで直接フレークの最大厚みを測定した。
・ Maximum thickness measurement of nickel powder A small amount of nickel powder is dispersed in ethanol and applied onto a silicon wafer. After removing the ethanol, the maximum thickness of the flakes was directly measured in a damping mode using an atomic force microscope (Nanopics 1000 manufactured by Seiko Instrument Inc.).

・接触式表面粗さ計(東京計器製)によるRaの測定方法
ガラス基板上に500メッシュスクリーンによりスクリーン印刷した乾燥膜厚0.8μmの電極膜を接触式表面粗さ計でRaを測定した。
-Method for measuring Ra using a contact-type surface roughness meter (manufactured by Tokyo Keiki Co., Ltd.) Ra was measured with a contact-type surface roughness meter on an electrode film having a dry film thickness of 0.8 μm that was screen-printed on a glass substrate with a 500 mesh screen.

上記実施例において使用した製造装置及び分析装置について、その製造元会社名を以下に示す。
・媒体攪拌ミル・・・
(株)アイメックス製テスト用サイドグラインダー 4TSG−1/8G
・円筒状ボールミル ・・・井上製作所(株)製
・レーザー回折装置 ・・・マイクロトラックHRA
・ニッケル粉末の最大厚み測定 ・・・原子間力顕微鏡(Seiko Instrument Inc.製Nanopics1000)
・BET比表面積測定装置 ・・・(株)マウンテック MacsorbHM1201
・酸素・窒素分析装置 ・・・(株)堀場製作所 EMGA−550
・接触式表面粗さ計 ・・・東京計器(株)製 サーフコム 1400A
・走査電子顕微鏡(SEM) ・・・日本電子株式会社製走査電子顕微鏡JSM-5510
About the manufacturing apparatus and analyzer used in the said Example, the manufacturer company name is shown below.
・ Medium stirring mill
Imex test side grinder 4TSG-1 / 8G
・ Cylindrical ball mill ・ ・ ・ Made by Inoue Seisakusho ・ Laser diffraction device ・ ・ ・ Microtrack HRA
・ Maximum nickel powder thickness measurement: Atomic force microscope (Nanopics1000, Seiko Instrument Inc.)
・ BET specific surface area measuring device ... Mounttech Co., Ltd. MacsorbHM1201
・ Oxygen / nitrogen analyzer ・ ・ ・ Horiba EMGA-550
・ Contact surface roughness meter ・ ・ ・ Surfcom 1400A manufactured by Tokyo Keiki Co., Ltd.
Scanning electron microscope (SEM): JEOL Co., Ltd. scanning electron microscope JSM-5510

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明に係る積層セラミックコンデンサ電極用ニッケル粉末によれば、含有酸素量が少なく比表面積が所定の範囲でありかつ式1で規定する形状因子が一定の範囲内であるから、焼成時の収縮が極めて少ない電極形成用ペーストを提供することができる。更に、この電極形成用ペーストは、印刷面の平滑性がよく電極層の切断や剥離を防止することができる。従って、この電極形成用ペーストによれば、抵抗値のバラツキの少ない安定した品質の積層セラミックコンデンサを提供することができる。また、ニッケル粉末の最大厚みが0.2μm以下であるから、本発明に係る電極形成用ペーストを積層セラミックコンデンサの内部電極及び/又は外部電極用いれば、電極層をより一層薄膜化することができ、積層セラミックコンデンサのコンパクト化を実現することができる。   According to the nickel powder for a multilayer ceramic capacitor electrode according to the present invention, the amount of oxygen contained is small, the specific surface area is within a predetermined range, and the shape factor defined by Formula 1 is within a certain range. An extremely small number of electrode forming pastes can be provided. Furthermore, the electrode forming paste has good printing surface smoothness and can prevent the electrode layer from being cut or peeled off. Therefore, according to this electrode forming paste, it is possible to provide a multilayer ceramic capacitor of stable quality with little variation in resistance value. In addition, since the maximum thickness of the nickel powder is 0.2 μm or less, the electrode layer can be made even thinner by using the electrode forming paste according to the present invention as the internal electrode and / or the external electrode of the multilayer ceramic capacitor. Therefore, it is possible to realize a compact multilayer ceramic capacitor.

本発明の実施例1のニッケル粉末を走査電子顕微鏡(SEM)にて観察し粒状ニッケル粉末と鱗片状ニッケル粉末が混在していることを示した写真(×20000)である。It is the photograph (x20000) which observed the nickel powder of Example 1 of this invention with the scanning electron microscope (SEM), and showed that the granular nickel powder and the scaly nickel powder were mixed.

Claims (4)

比表面積が3〜10m/gであり、含有酸素量が3重量%以下であり、下記式1で規定する形状因子が3〜30(μm・m/g)であり、磨砕メディアを有する磨砕装置を使用して、有機溶媒中で原料ニッケル粉を30分間〜3時間磨砕することによって鱗片化された鱗片状ニッケル粉末と粒状ニッケル粉末とが混在し、前記原料ニッケル粉は、粒度分布曲線の全粒子数の50%目に該当する平均粒子径D 50 が0.13〜0.6μmであり、前記粒度分布曲線の全粒子数の90%目に該当する粒子の平均粒子径D 90 が1.5μm以下である球状原料ニッケル粉であることを特徴とする積層セラミックコンデンサ電極用ニッケル粉末。
形状因子(μm・m/g)
=比表面積(m/g)×ニッケル粉末の平均粒子径D50(μm)
・・・式1
(ここで、前記比表面積はBET法により測定した比表面積であり、前記平均粒子径D50 と前記平均粒子径D 90 は、レーザー回折法により粒径とその粒径に該当する粒子の数を求めて表してなる前記粒度分布曲線の全粒子数の50%目と90%目に該当する粒子の各平均粒子径を示す。)
Specific surface area of 3 to 10 m 2 / g, and the oxygen content of 3 wt% or less, the shape factor defined by the following equation 1 is 3~30 (μm · m 2 / g ), the grinding media The raw nickel powder is flaky by grinding the raw material nickel powder for 30 minutes to 3 hours in an organic solvent using a grinding device having a mixture of the nickel powder and the granular nickel powder . It means a particle diameter D 50 of 0.13~0.6Myuemu, average particle diameter of the particles corresponding to 90% th of the total number of particles in the particle size distribution curve corresponding to 50% th of the total number of particles of the particle size distribution curve multilayer ceramic capacitor electrode for a nickel-metal powder wherein a D 90 of a spherical material nickel powder is 1.5μm or less.
Form factor (μm · m 2 / g)
= Specific surface area (m 2 / g) × average particle diameter of nickel powder D 50 (μm)
... Formula 1
(Here, the specific surface area is a specific surface area measured by the BET method, and the average particle diameter D 50 and the average particle diameter D 90 are obtained by calculating the particle diameter and the number of particles corresponding to the particle diameter by the laser diffraction method. calculated indicating the respective average particle diameter of the relevant particle 90% th 50% eyes of the entire number of the particles of the particle size distribution curve becomes expressed in.)
前記ニッケル粉末の最大厚みが0.2μm以下であることを特徴とする請求項1に記載の積層セラミックコンデンサ電極用ニッケル粉末。 The nickel powder for multilayer ceramic capacitor electrodes according to claim 1, wherein the maximum thickness of the nickel powder is 0.2 μm or less. 請求項1又は2に記載の積層セラミックコンデンサ電極用ニッケル粉末とバインダと溶媒とを含むことを特徴とする電極形成用ペースト。 Claim 1 or nickel powder for multilayer ceramic capacitor electrode according to 2, a binder and an electrode-forming paste which comprises a solvent. 請求項1又は2に記載の積層セラミックコンデンサ電極用ニッケル粉末により内部電極を形成したことを特徴とする積層セラミックコンデンサ。 A multilayer ceramic capacitor, wherein an internal electrode is formed from the nickel powder for a multilayer ceramic capacitor electrode according to claim 1 or 2 .
JP2005367885A 2005-12-21 2005-12-21 Nickel powder for multilayer ceramic capacitor electrode, electrode forming paste and multilayer ceramic capacitor Active JP4914065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367885A JP4914065B2 (en) 2005-12-21 2005-12-21 Nickel powder for multilayer ceramic capacitor electrode, electrode forming paste and multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005367885A JP4914065B2 (en) 2005-12-21 2005-12-21 Nickel powder for multilayer ceramic capacitor electrode, electrode forming paste and multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2007173450A JP2007173450A (en) 2007-07-05
JP4914065B2 true JP4914065B2 (en) 2012-04-11

Family

ID=38299615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367885A Active JP4914065B2 (en) 2005-12-21 2005-12-21 Nickel powder for multilayer ceramic capacitor electrode, electrode forming paste and multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP4914065B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010004852A1 (en) * 2008-07-11 2011-12-22 三井金属鉱業株式会社 Copper powder for conductive paste and conductive paste
JP5429299B2 (en) * 2009-10-05 2014-02-26 株式会社村田製作所 Method for producing flat Ni particles
DE102013206603A1 (en) * 2013-04-12 2014-10-16 H.C. Starck Gmbh Process for the preparation of oxygen-poor high surface area valve metal sintered bodies
CN105658745B (en) * 2013-10-31 2019-06-04 昭和电工株式会社 Film printing conductive composition and Thin film conductive pattern forming method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3261520B2 (en) * 1996-08-06 2002-03-04 住友金属鉱山株式会社 Paste composition for internal electrode of multilayer ceramic capacitor and multilayer ceramic capacitor using the same
JPH11152505A (en) * 1997-11-18 1999-06-08 Sumitomo Metal Mining Co Ltd Flat shaped nickel powder and its production
JP3112015B1 (en) * 2000-01-07 2000-11-27 大崎工業株式会社 Method for producing nickel powder
JP2004084055A (en) * 2002-06-28 2004-03-18 Toyo Aluminium Kk Nickel flake for multilayer ceramic capacitor electrode
WO2004020128A1 (en) * 2002-08-28 2004-03-11 Toho Titanium Co., Ltd. Metallic nickel powder and method for production thereof
JP4407155B2 (en) * 2003-05-09 2010-02-03 日油株式会社 Conductive paste, wiring board manufacturing method, and wiring board

Also Published As

Publication number Publication date
JP2007173450A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
US7652870B2 (en) Multilayer ceramic capacitor
TW504719B (en) Multilayer ceramic capacitor and production method thereof
US6673272B2 (en) Conductive paste and laminated ceramic electronic component
JP2001023852A (en) Laminated ceramic electronic component
JP2006206362A (en) Dielectric ceramic and multilayer ceramic capacitor
JP2010067418A (en) Conductive paste and method of manufacturing the same
CN107026014B (en) Ceramic electronic components
JP4821197B2 (en) Release layer paste and method for manufacturing multilayer electronic component
JP4914065B2 (en) Nickel powder for multilayer ceramic capacitor electrode, electrode forming paste and multilayer ceramic capacitor
JP2003257776A (en) Conductive paste and laminated ceramic electronic component
JP7396157B2 (en) Dielectric ceramic compositions and electronic components
JP5630363B2 (en) Conductive paste and method for producing the same
JP3908458B2 (en) Method for producing dielectric ceramic composition
JP2004084055A (en) Nickel flake for multilayer ceramic capacitor electrode
JP2007332446A (en) Nickel particle with dielectric particle and method of producing the nickel particle with dielectric particle
JP2019176026A (en) Multilayer electronic component
JP2007153721A (en) Ceramic powder, ceramic electronic component and method of manufacturing the same
JP2003176172A (en) Dielectric ceramic composition and electronic parts
JP6856701B2 (en) Manufacturing method of paste for internal electrodes and laminated ceramic electronic components
JP2003317542A (en) Conductive paste and multilayer ceramic electronic component
JP5184333B2 (en) Method for manufacturing dielectric ceramic material
JPH10214520A (en) Conductive paste
JP6809280B2 (en) Method of manufacturing conductive paste
JP2011084433A (en) Methods for producing ceramic slurry, green sheet and electronic component
WO2023234392A1 (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110906

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120120

R150 Certificate of patent or registration of utility model

Ref document number: 4914065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250