JP4899958B2 - 成膜方法及び成膜装置 - Google Patents

成膜方法及び成膜装置 Download PDF

Info

Publication number
JP4899958B2
JP4899958B2 JP2007070532A JP2007070532A JP4899958B2 JP 4899958 B2 JP4899958 B2 JP 4899958B2 JP 2007070532 A JP2007070532 A JP 2007070532A JP 2007070532 A JP2007070532 A JP 2007070532A JP 4899958 B2 JP4899958 B2 JP 4899958B2
Authority
JP
Japan
Prior art keywords
substrate
temperature
source gas
film forming
opposing wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007070532A
Other languages
English (en)
Other versions
JP2008235438A (ja
Inventor
博洋 床井
大嶽  敦
一農 田子
友義 三島
和俊 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007070532A priority Critical patent/JP4899958B2/ja
Publication of JP2008235438A publication Critical patent/JP2008235438A/ja
Application granted granted Critical
Publication of JP4899958B2 publication Critical patent/JP4899958B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は半導体製造などに適用される成膜方法及び成膜装置に関し、特に膜厚や組成比の均一性に優れた半導体膜を作成するための成膜方法及びその成膜装置に関するものである。
InPやGaAsなどの化合物半導体は、高周波デバイスや発光素子などの材料として用いられる。これら化合物半導体は、基板上に均一厚さで成膜する必要があり、従来その膜厚均一化技術が盛んに開発されてきた。ここで、半導体薄膜の量産装置構造として多く見られる横型装置は、原料ガスが基板に対しほぼ水平方向から反応室内に導入され、化学反応を経て、基板上に成膜する。以下に従来の膜厚均一化技術を示す。
(1)基板対向側を冷却し原料ガス温度を制御する方法(特許文献1)においては、基板上の原料ガス温度を均一もしくは10℃程度の勾配を設けることで均一化を図る。(2)基板対向側を冷却し上流部での過度な原料消費を抑制する方法(特許文献2)においては、基板面‐基板対向面で約400℃の温度差を設け、原料ガスの熱拡散現象を利用する。
(3)基板上流部に載置したプレデポジションボードにより、急激な成膜位置をプレデポジションボード上にシフトし基板上の成長速度を安定化させる方法。
一方、現在はバンドギャップが広く、熱伝導率・電子の飽和速度が大きいなど多くの物性上の優れた特性を有するGaNの生産量が増加しており、その量産化技術が盛んに開発されている。ここでも膜厚の均一化が重要な課題となるが、上記従来技術(1)(2)ではGaNの高い基板面内膜厚均一性を実現することが困難となっている。
このためGaN膜に対しては、上記従来技術(3)や、原料ガス流速の高速化などが行なわれている。しかし、これらの手法は、基板外への成膜量の増加や装置外への原料ガス流出量の増加により原料利用効率の悪化を招くものである。
特許文献1においては、複数の冷却材流路を反応炉の外周に設け、冷却材の温度又は流量を流路毎に代えて、膜厚、組成、不純物濃度等を均一化することが開示されている。この技術における基本的な考えは、原料ガス温度を基板上において略均一にすることである。もっとも、特許文献1においては、原料ガス温度を均一にしなくともよいことも記載されている。
特許文献2においては、反応容器の外部に取り付けられた冷却ジャケットと反応容器外壁又は対向板との間に熱伝導体を設置する技術を開示している。具体的には、熱伝導体の厚さを変えて、反応容器の温度を部分的に調節することが記載されている。
特許文献3においては、被処理物の複数の部分を互いに異なる温度に加熱する複数の加熱機構を設けている。加熱装置によって反応炉内の基板温度を正確に制御することは、反応容器内での輻射が伴って、容易ではない。
特許文献4においては、反応容器のサセプタ上流側のフローチャンネルの仮面に温度制御可能な冷却手段を設けることが開示されている。この技術の狙いは、フローチャンネル天井への薄膜の堆積を防止することにある。
特許文献5においては、反応容器の上流側のフローチャンネルを加熱する第1の加熱手段と、基板を加熱する第2の加熱手段を設けている。第1の加熱部の温度は第2の加熱手段の温度よりも低く設定する。この技術におけるポイントは、反応種が基板表面に到達する前に、適切な気相温度に設定しておくというものである。
特開平4−132213号公報 特開2004‐281836号公報 特開2001−23975号公報 特開2000‐100726号公報 特開平11−74202号公報
そこで、我々はGaNの膜厚均一化を困難にしている原因の検討を重ね、その成膜反応と基板上の温度が原因であることを見出した。GaNの成膜反応は「原料ガス→中間体→成膜」の経路をとる。これは、InPやGaAsにも同様のことが言える。ただし、InPやGaAsの成膜条件は中間体の生成開始温度と成膜開始温度、基板上温度がほぼ等しい。このため、InPやGaAsでは原料ガスが徐々に中間体に変化し、成膜していく。処理温度と成膜量が正の相関を持つため、従来技術(1)(2)が有効に働く。これに対し、GaNの成膜条件は、基板上温度(1000℃〜)が中間体生成開始温度(約450℃)、成膜開始温度(約450℃)よりはるかに高い。このため、原料ガスが基板に達する前に、ほとんど中間体まで変化してしまい成膜均一化制御を困難にする。
本発明の目的は、基板上流部での中間体生成量を抑制し、かつ、基板上での中間体濃度を均一化することで、原料利用効率の大幅な低下を招かずに、基板面内の膜厚均一性の高い成膜が行なえる半導体製造装置を提供することにある。
上記課題を解決するために、本発明では、原料ガスから化学反応により生成する気相中間体の基板上濃度を制御することを特徴とする成膜方法、および基板に対向する壁の温度制御によりこれを実現する成膜装置を見出した。
即ち、本発明はCVD(Chemical Vapor Deposition 化学気相成長)装置内に原料ガスを導入し、基板上に薄膜を形成する方法であって、前記原料ガスから化学反応により生成する気相中間体の基板上の濃度を、前記対向壁の温度を前記基板の温度とは独立に冷却して前記CVD装置の原料ガス上流側の温度を前記原料ガスの中間体の生成温度よりも低く保ち、前記上流側から下流側に向かって前記対向壁の温度が順次高くなるように制御する成膜方法を提供するものである。
また、本発明は、原料ガスを用い、CVDにより基板上に薄膜を形成する成膜装置であって、基板を載置するサセプタに対向した壁(以下、対向壁)を有する反応室と、
前記反応室内に前記原料ガスを導入するガス導入口と、
前記反応室から前記原料ガスを排出するガス排出口と、
前記基板を加熱する手段と、
前記対向壁の裏側に設置され、前記対向壁の温度を、前記基板の温度とは独立に制御する冷却手段と、
前記反応室の前記基板に交叉し、又は略垂直な側壁に設置され、前記基板周辺における前記中間体の濃度を測定する中間体濃度測定手段と、
前記CVD装置の原料ガス上流側の温度を前記原料ガスの中間体の生成温度よりも低く保ち、前記上流側から下流側に向かって前記対向壁の温度が順次高くなるように制御する制御機構を有する成膜装置を提供するものである。
本発明によれば、CVDにより半導体薄膜などの薄膜を成膜する方法において、基板面内で均一な成膜ができる成膜方法及び成膜装置が提供でき、その結果、基板面内均一性の高い薄膜の作成が実現できる。
本発明は、前記特許文献1〜5等に記載される種々の原料ガスに適用されるが、特にGaN,InGaN,AlGaN,GaAs等のGa系薄膜の形成に適している。
本発明のある観点では、CVD装置内に原料ガスを導入し、基板上に薄膜を形成する方法であって、前記原料ガスから化学反応により生成する気相中間体の基板上濃度を制御する成膜方法を提供する。また、本発明の他の観点では、原料ガスを用い、CVDにより基板上に薄膜を形成する成膜装置であって、基板を載置するサセプタに対向した壁(以下、対向壁)を有する反応室と、前記反応室内に前記原料ガスを導入するガス導入口と、前記反応室から前記原料ガスを排出するガス排出口と、前記基板を加熱する手段と、前記対向壁の前記反応室に対面して設置され、前記対向壁の温度を、前記基板の温度とは独立に制御する冷却手段と、前記反応室の前記基板に交叉し又は略垂直な側壁に設置され、前記基板周辺における前記中間体の濃度を測定する中間体濃度測定手段を有する成膜装置を提供する。
前記冷却は冷却手段によりなされ、前記原料ガスの流れ方向における前記中間体の基板上の濃度分布を制御する。前記中間体の基板上の濃度分布が、前記原料ガスの流れ方向で均一になるように制御することが望ましい。
前記対向壁温度を、前記原料ガス導入口から前記原料ガス導入口に最も近い前記基板の端部位置(以下、基板上流端)までは前記気相中間体の生成温度より十分低く、前記原料ガス排出口に最も近い前記基板の端部位置(以下、基板下流端)では前記中間体の生成温度より十分高く、前記基板下流端までの温度分布が単調に増加するように制御することが好ましい。ここで単調にとは直線的又は段階的にという意味である。中間体の生成温度より十分高いとは、中間体が更に反応して皮膜が形成される温度である。
前記原料ガスとしてGa(CHとNHを用い、前記薄膜としてGaNを成膜する際の前記中間体が、GaNH(CHあるいはこの分解生成物である。この中間体が加熱下で更に分解して薄膜、例えばGaNとなる。
前記基板の温度を1000〜1200℃に保ち、前記対向壁面温度を、前記原料ガスの導入位置から前記基板上流端までは230℃以下に、基板下流端までは単調増加し、前記基板下流端で520℃以上に設定することが好ましい。
前記冷却手段に冷媒を供給し、前記冷媒が、水、シリコーンオイル、アルキルアルコール、液化窒素及びそれらの組合せのいずれかであるのが望ましい。
本発明の更に他の観点では、前記対向壁温度を、前期原料ガス導入口から前記原料ガス導入口に最も近い前記基板の端部位置(以下、基板上流端)までは前記気相中間体の生成温度より十分低く、前記原料ガス排出口に最も近い前記基板の端部位置(以下、基板下流端)では前記中間体の生成温度より十分高く、前記基板下流端までの温度分布が直線的に増加するように制御することが望ましい。前記中間体濃度測定手段が、赤外分光光度計、質量分析装置、あるいはこれらの組合せにより構成される。
前記冷却手段により、前記原料ガスの流れ方向における前記中間体の基板上濃度分布を制御することができる。前記中間体の基板上濃度分布が、前記原料ガスの流れ方向で均一になるように制御する。
本発明は又、原料ガスを用い、CVDにより基板上に薄膜を形成する成膜装置であって、基板を載置するサセプタに対向した壁(以下、対向壁)を有する反応室と、
前記反応室内に前記原料ガスを導入する手段と、前記反応室から前記原料ガスを排出する手段と、前記基板を加熱する手段と、前記対向壁の裏側に設置され、前記対向壁の温度を、前記基板の温度とは独立に前記原料ガスが中間体を生成する温度に基づき制御する冷却手段を有する成膜装置を提供する。
前記冷却手段を、前記対向壁に隣接又は空隙を介して配置され、ガス流れ方向と交叉し又は垂直に複数個に区分された熱伝導体又は断熱材からなる温度調節セルと、前記冷却手段間の空隙と、前記冷却手段に隣接又は空隙を介して配置された熱伝導体からなる冷却手段と、前記冷却部内に設けられた液冷部により構成することができる。
また、前記温度調節セルを、前記対向壁から前記冷却手段に向かう方向に複数個に分割することができる。更に、前記温度調節セルの材質を変えることによって、前記対向壁面温度を制御することが好ましい。
前記対向壁温度を、前期原料ガス導入口から前記原料ガス導入口に最も近い前記基板の端部位置(以下、基板上流端)までは前記気相中間体の生成温度より十分低く、前記基板上流端から前記原料ガス排出口に最も近い前記基板の端部位置(以下、基板下流端)では前記中間体の生成温度より十分高く、前記基板下流端までの温度分布が単調に増加するように制御することが望ましい。
前記原料ガスとしてGa(CHとNHを用い、前記薄膜としてGaNを成膜する際の前記中間体が、GaNH(CHあるいはこの分解生成物である。
前記基板の温度を1000〜1200℃に保ち、前記対向壁面温度を、前記原料ガスの導入位置から前記基板上流端までは230℃以下に、前記基板上流端から基板下流端までは単調増加し、前記基板下流端で520℃以上に設定することが好ましい。
更に、前記冷却手段を、前記原料ガスの流れ方向と交叉し又はほぼ垂直に複数個に区分された熱伝導体からなる冷却セルと、前記冷却セル間の空隙と、前記冷却セル内に個別に設けられた液冷部により構成することができる。
前記対向壁は前記反応室内の上流から下流まで一体構造で形成するに限らず、前記冷却セル間の空隙位置に合わせて分割し、前記空隙を通し前記反応室内にパージガスを流すことができる。前記液冷部内に流す冷媒の流量または温度により対向面温度を制御することができる。基板に対応する位置における冷却流路の分割数は、2以上、特に3以上であることが好ましく、かつ6以下特に4以下であることが好ましい。
前記対向壁内に温度検出手段を設け、前記対向壁温度が常に指定温度になるように前記温度制御手段をリアルタイムに制御することが好ましい。前記基板、前記サセプタ、前記対向壁、前記反応室、前記加熱手段、前記冷却手段が軸対称形状で構成され、前記基板と前記サセプタが公転するように構成することができる。また、前記基板が自転するように構成することができる。
本発明により、膜厚の変動が、最大厚さと最小厚さとの間で±1%以下であるIII‐V族化合物半導体装置が提供される。
本発明の更に他の観点では、前記原料ガスとしてGa(CHとNHを用い、前記半導体膜としてGaNを成膜する際の前記中間体が、GaNH(CHあるいはこの分解生成物であり、前記基板の温度を1000〜1200℃に保ち、前記対向面温度を、前記原料ガスの導入位置から前記基板上流端までは220℃以下に、前記基板上流端から基板下流端までは単調増加し、前記基板下流端で520℃以上に設定する成膜方法を提供する。
以下、本発明の成膜方法及び成膜装置を、半導体製造装置を例にとって、図面に従って詳細に説明する。
図1は実施例1による半導体製造装置の構成を示す縦断面図であり、(a)は本発明の第1の実施の形による半導体製造装置の縦断面図であり、(b)は(a)のA‐A’線に沿った横断面図を示す図である。また、(c)は(a)のB‐B’線に沿った横断面図を示す図である。
図2(a)は従来の半導体製造装置と本発明の半導体製造装置における基板101直上の中間体(GaNH(CHおよびこの分解生成物)の濃度分布を、(b)はこのときの基板上GaN成膜速度分布を、(c)はこのときの対向壁直下の温度分布を示す図である。(d)は反応室内で中間体生成温度に達している領域を示す側面断面図である。
本実施例による半導体製造装置は、2.5インチ基板101を載置するカーボン製サセプタ102と、サセプタ102につながる石英製の底壁103を内部に有するとともに、サセプタ102に対面した石英製の対向壁104を有する反応室105を備え、反応室105内に原料ガスとキャリアガスを供給するガス導入口106と、原料ガスとキャリアガスを反応室105から系外に排出するガス排出口107を有する。また、サセプタ102の外側に基板101を加熱するヒーター108を有するとともに、対向壁104の外側にステンレス製の冷却ジャケット109を有する。さらに、本実施例の半導体製造装置は、反応室側壁の一方に石英製の赤外線入射窓110を、これと対面する反応室側壁に石英製の赤外線検出窓111を有し、系外には赤外分光光度計114を有する。
図1(b)は、図1(a)におけるA−A’線に沿った断面を示す平面断面図である。このように冷却ジャケット109は5つの流路I〜Vを有し、冷却液(冷媒)はガス流れと交叉し又は垂直方向112に流れる。図1(c)は、図1(a)におけるB−B’線に沿った横断面を示す図である。このように、赤外線入射窓110と赤外線検出窓111は、反応室内に入射する赤外線の経路113がガス流れ方向に交叉し又はほぼ垂直で、かつ、基板101の直上を通るように、基板101に対応する位置に3ヶ所設ける。赤外分光光度計114はコンピュータ115に接続され、各分子間結合に固有の振動数を測定する。
以上のように構成された半導体製造装置において、ヒーター108により基板表面温度は1000℃に一定に設定される。原料ガスとしてはV族系原料ガスとしてアンモニア(NH)、III族系原料ガスとしてトリメチルガリウム(TMG)ガスを用い、キャリアガスには水素ガス(H)を用いる。ガス導入口106から導入された原料ガスは、サセプタ102に近づくと加熱され多種の中間体を生成し、その一部が基板上にガリウムナイトライド(GaN)を成膜する。
ここで、本発明者独自の検討によれば、多種存在する中間体の中でも生成開始温度がGaNの成膜開始温度(450℃)にほぼ等しいGaNH(CHやGaNH(CHからの分解生成物が最もGaNの成膜に寄与する中間体であることが明らかになった。そこで、赤外分光光度計114を用い、赤外線入射窓110から反応室105内に赤外線を入射し、赤外線検出窓111を通過する赤外線を検出しGaNH(CHおよびこの分解生成物の濃度を測定する。この際、Ga‐Nの伸縮モードを測定する。また、石英製の窓を介して測定しているため、石英による赤外線吸収量を考慮しなければならない。このようにして測定した基板101上のGaNH(CH濃度が均一になるように冷却液の流量・温度を調整する。
図2(a)〜図2(d)は、従来の半導体製造装置と図1(a)に示す本発明の半導体製造装置における基板直上のGaNH(CH濃度分布と基板上のGaN成膜速度分布、対向壁直下の温度分布を示す図である。以下の説明において、ガス導入口106から最も近い基板位置を基板上流端、ガス排出口107から最も近い基板位置を基板下流端と定義する。従来半導体製造装置では、基板101の手前でGaNH(CHが多く生成され、基板上流端から基板下流端にかけて急激に減少する。一方、本実施例における半導体製造装置のGaNH(CHおよびその分解生成物の濃度分布は基板上でほぼ均一である。基板上のGaN成膜速度分布もGaNH(CHおよびその分解生成物の濃度分布にほぼ対応する。
この原因は、反応室内の温度分布と中間体の生成領域との関係から説明できる。図2(d)は反応室内で中間体が生成可能な温度領域を示す図である。従来の半導体製造装置では、対向壁面の温度が、基板上流端においてすでに中間体生成温度に達している。このため、導入された原料ガスの大部分は基板上流端に達する前に中間体に変換される。これらの中間体は基板101に達すると同時に急激に成膜され消費されるため、基板下流端で原料の枯渇を引き起こす。
これに対し、本実施例の半導体製造装置は、ガス導入口106から基板上流端までの対向壁温度を中間体生成開始温度(450℃)よりも十分低く設定しているため、基板上流端での中間体生成可能領域が基板101の近傍に限定される。さらに、基板上流端から基板下流端にかけての対向壁温度が徐々に増加しており、中間体生成可能領域が交叉する方向又は略垂直方向に対向壁面まで拡がっていく。これにより、基板上流端での中間体生成量が抑制され基板下流端での原料枯渇を防ぐことができる。
さらに、対向壁側で生成した中間体が、成膜により生じる基板近傍の中間体濃度の低下を打ち消すように拡散するため、基板上のGaN成膜速度が均一化される。即ち、基板に対向する対向壁面の温度は、反応ガスの上流では、中間体が生成する温度よりも低く保たれ、基板の領域に掛かると徐々に上昇し、成膜に必要な温度に上昇する。即ち、本発明においては、基板の対向面温度は均一ではなく、上流から下流に向かって上昇する。これは直線的でも良いし、均一な成膜に障害にならない限り、ある程度段階的又は非直線的でも良い。しかし実質的に直線的に上昇するのが均一な膜厚、均一な組成の薄膜を形成する上でもっとも好ましい。
中間体の濃度の測定には、赤外分光光度計114以外に、質量分析装置を用いても良い。質量分析装置を用いる際には、反応室105の側壁に光の入射・検出口に代わり、反応室内のガスを抽出する抽出口を設け、質量数116のGaNH(CHおよびこの分解生成物を測定する必要がある。
上記実施例により、膜厚の変動が、最大厚さと最小厚さとの間で、±1%以下で、極めて均一なIII‐V族化合物半導体装置を製造することができた。このような均一な半導体装置は他の実施例でも同様に製造することができた。
図3は実施例2による半導体製造装置の構成を示す縦断面図であり、(a)は本発明の実施例2による半導体製造装置の縦断面図であり、(b)は(a)のC‐C’線に沿った横断面図を示す図である。
また、図4(a)は従来の半導体製造装置と本発明の半導体製造装置において計算した基板直上と対向壁面の温度分布を示すグラフであり、(b)はこのときのGaNの成膜速度分布を示すグラフである。
また、図5は図3(a)の冷却液流路の他の区分法を示す図である。図6は冷却ジャケット109から対向壁面までの別の構成を示した図である。
本実施例による半導体製造装置は、2.5インチ基板101を載置するカーボン製サセプタ102と、断熱材を介しサセプタ102につながる石英製の底壁103を内部に有するとともに、サセプタ102に対面した石英製の対向壁104を有する反応室105を備え、反応室内に原料ガスとキャリアガスを供給するガス導入口106と、原料ガスとキャリアガスを反応室105から系外に排出するガス排出口107を有する。また、サセプタ102の外側に基板101を加熱するヒーター108を有するとともに、対向壁104の外側にステンレス製の冷却ジャケット109を有する。
図3(b)は、図3(a)のC−C’線に沿った横断面を示す図である。このように冷却ジャケット109はI〜Vの5つの流路からなり、冷却液はガス流れに対し交叉し又は略垂直方向に流れる。
以上のように構成された半導体製造装置において、ヒーター108により基板表面温度は1000℃一定に設定される。一方、冷却ジャケット109の3つの独立した流路に対し、それぞれ独立に流量あるいは温度を調整した冷却水を流し、対向壁温度を設定する。この際、事前に実験またはシミュレーションにより冷却液の流量または温度と対向壁温度の関係を把握しておく必要がある。原料ガスとしてはV族系原料ガスとしてアンモニア(NH)、III族系原料ガスとしてトリメチルガリウム(TMG)ガスを用い、キャリアガスには水素ガスを用いる。ガス導入口106から導入された原料ガスは、基板101に近づくと加熱され多種の中間体を生成し基板上にガリウムナイトライド(GaN)を成膜する。
成膜の際の対向壁面温度は、TMGとNHから中間体が生成する温度や、成膜による中間体の減少を考慮して決定する必要がある。原料ガスから化学反応により生成する中間体は多種存在する。本発明者の独自の検討によれば、GaNH(CHおよびその分解生成物がもっともGaNの成膜に寄与する中間体であることが明らかになった。GaNH(CHの生成開始温度は成膜開始温度(約450℃)にほぼ等しい。そこで、対向壁面温度を、ガス導入口106から基板上流端までは十分低く保ち230℃以下に、基板上流端から基板下流端までは単調、段階的日直線的に増加し、基板下流端で520℃以上になるように設定する。
図4(a)は、従来の半導体製造装置と図3(a)に示す本発明の半導体製造装置においてシミュレーションした対向壁面の温度分布を、図4(b)は、基板上のGaN成膜速度分布を示すグラフである。従来の半導体製造装置では、対向壁面の温度が、基板上流端においてすでに中間体生成温度に達している。このため、導入された原料ガスの大分部は基板上流端に達する前に中間体に変換される。これらの中間体は基板101に達すると同時に急激に成膜して消費されるため、基板下流端で原料の枯渇を引き起こす。
これに対し、本実施例の半導体製造装置は、ガス導入口から基板上流端までの対向壁温度が中間体生成温度よりも十分低く設定され、基板上流端での中間体生成可能領域を基板101の近傍に限定されている。さらに、基板上流端から基板下流端にかけては対向壁温度が徐々に増加し、中間体生成可能領域が交叉し又は垂直方向に対向壁面まで拡がっている。これにより、基板上流端での中間体生成量が抑制され基板下流端での原料枯渇が抑制される。さらに、対向壁側で生成した中間体が、成膜により生じる基板近傍の中間体濃度の低下を打ち消すように拡散するため、基板上のGaN成膜速度が均一化される。
図5は、冷却ジャケット109の流路を区分する他の例を示す図である。流路の区分位置は、少なくとも図3(b)に示すような対向壁面温度分布を実現できれば良く、図3(a)記載の区分に限られない。図5では、流路の分割数を増加させている。特に対向壁104の温度変化が大きい基板上流端から基板下流端にかけての分割数を増加させることで、より高精度に対向壁温度の制御が可能になる。特に基板面積を拡大するときに有効である。
図6は、冷却ジャケット109から対向壁面までの構成における他の例を示す。対向壁面材201には、少なくとも装置の動作温度範囲(常温〜1000℃)において安定で脱ガス量が少ないものを使用する必要がある。また、対向壁面の表面輻射率は低いほうが望ましい。加えて、冷却ジャケット109から対向壁面までは、熱伝達率ができるだけ高くなるように構成することが望ましい。図6のように、対向壁104は材質の異なる複数の板で構成しても良い。たとえば、対向壁面材201には脱ガス量の少ない石英を使用し、対向壁内部材202には熱伝導率の高いカーボンを使用してもよい。また、対向壁104と冷却ジャケット109は接していなくともよく、空間203を設けてもよい。空間203を設けると冷却ジャケット109から対向壁104までの熱伝達率は悪化するものの、熱応力により対向壁104が変形した際に対向壁104が破壊するのを防ぐことができる。
水冷ジャケットは、熱伝導率の高い材料が望ましく、ステンレス・スチール以外に、アルミニウム、銅などを用いても良い。冷却ジャケット109内に流す冷却液として水以外に、シリコーンオイル、アルキルアルコール、液化窒素、またはそれらの組合せを用いてもよい。
図7は、本発明の実施例3による半導体製造装置を示す縦断面図である。図1(a)と同様の要素は同じ符号で示す。装置の主たる構成は、図3(a)に示した実施例2による半導体製造装置と同様であるが、冷却手段が、流れ方向に複数個配置した冷却ジャケット109と、各冷却ジャケット間の空隙301により構成されている。このようにすれば、対向壁温度の制御性を向上させることができる。
冷却手段を一体の冷却ジャケット109で構成する場合、流路間のステンレスを通し熱伝導が起こり、各冷却液の温度が相互に影響を及ぼし、流路間の温度勾配が平滑化される。対向壁面の温度分布は、対向壁内の熱伝導過程でさらに平滑化される。各流路ごとに個別の冷却ジャケット109で構成し、その間の熱伝達率を小さくすることにより、各冷却ジャケット間の断熱性を保つことができ、各冷却ジャケットの冷却量の違いをより明確に対向壁104に反映することができる。本実施例は特に対向壁104の厚さが厚いときに効果的である。各ジャケット間に空隙301を設ける代わりに窒化ホウ素(BN)などの断熱材を用いてもよい。
図8は、本発明の実施例4による半導体製造装置を示す縦断面図である。図1(a)と同様の要素は同じ符号で示す。装置の主たる構成は、図2に示した実施例2による半導体製造装置と同様であるが、対向壁104が冷却ジャケット間の空隙位置に合わせて分割され、この空隙301を通し反応室内に窒素ガス(N)やHなどのパージガス401が流されている。このようにすれば、半導体装置の大型化が可能になる。図3(a)のように、対向壁104を一枚の板で構成し大型化すると、熱応力による破壊が起こりやすくなる。対向壁104を分割して構成することで破壊を抑制できる。また、これによって生じた空隙301には、原料ガスが空隙内へ侵入することを防ぐために、反応室内のガス流れに影響を与えない程度の流量でパージガス401を導入する。
図9は、本発明の実施例5による半導体製造装置を示す縦断面図である。図1(a)と同様の要素は同じ符号で示す。装置の主たる構成は、図3(a)に示した実施例2による半導体製造装置と同様であるが、対向壁内に温度分布を測定するため熱電対501と、熱電対501から信号線502により接続され、測定値と事前に定めた対向壁面温度の設定値を比較・演算するPID温度制御のためのコンピュータ405と、コンピュータからの出力に基づき流量・温度を調節するマスフローコントローラ406・温度調節器407である。マスフローコントローラ406・温度調節器407の指令により、冷媒の流量を制御するポンプ408を制御する。制御の具体的方法は図10のフロー図に示した通りである。
以下、図10のフロー図に基づいて説明する。まず、事前の検討により対向壁温度分布の指定値を決定する。この指定値をコンピュータに入力し、対向壁内に設置した熱電対501の計測値と比較し、冷却液の流量・温度の制御量を演算する。制御量に基づきマスフローコントローラ・温度調節器の出力を調整する。熱電対温度が指定値に一致すればマスフローコントローラ・温度調節器の出力を保持し、一致しない場合には、再びコンピュータにより制御量の演算を行なう。このようにすれば、成膜時の対向壁温度を常に一定に保つことができ、より高精度な膜厚制御が可能になる。
GaNの成長時には、基板以外の壁面にも成膜が起こる。特に、対向壁面は比較的低温であり付着する膜は透明ではなく黄色〜黒色をしている。このため、成膜時間とともに対向壁面の表面輻射率は大きく変化する。対向壁104の冷却量を一定にしていると、対向壁面の表面輻射率の変化とともに対向壁温度も変化し、狙った膜厚分布が得られない。本実施例のように、GaN成長時の対向壁面温度をリアルタイムに検出し、冷却液の温度もしくは流量にフィードバックすることで、対向壁温度の経時変化を防ぎ、常に一定温度に保つことができる。
図11は、本発明の実施例6による半導体製造装置を示し、図11(a)は側面断面図である。図11(b)は、図11(a)のD−D’線に沿った横断面図である。図1(a)と同様の要素は同じ符号で示す。本実施例は、おおよそ、実施例2〜5記載の半導体製造装置のガス導入口106を軸に一回転させた構成をとり、基板101を自転させるとともに、軸602の周りに公転させ複数枚の基板101を同時に処理する、いわゆる自公転型の半導体製造装置を対象にしている。
冷却ジャケット109の流路が公転軸602を中心としたリング状に形成されることを特徴とする。このようにすれば、自公転型の半導体製造装置においても、対向壁面温度の制御が可能となり、基板上流端での中間体生成量が抑制され基板下流端での原料枯渇を防ぐことができ、さらに、対向壁側で生成した中間体が基板上の中間体濃度の低下を打ち消すように拡散し、基板上のGaN成膜速度を均一化することができる。
図12は、本発明の実施例6による半導体製造装置の断面図である。図1(a)、図7と同様の要素は同じ符号で示す。本実施例装置の主たる構成は、図1(a)に示した実施例1による半導体装置と同様であるが、冷却手段が複数個の温度調節セル121と冷却ジャケット109により構成されている。この温度調節セル121の材質をセルごとに変えることにより、冷却ジャケット109と対向壁面間の熱伝導率を変化させ、対向壁面の温度を調節する。
温度調整セル間には特にガス流れ方向に空隙が設けられる。これにより、セル間の断熱性が高まり、セル毎の冷却量の違いをより明確に対向壁に反映させことができ、正確に対向壁面温度を制御することができる。又、液冷の流路を分割する必要が無いため、装置構造を簡単にすることができる。
本発明の実施例による成膜装置の構造を示し、(a)は側断面図、(b)は(a)のA−A’断面図、(c)は(a)のB‐B’線に沿った横断面図。 本発明と従来例における基板と反応容器の対向壁面の位置の特性の関係を示し、(a)は基板上の中間体濃度、(b)はGaN成膜速度、(c)は基板対向面温度、(d)は反応容器内の温度分布。 本発明における他の実施例による成膜装置の構成を示し、(a)は側面断面図、(b)は(a)のC‐C’線に対する横断面図。 従来の半導体製造装置と本発明の半導体製造装置の基板と対向壁面の特性関係を示し、(a)は計算によって求めた基板直上と対向壁面の温度分布であり、(b)はこのときのGaNの成膜速度分布。 図3(a)の冷却液流路の他の区分法を示す側面断面図。 冷却ジャケットから対向壁面までの別の構成を示した側面断面図。 本発明の更に他の実施例による半導体製造装置の側面断面図。 本発明のもう1つの他の実施例による半導体製造装置の側面断面図。 本発明の実施例による半導体製造装置システムの概略構成図。 本発明の実施例における温度制御のフローチャート。 本発明の更に他の実施例による半導体製造装置の断面図で、(a)は側面断面図、(b)は(a)のD−D’線に沿った断面図。 本発明の実施例6による半導体製造装置の断面図。
符号の説明
101…基板、102…サセプタ、103…底壁、104…対向壁、105…反応室、106…ガス導入口、107…ガス排出口、108…ヒーター、109…冷却ジャケット、110…赤外線入射窓、111…赤外線検出窓、112…冷却液流れ方向、113…赤外線進行方向、114…赤外分光光度計、115…コンピュータ、I〜V…冷却液流路、201…対向壁面材、202…対向壁内部材、203…空間、301…空隙、401…パージガス、501…熱電対、601…自転軸、602…公転軸、603…ガス導入口、604…冷却液流れ方向。

Claims (9)

  1. 薄膜を形成すべき基板を設置し、該基板に対向する対向壁を有する反応室を備えたCVD(Chemical Vapor Deposition)装置内に原料ガスを導入し、基板上に薄膜を形成する方法であって、前記原料ガスから化学反応により生成する気相中間体の基板上の濃度を、前記対向壁の温度を前記基板の温度とは独立に冷却して前記CVD装置の原料ガス上流側から下流側に前記対向壁の温度が順次高くなるように制御し、前記原料ガスの上流の前記対向壁の温度が前記気相中間体の生成温度よりも低くなるように保持する成膜方法であって、前記対向壁の温度を、前記原料ガスの導入口から前記原料ガスの導入口に最も近い前記基板の端部位置で定義される基板上流端までは前記気相中間体の生成温度より十分低く、前記基板上流端から前記原料ガスの排出口に最も近い前記基板の端部位置で定義される基板下流端までは前記気相中間体の生成温度より十分高く、前記基板上流端から前記基板下流端までの温度分布が単調に増加するように制御することを特徴とする成膜方法。
  2. 前記冷却は前記対向壁を冷却する冷却手段によりなされ、前記原料ガスの流れ方向における前記中間体の基板上の濃度分布を制御することを特徴とする請求項1記載の成膜方法。
  3. 前記中間体の基板上の濃度分布が、前記原料ガスの流れ方向で一になるように制御することを特徴とする請求項2記載の成膜方法。
  4. 前記原料ガスとしてGa(CHとNHを用い、前記薄膜としてGaNを成膜する際の前記中間体が、GaNH(CHあるいはこの分解生成物であることを特徴とする請求項1記載の成膜方法。
  5. 前記基板の温度を1000〜1200℃に保ち、前記対向壁面の温度を、前記原料ガスの導入位置から前記基板上流端までは230℃以下に、前記基板上流端から基板下流端までは単調増加し、前記基板下流端で520℃以上に設定することを特徴とする請求項1記載の成膜方法。
  6. 前記冷却手段に冷媒を供給し、前記冷媒が、水、シリコーンオイル、アルキルアルコール、液化窒素及びそれらの組合せのいずれかであることを特徴とする請求項2記載の成膜方法。
  7. 原料ガスを用い、CVDにより化学反応により生成する気相中間体を経て基板上に薄膜を形成する成膜装置であって、
    前記基板を載置するサセプタに対向した対向壁を有する反応室と、
    前記反応室内に前記原料ガスを導入するガス導入口と、
    前記反応室から前記原料ガスを排出するガス排出口と、
    前記基板を加熱する加熱手段と、
    前記基板とは反対側の前記対向壁に設置され、前記対向壁の温度を、前記基板の温度とは独立に制御する冷却手段とを有し、
    前記対向壁の温度を、前記原料ガスの導入口から前記原料ガスの導入口に最も近い前記基板の端部位置で定義される基板上流端までは前記気相中間体の生成温度より十分低く、前記基板上流端から前記原料ガスの排出口に最も近い前記基板の端部位置で定義される基板下流端までは前記中間体の生成温度より十分高く、前記基板上流端から前記基板下流端までの温度分布が単調に増加するように制御する制御機構を備えたことを特徴とする成膜装置。
  8. 前記冷却手段は、前記基板に交叉し、又は垂直な、前記反応室の側壁に設置されていることを特徴とする請求項7に記載の成膜装置。
  9. 更に、前記基板の周辺における前記中間体の濃度を測定する中間体濃度測定手段を有することを特徴とする請求項7に記載の成膜装置。
JP2007070532A 2007-03-19 2007-03-19 成膜方法及び成膜装置 Expired - Fee Related JP4899958B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007070532A JP4899958B2 (ja) 2007-03-19 2007-03-19 成膜方法及び成膜装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070532A JP4899958B2 (ja) 2007-03-19 2007-03-19 成膜方法及び成膜装置

Publications (2)

Publication Number Publication Date
JP2008235438A JP2008235438A (ja) 2008-10-02
JP4899958B2 true JP4899958B2 (ja) 2012-03-21

Family

ID=39907918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070532A Expired - Fee Related JP4899958B2 (ja) 2007-03-19 2007-03-19 成膜方法及び成膜装置

Country Status (1)

Country Link
JP (1) JP4899958B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138041A (ja) * 2008-12-12 2010-06-24 Sumitomo Electric Ind Ltd 成膜装置
JP5655199B2 (ja) * 2010-09-06 2015-01-21 学校法人東京理科大学 半導体薄膜製造装置及び窒化物半導体の製造方法
KR101248476B1 (ko) * 2012-03-15 2013-04-02 주식회사루미지엔테크 박막 형성 장치
JP5947133B2 (ja) * 2012-07-17 2016-07-06 シャープ株式会社 気相成長装置および半導体装置の製造方法
JP6707827B2 (ja) 2015-09-28 2020-06-10 東京エレクトロン株式会社 成膜装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245524A (ja) * 1990-02-23 1991-11-01 Kyushu Electron Metal Co Ltd 気相成長装置の冷却方法
JPH04132213A (ja) * 1990-09-25 1992-05-06 Furukawa Electric Co Ltd:The 半導体薄膜気相成長装置
JPH05335250A (ja) * 1992-05-29 1993-12-17 Hitachi Ltd Cvd装置
JP3335492B2 (ja) * 1994-12-28 2002-10-15 三菱電機株式会社 薄膜の堆積装置
JPH11180796A (ja) * 1997-12-22 1999-07-06 Japan Energy Corp 気相成長方法およびその方法を適用した気相成長装置
JP2001023902A (ja) * 1999-07-06 2001-01-26 Hitachi Cable Ltd 半導体結晶の気相成長方法およびその成長装置
JP3607664B2 (ja) * 2000-12-12 2005-01-05 日本碍子株式会社 Iii−v族窒化物膜の製造装置
JP2006080195A (ja) * 2004-09-08 2006-03-23 Taiyo Nippon Sanso Corp 気相成長装置
JP4542859B2 (ja) * 2004-10-04 2010-09-15 大陽日酸株式会社 気相成長装置
JP4598506B2 (ja) * 2004-12-20 2010-12-15 大陽日酸株式会社 気相成長装置
JP2006216864A (ja) * 2005-02-04 2006-08-17 Hitachi Cable Ltd 化合物半導体製造装置

Also Published As

Publication number Publication date
JP2008235438A (ja) 2008-10-02

Similar Documents

Publication Publication Date Title
US11390950B2 (en) Reactor system and method to reduce residue buildup during a film deposition process
KR102641588B1 (ko) 직교류 반응기 및 방법
JP4899958B2 (ja) 成膜方法及び成膜装置
JP5231117B2 (ja) 成膜装置および成膜方法
US20080092812A1 (en) Methods and Apparatuses for Depositing Uniform Layers
TW201243955A (en) Apparatus for monitoring and controlling substrate temperature
US9194044B2 (en) Deposition apparatus and method
US8012884B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
US10745824B2 (en) Film forming apparatus
TW201413046A (zh) 一種調節基片表面溫度的控溫系統和控溫方法
JP2641351B2 (ja) 可変分配率ガス流反応室
US20140137799A1 (en) Deposition apparatus and method of forming thin film
JP4058364B2 (ja) 半導体製造装置
US9651367B2 (en) Curvature measuring in a substrate processing apparatus
JP5947133B2 (ja) 気相成長装置および半導体装置の製造方法
CN105648425A (zh) 一种化学气相沉积装置及其温控方法
JP2007201098A (ja) 気相成長装置および気相成長方法
JP2023506372A (ja) 2次元の層のためのcvdリアクタの使用
JP5655199B2 (ja) 半導体薄膜製造装置及び窒化物半導体の製造方法
US20180286719A1 (en) Film forming apparatus and film forming method
JPS59159980A (ja) 気相成長装置
JP2733535B2 (ja) 半導体薄膜気相成長装置
Talalaev Transport phenomena in vapor phase epitaxy reactors
TW201917234A (zh) 氣相成膜裝置
JP2007035727A (ja) 気相成長装置およびそれを用いた気相成長方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4899958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees