JP4899717B2 - Composite powder manufacturing method and composite powder manufacturing apparatus - Google Patents

Composite powder manufacturing method and composite powder manufacturing apparatus Download PDF

Info

Publication number
JP4899717B2
JP4899717B2 JP2006224525A JP2006224525A JP4899717B2 JP 4899717 B2 JP4899717 B2 JP 4899717B2 JP 2006224525 A JP2006224525 A JP 2006224525A JP 2006224525 A JP2006224525 A JP 2006224525A JP 4899717 B2 JP4899717 B2 JP 4899717B2
Authority
JP
Japan
Prior art keywords
powder
composite powder
rotary stage
additional
additional substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006224525A
Other languages
Japanese (ja)
Other versions
JP2008045197A (en
Inventor
健二 香取
昭夫 栢沼
弘 松木
業 須藤
勇人 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006224525A priority Critical patent/JP4899717B2/en
Publication of JP2008045197A publication Critical patent/JP2008045197A/en
Application granted granted Critical
Publication of JP4899717B2 publication Critical patent/JP4899717B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、複合粉体の製造方法及び複合粉体の製造装置に関する。   The present invention relates to a composite powder manufacturing method and a composite powder manufacturing apparatus.

粉体の周りに、この粉体とは異なる他の物質(付加物質,付着物質)を付着させることによる、複合粉体の製造(粉体修飾)においては、様々な修飾手法が知られている。
この修飾手法としては、例えば、液相中の粉体に対してpH調整等により粉体上に他物質を析出させる所謂液相法や、スパッタ装置等を用いて物理的に粉体修飾を行う物理的気相成長(Physical Vapor Deposition;PVD)法、及び化学的気相成長法(Chemical Vapor Deposition;CVD)法などが挙げられる。
Various modification methods are known in the production of composite powder (powder modification) by attaching other substances (additional substances, adhesion substances) different from this powder around the powder. .
As this modification method, for example, the powder is physically modified by using a so-called liquid phase method in which other substances are deposited on the powder by adjusting the pH of the powder in the liquid phase, a sputtering apparatus, or the like. Examples thereof include a physical vapor deposition (PVD) method and a chemical vapor deposition (CVD) method.

しかし、修飾手法の多くは、粉体や付加物質における材料(組成など)が、その手法との関係で特に好適となる条件でなければ、実用には適しないため、実際に行う上では制約が強い。
例えば、液相法は最もよく利用され生産性も高いが、付加物質が還元されにくい金属や合金、窒化物、フッ化物である場合などには適用することが難しい。また、粉体の側が水分により変化してしまう材料である場合にも、適用することは難しい。
CVD法は、液相法に比べて材料面での制約が緩和されるものの、例えば付加物質として窒化物を用いる場合には還元性雰囲気で成膜を行うことが必須となるなど、制限が少なからず残る。また、生産性は液相法に比べて劣る。
However, many of the modification methods are not suitable for practical use unless the material (composition, etc.) in the powder or the additional substance is particularly suitable in relation to the method. strong.
For example, the liquid phase method is most often used and has high productivity, but is difficult to apply when the additive is a metal, alloy, nitride, or fluoride that is difficult to reduce. In addition, it is difficult to apply even when the powder side is a material that changes due to moisture.
Although the CVD method is less restrictive in terms of material than the liquid phase method, for example, when using nitride as an additional material, it is essential to form a film in a reducing atmosphere, so there are few restrictions. Remains. Moreover, productivity is inferior compared with the liquid phase method.

一方、PVD法は、液相法やCVD法に比べて、粉体及び付加物質の両方について制約が少ない。例えば、付加物質については、酸化物、窒化物、各種合金あるいはこれらの組み合わせ等、様々な材料を用いることができる。
PVD法の具体的手法としては、スパッタを挙げることができる(例えば特許文献1参照)。しかし、スパッタは成膜速度(成膜レート)が低いために、長い処理時間を要し、生産性を十分に高められないことが指摘されている。
これに対し、スパッタよりも成膜速度の高いPVD手法として、蒸着が知られている(例えば特許文献2参照)。すなわち、様々な修飾手法の中でも、制約が少ないPVD法、そして特に生産性にも優れた蒸着は、期待の大きい修飾手法となっている。
On the other hand, the PVD method has fewer restrictions on both the powder and the additional material than the liquid phase method and the CVD method. For example, as the additional substance, various materials such as oxides, nitrides, various alloys, or combinations thereof can be used.
Specific examples of the PVD method include sputtering (see, for example, Patent Document 1). However, it has been pointed out that sputtering requires a long processing time because the deposition rate (deposition rate) is low, and the productivity cannot be sufficiently increased.
On the other hand, vapor deposition is known as a PVD technique having a film formation rate higher than that of sputtering (for example, see Patent Document 2). That is, among various modification methods, the PVD method with less restrictions and the vapor deposition that is particularly excellent in productivity are highly expected modification methods.

しかしながら、この蒸着によって粉体に対する修飾を行うことは、困難とされている。
図3に、従来の複合粉体の製造装置101としてスパッタ装置の構成を示す。この従来のスパッタ装置においては、蒸着におけるのと異なり、付加物質が、その供給源となるターゲット103から直下に向けて放出される(ダウンスパッタ方式)。したがって、スパッタにおいては、加工対象物が粉体である場合にも、ターゲットから離間する直下に設けられた水平ステージ102上に粉体111を載置しておくだけで、スパッタを行うことができる。
これに対し、蒸着においては、付加物質の供給源となる蒸着源において、液状の付加物質を蒸発させることにより付加物質が放出されるため、付加物質は蒸着源よりも高い位置に向かう。したがって、加工対象物を蒸着源よりも下側に置いて上から蒸着を行うことは困難であるが、加工対象物を蒸着源より上側かつ蒸着源と対向させて(下向きに)配置固定しようとしても、加工対象物が粉体の場合には、この粉体が、予め与えられている加速度(重力)にひかれて落下してしまうため、安定的に固定することが困難となる。蒸発ではなく昇華によって蒸着を行えるケースもあるが、これは昇華に適した物質に限られてしまう。
However, it is considered difficult to modify the powder by this vapor deposition.
FIG. 3 shows a configuration of a sputtering apparatus as a conventional composite powder manufacturing apparatus 101. In this conventional sputtering apparatus, unlike the case of vapor deposition, the additional substance is emitted directly downward from the target 103 serving as the supply source (down sputtering method). Therefore, in sputtering, even when the object to be processed is powder, sputtering can be performed simply by placing the powder 111 on the horizontal stage 102 provided immediately below the target. .
On the other hand, in the vapor deposition, the additional material is released by evaporating the liquid additional material in the vapor deposition source serving as the supply source of the additional material, so that the additional material moves to a higher position than the vapor deposition source. Therefore, it is difficult to perform deposition from above by placing the workpiece on the lower side of the deposition source, but trying to place and fix the workpiece on the upper side of the deposition source and facing the deposition source (downward). However, when the object to be processed is powder, it is difficult to stably fix the powder because the powder is pulled by the acceleration (gravity) given in advance. In some cases, vapor deposition can be performed by sublimation rather than evaporation, but this is limited to substances suitable for sublimation.

このように、従来のPVD法、特に蒸着においては、付加物質の放出方向による制限を避けることができないため、複合粉体の製造を、他の手法によって行わざるを得なかった。
特開2004−321973号 特開2005−172107号
As described above, in the conventional PVD method, in particular, vapor deposition, it is unavoidable to limit the release direction of the additional substance, and thus the composite powder must be manufactured by another method.
JP 2004-321973 A JP 2005-172107 A

本発明はこのような問題に鑑みてなされたものであって、その目的は、付加物質の放出方向による制限を緩和ないし抑制して、所望の粉体を所望の付加物質で修飾することが可能な、複合粉体の製造方法及び複合粉体の製造装置を提供することにある。   The present invention has been made in view of such problems, and the object thereof is to relax or suppress the restriction due to the release direction of the additional substance and to modify the desired powder with the desired additional substance. Another object of the present invention is to provide a composite powder manufacturing method and a composite powder manufacturing apparatus.

本発明に係る複合粉体の製造方法は、物理的気相成長(Physical Vapor Deposition;PVD)法により、粉体に、該粉体とは異なる付加物質が付加された複合粉体を製造する複合粉体の製造方法であって、内面を前記粉体の載置面とする、筒型の回転ステージに、前記粉体を載置する工程と、前記回転ステージを、前記筒型の開放部を含む仮想軸を中心として回転させる工程と、前記回転ステージに内包される位置に、前記付加物質の供給源を導入する工程とを有し、前記回転で生じる遠心力により、前記粉体を前記回転ステージに押し付けることを特徴とする。   The method for producing a composite powder according to the present invention comprises a composite powder produced by adding an additional substance different from the powder to the powder by a physical vapor deposition (PVD) method. A method for producing powder, the step of placing the powder on a cylindrical rotary stage, the inner surface of which is the powder mounting surface, the rotary stage, and the cylindrical opening part A step of rotating about the virtual axis including the step of introducing the supply source of the additional substance at a position included in the rotation stage, and the rotation of the powder by the centrifugal force generated by the rotation It is characterized by being pressed against the stage.

本発明に係る複合粉体の製造装置は、付加物質の供給源と、該付加物質の供給源を内包し、回転可能な筒型の回転ステージとを有することを特徴とする。また、回転ステージは、付加物質を付加する粉体を載置する載置面を備える。そして、回転ステージは、開放部を含む仮想軸を中心として回転する。さらに、回転ステージは、開放部を含む仮想軸を中心として回転し、この回転で生じる遠心力により、粉体を載置面に押し付ける。 The composite powder manufacturing apparatus according to the present invention includes an additional substance supply source, and a cylindrical rotary stage that includes the additional substance supply source and is rotatable. Further, the rotary stage includes a placement surface on which the powder to which the additional substance is added is placed. The rotary stage rotates about a virtual axis including the open part. Furthermore, the rotary stage rotates around a virtual axis including the open portion, and the powder is pressed against the placement surface by a centrifugal force generated by the rotation.

本発明に係る複合粉体の製造方法によれば、筒型の回転ステージの内面に粉体を載置する工程と、この回転ステージを回転させる工程と、この回転ステージに内包される位置に、付加物質の供給源を導入する工程とを有し、前記回転で生じる遠心力により、前記粉体を前記回転ステージに押し付けることから、PVD法における、付加物質の放出方向による制限が緩和ないし抑制されることにより、従来この制限によって組み合わせ困難とされてきた粉体と付加物質とを用いて、複合粉体を製造することが可能となる。   According to the method for producing a composite powder according to the present invention, the step of placing powder on the inner surface of a cylindrical rotary stage, the step of rotating the rotary stage, and the position included in the rotary stage, A step of introducing a supply source of the additional substance, and the powder is pressed against the rotary stage by the centrifugal force generated by the rotation, so that the restriction due to the discharge direction of the additional substance in the PVD method is relaxed or suppressed. This makes it possible to produce a composite powder using a powder and an additional substance that have been difficult to combine due to this limitation.

本発明に係る複合粉体の製造装置によれば、付加物質の供給源と、この付加物質の供給源を内包するための筒型の回転ステージとを有することから、PVD法による粉体への付加物質の付着において、付加物質の放出方向による制限が緩和ないし抑制されることにより、従来この制限によって組み合わせ困難とされてきた粉体と付加物質とによって、複合粉体を製造することが可能な製造装置を構成することができる。   According to the composite powder manufacturing apparatus of the present invention, since the supply source of the additional substance and the cylindrical rotary stage for containing the supply source of the additional substance are included, the powder to the powder by the PVD method can be obtained. In the adhesion of the additional substance, the restriction due to the release direction of the additional substance is relaxed or suppressed, so that it is possible to manufacture a composite powder by using the powder and the additional substance that have been conventionally difficult to combine due to this restriction. A manufacturing apparatus can be configured.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

<複合粉体の製造装置の実施の形態>
まず、本発明に係る複合粉体の製造装置の実施の形態について説明する。
図1Aは、本実施形態に係る複合粉体の製造装置の概略構成図である。
<Embodiment of Composite Powder Manufacturing Apparatus>
First, an embodiment of the composite powder manufacturing apparatus according to the present invention will be described.
FIG. 1A is a schematic configuration diagram of a composite powder manufacturing apparatus according to the present embodiment.

本実施形態に係る複合粉体の製造装置1は、筒型(本例ではドラム状の円筒型)の回転ステージ2によって、付加物質の供給源3が取り囲まれた(内包されている)構造を有している。   The composite powder manufacturing apparatus 1 according to this embodiment has a structure in which a supply source 3 of an additional substance is surrounded (enclosed) by a cylindrical (in this example, a drum-shaped cylindrical) rotary stage 2. Have.

本実施形態に係る複合粉体の製造装置1においては、筒型回転ステージ2の内面が粉体11の載置面とされており、製造の際には、一定以上の回転速度で回転させることができる。
この回転により、後述するように、粉体11の混合(撹拌)が図られるのみならず、粉体11が予め与えられている加速度(例えば重力)による付加物質の供給源3などへの落下の回避も図られる。
In the composite powder manufacturing apparatus 1 according to the present embodiment, the inner surface of the cylindrical rotary stage 2 is used as a mounting surface of the powder 11, and is rotated at a rotation speed of a certain level or higher during manufacturing. Can do.
As will be described later, this rotation not only mixes (stirs) the powder 11 but also causes the powder 11 to fall into the supply source 3 of the additional substance due to a predetermined acceleration (for example, gravity). Avoidance is also planned.

また、本実施形態において、物理的気相成長(Physical Vapor Deposition;PVD)
法のための付加物質の供給源3は、液状の付加物質を蒸発させることにより付加物質を主として上側へと放出する蒸着源である。
この付加物質の供給源3には、電子線源4が併設されており、この電子線源4から電子線(Electron Beam)を供給源3内の付加物質へ向けて照射することにより(破線矢印)
、付加物質を蒸発、放出させることができる(実線矢印)。このような、付加物質の放出を電子線によって促進する構成は、抵抗加熱などによって蒸発させることの難しい高融点物質による付加物質を用いる場合でも効率よく放出させることができる。
In this embodiment, physical vapor deposition (PVD)
The additional material supply source 3 for the method is a vapor deposition source that releases the additional material mainly upward by evaporating the liquid additional material.
The additional material supply source 3 is provided with an electron beam source 4. By irradiating an electron beam from the electron beam source 4 toward the additional material in the supply source 3 (broken arrow) )
The additional substance can be evaporated and released (solid arrow). Such a configuration in which the emission of the additional substance is promoted by the electron beam can be efficiently released even when an additional substance made of a high melting point substance that is difficult to evaporate by resistance heating or the like is used.

この構成による、本実施形態に係る複合粉体の製造装置1においては、供給源3から蒸発する付加物質が上側へと放出されるが、筒型の回転ステージ2の回転により、粉体11を、互いに混合しながら、かつ落下を回避して付加物質の供給源3の上側を通過させることができる。
したがって、本実施形態に係る複合粉体の製造装置1によれば、従来障害となっていた付加物質の放出方向による制限の緩和ないし抑制が図られることにより、この制限によって組み合わせ困難とされてきた粉体と付加物質とを用いて、複合粉体を製造することが可能となる。
In the composite powder manufacturing apparatus 1 according to the present embodiment having this configuration, the additional substance evaporating from the supply source 3 is released upward, but the powder 11 is removed by the rotation of the cylindrical rotary stage 2. , While being mixed with each other and avoiding falling, it is possible to pass the upper side of the supply source 3 of the additional substance .
Therefore, according to the composite powder manufacturing apparatus 1 according to the present embodiment, it has been difficult to combine due to this restriction because the restriction due to the release direction of the additional substance, which has been a hindrance, is relaxed or suppressed. It becomes possible to produce a composite powder using the powder and the additional substance.

<複合粉体の製造方法の実施の形態>
次に、本発明に係る複合粉体の製造方法の実施の形態について説明する。
本実施形態では、前述した本実施形態に係る複合粉体の製造装置1を用いる場合を例として、説明を行う。
<Embodiment of production method of composite powder>
Next, an embodiment of a method for producing a composite powder according to the present invention will be described.
In the present embodiment, the case where the composite powder manufacturing apparatus 1 according to the present embodiment is used will be described as an example.

まず、回転ステージ2の回転を開始し、その回転数を、後に回転ステージ2の内面に導入する粉体にかかる遠心力が1G以上となる回転数にまで上昇させる。回転数を充分に上昇させるよりも前に、回転ステージ2の内面に粉体を導入(載置)してしまうと、粉体が回転ステージ2の内面に定着せず、落下したり舞ったりしてしまうため、予め回転数を上昇させる必要がある。
回転ステージ2の回転数を充分に上げた後、筒型の回転ステージ2の内面に、粉体11を少しずつ導入する。
First, the rotation of the rotary stage 2 is started, and the rotation speed is increased to a rotation speed at which the centrifugal force applied to the powder to be introduced into the inner surface of the rotation stage 2 later becomes 1 G or more. If the powder is introduced (placed) on the inner surface of the rotary stage 2 before the rotational speed is sufficiently increased, the powder will not be fixed on the inner surface of the rotary stage 2 and will fall or fly. Therefore, it is necessary to increase the rotational speed in advance.
After sufficiently increasing the rotational speed of the rotary stage 2, the powder 11 is introduced little by little into the inner surface of the cylindrical rotary stage 2.

ここで、粉体11の導入は、回転ステージ2の内面全域に渡って、粉体11が均等になるように行うことが好ましい。予め回転ステージ2の回転数を充分に上げておくことにより、導入した粉体11が、回転ステージ2の内面に押し付けられて回転ステージ2と共に回転するため、落下したりすることを回避することができる。
更に、予め回転速度を充分高くしておくことにより、回転ステージ2の内面に導入される多数の粉体11の混合(撹拌)を促すこともできるため、回転ステージ2の内面で粉体11が偏在することなく、より均等に付加物質の付着(修飾)を図ることができる。
Here, the introduction of the powder 11 is preferably performed so that the powder 11 is uniform over the entire inner surface of the rotary stage 2. By sufficiently increasing the rotational speed of the rotary stage 2 in advance, the introduced powder 11 is pressed against the inner surface of the rotary stage 2 and rotates together with the rotary stage 2, thereby avoiding dropping. it can.
Furthermore, by sufficiently increasing the rotation speed in advance, mixing (stirring) of a large number of powders 11 introduced into the inner surface of the rotary stage 2 can be promoted. Adhesion (modification) of the additional substance can be achieved more evenly without uneven distribution.

また、回転は、筒型の開放部を含む仮想軸を中心として回転させることが好ましい。すなわち、図1Aに示した複合粉体の製造装置1において、少なくとも紙面と完全には重ならない仮想直線、本例では紙面に直交する仮想直線を、回転の中心軸とすることが好ましい。このように回転軸を選定することにより、回転ステージ2の内面に粉体11を押し付ける遠心力を生じさせることができる。
なお、各粉体11が常に一定の向きで付加物質の供給源3に対向すると、その対向面のみに偏って付加物質が付着するおそれがあるため、回転ステージ2の(例えば回転方向とは異なる向きの)揺動や前述の撹拌補助部材などによって、粉体11同士の混合とともに、各粉体11自体の回転を促すことが好ましい。
Further, the rotation is preferably performed around a virtual axis including a cylindrical opening. That is, in the composite powder manufacturing apparatus 1 shown in FIG. 1A, it is preferable that at least a virtual straight line that does not completely overlap the paper surface, in this example, a virtual straight line orthogonal to the paper surface, be the central axis of rotation. By selecting the rotation axis in this way, a centrifugal force that presses the powder 11 against the inner surface of the rotation stage 2 can be generated.
If each powder 11 always faces the supply source 3 of the additional substance in a fixed direction, there is a risk that the additional substance will be biased only on the facing surface, so that the rotation stage 2 (for example, different from the rotation direction). It is preferable to promote the rotation of each powder 11 as well as the mixing of the powders 11 by swinging (in the direction) or the above-mentioned stirring assisting member.

続いて、回転ステージ2に内包される位置へと、付加物質の供給源3及び電子線源4を導入する。
本実施形態では、前述した仮想軸を、粉体11に予め与えられている加速度(本例では重力)の方向と直交する軸として選定するとともに、付加物質の供給源3及び電子線源4の導入を、この(紙面と直交する)仮想軸に沿って行う。仮想軸の選定に加えて、導入方向の選定をこのように行うことにより、回転ステージ2の内面に粉体2を適度に押し付けた状態を維持したまま、付加物質の供給源3及び電子線源4の導入をスムーズに行うことも可能となる。
Subsequently, the additional material supply source 3 and the electron beam source 4 are introduced into a position included in the rotary stage 2.
In the present embodiment, the above-described virtual axis is selected as an axis orthogonal to the direction of acceleration (gravity in this example) given to the powder 11 in advance, and the additional material supply source 3 and the electron beam source 4 Introduction is performed along this virtual axis (perpendicular to the plane of the paper). By selecting the introduction direction in this way in addition to the selection of the virtual axis, the additional substance supply source 3 and the electron beam source are maintained while the powder 2 is properly pressed against the inner surface of the rotary stage 2. 4 can be smoothly introduced.

その後、雰囲気圧力を例えば1.0×10−4Paとする(低圧になるよう、所謂真空引きをする)。そして、電子線源4から電子線を発生させることにより、付加物質の供給源3から付加物質の放射を行う。
このようにして、PVD法(本例では蒸着)により、図1Bに示すような、粉体11に付加物質12が付着した複合粉体13を製造する。
Thereafter, the atmospheric pressure is set to, for example, 1.0 × 10 −4 Pa (so-called vacuuming is performed so that the pressure becomes low). Then, by generating an electron beam from the electron beam source 4, the additional material is emitted from the additional material supply source 3.
In this way, the composite powder 13 in which the additional substance 12 is attached to the powder 11 as shown in FIG. 1B is manufactured by the PVD method (in this example, vapor deposition).

なお、各粉体11にかかる力(f)は、粉体の質量をm、回転ステージの回転半径及び回転角速度をそれぞれr及びωとすると、f=mrωで表されると考えられる。
また、重力加速度との相対遠心加速度(RCF:Rerative Centrifugal Force)は、回転ステージ2の回転半径及び毎分回転数(rpm;revolution per minute)をr及びNとすると、単位Gにおいて、RCF=1118r N×10−8で表されると考えられる。
各粉体11は、遠心力が1Gを超えた場合に回転ステージ2へと押し付けられる(落下等によって回転ステージ2から離れることがなくなる)。
したがって、回転ステージ2内の多数の粉体11が、予め与えられている加速度(本例では重力)の存在下で、回転ステージ2の内面に押し付けられる1G以上の力を受けるようにするために、回転ステージ2の(鉛直方向について)上端となる位置においても、重力加速度と同じ押し付け力が得られるように、遠心力として2G以上の力がかかるように運転することが好ましい。例えば、回転ステージ2の開放部の半径が50cmならば、必要な70rpm以上の毎分回転数で回転させることが好ましい。
The force (f) applied to each powder 11 is considered to be expressed as f = mrω 2 where m is the mass of the powder and r and ω are the rotation radius and rotation angular velocity of the rotary stage, respectively.
The relative centrifugal acceleration (RCF) relative to the gravitational acceleration is RCF = 1118r in unit G, where r and N are the rotation radius and revolution per minute (rpm) of the rotary stage 2. It is thought that it is represented by N 2 × 10 −8 .
Each powder 11 is pressed against the rotary stage 2 when the centrifugal force exceeds 1 G (they do not leave the rotary stage 2 due to dropping or the like).
Therefore, in order to allow the large number of powders 11 in the rotary stage 2 to receive a force of 1 G or more pressed against the inner surface of the rotary stage 2 in the presence of a predetermined acceleration (gravity in this example). It is preferable to operate so that a force of 2 G or more is applied as a centrifugal force so that the same pressing force as the gravitational acceleration can be obtained even at the position at the upper end (in the vertical direction) of the rotary stage 2. For example, if the radius of the open part of the rotary stage 2 is 50 cm, it is preferable to rotate at a required rotational speed of 70 rpm or more.

<実施例>
本発明の実施例について説明する。
まず、第1の実施例として、燃料電池触媒用の複合粉体として、カーボン粉体に、付加物質として白金(Pt)とルテニウム(Ru)の合金を修飾することにより、複合粉体を製造した。
<Example>
Examples of the present invention will be described.
First, as a first example, a composite powder for a fuel cell catalyst was manufactured by modifying an alloy of platinum (Pt) and ruthenium (Ru) as an additional material to carbon powder. .

図2は、この燃料電池21の概略構成図である。本実施例では、水素型の燃料電池を作製した。
本実施例では、この燃料電池21の例えば水素極23を構成する触媒層23cと、酸素極24を構成する触媒層24cとに、前述した触媒用の複合粉体を用いることにより、液相法で作製した従来の複合粉体を触媒に用いた場合に比べて、燃料電池21の出力が約10%向上することを確認することができた。
FIG. 2 is a schematic configuration diagram of the fuel cell 21. In this example, a hydrogen type fuel cell was produced.
In the present embodiment, for example, the above-described composite powder for catalyst is used for the catalyst layer 23c constituting the hydrogen electrode 23 and the catalyst layer 24c constituting the oxygen electrode 24 of the fuel cell 21, whereby the liquid phase method is used. It was confirmed that the output of the fuel cell 21 was improved by about 10% compared to the case where the conventional composite powder produced in the above was used as a catalyst.

また、第2の実施例として、複合粉体の製造時間に関して検討を行った。
検討は、前述した本実施形態に係る製造方法による蒸着と、従来方式による(水平ステージを用いる)スパッタを比較することにより行った。具体的には、蒸着源出力とスパッタ出力とを同程度に設定し、同量の粉体に対して一定量の付加物質を付着させるまでの時間を比較した。
その結果、処理時間は、本実施形態に係る製造方法による蒸着の方が、処理時間において1/3程度、つまり速度において3倍程度、効率よく処理を行えることが確認できた。
Further, as a second example, the production time of the composite powder was examined.
The examination was performed by comparing vapor deposition by the manufacturing method according to the present embodiment described above and sputtering by a conventional method (using a horizontal stage). Specifically, the vapor deposition source output and the sputter output were set to the same level, and the time until a certain amount of additional substance was adhered to the same amount of powder was compared.
As a result, it was confirmed that the processing time was about 1/3 in the processing time, that is, about 3 times the speed in the vapor deposition by the manufacturing method according to the present embodiment.

これらの実施例の結果より、本実施形態に係る複合粉体の製造方法によれば、燃料電池触媒をはじめとする複合粉体を、短時間のうちに、優れた特性で製造できることが明らかとなった。   From the results of these examples, it is clear that the composite powder production method according to this embodiment can produce composite powders including fuel cell catalysts with excellent characteristics in a short time. became.

以上説明したように、本実施形態に係る複合粉体の製造方法によれば、筒型の回転ステージの内面に粉体を載置する工程と、この回転ステージを回転させる工程と、この回転ステージに内包される位置に、付加物質の供給源を導入する工程とを有し、前記回転で生じる遠心力により、前記粉体を前記回転ステージに押し付けることからPVD法における、付加物質の放出方向による制限が緩和ないし抑制されることにより、従来この制限によって組み合わせ困難とされてきた粉体と付加物質とを用いて、複合粉体を製造することが可能となる。
また、本実施形態に係る複合粉体の製造装置によれば、付加物質の供給源と、この付加物質の供給源を内包するための筒型の回転ステージとを有することから、PVD法による粉体への付加物質の付着において、付加物質の放出方向による制限が緩和ないし抑制されることにより、従来この制限によって組み合わせ困難とされてきた粉体と付加物質とによって、複合粉体を製造することが可能な製造装置を構成することができる。
As described above, according to the composite powder manufacturing method of the present embodiment, the step of placing powder on the inner surface of the cylindrical rotary stage, the step of rotating the rotary stage, and the rotary stage A step of introducing a supply source of an additional substance at a position included in the substrate, and the powder is pressed against the rotary stage by the centrifugal force generated by the rotation. When the restriction is relaxed or suppressed, it becomes possible to produce a composite powder using a powder and an additional substance that have been conventionally difficult to combine due to this restriction.
In addition, the composite powder manufacturing apparatus according to the present embodiment has a supply source of an additional substance and a cylindrical rotary stage for enclosing the supply source of the additional substance, so that the powder by the PVD method is used. In the attachment of additional substances to the body, the restrictions due to the release direction of the additional substances are relaxed or suppressed, so that a composite powder is produced from the powder and the additional substances that have conventionally been difficult to combine due to this restriction. It is possible to configure a manufacturing apparatus capable of

また、前述の実施形態では、回転軸の選定を単独で行う例を説明したが、回転軸の選定と、回転ステージ2の形状選定とを組み合わせることにより、粉体11の飛散を防止しながら、粉体11をよりよく撹拌することも可能となる。
回転ステージ2の形状選定の具体例としては、円筒形状の開放部に臨む端部に、粉体11の落下防止のためのガイドを設けた構成などが挙げられる。
Further, in the above-described embodiment, an example in which the rotation axis is selected alone has been described. However, by combining the selection of the rotation axis and the shape selection of the rotary stage 2, while preventing the powder 11 from being scattered, It becomes possible to stir the powder 11 better.
Specific examples of selecting the shape of the rotary stage 2 include a configuration in which a guide for preventing the powder 11 from dropping is provided at the end facing the cylindrical opening.

また、本実施形態に係る複合粉体の製造方法によれば、付加物質の付着(修飾)をPVDにより行うことができるため、粉体や付加物質の選択自由度を大きく(確保)でき、従来の修飾手法では困難とされてきた組み合わせで複合粉体を形成することが可能となる。
また、本実施形態に係る複合粉体の製造方法によれば、特に付加物質の供給を蒸着で行う場合、スパッタ法やレーザーアブレーション法等の他のPVD法よりも高い成膜速度で製造を行うことができるため、短時間により多くの粉体を処理することが可能となり、生産性の向上も図られる。
In addition, according to the method for producing a composite powder according to the present embodiment, the attachment (modification) of the additional substance can be performed by PVD, so that the degree of freedom of selection of the powder and the additional substance can be increased (secured). It becomes possible to form a composite powder with a combination that has been considered difficult by this modification method.
In addition, according to the method for manufacturing the composite powder according to the present embodiment, particularly when the supply of the additional material is performed by vapor deposition, the production is performed at a higher film formation rate than other PVD methods such as a sputtering method and a laser ablation method. Therefore, a large amount of powder can be processed in a short time, and productivity can be improved.

なお、以上の実施の形態の説明で挙げた使用材料及びその量、処理時間及び寸法などの数値的条件は好適例に過ぎず、説明に用いた各図における寸法形状及び配置関係も概略的なものである。すなわち、本発明は、この実施の形態に限られるものではない。   Note that the numerical conditions such as the materials used, the amount thereof, the processing time, and the dimensions mentioned in the description of the above embodiments are only suitable examples, and the dimensions, shapes, and arrangement relationships in the drawings used for the description are also schematic. Is. That is, the present invention is not limited to this embodiment.

例えば、前述の実施形態では、回転ステージの筒型形状の具体例として円筒形状を挙げたが、筒型形状はこれに限られず、切頭円錐や切頭多角錐などの側面のみで構成されるような形状など、供給源を内包できる筒型形状と寸法とを有していればよい。
また、複合粉体は燃料電池の触媒に限られない。すなわち本発明に係る複合粉体の製造方法は、様々な複合粉体の製造に用いることができる。
For example, in the above-described embodiment, the cylindrical shape is given as a specific example of the cylindrical shape of the rotary stage. However, the cylindrical shape is not limited to this, and is configured only by side surfaces such as a truncated cone and a truncated polygonal cone. What is necessary is just to have the cylindrical shape and dimension which can contain a supply source , such as such a shape.
The composite powder is not limited to a fuel cell catalyst. That is, the method for producing a composite powder according to the present invention can be used for producing various composite powders.

また、前述の実施の形態では、特に好ましい例として、付加物質の供給を電子ビーム蒸着により行う例を説明したが、本発明に係る複合粉体の製造方法は、所謂蒸着と呼称される中でも熱蒸発による手法のほか、スパッタ及びイオンプレーティングなどにも適用できる。また、熱蒸発による中でも電子ビーム加熱に限られず、抵抗加熱、フラッシュ蒸発、アーク蒸発、高周波加熱などによることもできるなど、本発明は、種々の変形及び変更をなされうる。   In the above-described embodiment, an example in which the supply of the additional substance is performed by electron beam vapor deposition has been described as a particularly preferable example. However, the method for producing a composite powder according to the present invention is a heat treatment even in what is called so-called vapor deposition. In addition to the evaporation method, it can be applied to sputtering and ion plating. In addition, the present invention is not limited to electron beam heating, and various modifications and changes can be made to the present invention, such as resistance heating, flash evaporation, arc evaporation, and high-frequency heating.

A,B それぞれ、本発明に係る複合粉体の製造装置の、一例の構成を示す概略構成図と、この製造装置を用いた製造方法によって得られる複合粉体の一例を示す模式図である。1A and 1B are a schematic configuration diagram showing an exemplary configuration of a composite powder manufacturing apparatus according to the present invention, and a schematic diagram illustrating an example of a composite powder obtained by a manufacturing method using the manufacturing apparatus. 本発明に係る複合粉体の一例の説明に供する、燃料電池の例を示す概略構成図である。It is a schematic block diagram which shows the example of a fuel cell with which it uses for description of an example of the composite powder which concerns on this invention. 従来の複合粉体の製造装置を示す概略構成図である。It is a schematic block diagram which shows the manufacturing apparatus of the conventional composite powder.

符号の説明Explanation of symbols

1・・・複合粉体の製造装置、2・・・回転ステージ(円筒型)、3・・・供給源(蒸着源)、4・・・電子線源、11・・・粉体、12・・・付加物質、13・・・複合粉体、21・・・燃料電池、22・・・電解質膜、23・・・水素極、23a・・・水素流路、23b・・・拡散層、23c・・・触媒層、23d・・・アノード電極、24・・・酸素極、24a・・・空気(酸素)流路、24b・・・拡散層、24c・・・触媒層、24d・・・カソード電極、101・・・従来の複合粉体の製造装置、102・・・ステージ、103・・・付加物質供給源(ターゲット)、111・・・粉体 DESCRIPTION OF SYMBOLS 1 ... Composite powder manufacturing apparatus, 2 ... Rotary stage (cylindrical type), 3 ... Supply source (vapor deposition source), 4 ... Electron beam source, 11 ... Powder, ..Additional substances, 13 ... composite powder, 21 ... fuel cell, 22 ... electrolyte membrane, 23 ... hydrogen electrode, 23a ... hydrogen channel, 23b ... diffusion layer, 23c ... Catalyst layer, 23d ... Anode electrode, 24 ... Oxygen electrode, 24a ... Air (oxygen) flow path, 24b ... Diffusion layer, 24c ... Catalyst layer, 24d ... Cathode Electrode 101 ... Conventional composite powder manufacturing apparatus 102 ... Stage 103 ... Additional substance supply source (target) 111 ... Powder

Claims (4)

物理的気相成長(Physical Vapor Deposition)法により、粉体に、該粉体とは異なる
付加物質が付加された複合粉体を製造する複合粉体の製造方法であって、
内面を前記粉体の載置面とする、筒型の回転ステージに、前記粉体を載置する工程と、
前記回転ステージを、前記筒型の開放部を含む仮想軸を中心として回転させる工程と、
前記回転ステージに内包される位置に、前記付加物質の供給源を導入する工程と
を有し、
前記回転で生じる遠心力により、前記粉体を前記回転ステージに押し付ける
ことを特徴とする複合粉体の製造方法。
A composite powder production method for producing a composite powder in which an additional substance different from the powder is added to the powder by a physical vapor deposition method,
A step of placing the powder on a cylindrical rotary stage having an inner surface as a placement surface of the powder;
Rotating the rotary stage around a virtual axis including the cylindrical opening;
A step of introducing the supply source of the additional substance at a position included in the rotary stage,
The method for producing a composite powder, wherein the powder is pressed against the rotary stage by a centrifugal force generated by the rotation.
前記仮想軸を、前記粉体に予め与えられている加速度の方向と直交する軸として選定し、
前記付加物質の供給源の導入を、前記仮想軸に沿って行う
ことを特徴とする請求項1に記載の複合粉体の製造方法。
The virtual axis is selected as an axis orthogonal to the direction of acceleration previously given to the powder,
The method for producing a composite powder according to claim 1, wherein the supply source of the additional substance is introduced along the virtual axis.
前記物理的気相成長法が、蒸着であり、前記付加物質の供給源が、蒸着源である
ことを特徴とする請求項1に記載の複合粉体の製造方法。
Said physical vapor deposition is a deposition, the source of the additional material, manufacturing method of a composite powder according to claim 1, characterized in that the evaporation source.
付加物質の供給源と、
前記付加物質の供給源を内包回転可能な筒型の回転ステージとを有し、
前記回転ステージは、
前記付加物質を付加する粉体を載置する載置面を備え、
開放部を含む仮想軸を中心として回転し、前記回転で生じる遠心力により、前記粉体を前記載置面に押し付ける
合粉体の製造装置。
A source of additional substances;
Enclosing the source of the additional material, it possesses a rotating stage rotatable cylindrical,
The rotary stage is
A mounting surface on which the powder for adding the additional substance is mounted;
Rotating about a virtual axis including the opening, and pressing the powder against the mounting surface by centrifugal force generated by the rotation
Apparatus for manufacturing a multi-focus powder.
JP2006224525A 2006-08-21 2006-08-21 Composite powder manufacturing method and composite powder manufacturing apparatus Expired - Fee Related JP4899717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006224525A JP4899717B2 (en) 2006-08-21 2006-08-21 Composite powder manufacturing method and composite powder manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006224525A JP4899717B2 (en) 2006-08-21 2006-08-21 Composite powder manufacturing method and composite powder manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2008045197A JP2008045197A (en) 2008-02-28
JP4899717B2 true JP4899717B2 (en) 2012-03-21

Family

ID=39179218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006224525A Expired - Fee Related JP4899717B2 (en) 2006-08-21 2006-08-21 Composite powder manufacturing method and composite powder manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4899717B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725589B2 (en) 2008-03-25 2011-07-13 ソニー株式会社 Composite fine particle production apparatus and production method
JP5274867B2 (en) * 2008-03-27 2013-08-28 株式会社東芝 Particle carrier
JP2011058071A (en) 2009-09-11 2011-03-24 Sony Corp Composite particulate preparing apparatus and method
CN101921993B (en) * 2010-09-02 2011-09-28 上海交通大学 Polymer film nano doping device and method
JP2014046231A (en) * 2012-08-29 2014-03-17 Hitachi Chemical Co Ltd Method for manufacturing catalyst for carbon nanotube synthesis
JP6447700B2 (en) * 2017-11-15 2019-01-09 日立化成株式会社 Method for producing carbon nanotube synthesis catalyst

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641375A (en) * 1979-09-13 1981-04-18 Matsushita Electric Ind Co Ltd Sputtering apparatus
JPS57188677A (en) * 1981-05-14 1982-11-19 Matsushita Electric Ind Co Ltd Vapor depositing device for metallic thin film
JPH03153864A (en) * 1989-11-09 1991-07-01 Nippon Shokubai Kagaku Kogyo Co Ltd Method and device for surface coating of particle
JPH07226182A (en) * 1994-02-14 1995-08-22 Nissin Electric Co Ltd Ion implantation device
DE19609804C1 (en) * 1996-03-13 1997-07-31 Bosch Gmbh Robert Device, its use and its operation for vacuum coating of bulk goods
JPH1161399A (en) * 1997-08-08 1999-03-05 Nisshin Steel Co Ltd Production of ceramic coated powder
JP2001336533A (en) * 2000-05-25 2001-12-07 Citizen Watch Co Ltd Rolling base material having film and method of making the film
JP3620842B2 (en) * 2002-12-25 2005-02-16 孝之 阿部 Polygonal barrel sputtering apparatus, polygonal barrel sputtering method, coated fine particles formed thereby, and method for producing coated fine particles
JP4483574B2 (en) * 2004-12-27 2010-06-16 日立金属株式会社 Deposition film forming method

Also Published As

Publication number Publication date
JP2008045197A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
JP4899717B2 (en) Composite powder manufacturing method and composite powder manufacturing apparatus
WO2005111259A1 (en) Organic material evaporation source and organic vapor deposition device
JP2009041040A (en) Vacuum vapor deposition method and vacuum vapor deposition apparatus
JP4747802B2 (en) Vacuum film forming method and vacuum film forming apparatus
JP2007204786A (en) Particle coating method and particle coating apparatus
JP2007204785A (en) Particle coating method and particle coating apparatus
WO2012033198A1 (en) Sputtering apparatus
JP2009079276A (en) Vacuum vapor deposition apparatus
Pajootan et al. Radiofrequency Plasma‐Assisted Pulsed Laser Deposited Pt/TiOxNy Coatings on Multi‐Walled Carbon Nanotubes as Gas Diffusion Electrodes for the Oxygen Reduction Reaction
JP2007204784A (en) Particle coating method and particle coating apparatus
JP4984070B2 (en) Film forming method and film forming apparatus
CN109072413A (en) Evaporation of metal material
US8268080B2 (en) Apparatus and method for preparing composite particulates using vapor deposition
US8813677B2 (en) Composite particulate preparing apparatus and method
JP5543251B2 (en) Film forming method using ion plating method and apparatus used therefor
JP2008163380A (en) Method for producing fine particle, and production device for fine particle
JP2005320601A (en) Sputtering system
JP5006737B2 (en) Rotating anti-cathode X-ray generator and X-ray generation method
JPS6338428B2 (en)
JP2017020056A (en) Alloy nitride film formation device and alloy nitride film formation method
JPH01108364A (en) Method for supplying material for vapor deposition of vapor source
JPH1088325A (en) Device for forming thin coating
JP2009041098A (en) Film deposition method
JP2007321206A (en) Thin film deposition system
JP2008202073A (en) Diamond thin film formation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees