JP4887743B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4887743B2
JP4887743B2 JP2005324479A JP2005324479A JP4887743B2 JP 4887743 B2 JP4887743 B2 JP 4887743B2 JP 2005324479 A JP2005324479 A JP 2005324479A JP 2005324479 A JP2005324479 A JP 2005324479A JP 4887743 B2 JP4887743 B2 JP 4887743B2
Authority
JP
Japan
Prior art keywords
negative electrode
battery
active material
aqueous electrolyte
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005324479A
Other languages
Japanese (ja)
Other versions
JP2007134108A (en
Inventor
陽子 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005324479A priority Critical patent/JP4887743B2/en
Publication of JP2007134108A publication Critical patent/JP2007134108A/en
Application granted granted Critical
Publication of JP4887743B2 publication Critical patent/JP4887743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水電解液電池の活物質として、充放電時に膨張収縮を伴うSiを含む負極の充放電サイクル特性の向上に関するものである。   The present invention relates to an improvement in charge / discharge cycle characteristics of a negative electrode containing Si that expands and contracts during charge / discharge as an active material of a nonaqueous electrolyte battery.

非水電解液二次電池用の負極として、これまでに炭素材料に代表されるリチウムイオンを吸蔵・放出可能な物質を用いたリチウムイオン二次電池が実用化されている。しかし例えば、黒鉛などは、理論容量が372mAh/gであり、負極活物質としてLi金属を用いた時の10%程度であることから、更なる高容量化は困難である。   As a negative electrode for a non-aqueous electrolyte secondary battery, a lithium ion secondary battery using a substance capable of inserting and extracting lithium ions typified by a carbon material has been put into practical use. However, for example, graphite has a theoretical capacity of 372 mAh / g, which is about 10% of that when Li metal is used as the negative electrode active material.

そのため、高エネルギー密度であるSiやSnを含む材料が検討されている。例えば特許文献1にはSiを含む固相Aからなる核粒子の表面の一部または全部に、固相Bからなる被覆層が形成された複合粒子からなる非水電解質二次電池用負極であって、固相Aは非晶質合金層であり、固相Bは結晶質合金層であることが提案されている。また、特許文献2にはラクトン化合物を主体とする溶媒に含窒素芳香族複素環化合物を0.1〜10重量部含有することで安全性およびサイクルを向上させるという提案がされている。
特開2004−335272号公報 特開2002−359002号公報
Therefore, a material containing Si or Sn having a high energy density has been studied. For example, Patent Document 1 discloses a negative electrode for a nonaqueous electrolyte secondary battery made of composite particles in which a coating layer made of solid phase B is formed on part or all of the surface of a core particle made of solid phase A containing Si. Thus, it has been proposed that the solid phase A is an amorphous alloy layer and the solid phase B is a crystalline alloy layer. Patent Document 2 proposes to improve safety and cycle by containing 0.1 to 10 parts by weight of a nitrogen-containing aromatic heterocyclic compound in a solvent mainly composed of a lactone compound.
JP 2004-335272 A JP 2002-359002 A

特許文献1に示されるようにSiを合金化させ、高エネルギー密度を得、固相Aを非晶質化することで、充放電の繰り返しによる粒子の微細化を抑制し、充放電サイクル特性が向上した。しかしながら、負極として溶剤を用いずに合剤を型にはめて作る成型体を用いた場合、合剤スラリーを塗布形成した負極と比較し、通常結着剤量が少ないためもろく、また成型体が厚いため、充放電に伴う膨張収縮による割れが大きくサイクル特性が低下するという課題があった。   As shown in Patent Document 1, Si is alloyed, a high energy density is obtained, and the solid phase A is made amorphous to suppress particle refinement due to repeated charge / discharge, and charge / discharge cycle characteristics are Improved. However, when using a molded body made by molding a mixture without using a solvent as a negative electrode, the amount of binder is usually small compared to a negative electrode coated with a mixture slurry, and the molded body is Since it is thick, there was a problem that cracking due to expansion and contraction accompanying charge / discharge was large and cycle characteristics were deteriorated.

また、特許文献2に示されたラクトン化合物を主体とする溶媒に含窒素芳香族複素環化合物を含有した非水電解液を用いても、負極活物質が炭素質材料を用いた負極と比較して、Siを含む材料を塗布形成した負極を用いた場合にはサイクル特性の改善効果は得られなかった。この理由は、ラクトンのような粘度の高い溶媒では、充電によるSiの膨張や、充放電サイクルにともなう活物質粒子の微粉化により液回りが悪くなり、充電時のリチウムの反応面積が減少し、デントライトが発生し、内部短絡が生じたためと考えられる。   Further, even when a non-aqueous electrolyte containing a nitrogen-containing aromatic heterocyclic compound is used in a solvent mainly composed of a lactone compound shown in Patent Document 2, the negative electrode active material is compared with a negative electrode using a carbonaceous material. Thus, when a negative electrode formed by coating a material containing Si was used, the effect of improving cycle characteristics was not obtained. The reason for this is that in a solvent with high viscosity such as lactone, the expansion of Si due to charging and the pulverization of active material particles due to charge and discharge cycles make the liquid around worse, reducing the reaction area of lithium during charging, This is probably because dent light was generated and an internal short circuit occurred.

本発明は、このような課題を解決するものであり、高エネルギー密度を持つSi材料を活物質とした負極を用いる非水電解液二次電池においてサイクル特性を向上することを目的とする。   The present invention solves such problems, and an object thereof is to improve cycle characteristics in a non-aqueous electrolyte secondary battery using a negative electrode using an Si material having a high energy density as an active material.

上記の課題を解決するために、本発明の非水電解液電池は、少なくとも可逆的にリチウムの吸蔵・放出が可能な正極と、SiまたはSiを含む合金を負極活物質として含む負極と、非水電解液とを含む非水電解液電池において、前記負極がペレット状に加圧成型された成型体であり、前記負極内に(化1)で示されるベンゾイミダゾロン、またはその誘導体であるイミド基の水素イオンがアルカリ金属イオンで置換された化合物(化2)が添加されたことを特徴とする。
In order to solve the above problems, a nonaqueous electrolyte battery of the present invention includes a positive electrode capable of at least reversibly inserting and extracting lithium, a negative electrode including Si or an Si-containing alloy as a negative electrode active material , In a non-aqueous electrolyte battery including an aqueous electrolyte, the negative electrode is a molded body that is pressure-molded into a pellet shape, and an imide that is a benzimidazolone represented by (Chemical Formula 1) or a derivative thereof in the negative electrode A compound in which a hydrogen ion of a group is substituted with an alkali metal ion (Chemical Formula 2) is added.

負極として成型体を用いる場合、通常電池作製時に負極成型体にリチウムを圧着し、電解液と接触させ、短絡させることでリチウムをSiと合金化する手法がとられる。負極に成型体を用いた場合、この短絡による合金化過程において、リチウムの拡散が不均一に起こると、初期放電で成型体に亀裂が発生し、電池の充放電の繰り返しによりその亀裂を起点とし割れが進行することで、サイクル特性の劣化を引き起こすことが知られている。本発明の非水電解液電池では、負極内に(化1)で示されるベンゾイミダゾロン、またはその誘導体であるイミド基の水素イオンがアルカリ金属イオンで置換された化合物(化2)を添加することにより、短絡による合金化過程において、負極内へのリチウムの拡散速度が緩やかになり均一に拡散されていることが分かった。そのため、放電時にも成型体に大きな割れが発生せず、充放電サイクル特性が向上できた。 In the case of using a molded body as the negative electrode, a technique is generally employed in which lithium is bonded to Si at the time of production of a battery, lithium is contacted with an electrolytic solution, and short-circuited to form an alloy with Si. When a molded body is used for the negative electrode, if the diffusion of lithium occurs unevenly during the alloying process due to this short circuit, the molded body will crack in the initial discharge, and the crack will start from repeated charging and discharging of the battery. It is known that the progress of cracks causes deterioration of cycle characteristics. In the non-aqueous electrolyte battery of the present invention, a compound (chemical formula 2) in which hydrogen ions of an imide group, which is benzimidazolone represented by (chemical formula 1) or a derivative thereof, is substituted with an alkali metal ion is added to the negative electrode . Thus, it was found that the diffusion rate of lithium into the negative electrode becomes slow and uniformly diffused in the alloying process by short circuit. Therefore, large cracks did not occur in the molded body even during discharge, and charge / discharge cycle characteristics could be improved.

また、負極内に(化1)で示されるベンゾイミダゾロン、またはその誘導体であるイミド基の水素イオンがアルカリ金属イオンで置換された化合物(化2)が添加されていることにより、Siを含む材料を負極に用いた場合でも、導電性の良好な皮膜が存在するため、充電時のリチウムの反応が滑らかにすすみ、デンドライトの発生が抑制され充放電サイ
クル特性が向上できた。
In addition, benzoimidazolone represented by (Chemical Formula 1) or a compound in which a hydrogen ion of an imide group, which is a derivative thereof, is substituted with an alkali metal ion (Chemical Formula 2) is added to the negative electrode . Even when the material was used for the negative electrode, since a film with good conductivity was present, the reaction of lithium during charging proceeded smoothly, generation of dendrites was suppressed, and charge / discharge cycle characteristics could be improved.

イミダゾロン骨格は、2個のイミド基と1個のカルボニル基を有する。イミド基はそれぞれ、種々のカチオンが1個配位し、1分子あたり2個のカチオンを配位することができる。イミド基は一般的には負極に吸着し易く、負極表面に安定な皮膜を形成すると言われている。また、2個のイミド基に挟まれたカルボニル基が中性の配位子として金属と結合する。このため、負極表面に耐還元性に優れる安定な皮膜を形成し、電解液の分解による負極表面の不導体膜の形成を防止する。また、この化合物の添加による電池の内部抵抗の上昇もなく、導電性も良好な皮膜が形成されていると考えられる。   The imidazolone skeleton has two imide groups and one carbonyl group. Each of the imide groups can coordinate one of various cations and coordinate two cations per molecule. The imide group is generally easily adsorbed on the negative electrode and is said to form a stable film on the surface of the negative electrode. In addition, a carbonyl group sandwiched between two imide groups binds to a metal as a neutral ligand. For this reason, a stable film excellent in reduction resistance is formed on the negative electrode surface, and formation of a non-conductive film on the negative electrode surface due to decomposition of the electrolytic solution is prevented. Further, it is considered that a film having good conductivity is formed without increasing the internal resistance of the battery due to the addition of this compound.

本発明の非水電解液電池は、負極が成型体であり、負極内に(化1)で示されるベンゾイミダゾロン、またはその誘導体であるイミド基の水素イオンがアルカリ金属イオンで置換された化合物(化2)が添加されたことにより、高容量かつ充放電サイクル特性の良好な非水電解液二次電池が得られる。 Non-aqueous electrolyte battery of the present invention, the negative electrode is molded, compounds benzimidazolone or hydrogen ions of the imide groups is a derivative thereof, is substituted with an alkali metal ion represented by in the negative electrode (of 1) By adding (Chemical Formula 2), a non-aqueous electrolyte secondary battery having a high capacity and good charge / discharge cycle characteristics can be obtained.

以下、本発明の実施の形態を、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明は上記のように、負極としてSiを含む活物質を用いた成型体であり、負極内に(化1)で示されるベンゾイミダゾロン、またはその誘導体であるイミド基の水素イオンがアルカリ金属イオンで置換された化合物(化2)が添加されたことにより、電解液の分解による負極表面の不導体膜の形成を防止し、充放電サイクル特性を向上する。前記負極は、スラリー状の合剤を集電体に塗布する工程を含まず、合剤を型にはめて形を作る成型体である。 As described above, the present invention is a molded body using an active material containing Si as a negative electrode , and benzimidazolone represented by (Chemical Formula 1) in the negative electrode or an imide group hydrogen ion thereof is an alkali metal. By adding the compound substituted with ions (Chemical Formula 2) , formation of a non-conductive film on the negative electrode surface due to decomposition of the electrolytic solution is prevented, and charge / discharge cycle characteristics are improved. The negative electrode is a molded body that does not include a step of applying a slurry-like mixture to a current collector, and forms a shape by putting the mixture into a mold.

また、(化1)で示されるベンゾイミダゾロン、またはその誘導体からなる化合物であることで、イミダゾロン骨格とベンゼン環を有することから、負極表面にさらに強固に安定な皮膜を形成すると考えられる。イミド基の水素イオンの片方もしくは両方がアルカリ金属イオンで置換されたベンゾイミダゾロン誘導体(化2)も存在するが、いずれの場合も効果は同じである。 In addition , since it has a imidazolone skeleton and a benzene ring due to the compound consisting of benzimidazolone represented by ( Chemical Formula 1) or a derivative thereof, it is considered that a more stable and stable film is formed on the negative electrode surface. There are also benzimidazolone derivatives (Chemical Formula 2) in which one or both of the hydrogen ions of the imide group are substituted with alkali metal ions, but the effect is the same in either case.

また、(化1)で示されるベンゾイミダゾロン、またはその誘導体であるイミド基の水素イオンがアルカリ金属イオンで置換された化合物(化2)が負極に添加されることが好ましい。負極から電解液に溶解し、その部分が負極の空隙になるため、また、負極に皮膜を形成させるため、負極に均一に混合されていることが好ましい。 Moreover, it is preferable that the compound (chemical formula 2) by which the hydrogen ion of the imide group which is the benzimidazolone shown by (Chemical formula 1) or its derivative was substituted by the alkali metal ion is added to a negative electrode. Since it dissolves in the electrolyte from the negative electrode and the portion becomes a void of the negative electrode, and in order to form a film on the negative electrode, it is preferable that the negative electrode is uniformly mixed.

さらに、(化1)で示されるベンゾイミダゾロン、またはその誘導体であるイミド基の水素イオンがアルカリ金属イオンで置換された化合物(化2)が、負極活物質の質量に対して、0.001〜10.0重量%の比率で添加されていることが好ましい。0.001重量%より少ない添加の場合、添加による効果は小さくなる。一方、10.0重量%を超える添加の場合、効果は観られるものの、皮膜生成量が過剰気味となり、添加量に比例する顕著な効果は期待できない。また、(化1)で示されるベンゾイミダゾロン、またはその誘導体であるイミド基の水素イオンがアルカリ金属イオンで置換された化合物(化2)が負極から電解液に溶解し、その部分が負極の空隙になる為、成型体の強度が低下することから、さらに好ましくは、負極活物質に対して、0.01〜5.0重量%の添加が最適である。 Further, the compound (Chemical Formula 2) in which the benzimidazolone represented by (Chemical Formula 1) or the hydrogen ion of the imide group which is a derivative thereof is substituted with an alkali metal ion (Chemical Formula 2) is 0.001 with respect to the mass of the negative electrode active material. It is preferable to add at a ratio of ˜10.0% by weight. When the amount is less than 0.001% by weight, the effect of the addition is reduced. On the other hand, in the case of addition exceeding 10.0% by weight, although the effect is observed, the film formation amount becomes excessive, and a remarkable effect proportional to the addition amount cannot be expected. In addition, a benzimidazolone represented by (Chemical Formula 1) or a compound (Chemical Formula 2) in which a hydrogen ion of an imide group which is a derivative thereof is substituted with an alkali metal ion is dissolved from the negative electrode into the electrolytic solution, Since it becomes a space | gap and the intensity | strength of a molded object falls, More preferably, addition of 0.01 to 5.0 weight% is optimal with respect to a negative electrode active material.

また、負極活物質がSiまたはSiを含む合金であることが高エネルギー密度を得ることができるため好ましい。   The negative electrode active material is preferably Si or an alloy containing Si because a high energy density can be obtained.

さらに、前記負極活物質がLiを可逆的に吸蔵および放出可能な合金材料を含み、前記合金材料はSiを主体とするA相と、遷移金属元素とSiとの金属間化合物からなるB相とを含み、前記遷移金属が、Ti、Zr、Fe、Co、NiおよびCuよりなる群から選ばれる少なくとも1種であることが好ましい。Siを主体とするA相と遷移金属元素とSiとの金属間化合物からなるB相の重量比は特に限定されないが、A相の重量比が5〜95wt%の範囲で同様の効果を得ることができる。また、Siを主体とするA相は結晶質にも非晶質にも限定されない。また、該負極活物質の製造法は特に限定されず、メカニカルアロイ法、メカニカルミリング法、鋳造法、液体急冷法、イオンビームスパッタリング法、真空蒸着法、メッキ法、気相化学反応法など合金を得られる方法であれば使用できる。   Furthermore, the negative electrode active material includes an alloy material capable of reversibly inserting and extracting Li, and the alloy material includes an A phase mainly composed of Si, and a B phase composed of an intermetallic compound of a transition metal element and Si. The transition metal is preferably at least one selected from the group consisting of Ti, Zr, Fe, Co, Ni and Cu. The weight ratio of the A phase mainly composed of Si and the B phase composed of an intermetallic compound of a transition metal element and Si is not particularly limited, but the same effect can be obtained when the weight ratio of the A phase is in the range of 5 to 95 wt%. Can do. Further, the A phase mainly composed of Si is not limited to crystalline or amorphous. The method for producing the negative electrode active material is not particularly limited, and alloys such as a mechanical alloy method, a mechanical milling method, a casting method, a liquid quenching method, an ion beam sputtering method, a vacuum deposition method, a plating method, and a gas phase chemical reaction method are used. Any method can be used.

また、負極成型体の空隙率は10〜60%であることが、充放電時における膨張収縮を吸収緩和し、電極形状を維持するため好ましい。   Moreover, it is preferable that the porosity of the molded negative electrode is 10 to 60% in order to absorb and relax expansion and contraction during charge and discharge and maintain the electrode shape.

さらに、負極成型体の厚みが50〜800μmであることが、好ましい。50μm未満では成型体の強度が不足するため好ましくなく、800μm以上では充放電時の膨張収縮の影響が大きくなるため好ましくない。   Furthermore, it is preferable that the thickness of the molded negative electrode is 50 to 800 μm. If the thickness is less than 50 μm, the strength of the molded body is insufficient, which is not preferable.

正・負極の導電剤としては、用いる電極材料の充放電電位において化学変化を起こさない電子伝導体であれば何でも良い。例えば、グラファイト類やカーボンブラック類、炭素繊維、金属繊維、有機導電性材料などこれらを単独または混合物として使用できる。また、添加量は特に限定されない。   As the positive and negative electrode conductive agent, any electronic conductor that does not cause a chemical change at the charge / discharge potential of the electrode material used may be used. For example, graphites, carbon blacks, carbon fibers, metal fibers, organic conductive materials and the like can be used alone or as a mixture. Moreover, the addition amount is not particularly limited.

正極材料としては、特に限定されることはないが、LiCoO2、LiNiO2、LiM
24、LiMnO2、Li4Mn512、Li2Mn49、V25、V613、MnO2、WO3、Nb25、Li4/3Ti5/34等の金属酸化物やLiCO1-xNix2、LiMn2-xx4(Aはマンガン以外の元素を示す)等の複合酸化物、ポリアニリン等の高分子が使用可能であり、リチウムイオンの挿入・脱離が可能な材料が好ましい。正極には、これらの正極活物質の複数種を混合して使用しても良い。また、以上のような正極活物質を使用して正極を形成する際には、公知の導電剤や結着剤を添加することができる。
As the cathode material, is not particularly limited, LiCoO 2, LiNiO 2, LiM
n 2 O 4 , LiMnO 2 , Li 4 Mn 5 O 12 , Li 2 Mn 4 O 9 , V 2 O 5 , V 6 O 13 , MnO 2 , WO 3 , Nb 2 O 5 , Li 4/3 Ti 5 / Metal oxides such as 3 O 4 , complex oxides such as LiCO 1-x Ni x O 2 , LiMn 2-x A x O 4 (A represents an element other than manganese), and polymers such as polyaniline can be used. A material capable of inserting and removing lithium ions is preferable. For the positive electrode, a mixture of a plurality of these positive electrode active materials may be used. Moreover, when forming a positive electrode using the positive electrode active material as described above, a known conductive agent or binder can be added.

有機電解液を構成する溶質としては、LiPF6、LiBF4、LiClO4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)などの単体あるいは複数成分を混合して使用することができる。 Solutes constituting the organic electrolyte include LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) or a single component or a mixture of a plurality of components.

また、溶媒として、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ヴィニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、スルホラン、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソランなどの単体または複数成分を使用することができるが、これに限定されるものではない。また、これらの有機溶媒はゲル状電解質へも通常使用できる。   As the solvent, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, sulfolane, dimethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane and the like can be used alone or in combination. It is not limited to this. In addition, these organic solvents can usually be used for gel electrolytes.

負極の結着剤としては、用いる電極材料の充放電電位において化学変化を起こさない結着剤であれば何でも良い。例えば、ポリフッ化ビニリデン、スチレンブタジエンラバー、ポリテトラフルオロエチレン、ポリアクリル酸、ポリアクリルアミド、ポリイミド、ポリビニルアルコールなどが挙げられ、これらの材料を単独または、混合物として使用できる。   As the binder for the negative electrode, any binder may be used as long as it does not cause a chemical change at the charge / discharge potential of the electrode material used. Examples thereof include polyvinylidene fluoride, styrene butadiene rubber, polytetrafluoroethylene, polyacrylic acid, polyacrylamide, polyimide, polyvinyl alcohol, and the like, and these materials can be used alone or as a mixture.

以下、本発明の実施例及び比較例について説明する。なお本発明の内容は、これらの実施例に限定されるものではない。   Examples of the present invention and comparative examples will be described below. The contents of the present invention are not limited to these examples.

本発明の添加剤を表1に示す。添加剤Aはベンゾイミダゾロンのイミド基に配位するカチオンが水素であるいわゆるベンゾイミダゾロンであり、添加剤Bはイミド基に配位するカチオンがカリウムで、添加剤Cはイミド基に配位するカチオンがリチウムで、添加剤Dはイミド基に配位するカチオンがナトリウムで置換したものである。
Table 1 shows the additives of the present invention. Additive A is a so-called benzimidazolone in which the cation coordinated to the imide group of benzimidazolone is hydrogen, Additive B is the cation coordinated to the imide group is potassium, and Additive C is coordinated to the imide group The cation to be added is lithium, and the additive D is obtained by replacing the cation coordinated to the imide group with sodium.

(実施例1)
図1に本実施例のコイン型電池を示す。この電池は、ペレット状の正極電極4、負極電極5がセパレータ6を介して接しており、ガスケット3を備えた負極缶2と正極缶1によりかしめ密閉されている。電池の大きさは、外径6.8mm、高さ2.1mmであった。
Example 1
FIG. 1 shows a coin-type battery of this example. In this battery, a pellet-like positive electrode 4 and a negative electrode 5 are in contact with each other through a separator 6, and are caulked and sealed by a negative electrode can 2 and a positive electrode can 1 provided with a gasket 3. The size of the battery was 6.8 mm in outer diameter and 2.1 mm in height.

負極活物質は次のようにメカニカルアロイング法による材料を使用した。重量比がi:Si=36.8:63.2になるように混合した混合粉末を1.7kg秤量し、振動ミル装置(中央化工機(株)製、型番FV−20)に投入し、さらにステンレス鋼製ボール(直径2cm)を300kg投入した。容器内部を真空にひいた後、Ar(純度99.999%、日本酸素(株)製)を導入して、1気圧になるようにした。これらの条件で、メカニカルアロイング操作を行った。ミル装置の作動条件は、振幅8mm、回転数1200rpmとした。これらの条件でメカニカルアロイング操作を80時間行った。上記操作により得られた36.8wt%−Si63.2wt%合金粉末を篩いにより、45μm以下の粒径に分級したものを負極活物質として使用した。 The negative electrode active material used the material by the mechanical alloying method as follows. Weight ratio of T i: Si = 36.8: The mixed powder mixture to be 63.2 and 1.7kg weighed and charged into a vibrating mill (Central Kakoki Co., model number FV-20) Furthermore, 300 kg of stainless steel balls (diameter 2 cm) were added. After the inside of the container was evacuated, Ar (purity 99.999%, manufactured by Nippon Oxygen Co., Ltd.) was introduced so that the pressure became 1 atm. Under these conditions, a mechanical alloying operation was performed. The operating conditions of the mill device were an amplitude of 8 mm and a rotation speed of 1200 rpm. Under these conditions, mechanical alloying operation was performed for 80 hours. The 36.8 wt% -Si 63.2 wt% alloy powder obtained by the above operation was classified into a particle size of 45 μm or less by sieving, and used as the negative electrode active material.

負極電極5は上記のメカニカルアロイング法により得られたTi36.8wt%−Si63.2wt%合金を活物質とし、導電剤のグラファイトと結着剤としてポリアクリル酸(和光純薬工業製、品名;ジュリマーAC−10SH)と添加剤A〜Dを100:33:10:5の重量比で混合し、負極合剤とし、この負極合剤を1ton/cm2で直径4.1〜4.2mm、厚さ0.46〜0.48mmのペレット状に加圧成型した。空隙率は30%であった。この負極成型体を190℃で10時間減圧乾燥した後にLiとSiのモル比がLi/Si=2.6になるようにリチウムを圧着し、負極電極とした。 The negative electrode 5 is composed of Ti 36.8 wt% -Si 63.2 wt% alloy obtained by the above mechanical alloying method as an active material, and polyacrylic acid (product name; manufactured by Wako Pure Chemical Industries, Ltd.) as a conductive agent graphite. Julimer AC-10SH) and additives A to D are mixed at a weight ratio of 100: 33: 10: 5 to form a negative electrode mixture, and the negative electrode mixture is 1 ton / cm 2 and has a diameter of 4.1 to 4.2 mm. It pressure-molded into the pellet form of thickness 0.46-0.48mm. The porosity was 30%. This negative electrode molded body was dried under reduced pressure at 190 ° C. for 10 hours, and then lithium was pressure-bonded so that the molar ratio of Li to Si was Li / Si = 2.6 to obtain a negative electrode.

正極活物質には電解二酸化マンガンと水酸化リチウムをMn:Liのモル比が1:0.4になるように混合し、大気中390℃で6時間熱処理して得られたリチウム含有酸化マンガンをもちいた。この活物質に導電剤のカーボンブラックと結着剤のフッ素樹脂を90:6:4の重量比で混合し、正極合剤とした。この正極合剤を1ton/cm2で直径4.1〜4.2mm、厚さ1.0〜1.2mmのペレットに加圧成型した。この正極ペレットを250℃で10時間減圧乾燥したものを正極電極4として用いた。 For the positive electrode active material, electrolytic manganese dioxide and lithium hydroxide were mixed so that the molar ratio of Mn: Li was 1: 0.4, and lithium-containing manganese oxide obtained by heat treatment at 390 ° C. for 6 hours in the atmosphere was used. I used it. The active material was mixed with carbon black as a conductive agent and fluororesin as a binder in a weight ratio of 90: 6: 4 to obtain a positive electrode mixture. This positive electrode material mixture was pressure-molded into pellets having a diameter of 4.1 to 4.2 mm and a thickness of 1.0 to 1.2 mm at 1 ton / cm 2 . This positive electrode pellet dried under reduced pressure at 250 ° C. for 10 hours was used as the positive electrode 4.

非水電解液はプロピレンカーボネート(PC)とエチレンカーボネート(EC)とジメトキシエタン(DME)の3:1:3の混合溶媒に1Mの支持塩LiN(C25SO22を溶解した電解液を用いた。 The non-aqueous electrolyte is an electrolysis in which 1M of supporting salt LiN (C 2 F 5 SO 2 ) 2 is dissolved in a 3: 1: 3 mixed solvent of propylene carbonate (PC), ethylene carbonate (EC) and dimethoxyethane (DME). The liquid was used.

(比較例1)
実施例1において、負極電極に添加剤を含まない負極合剤を使用する以外は、同様にして電池を作製した。
(Comparative Example 1)
A battery was produced in the same manner as in Example 1 except that a negative electrode mixture containing no additive was used for the negative electrode.

このようにして作製した電池を充放電ともに0.3mA/cm2の定電流で、3.1Vから2.0Vまで充放電を繰り返した。表2に各電池の添加剤と、200サイクル目の容量を2サイクル目の容量に対する維持率で示した。 The battery thus produced was repeatedly charged and discharged from 3.1 V to 2.0 V at a constant current of 0.3 mA / cm 2 for both charging and discharging. Table 2 shows the additive of each battery and the capacity at the 200th cycle as a maintenance ratio relative to the capacity at the second cycle.

表2に示されるように、実施例1の各電池で充放電サイクル特性の向上が見られた。これは添加剤による効果であると考えられる。負極表面に安定な皮膜を形成し、電解液の分解による負極表面の不導体膜の形成を防止するとともに、添加剤が電解液に溶解し、負極の空孔が増加、充放電時の膨張収縮を吸収緩和したためと考えられる。特に電池Aが最も良好な特性を示した。また、初期放電後に電池を分解し、負極の状態を確認したところ、本実施例の電池では負極成型体に大きな亀裂は見られなかったが、添加剤を含まない電池Eでは、大きな亀裂が観察された。   As shown in Table 2, the charge / discharge cycle characteristics of the batteries of Example 1 were improved. This is considered to be an effect by the additive. Forms a stable film on the negative electrode surface, prevents formation of a non-conductive film on the negative electrode surface due to decomposition of the electrolyte, and dissolves the additive in the electrolyte, increasing the number of pores in the negative electrode, expanding and contracting during charge and discharge This is thought to be due to absorption relaxation. In particular, the battery A showed the best characteristics. Further, when the battery was disassembled after the initial discharge and the state of the negative electrode was confirmed, no large crack was observed in the molded negative electrode in the battery of this example, but a large crack was observed in battery E containing no additive. It was done.

(実施例2)
負極合剤を表3に示すような配合重量比とした以外は電池Aと同様にして電池を作製した。
(Example 2)
A battery was fabricated in the same manner as Battery A, except that the negative electrode mixture was changed to a blending weight ratio as shown in Table 3.

このようにして作製した電池を充放電ともに0.3mA/cm2の定電流で、3.1Vから2.0Vまで充放電を繰り返した。表3に各電池の負極合剤の重量比と、200サイクル目の容量を2サイクル目の容量に対する維持率で示した。 The battery thus produced was repeatedly charged and discharged from 3.1 V to 2.0 V at a constant current of 0.3 mA / cm 2 for both charging and discharging. Table 3 shows the weight ratio of the negative electrode mixture of each battery and the capacity at the 200th cycle as a maintenance ratio relative to the capacity at the second cycle.

表3に示されるように、実施例2の各電池は良好な充放電サイクル特性を得た。これは添加剤Aを添加した効果であり、特に負極に対する添加量が0.001〜10%の範囲で添加量に比例して、良好な特性を示していることがわかる。   As shown in Table 3, each battery of Example 2 obtained good charge / discharge cycle characteristics. This is an effect obtained by adding the additive A, and it can be seen that, in particular, when the addition amount with respect to the negative electrode is in the range of 0.001 to 10%, a good characteristic is shown in proportion to the addition amount.

(実施例3)
電池Aにおいて、M36.8wt%−Si63.2wt%合金(MはZr、Fe、Co、NiおよびCuよりなる群から選ばれる少なくとも1種)を負極電極の活物質とした以外は、同様にして電池を作製した。
(Example 3)
In the battery A, except that M36.8 wt% -Si 63.2 wt% alloy (M is at least one selected from the group consisting of Zr, Fe, Co, Ni and Cu) was used as the active material of the negative electrode. A battery was produced.

(実施例4)
電池Aにおいて、M36.8wt%−Si63.2wt%合金(MはAlおよびSnよりなる群から選ばれる少なくとも1種)を負極電極の活物質とした以外は、同様にして電池を作製した。
Example 4
A battery was produced in the same manner except that an M36.8 wt% -Si 63.2 wt% alloy (M is at least one selected from the group consisting of Al and Sn) was used as the active material for the negative electrode in Battery A.

(比較例2)
実施例3の各電池において、添加剤を含まない負極合剤を使用する以外は、同様にして作製した。
(Comparative Example 2)
Each battery of Example 3 was produced in the same manner except that a negative electrode mixture containing no additive was used.

(比較例3)
実施例4の各電池において、添加剤を含まない負極合剤を使用する以外は、同様にして作製した。
(Comparative Example 3)
Each battery of Example 4 was prepared in the same manner except that a negative electrode mixture containing no additive was used.

このようにして作製した電池を充放電ともに0.3mA/cm2の定電流で、3.1Vから2.0Vまで充放電を繰り返した。表4に各電池の200サイクル目の容量を2サイクル目の容量に対する維持率で示した。 The battery thus produced was repeatedly charged and discharged from 3.1 V to 2.0 V at a constant current of 0.3 mA / cm 2 for both charging and discharging. Table 4 shows the capacity of each battery at the 200th cycle as a maintenance ratio relative to the capacity at the second cycle.

表4に示されるように実施例3および4で比較例2、3と比較して、添加剤の効果が得られた。特に実施例3のM36.8wt%−Si63.2wt%合金(MはZr、Fe、Co、NiおよびCuよりなる群から選ばれる少なくとも1種)を負極電極の活物質として用いた場合も、良好な特性が得られた。また、中でも、実施例1で用いたMがTiの場合に特に良好な特性を示した。実施例4では添加剤の効果は見られたが、活物質の劣化が大きく、実施例1および実施例3の特性には至らなかった。なお、実施例3および4では添加剤Aを用いたが、添加剤B〜Dを用いた場合も同様な効果が得られた。   As shown in Table 4, the effect of the additive was obtained in Examples 3 and 4 as compared with Comparative Examples 2 and 3. Particularly, the M36.8 wt% -Si 63.2 wt% alloy of Example 3 (M is at least one selected from the group consisting of Zr, Fe, Co, Ni, and Cu) is also used as the active material of the negative electrode. Characteristics were obtained. In particular, particularly good characteristics were exhibited when M used in Example 1 was Ti. In Example 4, the effect of the additive was observed, but the active material was greatly deteriorated, and the characteristics of Examples 1 and 3 were not achieved. In Examples 3 and 4, Additive A was used, but similar effects were obtained when Additives B to D were used.

(実施例5)
電池Aにおいて、負極成型体の空隙率を10%、45%および60%とする以外は同様にして電池を作製した。
(Example 5)
A battery was produced in the same manner except that the porosity of the molded negative electrode was 10%, 45%, and 60% in battery A.

(比較例4)
電池Aにおいて、負極成型体を5%、70%の空隙率とする以外は同様にしたが、負極成型体は加圧を増加しても空隙率を5%に減少できず、70%の成型体は成型直後に割れや欠けが発生したため、電池を作製できなかった。
(Comparative Example 4)
In the battery A, the same procedure was performed except that the negative electrode molded body had a porosity of 5% and 70%. However, the negative electrode molded body could not decrease the porosity to 5% even when the pressure was increased, and 70% molded. Since the body was cracked or chipped immediately after molding, the battery could not be produced.

このようにして作製した電池を充放電ともに0.3mA/cm2の定電流で、3.1Vから2.0Vまで充放電を繰り返した。表5に各電池の負極成型体の空隙率と、200サイクル目の容量を2サイクル目の容量に対する維持率で示した。 The battery thus produced was repeatedly charged and discharged from 3.1 V to 2.0 V at a constant current of 0.3 mA / cm 2 for both charging and discharging. Table 5 shows the porosity of the molded negative electrode of each battery and the capacity at the 200th cycle as a maintenance ratio relative to the capacity at the second cycle.

表5に示されるように負極成型体の空隙率が10〜60%の範囲であれば、充放電サイクル特性は、良好な特性を示した。また、実施例5では添加剤Aを用いたが、添加剤B〜Dを用いた場合も同様な効果が得られた。   As shown in Table 5, when the porosity of the molded negative electrode was in the range of 10 to 60%, the charge / discharge cycle characteristics showed good characteristics. Moreover, although the additive A was used in Example 5, the same effect was acquired also when additive BD was used.

(実施例6)
電池Aにおいて、負極成型体を表6に示すような厚みとする以外は同様にして電池を作
製した。
(Example 6)
A battery was produced in the same manner as in battery A, except that the molded negative electrode had a thickness as shown in Table 6.

(比較例5)
電池Aにおいて、負極成型体を30μmおよび900μmの厚みとする以外は同様にして電池を作製した。なお、負極成型体の厚みが30μmの場合、成型直後に割れが発生したため、電池を作製できなかった。
(Comparative Example 5)
A battery was produced in the same manner as in battery A, except that the molded negative electrode had a thickness of 30 μm and 900 μm. In addition, when the thickness of the negative electrode molded body was 30 μm, a crack was generated immediately after molding, and thus a battery could not be produced.

このようにして作製した電池を充放電ともに0.3mA/cm2の定電流で、3.1Vから2.0Vまで充放電を繰り返した。表6に各電池の負極合剤の重量比と、200サイクル目の容量を2サイクル目の容量に対する維持率で示した。 The battery thus produced was repeatedly charged and discharged from 3.1 V to 2.0 V at a constant current of 0.3 mA / cm 2 for both charging and discharging. Table 6 shows the weight ratio of the negative electrode mixture of each battery and the capacity at the 200th cycle as a maintenance ratio relative to the capacity at the second cycle.

表6に示されるように負極成型体の厚みが50〜800μmの範囲であれば、充放電サイクル特性は、良好な特性を示した。また、実施例6では添加剤Aを用いたが、添加剤B〜Dを用いた場合も同様な効果が得られた。   As shown in Table 6, when the thickness of the molded negative electrode was in the range of 50 to 800 μm, the charge / discharge cycle characteristics showed good characteristics. Moreover, although the additive A was used in Example 6, the same effect was acquired also when additive BD was used.

本発明の非水電解液電池は、負極活物質として充放電時に膨張収縮を伴うSiを含む負極が空隙を有する成型体であることで、充放電時における活物質の膨張収縮を吸収緩和し、負極内に(化1)で示されるベンゾイミダゾロン、またはその誘導体であるイミド基の水素イオンがアルカリ金属イオンで置換された化合物(化2)が添加されたことにより、電解液の分解による負極表面の不導体膜の形成を防止するため、高エネルギー密度で良好な充放電サイクル特性を得ることができる。 The non-aqueous electrolyte battery of the present invention is a molded body having voids in the negative electrode containing Si that undergoes expansion and contraction during charge and discharge as the negative electrode active material, thereby absorbing and relaxing expansion and contraction of the active material during charge and discharge, benzimidazolone shown in the negative electrode (Formula 1) or by the compound in which the hydrogen ions of the imide groups is a derivative substituted with alkali metal ions (of 2) is added, the negative electrode due to decomposition of the electrolyte solution In order to prevent the formation of a non-conductive film on the surface, good charge / discharge cycle characteristics can be obtained at a high energy density.

本発明の一実施例における非水電解液電池の断面図Sectional drawing of the nonaqueous electrolyte battery in one Example of this invention

符号の説明Explanation of symbols

1 正極缶
2 負極缶
3 ガスケット
4 正極電極
5 負極電極
6 セパレータ
DESCRIPTION OF SYMBOLS 1 Positive electrode can 2 Negative electrode can 3 Gasket 4 Positive electrode 5 Negative electrode 6 Separator

Claims (5)

少なくとも可逆的にリチウムの吸蔵・放出が可能な正極と、SiまたはSiを含む合金を負極活物質として含む負極と、非水電解液とを含む非水電解液電池において、
前記負極がペレット状に加圧成型された成型体であり、
前記負極内に(化1)で示されるベンゾイミダゾロン、またはその誘導体であるイミド基の水素イオンがアルカリ金属イオンで置換された化合物(化2)が添加されたことを特徴とする非水電解液電池。
In a non-aqueous electrolyte battery comprising a positive electrode capable of at least reversibly inserting and extracting lithium, a negative electrode containing Si or an Si-containing alloy as a negative electrode active material, and a non-aqueous electrolyte solution,
The negative electrode is a molded body pressure-molded in a pellet form,
Non-aqueous electrolysis characterized in that a benzimidazolone represented by (Chemical Formula 1) or a compound in which a hydrogen ion of an imide group, which is a derivative thereof, is substituted with an alkali metal ion (Chemical Formula 2) is added to the negative electrode . Liquid battery.
前記ベンゾイミダゾロン、または前記誘導体からなる化合物が、負極活物質の質量に対して、0.001〜10.0重量%の比率で添加されたことを特徴とする請求項記載の非水電解液電池。 The benzimidazolone or a compound comprising said derivatives, relative to the mass of the negative electrode active material, a nonaqueous according to claim 1, characterized in that it is added in a proportion of 0.001 to 10.0 wt% Liquid battery. 前記負極活物質がLiを可逆的に吸蔵および放出可能な合金材料を含み、
前記合金材料はSiを主体とするA相と、遷移金属元素とSiとの金属間化合物からなるB相とを含み、
前記遷移金属が、Ti、Zr、Fe、Co、NiおよびCuよりなる群から選ばれる少なくとも1種であることを特徴とする請求項1または2に記載の非水電解液電池。
The negative electrode active material includes an alloy material capable of reversibly occluding and releasing Li,
The alloy material includes an A phase mainly composed of Si, and a B phase composed of an intermetallic compound of a transition metal element and Si,
Wherein the transition metal is, Ti, Zr, Fe, Co , a non-aqueous electrolyte battery according to claim 1 or 2, characterized in that at least one selected from the group consisting of Ni and Cu.
前記成型体の空隙率が10〜60%であることを特徴とする請求項1記載の非水電解液電池。 The nonaqueous electrolyte battery according to claim 1, wherein a porosity of the molded body is 10 to 60%. 前記成型体の厚みが50〜800μmであることを特徴とする請求項1記載の非水電解液電池。 The non-aqueous electrolyte battery according to claim 1, wherein the molded body has a thickness of 50 to 800 μm.
JP2005324479A 2005-11-09 2005-11-09 Non-aqueous electrolyte battery Active JP4887743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005324479A JP4887743B2 (en) 2005-11-09 2005-11-09 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005324479A JP4887743B2 (en) 2005-11-09 2005-11-09 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2007134108A JP2007134108A (en) 2007-05-31
JP4887743B2 true JP4887743B2 (en) 2012-02-29

Family

ID=38155604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005324479A Active JP4887743B2 (en) 2005-11-09 2005-11-09 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4887743B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875388B2 (en) 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
US20150303520A1 (en) * 2012-10-30 2015-10-22 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell
US20210249657A1 (en) * 2018-05-02 2021-08-12 Maxwell Technologies, Inc. Compositions and methods for silicon containing dry anode films
CN113851720B (en) * 2021-10-29 2023-02-28 天津市捷威动力工业有限公司 Non-aqueous electrolyte of lithium ion battery and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465756B2 (en) * 1999-11-19 2010-05-19 パナソニック株式会社 Non-aqueous electrolyte secondary battery, alloy for the battery, and manufacturing method thereof
JP4734705B2 (en) * 2000-10-31 2011-07-27 三菱化学株式会社 Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2002270181A (en) * 2001-03-09 2002-09-20 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte battery
JP5315582B2 (en) * 2001-07-26 2013-10-16 ダイキン工業株式会社 Method for dehydrating lithium bis (pentafluoroethanesulfonyl) imide-containing composition
JP2005063805A (en) * 2003-08-12 2005-03-10 Matsushita Electric Ind Co Ltd Anode and lithium secondary battery using it
JP4953557B2 (en) * 2004-03-30 2012-06-13 三洋電機株式会社 Negative electrode for lithium secondary battery and lithium secondary battery
JP2006024407A (en) * 2004-07-07 2006-01-26 Matsushita Electric Ind Co Ltd Organic electrolyte battery

Also Published As

Publication number Publication date
JP2007134108A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
Wu et al. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries
JP4876468B2 (en) Nonaqueous electrolyte secondary battery
JP6193184B2 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, method for producing negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack and vehicle
CN107359310B (en) Method for modifying lithium metal negative electrode material of lithium secondary battery and modified lithium metal negative electrode material
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4367001B2 (en) Non-aqueous electrolyte secondary battery
JP5835107B2 (en) Nonaqueous electrolyte secondary battery
JP5313479B2 (en) Non-aqueous electrolyte battery
JP5196118B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5104025B2 (en) Non-aqueous electrolyte battery
US11201327B2 (en) Lithium ion secondary battery
JP2004031079A (en) Nonaqueous electrolyte secondary battery
JPWO2005088761A1 (en) Lithium secondary battery
KR100814842B1 (en) Lithium secondary battery and method for preparing the same
JP2015060824A (en) Nonaqueous electrolyte battery and battery pack
US20130280612A1 (en) Porous Electrode Active Material And Secondary Battery Including The Same
JPWO2011104805A1 (en) Lithium secondary battery
CN110088970B (en) Nonaqueous electrolyte secondary battery
JP4887743B2 (en) Non-aqueous electrolyte battery
CN109792048B (en) Positive electrode for nonaqueous electrolyte secondary battery
JP2012204307A (en) Positive electrode active material, and method for manufacturing the same
KR102291005B1 (en) Method for producing anode material for secondary battery
JP3656026B2 (en) Negative electrode active material slurry composition for lithium secondary battery and method for producing negative electrode using the same
JP5836254B2 (en) Conductive composite particles, positive electrode active material, and secondary battery using the same
JPH07230802A (en) Nonaqueous secondary battery, and manufacture of positive electrode active material thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R151 Written notification of patent or utility model registration

Ref document number: 4887743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3