JP5836254B2 - Conductive composite particles, positive electrode active material, and secondary battery using the same - Google Patents

Conductive composite particles, positive electrode active material, and secondary battery using the same Download PDF

Info

Publication number
JP5836254B2
JP5836254B2 JP2012248152A JP2012248152A JP5836254B2 JP 5836254 B2 JP5836254 B2 JP 5836254B2 JP 2012248152 A JP2012248152 A JP 2012248152A JP 2012248152 A JP2012248152 A JP 2012248152A JP 5836254 B2 JP5836254 B2 JP 5836254B2
Authority
JP
Japan
Prior art keywords
compound
positive electrode
secondary battery
composite
olivine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012248152A
Other languages
Japanese (ja)
Other versions
JP2014096308A (en
Inventor
大神 剛章
剛章 大神
四穂 石原
四穂 石原
三崎 紀彦
紀彦 三崎
鈴木 務
務 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2012248152A priority Critical patent/JP5836254B2/en
Publication of JP2014096308A publication Critical patent/JP2014096308A/en
Application granted granted Critical
Publication of JP5836254B2 publication Critical patent/JP5836254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、オリビン型シリケート化合物を含む導電性複合粒子、二次電池用正極活物質及びそれを用いた二次電池に関する。   The present invention relates to conductive composite particles containing an olivine-type silicate compound, a positive electrode active material for a secondary battery, and a secondary battery using the same.

リチウムイオン電池等の二次電池は、非水電解質電池の1種であり、携帯電話、デジタルカメラ、ノートPC、ハイブリッド自動車、電気自動車等広い分野に利用されている。リチウムイオン電池は、正極材料としてリチウム金属酸化物を用い、負極材料としてグラファイトなどの炭素材を用いるものが主流となっている。   A secondary battery such as a lithium ion battery is a kind of non-aqueous electrolyte battery, and is used in a wide range of fields such as a mobile phone, a digital camera, a notebook PC, a hybrid vehicle, and an electric vehicle. Lithium ion batteries mainly use lithium metal oxide as a positive electrode material and a carbon material such as graphite as a negative electrode material.

この正極材料としては、コバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMnO2)、リン酸鉄リチウム(LiFePO4)、ケイ酸鉄リチウム(Li2FeSiO4)等が知られている。このうち、LiFePO4やLi2FeSiO4等は、オリビン構造を有し、高容量のリチウムイオン電池用正極材料として有用である。 As this positive electrode material, lithium cobaltate (LiCoO 2 ), lithium manganate (LiMnO 2 ), lithium iron phosphate (LiFePO 4 ), lithium iron silicate (Li 2 FeSiO 4 ) and the like are known. Among these, LiFePO 4 and Li 2 FeSiO 4 have an olivine structure and are useful as a positive electrode material for a high capacity lithium ion battery.

二次電池の放電容量は、正極材料の種類によって大きく変化するので、種々のオリビン型化合物が報告され(特許文献1及び2)、さらに前記オリビン型ケイ酸鉄リチウムにMnなどをドープすることにより放電容量の向上が検討されている(非特許文献1〜3)。   Since the discharge capacity of the secondary battery varies greatly depending on the type of positive electrode material, various olivine-type compounds have been reported (Patent Documents 1 and 2), and further by doping Mn and the like into the olivine-type lithium iron silicate. Improvement of discharge capacity has been studied (Non-Patent Documents 1 to 3).

一方、オリビン型シリケート化合物のような放電容量の高い正極材料であっても、それ自体の比導電率は低いので、これらの正極材料にアセチレンブラック、ケッチェンブラック等の炭素材料を担持させて導電性を付与させている(特許文献3〜5)。   On the other hand, even a positive electrode material having a high discharge capacity, such as an olivine type silicate compound, has a low specific conductivity, so that a carbon material such as acetylene black or ketjen black is supported on the positive electrode material to conduct electricity. (Patent Documents 3 to 5).

特開2001−266882号公報JP 2001-266882 A 特開2008−186807号公報JP 2008-186807 A 特許第4134838号公報Japanese Patent No. 4134838 特開2009−302044号公報JP 2009-302044 A 特開2011−76948号公報JP 2011-76948 A

Electrochemical and Solid-State Letters 19, 12, A542-A544(2006)Electrochemical and Solid-State Letters 19, 12, A542-A544 (2006) GS Yuasa Technical Report 2009年6月、第6巻、第1号、p21−26GS Yuasa Technical Report June 2009, Vol. 6, No. 1, p21-26 R. Dominiko et al. Journal of Power Sources 184(2008), P462-468R. Dominiko et al. Journal of Power Sources 184 (2008), P462-468

しかしながら、オリビン型シリケート化合物は特に導電性が低く、従来の手段によるカーボンブラック等の担持では十分な導電性が得られず、導電性を高くするためにはカーボンブラック等を過剰に担持させる必要があった。
従って、本発明の課題は、オリビン型シリケート化合物を含有する導電性の高い正極活物質及びそれを用いた二次電池を提供することにある。
However, olivine-type silicate compounds are particularly low in conductivity, and sufficient conductivity cannot be obtained by loading carbon black or the like by conventional means. To increase conductivity, it is necessary to load carbon black or the like excessively. there were.
Therefore, the subject of this invention is providing the positive electrode active material with high electroconductivity containing an olivine type silicate compound, and a secondary battery using the same.

そこで本発明者は、オリビン型シリケート化合物の特性を十分に活かす正極活物質を開発すべく種々検討した結果、オリビン型シリケート化合物と少量のグラフェンとを複合化して微細な粒子とすれば、優れた導電性を有する正極活物質が得られ、これを用いた二次電池は高い充放電容量を示すことを見出し、本発明を完成した。   Therefore, as a result of various studies to develop a positive electrode active material that makes full use of the characteristics of the olivine-type silicate compound, the present inventor is excellent if the olivine-type silicate compound and a small amount of graphene are combined into fine particles. A positive electrode active material having conductivity was obtained, and a secondary battery using the positive electrode active material was found to exhibit a high charge / discharge capacity, thereby completing the present invention.

すなわち、本発明は、(A)オリビン型シリケート化合物と(B)グラフェンとを質量比(A:B)で99:1〜93:7の割合で含有し、粒子径5〜30μmである導電性複合粒子を提供するものである。
また、本発明は、上記の導電性複合粒子からなる正極活物質を提供するものである。
さらに本発明は、上記の正極活物質を含有する二次電池を提供するものである。
That is, the present invention contains (A) an olivine-type silicate compound and (B) graphene in a mass ratio (A: B) in a ratio of 99: 1 to 93: 7 and has a particle size of 5 to 30 μm. A composite particle is provided.
Moreover, this invention provides the positive electrode active material which consists of said electroconductive composite particle.
Furthermore, this invention provides the secondary battery containing said positive electrode active material.

本発明の導電性複合粒子は、オリビン型シリケート化合物の特性を有しつつ、グラフェンにより粒子表面が効率良く被覆されているため優れた導電性を示し、これを用いた二次電池は高い充放電容量を有する。   The conductive composite particle of the present invention has excellent conductivity because the surface of the particle is efficiently coated with graphene while having the characteristics of an olivine type silicate compound, and a secondary battery using this has high charge and discharge. Have capacity.

実施例1で得られた複合粒子AのSEM像(500倍)を示す。The SEM image (500 times) of the composite particle A obtained in Example 1 is shown. 実施例2で得られた複合粒子BのSEM像(500倍)を示す。The SEM image (500 times) of the composite particle B obtained in Example 2 is shown. 実施例3で得られた複合粒子CのSEM像(500倍)を示す。The SEM image (500 times) of the composite particle C obtained in Example 3 is shown. 比較例1で得られた複合粒子DのSEM像(500倍)を示す。The SEM image (500 times) of the composite particle D obtained by the comparative example 1 is shown. 比較例2で得られた複合粒子EのSEM像(500倍)を示す。The SEM image (500 times) of the composite particle E obtained by the comparative example 2 is shown. 実施例1で得られた複合粒子AのSEM像(表面拡大:1万倍)を示す。The SEM image (surface expansion: 10,000 times) of the composite particle A obtained in Example 1 is shown. 比較例1で得られた複合粒子DのSEM像(表面拡大:1万倍)を示す。The SEM image (surface expansion: 10,000 times) of the composite particle D obtained by the comparative example 1 is shown. 実施例1の複合粒子を用いた二次電池の充放電曲線を示す。The charging / discharging curve of the secondary battery using the composite particle of Example 1 is shown. 実施例2の複合粒子を用いた二次電池の充放電曲線を示す。The charging / discharging curve of the secondary battery using the composite particle of Example 2 is shown. 実施例3の複合粒子を用いた二次電池の充放電曲線を示す。The charging / discharging curve of the secondary battery using the composite particle of Example 3 is shown. 比較例1の複合粒子を用いた二次電池の充放電曲線を示す。The charging / discharging curve of the secondary battery using the composite particle of the comparative example 1 is shown. 比較例2の複合粒子を用いた二次電池の充放電曲線を示す。The charging / discharging curve of the secondary battery using the composite particle of the comparative example 2 is shown.

本発明の導電性複合粒子は、(A)オリビン型シリケート化合物と(B)グラフェンとを質量比(A:B)で99:1〜93:7の割合で含有し、粒子径5〜30μmである。   The conductive composite particles of the present invention contain (A) an olivine-type silicate compound and (B) graphene at a mass ratio (A: B) of 99: 1 to 93: 7, and a particle diameter of 5 to 30 μm. is there.

(A)オリビン型シリケート化合物としては、リチウムイオン、遷移金属イオン及びケイ酸イオン(SiO4 4-)を含むオリビン型シリケート化合物が挙げられ、特にリチウムイオン及び遷移金属M(MはFe、Ni、Co、Al、Zn、Mn、V及びZrから選ばれる1種又は2種以上)イオンを含み、かつケイ酸イオン(SiO4 4-)を含むオリビン型シリケート化合物が好ましい。 (A) Examples of the olivine-type silicate compound include olivine-type silicate compounds containing lithium ions, transition metal ions and silicate ions (SiO 4 4− ), and in particular lithium ions and transition metals M (M is Fe, Ni, An olivine silicate compound containing one or more selected from Co, Al, Zn, Mn, V and Zr) and containing a silicate ion (SiO 4 4− ) is preferred.

オリビン型シリケート化合物の具体例としては、例えば、以下のものが挙げられる。
Li2FexMnyCozSiO4 ・・・(1)
(式中、x、y及びzは、0≦x<1、0≦y<1、0<z<1、x+y+z=1、及びx+y≠0を満たす数を示す。)
Lia1FexMnyAlzSiO4 ・・・(2)
(式中、a1、x、y及びzは、1<a1≦2、0≦x<1、0≦y<1、0<z<1、a1+2x+2y+3z=4、及びx+y≠0を満たす数を示す。)
Li21SiO4-x12x1 ・・・(3)
(式中、M1はFe、Mn、Co及びNiから選ばれる1種又は2種以上を示し、x1は0<x1≦8を満たす数を示す。)
Lia2FexMnyzSiO4 ・・・(4)
(式中、a2、x、y及びzは、1<a2≦2、0≦x<1、0≦y<1、0<z<1、a2+2x+2y+(2〜5)z=4、及びx+y≠0を満たす数を示す。)
Li2FexMnyZnzSiO4 ・・・(5)
(式中、x、y及びzは、0≦x<1、0≦y<1、0<z<1、x+y+z=1、及びx+y≠0を満たす数を示す。)
Li2Fea3NibCocMndZrx2SiO4・・・(6)
(式中、a、b、c及びdは、a+b+c+d=1−2xを満たし、x2は、0<x2<0.5を満たす数を示す)
Specific examples of the olivine type silicate compound include the following.
Li 2 Fe x Mn y Co z SiO 4 (1)
(In the formula, x, y, and z represent numbers satisfying 0 ≦ x <1, 0 ≦ y <1, 0 <z <1, x + y + z = 1, and x + y ≠ 0.)
Li a1 Fe x Mn y Al z SiO 4 ··· (2)
(Wherein a 1 , x, y and z are 1 <a 1 ≦ 2, 0 ≦ x <1, 0 ≦ y <1, 0 <z <1, a 1 + 2x + 2y + 3z = 4 and x + y ≠ 0. Indicates the number to satisfy.)
Li 2 M 1 SiO 4-x1 F 2x1 (3)
(In the formula, M 1 represents one or more selected from Fe, Mn, Co and Ni, and x 1 represents a number satisfying 0 <x 1 ≦ 8.)
Li a2 Fe x Mn y V z SiO 4 ··· (4)
(Wherein a 2 , x, y and z are 1 <a 2 ≦ 2, 0 ≦ x <1, 0 ≦ y <1, 0 <z <1, a 2 + 2x + 2y + (2-5) z = 4 , And a number satisfying x + y ≠ 0.)
Li 2 Fe x Mn y Zn z SiO 4 (5)
(In the formula, x, y, and z represent numbers satisfying 0 ≦ x <1, 0 ≦ y <1, 0 <z <1, x + y + z = 1, and x + y ≠ 0.)
Li 2 Fe a3 Ni b Co c Mn d Zr x2 SiO 4 (6)
(Wherein, a, b, c and d satisfy a + b + c + d = 1−2x, and x 2 represents a number satisfying 0 <x 2 <0.5)

また、上記オリビン型シリケート化合物は、ドープすることによりF等を含有していてもよい。   The olivine type silicate compound may contain F or the like by doping.

(A)オリビン型シリケート化合物のうち、粒子径が小さく、均質なものは、例えば、リチウム含有化合物、遷移金属化合物及びケイ酸化合物を含む混合物を水熱反応させることにより製造できる。   (A) Among olivine-type silicate compounds, those having a small particle size and being homogeneous can be produced by, for example, hydrothermal reaction of a mixture containing a lithium-containing compound, a transition metal compound and a silicate compound.

原料であるリチウム含有化合物としては、水酸化リチウム(例えばLiOH・H2O)、炭酸リチウム(Li2CO3)、硫酸リチウム、酢酸リチウムが挙げられるが、水酸化リチウム、炭酸リチウムが特に好ましい。水分散液中のリチウム含有化合物の濃度は、0.30〜3.00mol/lが好ましく、さらに1.00〜1.50mol/lが好ましい。 Examples of the lithium-containing compound as a raw material include lithium hydroxide (for example, LiOH.H 2 O), lithium carbonate (Li 2 CO 3 ), lithium sulfate, and lithium acetate, and lithium hydroxide and lithium carbonate are particularly preferable. The concentration of the lithium-containing compound in the aqueous dispersion is preferably 0.30 to 3.00 mol / l, more preferably 1.00 to 1.50 mol / l.

遷移金属化合物としては、鉄化合物、マンガン化合物、コバルト化合物、ニッケル化合物、アルミニウム化合物、亜鉛化合物、パラジウム化合物又はジルコニウム化合物を用いればよい。   As the transition metal compound, an iron compound, a manganese compound, a cobalt compound, a nickel compound, an aluminum compound, a zinc compound, a palladium compound, or a zirconium compound may be used.

鉄化合物、マンガン化合物、コバルト化合物、ニッケル化合物、亜鉛化合物としては、2価の鉄化合物、2価のマンガン化合物、2価のコバルト化合物、2価のニッケル化合物、2価の亜鉛化合物であればよく、例えば、ハロゲン化鉄、ハロゲン化マンガン、ハロゲン化コバルト、ハロゲン化ニッケル、ハロゲン化亜鉛等のハロゲン化物、硫酸鉄、硫酸マンガン、硫酸コバルト、硫酸ニッケル、硫酸亜鉛等の硫酸塩、シュウ酸鉄、酢酸鉄、酢酸マンガン、酢酸コバルト、酢酸ニッケル、酢酸亜鉛等の有機酸塩が挙げられる。   The iron compound, manganese compound, cobalt compound, nickel compound, and zinc compound may be any bivalent iron compound, divalent manganese compound, divalent cobalt compound, divalent nickel compound, or divalent zinc compound. , For example, halides such as iron halide, manganese halide, cobalt halide, nickel halide and zinc halide, sulfates such as iron sulfate, manganese sulfate, cobalt sulfate, nickel sulfate and zinc sulfate, iron oxalate, Examples thereof include organic acid salts such as iron acetate, manganese acetate, cobalt acetate, nickel acetate, and zinc acetate.

アルミニウム化合物としては、3価の化合物であればよく、例えば、ハロゲン化アルミニウム等のハロゲン化物、硫酸アルミニウム等の金属硫酸塩、酢酸アルミニウム、乳酸アルミニウム等の金属有機酸塩が挙げられる。バナジウム化合物としては、ハロゲン化バナジウム等が挙げられる。   The aluminum compound may be a trivalent compound, and examples thereof include halides such as aluminum halide, metal sulfates such as aluminum sulfate, and metal organic acid salts such as aluminum acetate and aluminum lactate. Examples of vanadium compounds include vanadium halides.

ジルコニウム化合物としては、4価の化合物であればよく、例えば、ハロゲン化ジルコニウム、硫酸ジルコニウム、二酢酸酸化ジルコニウム、オクタン酸ジルコニウム、ラウリン酸酸化ジルコニウム等の有機酸塩が挙げられる。   The zirconium compound may be a tetravalent compound, and examples thereof include organic acid salts such as zirconium halide, zirconium sulfate, zirconium diacetate oxide, zirconium octoate, and zirconium laurate oxide.

反応混合液中の遷移金属化合物の濃度は、0.15〜1.50mol/lが好ましく、さらに0.50〜0.75mol/lが好ましい。   The concentration of the transition metal compound in the reaction mixture is preferably 0.15 to 1.50 mol / l, more preferably 0.50 to 0.75 mol / l.

ケイ酸化合物としては、反応性のあるシリカ化合物であれば特に限定されず、非晶質シリカ、Na4SiO4やNa4SiO4・nH2O(例えばNa4SiO4・H2O)が好ましい。このうちNa4SiO4を用いた場合、反応混合液が塩基性になるので、より好ましい。
ケイ酸化合物の濃度は、0.15〜1.50mol/lが好ましく、さらに0.50〜0.75mol/lが好ましい。
The silicic acid compound is not particularly limited as long as it is a reactive silica compound, and amorphous silica, Na 4 SiO 4 and Na 4 SiO 4 .nH 2 O (for example, Na 4 SiO 4 .H 2 O) can be used. preferable. Of these, the use of Na 4 SiO 4 is more preferable because the reaction mixture becomes basic.
The concentration of the silicate compound is preferably 0.15 to 1.50 mol / l, more preferably 0.50 to 0.75 mol / l.

上記リチウム含有化合物、遷移金属化合物及びケイ酸化合物を含有する混合物は、副反応を防止し、ケイ酸化合物の溶解性の点から、水を用い、塩基性の水分散液とするのがよい。具体的には、該水分散液のpHは、12.0〜14.5であるのが好ましい。該水分散液のpHの調整は、塩基、例えば、水酸化ナトリウムを添加することにより行ってもよいが、ケイ酸化合物としてNa4SiO4を用いるのが好ましい。 The mixture containing the lithium-containing compound, the transition metal compound and the silicate compound is preferably a basic aqueous dispersion using water from the viewpoint of solubility of the silicate compound, preventing side reactions. Specifically, the pH of the aqueous dispersion is preferably 12.0 to 14.5. The pH of the aqueous dispersion may be adjusted by adding a base such as sodium hydroxide, but it is preferable to use Na 4 SiO 4 as the silicate compound.

水分散液を作製するにあたり、遷移金属化合物として、例えば、金属硫酸塩を用いる場合、副反応を抑制する点から、かかる金属硫酸塩とは別に、リチウム化合物、ケイ酸化合物及び界面活性剤と、酸化防止剤とを含有する塩基性水分散液を予め調製しておくのが好ましい。この場合、該水分散液と金属硫酸塩とを混合し、水熱反応に付す。リチウム化合物、ケイ酸化合物、界面活性剤及び酸化防止剤の添加順序は特に限定されず、これらの4成分を水に添加してもよい。   In producing an aqueous dispersion, as a transition metal compound, for example, when a metal sulfate is used, a lithium compound, a silicate compound, and a surfactant, in addition to the metal sulfate, from the viewpoint of suppressing side reactions, It is preferable to prepare in advance a basic aqueous dispersion containing an antioxidant. In this case, the aqueous dispersion and the metal sulfate are mixed and subjected to a hydrothermal reaction. The order of addition of the lithium compound, the silicate compound, the surfactant and the antioxidant is not particularly limited, and these four components may be added to water.

また、遷移金属化合物として、例えば、有機酸塩を用いる場合、リチウム化合物、ケイ酸化合物及び界面活性剤と、酸化防止剤とを含有し、さらに有機酸塩を含有する塩基性水分散液を調製するのが好ましい。通常、有機酸塩は固相法に用いられる原料であるが、水熱反応に用いることにより副反応を抑制することができる。   In addition, for example, when an organic acid salt is used as the transition metal compound, a basic aqueous dispersion containing a lithium compound, a silicate compound, a surfactant, and an antioxidant and further containing an organic acid salt is prepared. It is preferable to do this. Usually, an organic acid salt is a raw material used in a solid phase method, but side reactions can be suppressed by using it in a hydrothermal reaction.

酸化防止剤としては、ハイドロサルファイトナトリウム(Na224)、アンモニア水、亜硫酸ナトリウム等が挙げられる。水分散液中の酸化防止剤の含有量は、多量に添加するとオリビン型シリケート化合物の生成を抑制してしまうため、遷移金属(M)に対して等モル量以下が好ましく、遷移金属に対してモル比で0.5以下がさらに好ましい。 Examples of the antioxidant include sodium hydrosulfite (Na 2 S 2 O 4 ), aqueous ammonia, sodium sulfite and the like. The content of the antioxidant in the aqueous dispersion is preferably equal to or less than the transition metal (M) because the formation of the olivine-type silicate compound is suppressed when added in a large amount. The molar ratio is more preferably 0.5 or less.

水熱反応に付す際の温度は、130〜250℃が好ましく、さらに150〜200℃が好ましい。水熱反応は耐圧容器中で行うのが好ましく、130〜250℃で反応を行う場合この時の圧力は0.3〜4.0MPaとなり、150〜200℃で反応を行う場合の圧力は0.5〜1.6MPaとなる。水熱反応時間は0.5〜24時間が好ましく、さらに3〜12時間が好ましい。   130-250 degreeC is preferable and the temperature at the time of attaching | subjecting to a hydrothermal reaction has more preferable 150-200 degreeC. The hydrothermal reaction is preferably performed in a pressure vessel. When the reaction is performed at 130 to 250 ° C, the pressure at this time is 0.3 to 4.0 MPa, and the pressure when the reaction is performed at 150 to 200 ° C is 0. 5 to 1.6 MPa. The hydrothermal reaction time is preferably 0.5 to 24 hours, and more preferably 3 to 12 hours.

なお、前記混合液の作製及び水熱反応は、いずれも非酸素条件下、例えば窒素雰囲気下に行うのが好ましい。   The preparation of the mixed solution and the hydrothermal reaction are preferably performed under non-oxygen conditions, for example, in a nitrogen atmosphere.

当該水熱反応により、粒子径の小さいオリビン型シリケート化合物が高収率で得られ、その結晶度も高い。
水熱反応後、生成したオリビン型シリケート化合物をろ過により採取し、洗浄することによって一次粒子を得る。洗浄は、ケーキ洗浄機能を有した濾過装置を用いて水で行うのが好ましい。
ここで、得られる一次粒子の粒径は、小さい程好ましく、20〜200nmが好ましく、さらに20〜100nmが好ましい。
By the hydrothermal reaction, an olivine-type silicate compound having a small particle size is obtained in a high yield, and its crystallinity is also high.
After the hydrothermal reaction, the produced olivine-type silicate compound is collected by filtration and washed to obtain primary particles. Washing is preferably carried out with water using a filtration device having a cake washing function.
Here, the particle size of the obtained primary particles is preferably as small as possible, preferably 20 to 200 nm, and more preferably 20 to 100 nm.

次いで乾燥を行う。乾燥手段としては、箱型乾燥機、凍結乾燥、真空乾燥、流動床乾燥機、あるいは、噴霧型乾燥機(スプレードライヤー)を用いることができる。
得られる乾燥物については、乳鉢、ピンミル、ロールミル、クラッシャー等を用いて解砕してもよい。
Then, drying is performed. As the drying means, a box-type dryer, freeze-drying, vacuum drying, fluidized bed dryer, or spray-type dryer (spray dryer) can be used.
About the obtained dried material, you may crush using a mortar, a pin mill, a roll mill, a crusher, etc.

かくして得られる(A)オリビン型シリケート化合物の複合化に用いる(B)グラフェンは、炭素原子が六角形格子構造をとった単層のシート、すなわち単層のグラファイトである。グラファイトとしては、厚さ1〜3nmであり、大きさが0.01〜10μmのものを用いるのが好ましい。   The (B) graphene used for the composite of the (A) olivine type silicate compound thus obtained is a single layer sheet in which carbon atoms have a hexagonal lattice structure, that is, a single layer graphite. It is preferable to use graphite having a thickness of 1 to 3 nm and a size of 0.01 to 10 μm.

本発明導電性複合粒子中の(A)オリビン型シリケート化合物と(B)グラフェンとの含有質量比(A:B)は99:1〜93:7であり、99:1〜94:6がより好ましく99:1〜95:5がさらに好ましい。グラフェンの含有量が1質量部よりも少ないと十分な導電性が得られず、7質量部よりも多いと導電性は得られるが、経済的でなく、さらに充放電の際、リチウムイオンの移動速度を低下させるため好ましくない。   The content mass ratio (A: B) of (A) olivine type silicate compound and (B) graphene in the conductive composite particles of the present invention is 99: 1 to 93: 7, and 99: 1 to 94: 6 is more. 99: 1 to 95: 5 is more preferable. When the content of graphene is less than 1 part by mass, sufficient conductivity cannot be obtained, and when it is more than 7 parts by mass, conductivity is obtained, but it is not economical, and the movement of lithium ions during charging / discharging. This is not preferable because it reduces the speed.

本発明の導電性複合粒子の粒子径は5〜30μmであり、7〜25μmがより好ましく、10〜20μmがさらに好ましい。粒子径が5μm未満の場合は、電極作製の際、塗工性が悪化することがあり、30μmを超えると複合粒子の内部に欠陥が生じやすくなる。   The particle diameter of the conductive composite particles of the present invention is 5 to 30 μm, more preferably 7 to 25 μm, still more preferably 10 to 20 μm. When the particle diameter is less than 5 μm, the coatability may be deteriorated during electrode production, and when it exceeds 30 μm, defects are likely to occur inside the composite particles.

本発明の導電性複合粒子においては、(A)オリビン型シリケート化合物粒子の表面に(B)グラフェンが均一に被覆した状態であるのが好ましく、より具体的には(A)オリビン型シリケート化合物粒子の表面を(B)グラフェンが網目状に被覆しているのが好ましい。このように、(A)オリビン型シリケート化合物粒子の表面を(B)グラフェンが均一に被覆していることにより、複合粒子全体の導電性が向上するものと考えられる。   In the conductive composite particles of the present invention, it is preferable that (B) graphene is uniformly coated on the surface of (A) olivine-type silicate compound particles, and more specifically, (A) olivine-type silicate compound particles. It is preferable that the surface of (B) is coated with (B) graphene. Thus, it is considered that the conductivity of the composite particles as a whole is improved by uniformly coating the surface of the (A) olivine-type silicate compound particles with (B) graphene.

また、(B)グラフェンの被覆厚みは、導電性の点から5〜100nmが好ましく、5〜50nmがより好ましい。   In addition, the coating thickness of (B) graphene is preferably 5 to 100 nm, more preferably 5 to 50 nm from the viewpoint of conductivity.

また、本発明の導電性複合粒子の形状は、球状、多角状、立方体状、金平糖状、紡錘状等の形態でよいが、塗工性および導電性の点から、そのアスペクト比は1〜2.5が好ましく、1〜2がより好ましく、1〜1.5がさらに好ましい。またタップ密度は0.8〜2.5g/mlが好ましく、1.2〜2.5g/mlがさらに好ましい。   Further, the shape of the conductive composite particles of the present invention may be spherical, polygonal, cubic, confetti shape, spindle shape, etc., but from the viewpoint of coating property and conductivity, the aspect ratio is 1-2. 0.5 is preferable, 1-2 is more preferable, and 1-1.5 is more preferable. The tap density is preferably 0.8 to 2.5 g / ml, and more preferably 1.2 to 2.5 g / ml.

本発明の導電性複合粒子は、(A)オリビン型シリケート化合物と(B)グラフェンとをせん断力条件下、さらに圧縮せん断力条件下に混合複合化することにより製造するのが、オリビン型シリケート化合物粒子表面上にグラフェンを均一に被覆する点で好ましい。
せん断力条件、特に圧縮せん断力条件としては、材料の軸に直角方向に一対の力を与える条件であり、例えばシータコンポーザー(徳寿製作所)、メカノハイブリット、コンポジ(日本コークス工業)、ノビルタ、メカノフュージョン(ホソカワミクロン)などの装置を用いて与えることができる。
The conductive composite particles of the present invention are produced by mixing and compounding (A) an olivine type silicate compound and (B) graphene under shear force conditions and further under compressive shear force conditions. This is preferable in that the graphene is uniformly coated on the particle surface.
The shearing force condition, particularly the compressive shearing force condition, is a condition that applies a pair of forces in the direction perpendicular to the axis of the material. (Hosokawamicron) can be used.

これらの装置の運転条件は、水平円筒状、または直立円筒状の混合容器内において、特殊形状のローターが周速25m/s以上で回転し、混合容器内の内壁とローター先端で、オリビン型シリケート化合物粒子とグラフェンの混合粉体に、均一に圧縮せん断力を加えながら、粒子複合化を行う。処理時間は5〜60分が好ましく、より好ましくは10〜30分である。また、複合化処理においては、容器内の処理物の温度が100℃以上にならないように、冷却することが好ましい。冷却手段は特に限定されないが、容器を冷却ジャケットなどで覆い、冷却することができる。処理物の温度が100℃以上になる場合、処理物が酸化し性能低下を引き起こすため、好ましくない。   The operating conditions of these devices are that a specially shaped rotor rotates at a peripheral speed of 25 m / s or more in a horizontal cylindrical or upright cylindrical mixing vessel, and an olivine type silicate at the inner wall of the mixing vessel and the tip of the rotor. Particle compounding is performed while uniformly applying compressive shearing force to the mixed powder of compound particles and graphene. The treatment time is preferably 5 to 60 minutes, more preferably 10 to 30 minutes. Further, in the complexing treatment, it is preferable to cool so that the temperature of the processed material in the container does not become 100 ° C. or higher. The cooling means is not particularly limited, but the container can be covered with a cooling jacket or the like for cooling. When the temperature of the processed product is 100 ° C. or higher, the processed product is oxidized and causes a decrease in performance, which is not preferable.

なお、電池特性をより高める観点から、得られた複合体を焼成してもよい。焼成条件は、不活性ガス雰囲気下又は還元雰囲気下に220℃以上、好ましくは250℃〜700℃で10分〜3時間、好ましくは0.5〜1.5時間行うのが好ましい。   In addition, you may bake the obtained composite body from a viewpoint of improving a battery characteristic more. The baking conditions are 220 ° C. or higher, preferably 250 ° C. to 700 ° C., for 10 minutes to 3 hours, preferably 0.5 to 1.5 hours in an inert gas atmosphere or a reducing atmosphere.

本発明の導電性複合粒子は、導電性に優れており、二次電池用正極活物質として有用である。また、当該導電性複合粒子は、カーボン担持し、次いで焼成することにより、二次電池用正極活物質とすることもできる。カーボン担持は、複合粒子に常法により、グルコース、フルクトース、ポリエチレングリコール、ポリビニルアルコール、カルボキシメチルセルロース、サッカロース、デンプン、デキストリン、クエン酸等の炭素源及び水を添加し、次いで焼成すればよい。なかでも、コストの面から、炭素源としてグルコースを用いるのが好ましい。焼成条件は、不活性ガス雰囲気下又は還元条件下に400℃以上、好ましくは400〜800℃で10分〜3時間、好ましくは0.5〜1.5時間行うのが好ましい。かかる処理により複合粒子表面にカーボンが担持された正極活物質とすることができる。炭素源の使用量は、複合粒子100質量部に対し、炭素源に含まれる炭素として3〜15質量部が好ましく、炭素源に含まれる炭素として5〜10質量部がさらに好ましい。   The conductive composite particles of the present invention are excellent in conductivity and are useful as a positive electrode active material for a secondary battery. In addition, the conductive composite particles can be used as a positive electrode active material for a secondary battery by carrying carbon and then firing. Carbon support may be obtained by adding a carbon source such as glucose, fructose, polyethylene glycol, polyvinyl alcohol, carboxymethyl cellulose, saccharose, starch, dextrin, citric acid and water to the composite particles and then baking. Especially, it is preferable to use glucose as a carbon source from the surface of cost. The firing conditions are 400 ° C. or higher, preferably 400 to 800 ° C. for 10 minutes to 3 hours, preferably 0.5 to 1.5 hours under an inert gas atmosphere or reducing conditions. By this treatment, a positive electrode active material in which carbon is supported on the composite particle surface can be obtained. The amount of the carbon source used is preferably 3 to 15 parts by mass as carbon contained in the carbon source and more preferably 5 to 10 parts by mass as carbon contained in the carbon source with respect to 100 parts by mass of the composite particles.

得られた二次電池用正極活物質は、充放電容量の点で優れており、非常に有用な二次電池を得ることができる。本発明の二次電池正極活物質を適用できる二次電池としては、リチウムイオン二次電池であればよく、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。   The obtained positive electrode active material for a secondary battery is excellent in terms of charge / discharge capacity, and a very useful secondary battery can be obtained. The secondary battery to which the secondary battery positive electrode active material of the present invention can be applied may be a lithium ion secondary battery, and is not particularly limited as long as it has a positive electrode, a negative electrode, an electrolytic solution, and a separator as essential components.

ここで、負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてリチウムを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。   Here, as long as lithium ions can be occluded at the time of charging and released at the time of discharging, the material structure is not particularly limited, and a known material structure can be used. For example, a carbon material such as lithium metal, graphite, or amorphous carbon. It is preferable to use an electrode formed of an intercalating material capable of electrochemically inserting and extracting lithium, particularly a carbon material.

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。   The electrolytic solution is obtained by dissolving a supporting salt in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte solution of a lithium ion secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones An oxolane compound or the like can be used.

支持塩は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of the supporting salt is not particularly limited, but an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2 and LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and organic salt derivatives It is preferable that it is at least 1 sort of.

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。   The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

[参考例1]
LiOH・H2O 42.0g(1.0mol)、Na4SiO4・nH2O 140.0g(0.5mol)、Na224 8.7g(0.05mol)に超純水400cm3を加えて混合した(この時のpHは約13)。この水分散液にFeSO4・7H2O62.6g(0.225mol)、MnSO4・5H2O 54.2g(0.225mol)及びZr(SO42・4H2O7.1g(0.025mol)を添加し、混合した。得られた混合液をオートクレーブに投入し、150℃で16hr水熱反応を行った。反応液をろ過後、凍結乾燥し(約12時間)、粉末を得た。得られた粉末の平均粒径は、56nmであった。
[Reference Example 1]
LiOH.H 2 O 42.0 g (1.0 mol), Na 4 SiO 4 .nH 2 O 140.0 g (0.5 mol), Na 2 S 2 O 4 8.7 g (0.05 mol) and ultrapure water 400 cm 3 was added and mixed (the pH at this time was about 13). In this aqueous dispersion, 62.6 g (0.225 mol) of FeSO 4 .7H 2 O, 54.2 g (0.225 mol) of MnSO 4 .5H 2 O and 7.1 g (0.025 mol) of Zr (SO 4 ) 2 .4H 2 O were added. ) Was added and mixed. The obtained mixed liquid was put into an autoclave and subjected to a hydrothermal reaction at 150 ° C. for 16 hours. The reaction solution was filtered and freeze-dried (about 12 hours) to obtain a powder. The average particle size of the obtained powder was 56 nm.

[参考例2]
LiOH・H2O 42.0g(1.0mol)、Na4SiO4・nH2O 140.0g(0.5mol)、Na224 8.7g(0.05mol)に超純水400cm3を加えて混合した(この時のpHは約13)。この水分散液にFeSO4・7H2O 89.4g(0.322mol)、MnSO4・5H2O 38.2g(0.158mol)及びZr(SO42・4H2O 2.8g(0.010mol)を添加し、混合した。得られた混合液をオートクレーブに投入し、150℃で16hr水熱反応を行った。反応液をろ過後、凍結乾燥し(約12時間)、粉末を得た。得られた粉末の平均粒径は、63nmであった。
[Reference Example 2]
LiOH.H 2 O 42.0 g (1.0 mol), Na 4 SiO 4 .nH 2 O 140.0 g (0.5 mol), Na 2 S 2 O 4 8.7 g (0.05 mol) and ultrapure water 400 cm 3 was added and mixed (the pH at this time was about 13). In this aqueous dispersion, 89.4 g (0.322 mol) of FeSO 4 .7H 2 O, 38.2 g (0.158 mol) of MnSO 4 .5H 2 O and 2.8 g (0) of Zr (SO 4 ) 2 .4H 2 O were added. .010 mol) was added and mixed. The obtained mixed liquid was put into an autoclave and subjected to a hydrothermal reaction at 150 ° C. for 16 hours. The reaction solution was filtered and freeze-dried (about 12 hours) to obtain a powder. The average particle size of the obtained powder was 63 nm.

[参考例3]
LiOH・H2O 42.0g(1.0mol)、Na4SiO4・nH2O 140.0g(0.5mol)、Na224 8.7g(0.05mol)に超純水400cm3を加えて混合した(この時のpHは約13)。この水分散液にMnSO4・5H2O 108.5g(0.45mol)及びZr(SO42・4H2O7.1g(0.025mol)を添加し、混合した。得られた混合液をオートクレーブに投入し、150℃で16hr水熱反応を行った。反応液をろ過後、凍結乾燥し(約12時間)、粉末を得た。得られた粉末の平均粒径は、58nmであった。
[Reference Example 3]
LiOH.H 2 O 42.0 g (1.0 mol), Na 4 SiO 4 .nH 2 O 140.0 g (0.5 mol), Na 2 S 2 O 4 8.7 g (0.05 mol) and ultrapure water 400 cm 3 was added and mixed (the pH at this time was about 13). To this aqueous dispersion, 108.5 g (0.45 mol) of MnSO 4 .5H 2 O and 7.1 g (0.025 mol) of Zr (SO 4 ) 2 .4H 2 O were added and mixed. The obtained mixed liquid was put into an autoclave and subjected to a hydrothermal reaction at 150 ° C. for 16 hours. The reaction solution was filtered and freeze-dried (about 12 hours) to obtain a powder. The average particle size of the obtained powder was 58 nm.

[実施例1]
参考例1で得られた粉末196gと市販グラフェン粉末(XG Sciences社製、平均粒径0.2μm)4gとを予め混合して混合物を得て、得られた混合物を微粒子複合化装置ノビルタ(ホソカワミクロン社製)に投入し、35〜45℃で30分間混合して、複合体Aを得た。得られた複合体Aの平均粒径は、17μmであり、タップ密度は1.61g/cm3であった。得られた複合体AのSEM像を図1に示す。
[Example 1]
196 g of the powder obtained in Reference Example 1 and 4 g of commercially available graphene powder (manufactured by XG Sciences, average particle size: 0.2 μm) were mixed in advance to obtain a mixture, and the resulting mixture was mixed with a fine particle composite apparatus Nobilta (Hosokawa Micron). And mixed at 35 to 45 ° C. for 30 minutes to obtain a composite A. The composite A thus obtained had an average particle diameter of 17 μm and a tap density of 1.61 g / cm 3 . The SEM image of the obtained composite A is shown in FIG.

[実施例2]
参考例2で得られた粉末192gと市販グラフェン粉末(XG Sciences社製、平均粒径0.2μm)8gとを予め混合して混合物を得て、得られた混合物を微粒子複合化装置ノビルタ(ホソカワミクロン社製)に投入し、35〜45℃で30分間混合して、複合体Bを得た。得られた複合体Bの平均粒径は、18μmであり、タップ密度は1.52g/cm3であった。得られた複合体BのSEM像を図2に示す。
[Example 2]
192 g of the powder obtained in Reference Example 2 and 8 g of commercially available graphene powder (manufactured by XG Sciences, average particle size: 0.2 μm) were mixed in advance to obtain a mixture, and the resulting mixture was mixed with a fine particle composite apparatus Nobilta (Hosokawa Micron). And mixed for 30 minutes at 35 to 45 ° C. to obtain a composite B. The average particle diameter of the obtained composite B was 18 μm, and the tap density was 1.52 g / cm 3 . The SEM image of the obtained composite B is shown in FIG.

[実施例3]
参考例3で得られた粉末192gと市販グラフェン粉末(XG Sciences社製、平均粒径0.2μm)8gとを予め混合して混合物を得て、得られた混合物を微粒子複合化装置ノビルタ(ホソカワミクロン社製)に投入し、35〜45℃で30分間混合して、複合体Cを得た。得られた複合体Cの平均粒径は、16μmであり、タップ密度は1.49g/cm3であった。得られた複合体CのSEM像を図3に示す。
[Example 3]
192 g of the powder obtained in Reference Example 3 and 8 g of commercially available graphene powder (manufactured by XG Sciences, average particle size 0.2 μm) were mixed in advance to obtain a mixture, and the resulting mixture was mixed with a fine particle composite apparatus Nobilta (Hosokawa Micron). And mixed for 30 minutes at 35 to 45 ° C. to obtain a composite C. The obtained composite C had an average particle size of 16 μm and a tap density of 1.49 g / cm 3 . The SEM image of the obtained composite C is shown in FIG.

[比較例1]
参考例1で得られた粉末196gと4gとケッチェンブラック(ライオン社製、平均粒径30nm)を予め混合して混合物を得て、得られた混合物を微粒子複合化装置ノビルタ(ホソカワミクロン社製)に投入し、35〜45℃で30分間混合して、複合体Dを得た。得られた複合体Dの平均粒径は、23μmであり、タップ密度は1.45g/cm3であった。得られた複合体DのSEM像を図4に示す。
[Comparative Example 1]
196 g and 4 g of the powder obtained in Reference Example 1 and Ketjen black (made by Lion, average particle size 30 nm) were mixed in advance to obtain a mixture, and the resulting mixture was mixed with a fine particle composite apparatus Nobilta (made by Hosokawa Micron). And mixed at 35 to 45 ° C. for 30 minutes to obtain a complex D. The average particle diameter of the obtained composite D was 23 μm, and the tap density was 1.45 g / cm 3 . The SEM image of the obtained composite D is shown in FIG.

[比較例2]
参考例1で得られた粉末196gと4gとアセチレンブラック(電気化学工業社製、平均粒径35nm)を予め混合して混合物を得て、得られた混合物を微粒子複合化装置ノビルタ(ホソカワミクロン社製)に投入し、35〜45℃で30分間混合して、複合体Eを得た。得られた複合体Eの平均粒径は、10μmであり、タップ密度は1.32g/cm3であった。得られた複合体EのSEM像を図5に示す。
[Comparative Example 2]
196 g and 4 g of the powder obtained in Reference Example 1 and acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 35 nm) were mixed in advance to obtain a mixture, and the resulting mixture was mixed with a fine particle composite apparatus Nobilta (manufactured by Hosokawa Micron Co., Ltd.). ) And mixed at 35 to 45 ° C. for 30 minutes to obtain a complex E. The average particle size of the obtained composite E was 10 μm, and the tap density was 1.32 g / cm 3 . The SEM image of the obtained composite E is shown in FIG.

実施例1で得られた複合体Aと比較例1で得られた複合体DのSEM像の表面拡大像(1万倍)を、図6及び図7に示す。図6と図7の対比から、実施例1の複合体Aは、(A)オリビン型シリケート化合物の表面をグラフェンが均一に被覆していることがわかる。   The surface enlarged images (10,000 times) of the SEM images of the composite A obtained in Example 1 and the composite D obtained in Comparative Example 1 are shown in FIGS. 6 and 7. From the comparison between FIG. 6 and FIG. 7, it can be seen that in the complex A of Example 1, the surface of the (A) olivine silicate compound is uniformly coated with graphene.

[試験例1]
実施例1〜3、および比較例1〜2で得られた複合体を用い、リチウムイオン二次電池の正極を作製した。実施例1〜3、および比較例1〜2で得られた複合体、ケッチェンブラック(導電剤)、ポリフッ化ビニリデン(粘結剤)を重量比75:15:10の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
[Test Example 1]
Using the composites obtained in Examples 1 to 3 and Comparative Examples 1 to 2, positive electrodes of lithium ion secondary batteries were produced. The composites obtained in Examples 1 to 3 and Comparative Examples 1 to 2, Ketjen Black (conductive agent), polyvinylidene fluoride (binding agent) were mixed at a weight ratio of 75:15:10, N-methyl-2-pyrrolidone was added to this and kneaded sufficiently to prepare a positive electrode slurry. The positive electrode slurry was applied to a current collector made of an aluminum foil having a thickness of 20 μm using a coating machine, and vacuum dried at 80 ° C. for 12 hours. Thereafter, it was punched into a disk shape of φ14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a positive electrode.

次いで、上記の正極を用いてコイン型リチウムイオン二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LIPF6を1mol/lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型リチウム二次電池(CR−2032)を製造した。 Next, a coin-type lithium ion secondary battery was constructed using the positive electrode. A lithium foil punched to φ15 mm was used for the negative electrode. As the electrolytic solution, a solution obtained by dissolving LIPF 6 at a concentration of 1 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 1 was used. As the separator, a known one such as a polymer porous film such as polypropylene was used. These battery components were assembled and housed in a conventional manner in an atmosphere with a dew point of −50 ° C. or lower to produce a coin-type lithium secondary battery (CR-2032).

製造したリチウムイオン二次電池を用いて定電流密度での充放電を1サイクル行った。このときの充電条件は電流0.1CA(33mA/g)、電圧4.5Vの定電流定電圧充電とし、放電条件は電流0.1CA、終止電圧1.5Vの定電流放電とした。温度は全て30℃とした。
実施例1〜3、および比較例1〜2の正極材で構築した電池の充放電曲線を図8〜図12に示す。図8〜図10より、本発明の複合粒子を用いた二次電池は、優れた放電容量を示すことがわかる。
One cycle of charge and discharge at a constant current density was performed using the manufactured lithium ion secondary battery. The charging conditions at this time were constant current and constant voltage charging with a current of 0.1 CA (33 mA / g) and a voltage of 4.5 V, and the discharging conditions were constant current discharging with a current of 0.1 CA and a final voltage of 1.5 V. All temperatures were 30 ° C.
The charge / discharge curves of the batteries constructed with the positive electrode materials of Examples 1 to 3 and Comparative Examples 1 and 2 are shown in FIGS. 8 to 10, it can be seen that the secondary battery using the composite particles of the present invention exhibits an excellent discharge capacity.

Claims (4)

(A)オリビン型シリケート化合物と(B)グラフェンとを質量比(A:B)で99:1〜93:7の割合で含有し、粒子径5〜30μmである、リチウムイオン二次電池正極活物質用導電性複合粒子。   (A) Lithium ion secondary battery positive electrode active containing olivine-type silicate compound and (B) graphene at a mass ratio (A: B) of 99: 1 to 93: 7 and having a particle size of 5 to 30 μm Conductive composite particles for substances. (A)オリビン型シリケート化合物粒子の表面に(B)グラフェンが均一に被覆したものである請求項1記載の導電性複合粒子。   2. The conductive composite particle according to claim 1, wherein the surface of (A) the olivine-type silicate compound particle is uniformly coated with (B) graphene. 請求項1又は2記載の導電性複合粒子からなるリチウムイオン二次電池用正極活物質。 A positive electrode active material for a lithium ion secondary battery comprising the conductive composite particles according to claim 1 . 請求項記載の正極活物質を含有するリチウムイオン二次電池。 The lithium ion secondary battery containing the positive electrode active material of Claim 3 .
JP2012248152A 2012-11-12 2012-11-12 Conductive composite particles, positive electrode active material, and secondary battery using the same Active JP5836254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012248152A JP5836254B2 (en) 2012-11-12 2012-11-12 Conductive composite particles, positive electrode active material, and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012248152A JP5836254B2 (en) 2012-11-12 2012-11-12 Conductive composite particles, positive electrode active material, and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2014096308A JP2014096308A (en) 2014-05-22
JP5836254B2 true JP5836254B2 (en) 2015-12-24

Family

ID=50939232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012248152A Active JP5836254B2 (en) 2012-11-12 2012-11-12 Conductive composite particles, positive electrode active material, and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5836254B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6064143B2 (en) * 2014-09-10 2017-01-25 太平洋セメント株式会社 Positive electrode material for lithium ion secondary battery
JP5886923B1 (en) * 2014-09-29 2016-03-16 太平洋セメント株式会社 Method for producing lithium silicate compound having amorphous structure
KR102289992B1 (en) * 2015-03-09 2021-08-18 다이헤이요 세멘토 가부시키가이샤 Positive electrode active substance for secondary cell and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2698854B1 (en) * 2010-10-22 2017-02-22 Belenos Clean Power Holding AG Method of an electrode (anode and cathode) performance enhancement by composite formation with graphene oxide
JP5804427B2 (en) * 2012-10-12 2015-11-04 太平洋セメント株式会社 Method for producing positive electrode active material for secondary battery

Also Published As

Publication number Publication date
JP2014096308A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5478693B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP5804419B2 (en) Cathode active material for lithium ion battery and lithium ion battery
JP5901019B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5804427B2 (en) Method for producing positive electrode active material for secondary battery
JP5531298B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5804422B2 (en) Method for producing secondary battery positive electrode active material
JP2012193088A (en) Method for manufacturing positive electrode active material for lithium-ion battery
JP5728515B2 (en) Method for producing positive electrode material for secondary battery
JP5709134B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5842792B2 (en) Method for producing secondary battery positive electrode active material precursor
JP5927449B2 (en) Positive electrode for secondary battery and secondary battery using the same
JP5509423B2 (en) Method for producing zirconium-containing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP5836461B1 (en) Positive electrode material for lithium secondary battery
JP5611167B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5836254B2 (en) Conductive composite particles, positive electrode active material, and secondary battery using the same
JP5765810B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5649068B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5744827B2 (en) Method for producing secondary battery positive electrode active material
JP5649067B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5969554B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP5759968B2 (en) Method for producing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP5822197B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5825573B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5649069B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP3472126B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141212

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20141212

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R150 Certificate of patent or registration of utility model

Ref document number: 5836254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250