JP4883975B2 - 基体表面上の付着物の除去方法、除去用処理液および除去装置 - Google Patents

基体表面上の付着物の除去方法、除去用処理液および除去装置 Download PDF

Info

Publication number
JP4883975B2
JP4883975B2 JP2005290678A JP2005290678A JP4883975B2 JP 4883975 B2 JP4883975 B2 JP 4883975B2 JP 2005290678 A JP2005290678 A JP 2005290678A JP 2005290678 A JP2005290678 A JP 2005290678A JP 4883975 B2 JP4883975 B2 JP 4883975B2
Authority
JP
Japan
Prior art keywords
ozone
liquid
substrate
treatment liquid
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005290678A
Other languages
English (en)
Other versions
JP2006148071A (ja
Inventor
久志 村岡
正 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RENATECH CO., LTD.
UMS Co Ltd
Original Assignee
RENATECH CO., LTD.
UMS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RENATECH CO., LTD., UMS Co Ltd filed Critical RENATECH CO., LTD.
Priority to JP2005290678A priority Critical patent/JP4883975B2/ja
Publication of JP2006148071A publication Critical patent/JP2006148071A/ja
Application granted granted Critical
Publication of JP4883975B2 publication Critical patent/JP4883975B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

本発明は、主として電子デバイス製造時の基板面上に付着した不要な有機物質並びに有機物質を含む汚染物質に対する薬液による除去、特にフォトリソグラフィ工程でのフォトレジスト膜の除去の高度化に関するものである。電子部品だけでなく精密部品のアセンブリに使われる半田フラックスのような有機物質の洗浄もこの除去技術の対象である。
電子工業ではデバイス製造に際し、フォトリソグラフィを多数回反復実施することが多く、従ってその毎回に必要なレジスト剥離工程で、剥離が完全であること、デバイス機能にダメージを与えないことが求められ、また所要時間や経費も軽視出来ない。剥離対象のレジストは、ネガ型は分解能と環境負荷の点で漸次敬遠される傾向にあり、ポジ型が主流で、なかでも量的に多いのはノボラック樹脂系であり、化学増幅型のポリビニルフェノール樹脂系等が続いている。レジスト膜がドライエッチングや高濃度のイオン注入のマスクに使われると硬化変質するので、一般にこれらレジストの除去にはプラズマ励起酸素によるアッシングが行なわれている。しかしこの処理はデバイスへダメージを与えやすく、また加工を終えた面にはレジスト等に由来する残留物を生じるので、このダメージが比較的少ない剥離液による湿式処理が併用され、加熱した硫酸+過酸化水素による分解処理、或いは、アミン類、n−メチルピロリドン、ジメチルスルホキシド、炭酸プロピレン(ネガ型用)等を主剤とする有機溶媒による溶解処理が加工膜や下地の材質に応じて使われてきた。
しかし硫酸処理は大気や河川への汚染に関し大がかりな対策を必要とする他、多量のリンス用超純水を要するので、社会的・経済的に問題がある。上記溶媒の大部分は環境破壊や毒性等に関する問題から塩素系溶媒の代替物として登場したものであるが、それでも尚リンス排液の処理を含めて環境負荷が大きく、また有機溶媒自体が高価なので経済性がよくない。そこで有機溶媒による剥離では同一液で複数回の溶解処理を行ってから廃液を蒸留で再生して使用することが行われている。処理回数が増せばそれに比例して液中の溶質の量も増大する。この溶質の一部は必ずリンスに持込まれるので回を追うごとにリンス液の負担が増え、溶質等が再汚染する危険が増す。そこで繰返し可能な回数には限度があり通常多くて十数回である。またこの廃液の蒸留による回収が省資源と経済性から望まれるが、蒸留は必ずしも容易ではなく、有害な反応を伴うこともあって特別の対策が提案されている(特許文献1)ほどである。
上述のポジ型レジストはオゾンとの反応性がある。酢酸はこの種のレジストに対して溶解能は弱いが、オゾンを含むガス(以下オゾンガスと略称する)を通気すると室温でオゾン濃度が数百mg/Lにも達し、この高濃度にオゾンを溶解した酢酸は一般的なレジスト膜であれば5μm/分程度の速い剥離速度で除去出来,しかもレジストは水溶性のカルボン酸や水等に分解されてリンスの水の負担が軽くなる。しかも酢酸自体はオゾンとごく僅かしか反応しない。従って同一処理液により100回以上の繰返し剥離が可能で、省資源・経済性の点で好ましい方法となっている(特許文献2)。しかし、酢酸は蒸気圧が高く引火性もあるので装置面での負担が大きく,またオゾンを含む酢酸は銅配線等にダメージを与える。一方、環境負荷低減、省資源が期待される剥離法としてオゾン水処理が種種提案されているが、剥離速度が不足で、高圧下で作られた180mg/L高濃度オゾン水でも約1μm/分の剥離しかできない(非特許文献1)。
約40℃の炭酸エチレン(融点36℃)ではオゾンは50mg/L程度で飽和するが、該液のレジスト剥離速度は前記オゾン飽和酢酸液の数倍と高性能化し、また該液中のオゾンは酢酸中と同様にレジストを低分子量物質に分解する。オゾンを含ませなくても既存有機溶媒系剥離液と同様に、液温を高くする程剥離性能が上がってオゾン処理以上の剥離速度も得られ、この場合剥離を終えた液にオゾンを溶解させれば多数回の繰返し剥離処理が可能である(特許文献3)。炭酸エチレン液は沸点が238℃、引火点は160℃で、80℃での蒸気圧は既存剥離液類の約1/10、150℃の高温湿式処理が可能であって、湿式処理では剥離が難しいとされているBの1×1015/cmイオン注入による硬化変質レジスト膜が約2分の浸漬で剥離できる。また銅配線にはダメージを与えず、かつ引火の危険がほとんどない(消防法の危険物に該当しない)という利点がある。炭酸アルキレンで同族列の炭酸プロピレンやそれと炭酸エチレンとの混合液も、炭酸エチレンには剥離性能は劣るが、同様のオゾン処理による多数回の循環使用が可能である。
半田フラックスが付着した精密部品や硬化前のエポキシ樹脂等の対する洗浄には、かっては塩素系溶媒やフロン系溶媒が使われていたが、毒性や環境問題等から代替洗浄剤として、重合体をよく溶解する極性非プロトン溶媒の上記剥離液類やγ−ブチロラクトン等が登場している。蒸留再生のような廃液回収の点からは、洗浄能力がやや劣っても助剤の無い処理液が好ましい。単独液でもγ-ブチロラクトンでは特許文献4がフラックス洗浄に、特許文献5が未硬化エポキシ樹脂洗浄に、また特許文献6で炭酸アルキレンが両者の洗浄に有効としている。しかし、完全な付着物除去には液の加熱や数十KHz超音波の強い併用を必要としており、複雑な回路基板やナノデバイス等での適用では機能にダメージを与える危険がある。
特許第2501008号公報 特許第3538114号公報 特開2003−330206号公報 特開平5−125396号公報 特許第3269593号公報 特開平9−176696号公報 特許第643693号公報 第62回応用物理学学術講演会 講演予稿集 12p−W−10 p.617 2001年
上記のように炭酸エチレン液によれば、高濃度のイオン注入で硬化変質したレジスト膜を150℃の高温処理により数分で剥離できる。しかし、この温度では蒸気圧が40mmHg以上になり、装置の構造上の負担が大きい。また炭酸エチレン処理では、溶解レジストをオゾンで分解出来て多数回の繰返し除去処理が可能なところに大きな利点があるが、特許文献3に示されているようにオゾン処理では液温が高いほど液との反応で酸化性物質の発生が多くなるので、融点に近い約40℃での処理が必要となる。従って、高温処理と40℃処理を繰返す循環処理となり熱損失が問題となる。剥離処理の液温とオゾンによるレジスト分解処理の液温は同じであって共に室温に近いほど好ましいといえる。
オゾンとの反応で炭酸エチレン中に発生する酸化性物質は本発明者が検討した結果、有機過酸化物であることが分かった。この過酸化物自体はレジスト除去能力に殆ど影響しないが、同一液でオゾン処理を繰返すと順次その濃度が増す。有機過酸化物は一般に重合開始剤なので、その濃度が高まるとオゾン反応による中間生成物が重合して厄介な異物質が生成する危険がある。これは剥離速度を低下させたり、リンス効果を妨げたり、また液循環系に汚染を発生させたりして、循環処理の寿命を縮める為好ましくない。炭酸アルキレンで比較的過酸化物が発生しないのはこの炭酸エチレン液ではあるが、出来る限りこの発生を抑制する必要がある。
この炭酸エチレン処理の本質的な欠点は、その融点が36℃の為、液だけでなく装置の主要部について常時40℃程度に保温する必要があることで、これは装置コストや保守の点で好ましくない。この対策として特許文献3では融点−49℃が特徴の炭酸プロピレン及び液状が維持できる混合比の炭酸エチレン・炭酸プロピレン混合溶媒による室温でのオゾン処理が提案されている。後者であれば25℃でのオゾン通気でかなり高いオゾン濃度が得られるが、一方処理温度が低いので溶解能力が落ち、結局レジスト剥離能力は若干低下する。炭酸プロピレンでもオゾン分解による多数回繰返し処理は可能ではあるが、室温処理でも過酸化物を発生しやすく、循環可能回数は劣る。特に問題なのは、炭酸プロピレンを含む剥離液でオゾン通気処理した後直接水でリンスすると、剥離面に白膜状の残存物を生じることが多いことである。その場合は水リンスの前に新しい剥離液で処理済液を確実に置換する必要がある。従ってオゾン通気による炭酸プロピレン系の室温処理は適用が限定される。
本発明は、上記の硬化変質したレジスト膜が特に液を加熱しなくても室温で剥離できるほど剥離能力の向上した炭酸エチレン含有改良処理液とそれによる除去処理方法を提供するもので、しかもその処理液に移行した有機物質はオゾンにより分解されて液が再使用でき、その際の過酸化物の発生を低減して多数回繰返し処理能力も上記炭酸エチレン処理を超える、基体表面上に付着する有機物質の除去法の高度化を課題としている。
上記課題を解決するために、本発明はまず、表面に有機系付着物を有する基体に、重量比85/15乃至55/45の炭酸エチレン(以下ECと略記することがある)とγ−ブチロラクトン(以下GBLと略記することがある)とからなる混合溶媒を含む処理液を接触させて、前記付着物を溶解作用で剥離する除去方法を基礎的な特徴として提供する。
本発明が提供する上記重量比の混合溶媒は以下の4種の混合溶媒で代表させることが出来る。
(1)EC85w%GBL15w%(以下85/15液と略称することがある)
(2)EC75w%GBL25w%(以下75/25液と略称することがある)
(3)EC65w%GBL35w%(以下65/35液と略称することがある)
(4)EC55w%GBL45w%(以下55/45液と略称することがある)
炭酸エチレンに添加した副成分のγ-ブチロラクトンは凝固点が−41.5℃で、図1は本発明者が作成した常圧におけるこの混合溶媒の凝固点図である。75/25液の凝固点は21℃で、65/35液、55/45液の凝固点はこれ以下である。空調が施されている通常の工場内では21℃以下の環境にはならないので、これらは常時液状で使用できる。また85/15液の凝固点は27℃であるが平均的な作業環境の制御温度25℃(以下室温と記載された処理は総て25℃の処理である)では過冷却により概ね液状で、若干の炭酸エチレン結晶の析出がある場合でも本出願の処理では通常問題は起こらない。
本発明は、まず、室温で準備された前記処理液により高い剥離性能が得られる除去処理法の提供が主旨で、二つの基本的な剥離法よりなっている。第1の特徴として、本発明は、基礎的な特徴として上記した除去方法であって、該基体と該処理液との接触が該基体の表面上に該処理液の液層を形成することによってなされ、放射エネルギーのピークの波長が0.24〜2μmである光線を該液層を通して該表面に、断続的に、および/または該基体と該光線とを相対的に移動させながら照射する除去方法を提供する。該基体は平板上の基体であってもよい。この除去方法は、所謂枚葉処理に適している。該光線の照射は断続的に、および/または該基体と該光線とを相対的に移動させながら行われるので、処理液層全体は僅かしか昇温しない。一方、基体表面と該表面に近接する領域の処理液は急激に昇温して、前記付着物は光エネルギーにより強化された溶解作用で該表面から剥離する。この方法が有効であることは、高温加熱した本処理液を用いる方法にも顕著な効果があることを示している。
さらに、基体上の付着物の剥離処理で該剥離物質を取込んだ排出処理液にオゾンを含むガスを好ましくは22〜27℃の処理液温度で通気して該物質を低分子量物質に分解し、該分解済み処理液を別の基体を処理する再生処理液として使用し、多数回の繰返し能力を向上させる除去方法が示されている。即ち、該処理液は循環使用することができる。処理液に超音波を照射しながらオゾンを含むガスを通気することで、該付着物の低分子量物質への分解を促進させることができる。超音波としては、例えば、20〜400KHzの超音波が挙げられる。
また本発明剥離法の第2の特徴として、多数の基体を同時に処理する所謂バッチ処理に適し、その室温処理を可能にする付着物除去方法が示される。即ち、本発明は、基礎的な特徴として上記した除去方法であって、該処理液がオゾン濃度20mg/L以上のオゾン含有処理液である方法を提供する。該オゾン含有処理液を該基体に接触させることにより、前記付着物は、溶解されると同時にオゾンの作用で低分子量物質に分解される。オゾンを処理液に溶解させるときの液温は22〜27℃であることが好ましい。
この方法においては、オゾンを100mg/L以上の濃度で含むガスを継続的に該処理液に通気して処理液中の該オゾン濃度を維持しながら、該基体を該処理液に浸漬することにより該基体に対し該処理液を接触させてもよい。また、該基体が平板状の基体であり、該平板状の基体の少なくとも一方の片面が該有機系付着物を有する場合には、該有機系付着物を有する片面と該オゾン含有処理液との接触を、該片面のみを或いは該片面と該片面とは反対側の片面とを液膜状の該オゾン含有処理液で被った状態で、該基体を濃度100mg/L以上のオゾンを含有するガス中に保持することにより行ってもよい。このようにすることで、該処理液中のオゾン濃度を20mg/L以上に維持することができ、該付着物の除去および該付着物の低分子量物質への分解を効果的に行うことができる。
この方法によって基体表面上の付着物を除去した後の処理液においては該有機系付着物が低分子量物質に分解されているので、該処理液は別の基体を処理するための処理液として循環使用することができる。該有機系付着物の分解を更に十分に進行させるためには、付着物を除去した後の処理液にオゾンを含むガスを通気してもよい。通気時の処理液温度、オゾン濃度などの条件は上記と同様のものとすることができる。オゾン含有処理液により有機系付着物の除去・分解を行う場合、または、該付着物を除去した後の処理液にオゾンを含むガスを通気する場合には、処理液に超音波を照射してもよい。これにより、該付着物の低分子量物質への分解を促進させることができる。超音波としては、例えば、20〜400KHzの超音波が挙げられる。
オゾン処理の低温化で過酸化物の発生が低減できて繰返し処理での液の寿命が格段に伸びると、レジスト自体の不純物や装置からの汚染に由来する金属元素が処理液に蓄積して基体表面に吸着汚染する危険を生じる。これを防止するために、本発明の除去方法で処理液を循環使用する場合には、除去処理対象基体の表面の構成材料と同質の或いは近似した材料からなる微粉を充填した1個または複数個の金属不純物吸着筒と、該微粉の流出を阻止する後続の精密フィルターとに該処理液を通すことによって、該処理液に蓄積する金属不純物の濃度を減少させることができる。該金属不純物吸着筒と該精密フィルターとで構成した吸着純化機構を、多数回繰返して有機物質除去処理を行なう液循環系のバイパスとして配備し、随時に稼動させる精製手段として用いれば、該処理液に蓄積する金属不純物の濃度を減少させることができる。
更に、オゾンによる多数回再生処理が施されて廃液化した処理液を下記のとおりに再生して本発明除去方法の処理液として用いることができる。即ち、
(a)循環使用されて廃液化した処理液を−30〜−15℃の温度で放置して炭酸エチレンを含む結晶を凍結分離し、
(b)凍結分離された該結晶を正常固化法にかけて、精製された炭酸エチレンを含む結晶を得、
(c)得られた該結晶をγ−ブチロラクトンと或いは前記工程(a)の結晶を凍結分離した後の処理液の蒸留精製物と混合する
ことにより調製した、重量比85/15乃至55/45の炭酸エチレンとγ−ブチロラクトンとからなる混合溶媒を含む処理液を本発明の除去方法に用いることができる。
加えて、本発明は、
A.炭酸エチレンとγ−ブチロラクトンとを主成分として含む混合溶媒を含む処理液を処理区域に輸送する処理液導入手段と、
B.前記処理区域において有機系付着物を有する基体の該有機系付着物を有する表面に前記処理液を接触させる付着物接触手段と、
C.前記処理区域から排出された処理液を、1個以上の一時的貯蔵手段を経由して該処理区域に復帰させる処理液循環手段と、および
D.前記処理区域内および/または前記一時的貯蔵手段内で、処理液にオゾン含有ガスを接触させる、オゾン含有ガス接触手段とを
有することを特徴とする有機系付着物を有する基体表面の有機系付着物の除去装置も提供する。該処理液としては、例えば、本明細書に記載の処理液が挙げられる。前記Aの手段には、更に該処理液の加熱機構が付設されていてもよい。また、前記Dの手段には、更に該オゾン含有ガスの冷却機構が付設されていてもよい。さらに、前記装置は、前記処理区域内に処理液を高圧噴射ノズルおよび/または2流体ジェットノズルによって基体に注ぐ手段を有してもよい。
本発明は特許文献3で提供された環境にやさしい炭酸エチレン処理の改良である。その弱点であった常時保温を要する問題は本発明のγ-ブチロラクトンを添加した混合溶剤処理液で解決された。これにより、まず装置構造の複雑化の不利を避け得た。しかも強調すべきは、該処理液は1×1015/cm程度の高濃度のイオン注入がなされた硬化変質レジスト膜すら室温で剥離できるほどの高性能除去処理を可能にしたことである。従来このような変質膜を有機溶媒により剥離出来る処理は、数種の混合により剥離能力の最適化を図り、さらに引火点近くまで加熱することを必要とした。本発明の除去方法は明らかに有機溶媒による常套的手法の剥離能力を超えている。
γ-ブチロラクトンが高分子に対して優れた溶解性を有することはつとに知られている。本混合溶媒は、性質の若干異なる環状エステルの溶解性能の相乗効果により、炭酸エチレン単独よりも溶解能力が向上していることはいうまでもない。しかし本混合溶媒が上記で強調された室温処理での高い剥離効果を招来したのは、むしろ以下に列記する従来の剥離用溶媒と著しく異なる特性に基づく。
1.高沸点(238℃)を有する炭酸エチレンに約30℃低い沸点(204℃)を有するγ-ブチロラクトンが混在している。
2.近赤外線・可視光・近紫外線の広い領域に亘って透明である。
3.炭酸エチレンは高温では粘度が極端に低下し180℃で0.4cP程度となるが、本混合溶媒では粘度が更に0.03cP程度低下し、低い粘度が活用されている室温でのアセトン並になる。
4.室温でオゾンガスを通気すると、炭酸エチレン液よりも迅速にオゾン濃度が立ち上がりかつ約50%高い濃度でオゾンが溶解する。またオゾン溶解挙動がγ-ブチロラクトンとは大きく違い、通気が続いても濃度が低下しないので室温20分程度の連続処理にも適している。通気停止30秒後のオゾン残存率は、γ-ブチロラクトンでは0%であるのに対し、本混合溶媒では80%近くまで向上するので、オゾン溶液を輸送して利用出来る。
5.オゾンを溶解するとき発生する過酸化物量が比較的少なく、室温で20分オゾンガスを通気しても40℃炭酸エチレンに5分通気した時と同程度である。
1〜3の特性を活かしたのが、第1の特徴として示された処理液層越しの光照射により基板・液接触領域だけを200℃近くまで急熱する剥離法である。光の照射制御はγ-ブチロラクトンの微量発泡(沸点)を利用して適正化できる。枚葉処理に適し、150℃炭酸エチレンの浸漬で剥離に2分を要した上記硬化変質レジストは、室温で準備した75/25液で1分以内に剥離できる。この高温状態の液界面では低粘度化で濡れ性が著しく向上して微細なヴィア孔や配線溝の中のレジスト変質物を含む汚染物質の排除が可能になる。界面の液の流動を妨げる境界層の厚さは粘度の平方根に比例するので、超低粘度化は境界層を薄めて微細凹部内の汚染物の運び出しに寄与する。液層の厚さにもよるが液全体の温度は通常数℃程度しか上昇せず、室温付近での蒸気圧は低いので処理による液の損失は殆ど無い。処理後の排液は容易に室温に戻りそのままオゾンガス通気すると液のオゾン濃度は高濃度まで迅速に立ち上がって効率よいレジスト分解が出来る。多数回繰り返し処理が全工程室温で出来、熱損失問題が無くなって循環処理による経済効果はさらに向上する。
本処理液の炭酸エチレン単独液に対する有機系付着物除去能力の優位性は液が高温になるほど高まる。これは上記の記載から当然の帰結である。クリーブランド開放式引火点試験で測定された75/25液の引火点は131℃である、即ち、130℃を超えるので、130℃以下の、好ましくは120℃以下の処理液は安全に使用できる。燐が高濃度イオン注入された硬化変質レジスト膜のような剥離の特に難しい付着物を生産性よく除くには、高温液で高圧噴射ノズルや2流体ジェットノズルで衝撃を与えつつ接触を行うことが極めて有効である。ただ、この場合、処理済液中のレジストをオゾンで分解するときには、過酸化物発生を抑制するために、液を22〜27℃に冷却することを要し、エネルギー損失が多くなる点が問題である。これに対して本発明者は、通気するオゾン含有ガスを十分に冷却してバブリングさせることにより、液を冷却することなく、実質的に過酸化物発生が抑制できることを見出した。冷却されたオゾン含有ガスの温度としては、例えば、−40〜20℃、好ましくは−30〜15℃が挙げられる。なお、上記高温液に超音波を照射しながら該基体に対し該高温液を接触させてもよい。
4,5の特性を活かしたのが、第2の特徴として示された27℃以下22℃以上の液にオゾンガスを通気したオゾン含有処理液に基体を接触させて、例えば浸漬して、付着物の溶解とオゾンによる分解を同時に行なう剥離法である。室温で準備した75/25液に上記硬化変質レジストの付着した基板を浸漬して濃度200mg/Lのオゾンガスを通気すると、20分で剥離し、この間にレジストは完全に分解して、また20分処理でも過酸化物発生は炭酸エチレンの5分処理並であるから、変質レジストに対しても満足な多数回繰り返し剥離処理が出来る。処理時間が長くても一般に広く使われてきた25枚程度のバッチ処理のタクト式多槽浸漬洗浄装置にはむしろ適合しており、十分な生産性と経済性で容易に実施可能である。
この室温処理では、レジスト変質の程度及びその有無に応じて通常は初めのオゾン濃度立ち上りを含めて1分乃至5分程度で剥離と分解が可能であるから、過酸化物発生はかなり低減する。従って剥離性能に関する限り多数回繰返し処理能力は40℃炭酸エチレン処理の場合に比べ50%以上向上する。繰返し処理での液の寿命が格段に伸びると、レジスト自体の不純物等による金属元素が液に蓄積して基体に吸着汚染する危険を生じるが、本発明では金属不純物吸着筒で精製する純化機構を液循環系のバイパスとして配備することも出来るので、液長寿命化による経済的また省資源効果は明らかで、本発明による繰返し処理能力向上の課題は達成された。
本発明の混合溶剤によるレジスト剥離は2種の相補う方法による室温処理で十分な性能向上効果が得られる。150℃の炭酸エチレン処理並びに40℃のオゾン含有炭酸エチレン処理より明らかに剥離性能を向上させた。また室温のオゾンガス通気でオゾン濃度の速い立ち上りと到達濃度の上昇が達成され、過酸化物の発生の低減に成功して多数回繰返し処理性能も大きく向上した。
以下、本発明の詳細について説明する。本明細書に記載されているオゾンガスは放電方式の発生装置により発生させたもので、特に断りの無い限りオゾンを約200mg/Lの濃度で含む酸素ガスが使われている。本発明ではγ-ブチロラクトンの炭酸エチレンへの適量の添加により、室温でオゾンガスを通気したとき高濃度のオゾン含有液が速い立ち上りで得られ、しかも過酸化物の発生を抑えた処理を可能にした。それは下記のように分析法を工夫して、γ-ブチロラクトン中のオゾンの濃度が随時把握できるようになったからである。
《処理液中のオゾン濃度の定量と過酸化物発生量の評価》
通常、水溶性の液におけるオゾンの分析は、この液にヨウ化カリウムを加えた時直ちに遊離するヨウ素を定量するヨウ素法が標準的である。有機溶媒にオゾンを溶解した場合は、同時に有機過酸化物が発生しやすく、ヨウ素法を実施すると過酸化物も直ちにヨウ素を遊離してオゾンによる遊離量に加算される。しかし、一般にオゾンが過酸化物より分解が早いので、この性質を利用して双方とも分析が可能である。ところが、γ−ブチロラクトンはそれ自体がヨウ化カリウムと直ちに反応するのでヨウ素法は適用出来ない。従って、他の大部分の有機溶剤と同様にオゾンは殆ど溶かさないものと推定されていた。
本発明者は、低濃度のオゾンの定量に使われていた、青色のインジゴカルミン液との反応で起こる褪色を比色で計る分析法について検討した結果、高濃度オゾンでも十分な精度で定量可能な手法を確立し、また過酸化物についてはその褪色反応を研究した結果に基づき、その発生量を相対的に評価出来る手法を工夫し得た。そこでγ−ブチロラクトンだけでなく、広く他の有機溶剤についても双方の量についての比較が可能になった。
《レジスト剥離用有機溶媒のオゾン処理に関する評価》
そこでレジスト剥離用に従来から使われている或いは発表されている有機溶媒について、夫々のビーカー内50mLに対し、25℃でオゾンガスを径25mm厚さ15mmの円筒状フッ素樹脂製バブラーを使って0.3L/分の流速で5分間通気し、その直後のオゾン濃度と過酸化物発生量の相対値(40℃炭酸エチレンに5分通気での発生量を1とする)を求めた。結果を表1に示す。因みに40℃炭酸エチレンの20分通気では過酸化物発生量は2、即ち5分通気の場合の2倍で、25℃炭酸プロピレン20分通気では略4である。
Figure 0004883975
オゾン濃度と過酸化物発生に関し、γ-ブチロラクトンが炭酸プロピレンに近い結果となった。他の溶媒はまったくオゾンが存在しないか、含まれても僅かという結果になり、前者では白煙が出て液温が10℃も上昇するほど激しい反応を起こすものもあった。従って炭酸エチレンの添加物として同族列溶媒以外ではγ-ブチロラクトンだけが検討に値した。そこでγ-ブチロラクトンと炭酸エチレンについて、オゾンの作用を比較する為、後者が液状を保てる40℃でオゾンガス通気時間とオゾン濃度の関係を調べた。結果を図2の実線のグラフに示す。両者とも通気後1分程度までは濃度が急速に立ち上がり、炭酸エチレン液ではその後増加率は漸次減るもののオゾン濃度が増して望ましいといえる。γ−ブチロラクトンは立ち上がったオゾン濃度がすぐ頭打ちしてその後減少が速く、オゾンを分解する物質が副生するものと思われる。γ-ブチロラクトンは25℃処理では5分程度で頭打ちし以降急落傾向を示すので、連続してオゾン処理を行なう除去手段には適しない。
《本混合溶剤の室温オゾン処理におけるオゾン濃度》
本発明の組成範囲を代表する前記4種の混合溶剤に対して、上述と同じ通気条件により室温でオゾンガス通気を行なったときの液オゾン濃度の経時測定結果を図2の点線で示す。85/15液と75/25液の5分通気では40℃の炭酸エチレン液で得られる濃度の約50%高の75mg/L程度が得られ、20分通気を続けても濃度は略一定であるか若干増加の傾向を示す。これらの組成は連続してオゾンを通気する浸漬除去処理に適する。本混合溶剤はγ-ブチロラクトンの比率が増すほど得られるオゾンの濃度が低下するが、65/35液も55/45液も通気約10分後オゾン濃度は頭を打つもののその後の低下が緩やかで、γ-ブチロラクトンの急落特性の影響が意外にも弱い。20分後で約60mg/Lの高い濃度が保たれ、この組成はレジスト以外の重合物の剥離で有効なことが多い。
《本混合溶剤の室温オゾン処理における過酸化物発生》
前記4種の混合溶剤に対して上述と同じ通気条件により室温でオゾンガス通気を行ったときの過酸化物発生量相対値の経時測定結果を表2に示す。
Figure 0004883975
繰返し剥離処理の能力を支配する過酸化物量の評価は、40℃,5分の炭酸エチレン処理との比較で行なった。その背景は次のとおりである。1×1014/cmのイオン注入による硬化変質レジストを剥離した炭酸エチレン液はレジスト溶液に未溶解粒が分散しているが、オゾンガスの40℃,5分通気でレジストは完全に分解されこの再生で約100回の循環処理が出来た。終わりに近い段階では剥離速度はかなり低下したが実用範囲は許容した。比較的剥離が難しい処理での実績であるから、循環剥離処理が実用的に可能な1回のオゾン通気処理での過酸化物発生量は、40℃の炭酸エチレン液に対し濃度200mg/Lのオゾンガスの5分通気で生じる量と決め、これを比較の基準量とした。この発生量のヨウ素法による実測値は循環回数や処理したレジストの種類でばらつくが5〜10mg当量/Lである。表2のコントロールの発生量相対値の1はその基準を示している。25℃,20分の炭酸プロピレン剥離は繰返し処理の能力が半分程度に落ちるが、これを実用での限界とすると、上記した20分通気での発生量相対値、即ち4が過酸化物発生許容の上限となる。γ−ブチロラクトンは20分オゾン通気での相対値が7〜8でオゾンによる繰返し再生には適しないが、炭酸エチレンの添加成分となった場合幾分は過酸化物発生を抑制するように作用しており、この効果は本発明への寄与が大きい。
表2から、室温での75/25液と85/15液のオゾン処理における過酸化物の発生量は40℃炭酸エチレン処理の略1/2で、循環液の寿命は2倍になる筈であるが室温処理といえども液の蒸発や飛散があり実質的には伸びは50%程度である。他の2つの組成液も炭酸プロピレンの場合より過酸化物発生が少なく、前記2者には劣るもののかなりの循環寿命が期待出来る。γ−ブチロラクトン成分が45重量%以上になると過酸化物発生は許容出来ない量となる。
《オゾン処理に関する最良の除去対象》
上記のオゾン高濃度化と優れた循環剥離特性が活かせる除去対象有機物質は、オゾンとよく反応して低分子量物質に分解され、その低分子量物質が該混合溶剤及びリンス用の水に溶解しやすいものでなければならない。従って、分子内に二重結合やベンゼン環(縮合環を含む)或いは求核性原子等を有する分子量の大きい物質、特に重合体物質が該当する。本混合溶剤はこのオゾンの分解反応に関与するので即ち活性溶媒であるから、分解生成物の大部分は低分子量の物質である場合が多い。具体的には、本発明の方法における有機系付着物としては、例えば、フォトレジストおよび半田フラックスが挙げられ、更に具体的には下記のとおりである。
本発明が最適の除去対象有機物質とするのは、ポジ型レジストの大部分を占めるノボラック樹脂レジスト及びポリビニルフェノール樹脂レジスト即ち分子内にフェノール類を含む重合体物質であって、オゾンとよく反応し、本混合溶剤自体の分解物を含めて生成物質はギ酸、酢酸、シュウ酸、グリコール酸等のカルボン酸やそのエステルあるいは炭酸ガス、水等である。オゾン再生の多数回繰返しでこれら低分子量生成物の該溶媒中の濃度が5%程度まで増えてもレジスト膜に対する液の溶解能力は殆ど低下しない。またレジスト分子のままで溶解している既存剥離剤に比し、水溶性物質にまで分解しているとリンスにおけるレジスト物質の排除、即ち、剥離後の面の清浄化がはるかに容易である。
電子部品関連で使われるエポキシ樹脂の90%以上はフェノール系で硬化前のものはオゾンとの反応性があり、その他半田付けフラックスに多いロジンは多環芳香族化合物でオゾンにより分解されて、本発明のよい除去対象である。電子部品に係わらずその他表面の付着物となる重合体で、オゾンと反応性があるものは少なくない。それらは本発明の好ましい対象になる。
《処理液》
本発明において、基体表面上の有機系付着物を除去するために好ましく使用できる処理液としては、例えば、重量比85/15乃至55/45の炭酸エチレンとγ−ブチロラクトンとからなる混合溶媒とオゾンとの反応生成物及び前記有機系付着物とオゾンとの反応生成物を合計で0乃至5重量%含み、残余は前記混合溶媒である処理液が挙げられる。該処理液は、更に、0.1〜2重量%のシュウ酸を含んでいてもよい。これにより、本発明による処理液の有機系付着物除去作用を更に向上させることができる。
炭酸プロピレンはネガ型レジスト膜の剥離剤として知られており、表1に示したようにオゾンに対する性質はγ−ブチロラクトンに似ている。炭酸プロピレンやオゾンの溶解能が極めて大きい酢酸等のその他の溶媒を本発明の処理液に添加することは使用目的によっては新たな効果もありうる。しかし、これらの溶媒を添加しても上記の重量比が保たれる限り、本発明の本来の効果は発揮できる。従って、本発明の処理液は、この種の溶媒を含んでいても、本発明の範疇に含まれることはいうまでもない。
《本混合溶剤の室温オゾン処理における硬化変質レジスト剥離能力》
本発明剥離法の第2の特徴として示された室温のオゾン含有混合溶剤の基体への接触について、レジスト剥離性能を40℃のオゾン含有炭酸エチレン処理と比較する。比較用レジスト試料は、特許文献3に記載されている150℃の炭酸エチレン液で剥離に2分を要した一般に湿式処理で剥離が難しいとされている高濃度のイオン注入硬化変質膜を選び、その試料と同仕様で作成した。即ち、シリコン酸化ウェーハ上の厚さ1.5μmのノボラックレジスト(JSR(株)IX500)膜の全面において、11を30KeVで1×1015/cm注入したものから2cm×2cmのチップを切出して比較実験の試料とした。
レジスト剥離処理は図2のデータ―作成に使われた処理と同条件のオゾン通気手段を使い、1分通気してから試料チップをビーカー中の液に浸漬して所定時間通気後、流純水でリンスし風乾した。剥離状況は顕微鏡下で観察した。40℃の炭酸エチレン液では、過酸化物発生が許容できる5分浸漬ではレジストは僅かしか変化を受けず、10分浸漬で表面がギザギザに見える程度、20分浸漬でも完全な剥離は出来ない。しかし85/15液、75/25液のいずれでも室温10分浸漬でかなりの部分が、20分で完全に剥離された。MHz超音波を併用すると10分浸漬で剥離され、40KHz程度の超音波が使える場合は3分で剥離される。表2からこれらの液の20分通気でも過酸化物発生は許容範囲であって、65/35液、55/45液の順に僅かずつ剥離が速くなるが、一方過酸化物発生は多くなる。剥離速度についてはγ−ブチロラクトンがレジスト溶解力を助長する能力を有する為と推察できる。
この室温オゾン処理は当然カセットに収納したウェーハでの浸漬処理に適用できる。完全に剥離を終えた液はオゾンによる分解も進行し無色透明であって、強く変質したレジストでもオゾンにより十分に分解され、既存剥離剤による高温処理で必ずみられる未分解物の浮遊分散等はほとんどない。従って、この液にそのまま次のウェーハを浸漬して剥離処理を行なうことが出来、繰返し剥離処理を簡単に実施出来る場合が多い。レジストの変質が非常に強く未分解物の浮遊が残る場合でも、処理液を一旦別の槽に移して20〜400KHzの超音波を照射しつつ室温でオゾン通気を施せば数分で浮遊物を分解でき、該分解追加処理液を浸漬槽に戻して次のウェーハの剥離に用い、多数回繰返し除去処理を遂行することが出来る。
本発明の室温オゾン処理によれば、40℃オゾン含有炭酸エチレン処理では除去が無理な強く変質した付着物でも除くことが出来、明らかに剥離性能が向上している。また、室温処理故に装置が簡単化するほか、処理の低温化で揮散による大気への汚染も低減され、保守の面でも著しい改良効果が得られる。剥離処理に20分或いは10分を要するのは長すぎるようであるが、直接オーバーフロー純水リンスを後続させることが出来るので、従来から広く使われ洗浄機の主流であるバッチ式の多槽浸漬処理装置にタクトの点でも好都合に適用が可能となり、本混合溶媒は特別の設備投資をしなくても実用に供し得る。
当然変質程度の弱い或いは150℃以下のベーキングだけのレジスト膜は、室温の本混合溶媒処理液に浸漬してオゾンガス通気すれば数分或いは1分以内、場合によっては10秒程度で剥離出来る。しかし、一定の濃度のオゾンガスを短時間ずつ断続して供給することは発生装置が複雑化するので、タクト式処理装置でタクトに合わせてオゾン濃度を下げ処理時間を延ばす方が実用的である。下げ過ぎると分解能力が急に低下するので液のオゾン濃度は20mg/L以上は必要である。また、その為に通気するオゾンガスの濃度はバブラーの構造やガス流速等でオゾン溶解効率が変わるので、余裕を見て100mg/L以上に設定すれば十分である。
《浸漬法以外の処理液と基板の接触方法》
上記のように速い剥離が出来るレジスト膜は実際には半導体ウェーハの面上や液晶デバイス用ガラス基板面上で広く使われている。また浸漬処理以外の特に枚葉処理を必要とする工程は非常に多い。10秒乃至30秒程度で剥離できる場合は既存の枚葉処理装置の改造で概ね生産性と均質性を満足させ得る。浸漬法以外の処理液と基板の接触方法としては、例えば、オゾンガスを通気して得られたオゾン含有混合溶剤処理液をオゾン溶解容器から輸送して処理装置に供給し、該処理液を基板面上を流れる液膜状態にして基板と接触させる方法が挙げられる。該処理液を基板面上を流れる液膜状態にするには、基板をその面に垂直な回転軸で回転させながら、或いは基板をその面の延長方向に移動させながら、面上へ該液をノズルから供給することで実行できる。ここで問題となるのは、有機溶媒中のオゾン濃度はオゾンガスの通気がないと急速に減少することである。表3はオゾンガス通気停止後の経過秒数に対するオゾン濃度の残存率を示す。
Figure 0004883975
処理液へのオゾンの供給が停止すると液のオゾン濃度がγ−ブチロラクトンでは急速に低下するが、γ−ブチロラクトンが炭酸エチレンに含まれるとオゾンの寿命がむしろ伸びる。室温のオゾン含有混合溶剤処理液をオゾン溶解容器から輸送して処理装置に供給するときは輸送時間が短いことが望ましいが,実用上はノズルに到達まで30秒以下であれば問題は無い。
《本混合溶剤の溶解性能における優位性》
本発明の室温オゾン処理の40℃オゾン含有炭酸エチレン処理に対する剥離性能の優位は、上述した55/45液が65/35液より僅かだが剥離が速くなることからも推測できるようにγ−ブチロラクトンの溶解能力が寄与して混合溶剤の溶解能力が向上し、溶解オゾン量の高濃度化と相俟ってその相乗効果が齎したものといえる。本来γ−ブチロラクトンは高分子に対して優れた溶解性があり、炭酸エチレンとは同じ環状エステルで、水溶性が良いこと、芳香族に対して溶解性が高いことなど性質が似ているが、溶解パラメーター(SP値)は1程度小さくて約13であり、フェノール樹脂(SP値:約12)やエポキシ樹脂(SP値:約11)に近い。従って本混合溶媒をレジストを含めてこの種の有機物質の付着に適用する場合は55/45液に近い組成がオゾンの剥離寄与を助ける。正確に比較できる試料が出来なったので、定性的であるが、一般的なフェノール樹脂系やエポキシ樹脂系塗料に対して、オゾン添加炭酸エチレン液への浸漬より室温でのこの処方の方が明らかに剥離が速かった。
《室温で準備された混合溶媒中の光照射による剥離》
本発明剥離法の第1の特徴として示された方法では、室温で準備された混合溶剤の液層が付着物のある基体表面に形成され、該液層を通して該基板に光線を照射する。この照射は液全体の温度の上昇は抑えて基体表面及び接触する液の近接領域だけの温度を急上昇させ、実質的に炭酸エチレンの高温処理より高い温度での処理を可能にするものである。この効率のよい加熱は、好ましくは、処理液に吸収されない光線を前記基体表面近傍に集光させ、該集光させた光線により該表面を走査することにより行われる。より具体的には、該加熱は、例えば、該光線を集光して焦点を含むまたは焦点から少し外れた集光部により該表面を走査することにより行なわれる。集光部のエネルギー量の調整は選ばれた光源と光学系に応じて照射の断続と走査方法の最適化で行なう。照射条件の決定は具体的な剥離性能の検討で決まるが、予備的段階では混合溶媒成分のγ−ブチロラクトンの沸点が都合よく利用できる。僅かな微泡の出現を目安にすると液全体の昇温は10℃以下に抑えて200℃をやや下回る温度での剥離処理の条件が視野に入る。
なお、基体が上記光線に対して透明な平板状の基体であり、該平板状の基体の一方の片面が有機系付着物を有する場合には、上記の光照射による剥離は、該有機系付着物を有する片面上に該処理液の液層を形成することによって該基体に該処理液を接触させ、該有機系付着物を有する片面とは反対側の片面に該光線を吸収する物質よりなる補助板の表面を密着させ、該光線を該液層および該基体を通して該補助板の表面に、断続的に、および/または該補助板と該光線とを相対的に移動させながら照射することによって行うことができる。その際の加熱は、好ましくは、該補助板の表面近傍に集光させた上記光線により該補助板の表面を走査することにより行われる。より具体的は操作は、上記と同様に行うことができる。
ここでは光源として赤外線ランプを使用した。剥離能力は、室温オゾン処理の効果比較の為に作成した150℃炭酸エチレンでの浸漬で剥離に2分を要する、1×1015/cmイオン注入の硬化変質レジスト膜の2cm×2cmチップ試料で比較した。図3はこのイオン注入レジストチップに対する当剥離実験の概念を示すものである。試料チップ1はレジスト面を上にして、皿2に満たした深さ約6mmの室温の75/25液3に沈めた。皿の上方に0.5KWの直管型ハロゲンランプ4を配置し、反射鏡5で近赤外線6をレジスト面に集光し、皿を矢印方向に往復させて集光線でチップの全面を間欠的に走査した。この近赤外線の放射エネルギーのピークは定格電圧印加では波長1.2μmで、本混合溶媒の吸収ピークのある赤外領域まで裾は殆ど広がっていない。一方波長2.5μm以下の近赤外線領域には本混合溶剤の吸収ピークはまったく無いし、液体の熱伝導率は小さいので液全体の急激な昇温は無い。この光線を吸収した基体シリコンの昇温は速く、処理液のチップ面との接触部が連れて微泡の見られる200℃近くまで昇温するのでレジストに対する液の溶解能力は急速に増す。しかし変質部分は容易には溶解し得ないので、この部分は膜状で浮かぶように剥がれ、それを含んだ薄い茶色のレジスト溶解液が得られた。所要時間はほぼ1分で、炭酸エチレンの高温浸漬処理より明らかに剥離速度が大きい。処理後の液温の上昇は数℃に止まり、実質的には高温処理なのに溶媒蒸気の散逸は殆どみられない。
要するにこの方法は基板上の付着物を光エネルギーにより強化された溶解作用で剥離するものである。使用できる光線は赤外線ランプ光に限定されない。本混合溶剤の吸収スペクトルの見られない波長領域の光線、即ち放射エネルギーのピークの波長が2.5μm以下で、好ましくは2μm以下で、0.24μm以上の光線が使用可能である。例えば、発振波長がこの範囲領域にあるレーザ光はすべて利用出来、基体の吸収の大きい波長を選べばよい。具体的には、半導体分野でのレーザ加工に広く使われているNd:YAGレーザの波長1.06μm或いはその第2高調波の0.532μm、第4高調波の0.266μmの短パルスレーザー光を用いることができる。
光線の照射に際しては、新たな処理液を基体表面上の液層に供給することにより該処理液を液層状態で該基体表面上を移動させて処理液を更新してもよい。これにより、処理液全体の昇温を抑えることができる。新たな処理液の供給は、継続的に行っても、必要に応じて間欠的に行ってもよい。
《レジスト溶解液のオゾンによる分解》
上記の未溶解膜を含んだレジスト溶解着色液は放置するだけでも短時間に室温近くになる。ここでオゾンガスを通気すると、着色が10秒以内に消失し、40KHz程度の超音波を照射しつつ2分間オゾン通気を継続すると未溶解物も消える。超音波の効果は特に強力で通気するオゾンガスの濃度を1/2に下げても分解所要時間は実用範囲である。生成した低分子量物質は分析によれば既述の分解生成物類と同様であり、過酸化物の発生量は40℃炭酸エチレンの場合のほぼ半分である。本発明の光線利用混合溶媒処理とオゾンによる分解処理は室温での多数回循環処理を可能にし、繰返し回数も炭酸エチレン処理の2倍近く向上できる。
以下、本発明を実施例によって具体的に説明するが本発明はこれら実施例に限定されるものではない。
《実施例1》
室温で準備された本発明の混合溶剤処理液中でハロゲンランプ光の集光部で付着物のある基体表面を走査する除去法を既に説明したが、本実施例では並列させたハロゲンランプを具備した平板炉の下方に除去対象の基板を位置させて同様の光線照射浸漬処理を行なう方法を説明する。液晶デバイス用ガラス基板上のレジストを除去対象にしたので、ガラスが近赤外線エネルギーを吸収しない。そこで該基板を光を確実に吸収する補助板の上に載せて剥離を試みた。
本実施例における剥離の対象はガラス基板上のアルミニウム/モリブデン2層膜テストパターンをドライエッチングして形成するためのマスクとして使われたレジストであって、該レジスト膜はリアクティブイオンで硬化変質している。この剥離のテストの為に該パターン形成基板を20cm角に切断した。テスト装置は既存の真空チャック付枚葉スピンナ洗浄装置の回転部とチャンバーの壁面及び底面を改造したものである。回転部の俯瞰図を図4に示す。回転部は平坦で四角形の底板7と10°の傾斜のある幅3cmの縁部8で形作られ、薄くフッ素樹脂でコートされたステンレス鋼製の皿である。底板7が補助板になっている。図5はこの装置の概念を示す断面図で、皿の底板7は断熱材9を介して十字形のステンレス製支持体10に固定され、支持体10は駆動機構(図示省略)の回転軸11に嵌合されて駆動機構より皿が回転する。真空吸引(関係機構は図示省略)により基板12をパターンの面を上にその角がピン13の対で挟まれる位置に固定する。本発明の処理液は、貯蔵タンク14中の室温の混合溶媒15が配管(本実施例ではすべて太線で示され、液は矢印の方向に流れる)でスプレーノズル16に送られ、該ノズルから真空吸引を止めた基板上に満たされ、基板12上に液層17が形成される。尚、配管に付属する液を送る為の送液ポンプや除塵フィルター、バルブ類等は図面では省略されている。
皿の上方には0.5KW直管型ハロゲンランプ18が反射面体19とともに並列した平板炉20(炉の下面には石英ガラス板を具備)が配置されていて、皿に処理液が満ちると同時に皿を100rpm以下で遅く回転させ、ランプは定格電圧で作動させてそのオンオフにより光放射を断続させて皿底上面を略均一な所定温度に制御する。放射近赤外線のエネルギーはほとんど処理液に吸収されず、大部分がステンレス皿に吸収され熱伝導で基板温度が上昇し、近接する液領域も昇温して溶媒の溶解作用が増強される。間接的な光加熱なのでシリコン基板の場合より剥離に時間がかかるが、通常液全体の温度上昇は10℃以下である。長い処理時間を必要とする場合は放射の切れ間にスプレーノズルからの瞬時の液供給を行なって、皿縁から液を溢れさせれば、液温の上昇は十分抑止できる。光線処理を終えたら、皿の回転数を500〜1000rpmに上げると液は皿の縁を越えて排出される。ここでノズルから処理液をスプレーして所定時間リンスの後、送液を止め、要すれば回転数を上げて余分の液を切り、薄い液膜が覆った状態の基板12を超純水のスピンリンサードライヤーに移して、リンスの後スピン乾燥する。基板は真空吸引孔から逆に送気して浮いた状態にして移動用ハンドル(図示省略)に掴ませれば容易に移送出来る。
この剥離テストでは85/15液を処理液とした。皿の回転を60rpmとしたとき、皿底表面の温度が10秒で200℃になった(この立上がり時間は短いことが望ましく、その為には断熱材9の代わりに加熱板を設け予熱しておくことが好ましい)。その温度が保持出来るよう平板炉の照射断続を調整した。30秒経過後、1000rpmで5秒スプレーリンスした後、1500rpmで5秒空回転して停止させ、基板を移して超純水10秒リンスとスピン乾燥を実施した。ランプ処理終了時の液温の上昇は10℃以下であった。基板は走査型電子顕微鏡で観察してレジストの完全な剥離と金属膜がまったくダメージを受けていないことを確認した。尚、炭酸エチレンで同様の効果を得るには100℃以上の浸漬剥離処理が必要であった。
皿の構造から回転時には液の飛散が上向くので、この装置ではチャンバー壁21を改造して上方に内向きの庇を設けた。またチャンバー底22は処理液が回収出来る凹構造とし、回収液は配管で水冷機構を付属させたオゾン処理タンク23に送られる。タンク23に数回分の吸着液が集まったところで室温のオゾンバブリング24を実施したところ10秒程度でレジストが分解された。液は10分も放置されるとオゾンは分解して消滅する。この液は貯蔵タンク14に戻され、再使用・循環処理に供される。オゾン通気時間は短くて済み、しかも室温処理であるから発生する過酸化物は少なく、150回以上の循環も可能である。炭酸エチレン処理に比して液の寿命は50%以上伸びる。
《実施例2》
デュアルダマシン銅配線は先端的ULSIの超微細構造における標準的プロセスの一つである。銅の埋込みを行う前のドライエッチング後の構造のモデルを図6に示す。このプロセスは銅配線25が層間絶縁膜26に埋込まれたCMP平坦化面上の配線にかかわるもので、本実施例ではSiCバリア層27の上に層間絶縁膜28とその膜内のSiCエッチングストップ膜29が積層しており、膜29にはヴィア孔用開口部が設けてあって、マスクのレジスト30により銅配線溝31とヴィア孔32が形成されたテストウェーハを利用した。膜28は低誘電率のメチルシルセスキオキサン(Methylsilsesquioxane(MSQ))が使われている。このウェーハから2cm×2cmのチップを切出して、室温で準備された2重量%のシュウ酸を含む75/25液によりドライエッチングで硬化変質したレジストのアッシング無しの除去と微細孔内の洗浄を試みた。
微細孔形成の為に施されたドライエッチングでは、ヴィア孔底部のオーバーエッチングに際しスパッタされた銅がこれら微細孔の側壁から外にまで飛び散り、また銅の表面は酸化される。またヴィア孔も溝孔も側面にはレジスト変質物やエッチング堆積物が存在し、銅埋込の前にはこれらも含めてすべてを除去する洗浄が必要である。このような微細孔の洗浄には(1)洗浄液が確実に入り込み、(2)該液が除去対象を孔外に迅速に運び出した後、(3)該液をリンス液と置換し、次いで(4)リンス液を排除して乾燥する手順が必要となる。孔が微細になり深くなる程この洗浄は難しい。本発明の混合溶剤は既述のように200℃近く加熱すると粘性率が著しく低下し、表面張力も低下するので微細孔へ浸透しやすくなる。そこで75/25液でウェーハ表面に液層33を形成し、光加熱で膜の温度を急上昇させると基体表面に接する領域の液の温度が急上昇し、レジストと汚染物の除去ならびに上記(1)に記載の液浸透が効率的に進行する。
剥離実験は、赤外線によるチップ剥離を行なった図3の皿2の中に処理液の供給口と排液口と底にチップの位置を固定する4個の小突起を設け、光線照射時はチップ面上の液層が一定方向に流動するように細工した。光照射はハロゲンランプ光を短パルスレーザ光に変えて実施した。微細構造の層間絶縁膜でもエネルギー吸収がおこるように、QスイッチNd:YAGレーザの第4高調波0.266μmの発振装置を用い、10KHzのレーザ光をレンズで集光して径200μmのスポットを100mm/秒、線密度10本/mmで走査した。この構造は水の残存が嫌われるのでイソプロピルアルコールでリンス後、操作をさらに1回繰返して行い、乾燥した後の走査型電子顕微鏡観察でレジストが剥離され孔及び溝の内部が清浄化されていることを確認した。処理液の添加シュウ酸を0.1重量%としたときは3回の繰返しでほとんど残渣がなくなったが、シュウ酸を添加しないと十分な残渣の排除は出来なかった。
《実施例3》
本実施例はローラーコンベアで搬送される液晶デバイス用ガラス基板表面のレジストを室温の剥離液で剥離する方法に関する。生産性の立場から剥離は短時間で遂行されるのが望ましいので、通常50〜70℃程度に剥離液を加熱してローラー軸方向の線上に配置されたノズルからスプレーすることが行われている。炭酸エチレン加熱液で処理する場合は蒸気圧が低いので、基板面が乾くこと無くまた直接水リンスに移行できる点でも他の剥離液より優れている。この利点がそのまま活かされる本発明混合溶媒による室温の除去を、20cm角に切断したレジスト塗布ガラス基板で実験した。実験装置の概念図を図7に示す。基板36がローラー37で矢印方向に1m/分の速さで搬送されるとき、70℃炭酸エチレン3秒のスプレーでは剥離不完全、6秒で剥離されるように基板へのノボラック型レジストの塗布条件並びにノズルおよびスプレー条件を決めた。
貯蔵タンク14中の室温の混合溶媒75/25液15が配管でオゾン通気槽38に送られ、槽内の液39にオゾンガス40がバブリングされ、基板の移動と共にオゾン溶解液(オゾン濃度70mg/L以上)が送液ポンプPにより加熱液の場合と同じ吐出条件でノズル41から6秒スプレーされた。処理済の基板は純水スプレー後風乾して顕微鏡で観察した結果十分にレジストが剥離されていることを確認した。ドライエッチング処理等でレジスト剥離が難しくなった場合は、液15を別に設けた配管と送液ポンプPより高圧噴射用ノズル42で基板面に6秒噴射する剥離処理を追加した。実施例1の基板でもテストを行なったが、この処理でほとんど剥離された。処理時間を延長すれば確実に除去出来る。走査型電子顕微鏡による観察では金属膜はまったくダメージを受けていない。
ローラー36の下に凹構造の処理液受け43を設け、処理済みの液は貯蔵タンク23に回収される。ノズル42を使用した場合は、タンク23の中でオゾンガスバブリング24を実施する。オゾン通気は通常30秒を要しない。尚、ノズル41のみ使用の場合は、通常はレジスト剥離と同時にレジスト分解が起きるのでタンク23内のオゾン処理は不要である。いずれにせよ、タンク23の液はタンク14に移され、液は多数回繰り返し使用される。尚、イオン注入で強く硬化したレジストに対してもノズル41とのズル42の処理を反復すれば、時間を要するものの剥離は可能である。この場合はタンク23中でのレジストのオゾン分解には数分以上を要する。しかし20〜400kHz超音波照射を併用すれば1〜2分での分解が可能である。
この実験装置のノズル類を旧に復して40℃の炭酸エチレン処理を行なった場合と75/25液でのこの処理とで循環処理能力を比較したところ、後者はやはり処理温度が低いだけ有利になり,繰返し可能回数が50%以上増加した。しかし多数回繰り返しを進めると当然レジスト由来の或いは装置材料由来の金属汚染が増加して基板を逆に汚染する危険がある。そこで50回あるいは100回等を節目にして、処理液を貯蔵タンク44にバイパスさせ、半導体デバイスの基本構成材料である高純度シリコンの微粉末を充填した塔46と同じく基本構成材料の酸化膜と同質の高純度石英ガラス微粉の充填塔47に対して、液45を順に通過させ精密フィルターで除粒子処理をして原タンク14に送ると、基板のデバイス活性領域に液から吸着汚染する可能性がある有害金属を選択的に低減させた液に再生することが出来る(特許文献7の応用)。微粒に吸着固定された金属は、稀フッ酸をそれぞれの充填塔に流すことにより容易に除去できるので、並列処理を構成すれば交互の再生で連続精製が可能になる。
《実施例4》
ノボラック型のポジレジストに対し本発明の多数回繰り返しオゾン処理を行った後の廃液には分析によって水、グリコール酸、ギ酸、酢酸、シュウ酸、酪酸等のレジスト分解生成物が見られ、また原子吸光分析によれば数十ppbのFeやNaが検出される。処理液として85/15液や75/25液が使われ、廃液における炭酸エチレンの比率が大きい場合の炭酸エチレン回収法として、結晶析出法と正常固化法の組合せを試みた。
大型のポリエチレン製広口瓶に溜め、発泡スチロール製断熱用キャップを瓶の上方に被せて約−30℃の冷凍倉庫に1夜放置した。図1の凝固点図に従って炭酸エチレン結晶を析出させ、網蓋を取り付けて瓶を倒置してγ‐ブチロラクトンと炭酸エチレンがほぼ2:1の混合比で存在する残液を流出させた後、室温の環境に移して加温し、一旦瓶内の炭酸エチレン結晶を熔解する。僅かに結晶が残存している段階で加温を中止し、典型的な正常固化法を下方から適用して再結晶精製を2回繰り返し、当初の炭酸エチレン成分量の約70%を回収した。液体クロマトグラフィや原子吸光分析によれば、上述のレジスト分解生成物及び金属不純物は1/10以下に精製されており、基板の清浄度を特に重視する必要のない付着物の除去には十分再利用できる。85/15液の廃液の場合は冷凍庫放置は−15℃程度でも十分である。
《実施例5》
電子回路基板の信頼性を左右する半田付けフラックスの洗浄に本発明を適用した実施例を示す。この種のフラックスの主成分はロジンであるから、ロジン(関東化学試薬)を銅板上に散布し150℃で20分熔融したテスト基板で実験を行った。除去の評価はロジン付着量を重量差で求めておき、洗浄後の残存量から計算した残存率によった。使用した装置の概念図を図8に示す。基板を垂直に保持して浸漬出来る為のすり合せ面の上縁48を持つ処理槽49を用い、内部の処理液50に対し、底部の供給管51からオゾンガスをバブリング(バブラーの図示省略)出来るように構成した。尚52はオゾン排ガスの放出管である。すり合せ面のある下縁53をもつキャップ槽54の中には洗浄対象基板55がセット出来て、処理液槽内に下降・上昇出来る機構(図示省略)が組込まれている。
一連の洗浄は槽49へ55/45液を溜め、オゾンガスをバブリングすることから始まる。テスト基板55をセットしたキャップ槽54を被せた後、この槽の頭頂部に設けたガス導入管56からオゾンガスを導入して槽内の空気と置換する。その後、基板を下降させ1秒浸漬して元の位置へ復帰させて、10秒放置する。この操作を3度繰返した後、キャップ槽を移動して下縁53をリンス槽57の上縁58のすり合せ面に合わせる。基板を純水59内に下降させてオーバーフローリンスを約1分施した後、基板を復帰させキャップ槽を離す。次に、導入管56から熱風を導入して基板を乾燥させる。室温になるまで乾燥基板を放置した後、重量法評価を行った。その結果、ロジンの残存率は測定誤差の範囲に入り、除去は満足に行われることが分かった。ロジンやエポキシ樹脂(未硬化のもの)等はSP値がフェノール樹脂より小さいので、γ−ブチロラクトンの比率が多い方が溶解能力の点で望ましい。基板上の処理液は液膜の状態でオゾンと接するので、瞬時にオゾン濃度が100ppm近くまで高まる。しかも処理液中のγ−ブチロラクトンは短時間の高濃度オゾンとの接触ではほとんど変質しない。溶解したこれらの有機系物質は液50のオゾンによって分解するが、生成物質の基板への付着は少なく純水リンスの効率がよい。
《実施例6》
実施例3の液晶デバイス用ガラス基板表面のレジスト剥離実施例ではイオン注入で強く硬化したレジストに対しても時間をかけて処理を反復すれば剥離は可能であった。更に生産性を上げるため、図9のように装置に僅かな変更を行った。図9では、処理液供給用配管60で供給される75/25混合溶媒液をオゾン添加せずに加熱器61で高温に加熱し、窒素ガスを使って2流体ジェットノズル62により液を微粒化し高速気流と共にレジスト硬化面に衝撃を与え加熱との相乗効果を計った。この混合溶媒では引火点が130℃を超えるため、120℃でも安全に操作できる。また排液は装置内において循環でオゾン再生できる。よって、十分の流量が使用でき、液滴速度を100m/s以上としても容易に連続稼動できる。このような操作条件ではPを1015/cmイオン注入したレジスト膜でも経済的な基板搬送速度で剥離が可能である。
高温液で剥離してもタンク23に入るとかなり自然冷却されるが、液温は室温よりはるかに高く、これではオゾン処理にあたりγ-ブチロラクトンの分解が早い。一方、排液を再生し循環して加熱再使用する点からは排液の液温が下がりすぎるのは好ましくない。そこでタンク23の中のオゾンバブラー63を微小泡が大量に発生する構造とし、オゾンガス供給系にガス冷却器64を設けて冷却されたガスがオゾンバブラー63に入るようにした。
実施例では-20℃に冷却したガスを溶解したレジストで褐色化した液に送ったところ色は瞬時に消え、溶解した物質は短時間で分解される。細かい針状未分解物が液に分散するがこれは容易に精密フィルターで分離除去できた。オゾンの供給は無色化と同時に中止したが、30回の分解処理ではγ-ブチロラクトンへの反応は殆ど検出されなかった。この場合レジスト分解反応は泡の気液界面にごく近い低温の狭領域でおこり、γ-ブチロラクトン自体への影響は殆どないと推定される。
常圧における炭酸エチレンとγ−ブチロラクトンの二成分系凝固点図 オゾン通気時間と処理液オゾン濃度との関係を示す図 処理液層越しの近赤外線照射でレジスト剥離する方法の概念を示す縦断面図 処理液層越し並列近赤外光源照射法の回転部の俯瞰図 処理液層越し並列近赤外光源照射法の概念を示す縦断面図 デュアルダマシンでの液層通過光レジスト剥離と洗浄の概念を示す縦断面図 ローラー搬送基板を用いてオゾン混合溶媒による剥離を行う装置の縦断面図 フラックス洗浄をオゾン雰囲気の処理液膜で行なう方法の概念を示す縦断面図 図7の装置を改良して得られた装置の縦断面図
符号の説明
1. 試料チップ 2. 処理液層形成用皿
3. 処理液層 4. ハロゲンランプ
5. 反射鏡 6. 近赤外線
7. 回転部底板 8. 回転部底板縁
9, 断熱材 10. 底板支持体
11. 回転軸 12. 基板
13. 基板の止めピン 14. 貯蔵タンク
15. 処理液 16. スプレーノズル
17. 処理液層 18. ハロゲンランプ
19. 反射面体 20. 平板炉
21. チャンバー壁 22. チャンバー底
23. オゾン処理タンク 24. オゾンバブリング
25. 銅配線 26. 層間絶縁膜
27. SiCバリア層 28. 層間絶縁膜
29. エッチングストップ膜 30. レジスト膜.
31. 銅配線溝 32. ヴィア孔
33. 処理液層 34. レーザ光
35. 処理液の対流 36, ガラス基板
37. コンベア用ローラー 38. オゾン通気槽
39. オゾン処理液 40. オゾンガス
41. オゾン処理液用ノズル 42. 高圧噴射用ノズル
43. 処理液受け 44. 液貯蔵タンク
45. 精製前処理液 46. シリコン微粉塔
47. 石英ガラス微粉塔 48. 処理液槽上縁
49. 処理液槽 50. 処理液
51. オゾンガス供給管 52. オゾンガス排出管
53. キャップ槽下縁 54. キャップ槽
55. 基板 56. ガス導入管
57. リンス槽 58. リンス槽上縁
59. リンス用純水 60. 処理液供給用配管
61. 加熱器 62. 2流体ジェットノズル
63. オゾンバブラー 64. ガス冷却器

Claims (15)

  1. 表面に有機系付着物を有する基体に、重量比85/15乃至55/45の炭酸エチレンとγ−ブチロラクトンとからなる混合溶媒を含むオゾン濃度20mg/L以上のオゾン含有処理液を接触させて、前記付着物を剥離することを特徴とする基体表面上の有機系付着物の除去方法。
  2. 請求項1に係る方法であって、オゾンを100mg/L以上の濃度で含むガスを継続的に該処理液に通気して処理液中の該オゾン濃度を維持しながら、該基体を該処理液に浸漬することにより該基体に対し該処理液を接触させることを特徴とする方法。
  3. 請求項1に係る方法であって、該基体が平板状の基体であり、該平板状の基体の少なくとも一方の片面が該有機系付着物を有し、該有機系付着物を有する片面と該オゾン含有処理液との接触が、該片面のみを或いは該片面と該片面とは反対側の片面とを液膜状の該オゾン含有処理液で被った状態で、該基体を濃度100mg/L以上のオゾンを含有するガス中に保持することでなされることを特徴とする方法。
  4. 請求項1に係る方法であって、該基体が平板状の基体であり、該平板状の基体の少なくとも一方の片面が該有機系付着物を有し、該有機系付着物を有する片面と該オゾン含有処理液との接触が、該基体を該片面の延長方向に移動させながら或いは該片面に垂直な回転軸で回転させながら、該片面上に該オゾン含有処理液をオゾン溶解用容器から流出後30秒以内にノズルから該片面上に供給し、該片面上を液膜状に流すことでなされることを特徴とする方法。
  5. 請求項1〜4のいずれか一項に係る方法であって、基体表面上の付着物を除去した後、該処理液を別の基体を処理するための処理液として循環使用することを特徴とする方法。
  6. 請求項1〜4のいずれか一項に係る方法であって、基体表面上の付着物を除去した後、該処理液にオゾンを含むガスを通気し、該通気後の処理液を別の基体を処理するための処理液として循環使用することを特徴とする方法。
  7. 該処理液に超音波を照射しながらオゾンを含むガスを通気することを特徴とする請求項6に係る方法。
  8. 該処理液に超音波を照射しながら該基体に対し該処理液を接触させることを特徴とする請求項1または2に係る方法。
  9. 該処理液を循環使用する際、該基体の表面の構成材料と同質の或いは近似した材料からなる微粉を充填した1個または複数個の金属不純物吸着筒と、該微粉の流出を阻止する後続の精密フィルターとに該処理液を通すことによって、該処理液に蓄積する金属不純物の濃度を減少させることを特徴とする請求項5または請求項6に係る方法。
  10. 請求項5、請求項6及び請求項のいずれか1項に係る方法であって、
    (a)該循環使用された処理液を−30〜−15℃の温度で放置して炭酸エチレンを含む結晶を凍結分離し、
    (b)凍結分離された該結晶を正常固化法にかけて、精製された炭酸エチレンを含む結晶を得、
    (c)得られた該結晶をγ−ブチロラクトンと或いは前記工程(a)の結晶を凍結分離した後の処理液の蒸留精製物と混合する
    ことにより調製した、重量比85/15乃至55/45の炭酸エチレンとγ−ブチロラクトンとからなる混合溶媒を含む処理液を使用することを特徴とする方法。
  11. 基体表面上の有機系付着物を除去するための処理液であって、重量比85/15乃至55/45の炭酸エチレンとγ−ブチロラクトンとからなる混合溶媒とオゾンとの反応生成物及び前記有機系付着物とオゾンとの反応生成物を合計で0乃至5重量%含み、残余は前記混合溶媒であることを特徴とする処理液。
  12. 更に、0.1〜2重量%のシュウ酸を含むことを特徴とする請求項11に係る処理液。
  13. A.炭酸エチレンとγ−ブチロラクトンとを主成分として含む混合溶媒を含む処理液を処理区域に輸送する処理液導入手段と、
    B.前記処理区域において有機系付着物を有する基体の該有機系付着物を有する表面に前記処理液を接触させる付着物接触手段と、
    C.前記処理区域から排出された処理液を、1個以上の一時的貯蔵手段を経由して該処理区域に復帰させる処理液循環手段と、および
    D.前記処理区域内および/または前記一時的貯蔵手段内で、処理液にオゾン含有ガスを接触させる、オゾン含有ガス接触手段とを
    有することを特徴とする有機系付着物を有する基体表面の有機系付着物の除去装置。
  14. 請求項13に係る装置であって、前記Aの手段に、更に該処理液の加熱機構が付設され、前記Dの手段に、更に該オゾン含有ガスの冷却機構が付設されていることを特徴とする装置。
  15. 請求項13または14に係る装置であって、前記処理区域内に処理液を高圧噴射ノズルおよび/または2流体ジェットノズルによって基体に注ぐ手段を有することを特徴とする装置。
JP2005290678A 2004-10-19 2005-10-04 基体表面上の付着物の除去方法、除去用処理液および除去装置 Expired - Fee Related JP4883975B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290678A JP4883975B2 (ja) 2004-10-19 2005-10-04 基体表面上の付着物の除去方法、除去用処理液および除去装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004304409 2004-10-19
JP2004304409 2004-10-19
JP2005290678A JP4883975B2 (ja) 2004-10-19 2005-10-04 基体表面上の付着物の除去方法、除去用処理液および除去装置

Publications (2)

Publication Number Publication Date
JP2006148071A JP2006148071A (ja) 2006-06-08
JP4883975B2 true JP4883975B2 (ja) 2012-02-22

Family

ID=36627349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290678A Expired - Fee Related JP4883975B2 (ja) 2004-10-19 2005-10-04 基体表面上の付着物の除去方法、除去用処理液および除去装置

Country Status (1)

Country Link
JP (1) JP4883975B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110484126A (zh) * 2019-07-16 2019-11-22 福建中安高新材料研究院有限公司 用稀释液减压蒸馏残液制备的大红透明漆及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5006111B2 (ja) * 2007-06-12 2012-08-22 国立大学法人 筑波大学 フォトレジスト除去装置
JP5006112B2 (ja) * 2007-06-12 2012-08-22 国立大学法人 筑波大学 フォトレジスト除去方法
JP2010054423A (ja) * 2008-08-29 2010-03-11 Nomura Micro Sci Co Ltd レジスト洗浄剤中の金属の定量方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3618525A1 (de) * 1986-06-02 1987-12-03 Daimler Benz Ag Kupplungsnehmerzylinder fuer eine druckmittelbetaetigte kupplung
JPH0945650A (ja) * 1995-08-01 1997-02-14 Hitachi Ltd 洗浄装置
JPH11218933A (ja) * 1998-01-30 1999-08-10 Fuji Film Olin Kk レジスト洗浄除去用溶剤および電子部品製造用基材の製造方法
JP4256038B2 (ja) * 1999-09-21 2009-04-22 株式会社東芝 熱処理方法
JP2001194806A (ja) * 1999-10-25 2001-07-19 Toray Ind Inc レジスト剥離方法
JP3914842B2 (ja) * 2001-10-23 2007-05-16 有限会社ユーエムエス 有機被膜の除去方法および除去装置
JP2003203856A (ja) * 2001-10-23 2003-07-18 Ums:Kk 有機被膜の除去方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110484126A (zh) * 2019-07-16 2019-11-22 福建中安高新材料研究院有限公司 用稀释液减压蒸馏残液制备的大红透明漆及其制备方法

Also Published As

Publication number Publication date
JP2006148071A (ja) 2006-06-08

Similar Documents

Publication Publication Date Title
KR20060054058A (ko) 기체 표면 상의 부착물의 제거 방법, 제거용 처리액 및제거 장치
KR100882988B1 (ko) 유기 피막의 제거 방법
JP4861609B2 (ja) 有機物質の除去方法および除去装置
KR20010034043A (ko) 포토레지스트막 제거방법 및 이를 위한 장치
JPH1027771A (ja) 洗浄方法及び洗浄装置
JP2001223206A (ja) 基板処理方法および装置
JPH10298589A (ja) 洗浄液及び洗浄方法
US6627846B1 (en) Laser-driven cleaning using reactive gases
JP2001250773A (ja) レジスト膜除去装置及びレジスト膜除去方法
JP4883975B2 (ja) 基体表面上の付着物の除去方法、除去用処理液および除去装置
KR100229687B1 (ko) 유기물 피막의 제거방법
JPH10116809A (ja) 洗浄方法及び洗浄システム
WO2007058286A1 (ja) 基板の洗浄方法及び洗浄装置
JP6969750B2 (ja) 炭酸水素水及びこれを使用する洗浄方法
JP4114395B2 (ja) 基体表面の有機被膜の除去装置
JP2003203856A (ja) 有機被膜の除去方法
JP4320982B2 (ja) 基材処理装置
JP4004318B2 (ja) 有機被膜の除去方法および除去剤
JP2008042017A (ja) レジストを回収可能なレジスト剥離除去方法及びそれを用いる半導体製造装置
JP3196963B2 (ja) 有機物の除去方法
JPWO2006132008A1 (ja) 有機被膜剥離剤、該剥離剤を用いた有機被膜の除去方法および除去装置
JP2011014696A (ja) 有機質物除去方法
JP2006324358A (ja) レジスト除去方法及びレジスト除去装置
JP2004104090A (ja) 表面付着汚染物質の除去方法及び除去装置
JP2007240638A (ja) 剥離剤の溶解方法、該溶解方法を組み込んだ基体表面上の有機被膜成分の除去方法および除去装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4883975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees