JP4880148B2 - Fluid machinery - Google Patents

Fluid machinery Download PDF

Info

Publication number
JP4880148B2
JP4880148B2 JP2001290556A JP2001290556A JP4880148B2 JP 4880148 B2 JP4880148 B2 JP 4880148B2 JP 2001290556 A JP2001290556 A JP 2001290556A JP 2001290556 A JP2001290556 A JP 2001290556A JP 4880148 B2 JP4880148 B2 JP 4880148B2
Authority
JP
Japan
Prior art keywords
impeller
wall portion
hub
spiral
spiral chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001290556A
Other languages
Japanese (ja)
Other versions
JP2002147397A (en
Inventor
ブーヒァー ヤーコブ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN B&W Diesel GmbH
Original Assignee
MAN B&W Diesel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7659767&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4880148(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by MAN B&W Diesel GmbH filed Critical MAN B&W Diesel GmbH
Publication of JP2002147397A publication Critical patent/JP2002147397A/en
Application granted granted Critical
Publication of JP4880148B2 publication Critical patent/JP4880148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • F01D21/045Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position special arrangements in stators or in rotors dealing with breaking-off of part of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/30Retaining components in desired mutual position
    • F05B2260/301Retaining bolts or nuts
    • F05B2260/3011Retaining bolts or nuts of the frangible or shear type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の壁部分から成りうず巻き状流路を備えたうず巻室内に半径流羽根車が配置され、この羽根車が軸受ハウジング内に駆動回転可能に支持された軸上に置かれたハブを有し、ハブの外側輪郭とハブに対向位置するうず巻室の内側壁部分の外側輪郭とが、軸線方向から半径方向に転向された流路を形成し、うず巻室が軸受ハウジングに固定されている流体機械に関する。
【0002】
【従来の技術】
例えばターボ過給機の半径流圧縮機あるいはラジアルターボ過給機の半径流タービンのような流体機械の基本的な構成および作用は、既に知られているので、ここでは詳細に説明しない。即ち例えばドイツ特許第19502808号明細書に、ターボ過給機の半径流圧縮機の形をした流体機械が記載されている。その場合、うず巻室の内部において、ハブと羽根との直径は流れ方向に増大し、羽根の外側輪郭は弓形をし、それに隣接しトーラス状に外側に湾曲したうず巻き流路壁の輪郭に相応している。そのうず巻室の通路壁はハブと共に、外側に転向された通路部分を画成し、この通路部分に羽根が組み入れられている。この半径方向外側に転向された通路部分に、うず巻き通路に開口する環状通路部分が連通している。
【0003】
そのようにして通路幅にわたって異なった流れ方向が生ずる。その原因は、流れ通路の転向範囲において作用する遠心力にある。この遠心力により、流れはハブ側通路壁に、反対側のハウジング壁よりも強く接し、このために、空間的に異なった流れ分布が生じ、それに応じて、ハブ側に、その反対側よりも急角度の入口角が生ずる。非対称的な圧縮機流の反作用のために、周期的な横力が発生され、この横力は運転を荒くし、共振作用の際に、羽根車を破壊してしまう。羽根車が破壊すると、その破片がうず巻室から飛び出す。これは絶対に防止されなければならず、そのような破片からの防護は、今日においても実証されねばならない。このために今日において、羽根車を収容するうず巻室の外側に、補助防護装置を設けることが普通に行なわれている。
【0004】
【発明が解決しようとする課題】
本発明の課題は、冒頭に述べた形式の流体機械を、破壊した羽根車の破片がうず巻室から飛び出ることを単純且つ安価な手段で防止し、うず巻室の外側に補助破壊防護装置を設ける必要がないように改良することにある。
【0005】
【課題を解決するための手段】
この課題は本発明に基づいて請求項1の特徴部分に記載の手段によって解決される。
【0006】
羽根車のハブの外側輪郭に対向位置するうず巻室の壁部分が、羽根車の総合最大運動エネルギを吸収するために、破壊した羽根車のために生ずる力により、うず巻室の内部で軸線方向に変位できるように形成されていることによって、“衝撃緩衝領域”を備えたうず巻室が形成される。従って、破壊した羽根車の破片がそこからもはや飛び出ることはなくなる。
【0007】
うず巻室の外側における補助破壊防止装置は省かれる。
【0008】
羽根車のハブの外側輪郭に対向位置するうず巻室の内側壁部分が、うず巻室の外側壁部分に破壊設定個所を介して結合され、その破壊設定個所が、エネルギ吸収中にうず巻室と軸受ハウジングとの固定部が壊れる前に破壊するように設定されているか、及び/又は、内側壁部分が、うず巻室の外側壁部分に大きく変形可能な軟らかいねじによって結合されていることによって、損傷のないうず巻室が、破壊エネルギに由来する力に基づいて、軸受ハウジングから外れ、破片がうず巻室と軸受ハウジングとの間に生ずる隙間を通って飛び出すことが防止される。
【0009】
特に、うず巻室の内部における内側壁部分の軸線方向変位距離が、破壊エネルギを求める計算式で定められ、その計算式によって、壁部分の破壊エネルギが、羽根車の吸収すべき最大運動エネルギと予め定められた安全係数との積と同じかそれより大きく定められていることによって、羽根車が破壊した際の流体機械の安全性は計算で求められ、従って完全な流体機械を破壊する経費のかかる破壊試験はもはや不要となる。
【0010】
【発明の実施の形態】
以下において図に示した実施例を参照して本発明を詳細に説明する。
【0011】
図1には、半径流圧縮機の形をした本発明に基づく流体機械が部分縦断面図で示されている。
【0012】
図1に示された形式の排気駆動過給機は、その長手方向中央部が軸受ハウジング1に支持されている軸2を有している。この軸2はその軸受から突出する片側軸端にタービンランナ(図示せず)を有し、反対側軸端に半径流圧縮機の羽根車3(概略的に図示)を有している。
【0013】
この羽根車3は、タービンランナによって駆動される軸2上に固く結合されたハブ4を有している。このハブ4は外周面に半径方向に突出する羽根5が付けられている。ハブ4の外側輪郭6は、うず巻室8の内側壁部分7と共に、軸線方向から半径方向に転向され外側に向けて狭まる流路9を画成している。この流路9の横断面は羽根5の構成に相応している。羽根車3の中央横断面に対して非対称的な縦断面およびそれに応じて羽根車3の長さに関して増加する質量分布が生ずるように、ハブ4と羽根5との直径は入口から出口まで増加している。
【0014】
半径方向外側に転向され、うず巻室8の内側壁部分7によって画成された流路9は、うず巻室8の外側壁部分11によって画成されうず巻き通路10に開口する環状通路12に連通している。この環状通路12には固定案内羽根車が設けられている。この案内羽根車の案内羽根13はうず巻室8の外側壁部分11に固定されている。
【0015】
うず巻室8の内側壁部分7は、一方では大きく変形できる軟らかいねじ14によって、他方では破壊設定個所15によって、うず巻室8の外側壁部分11に結合されている。この外側壁部分11は、うず巻き通路10および案内羽根13付き環状通路12を画成している。
【0016】
うず巻室8自身は固定結合部16によって軸受ハウジング1に固定されている。
【0017】
うず巻室8、ないしはうず巻室8の外側壁部分11に対して内側壁部分7を変位可能にする、変形可能なねじ14、破壊設定個所15および固定結合部16は、要約すれば次の観点に基づいて実施されねばならない。
【0018】
羽根車3を包囲する内側壁部分7ないしはその軸線方向変位性は、最大回転運転中における最大運動エネルギ、即ち、好適には1.2以上の安全係数を乗算した値を超える羽根車3の運動エネルギを、“衝撃緩衝領域”として吸収でき、即ち破壊するまでに吸収できるように設定されている。
【0019】
そのために、うず巻室8の内側壁部分7は、羽根車3の破片によって与えられる軸線方向力Fの作用下において羽根車3の運動エネルギを吸収しながら軸線方向aに変位できるように、外側壁部分11に固定されている。
【0020】
その場合、軸線方向に変位する材料の単位容積当たりの破壊エネルギEbspは次式で計算される。
【数1】

Figure 0004880148
ここで、σは材料の応力、εは材料の伸びである。
【0021】
羽根車の最大運動エネルギEkinは次式で表される。
kin=IP・(ω2/2)
ここで、 P は回転軸に関する羽根車の質量慣性モーメント、ωは羽根車の最大角速度である。
【0022】
従って、破壊エネルギEBは次式で得られる。
B≧安全係数・Ekin(安全係数≧1.2)
B=容積・Ebsp
【図面の簡単な説明】
【図1】本発明に基づく流体機械の部分縦断面図。
【符号の説明】
1 軸受ハウジング
2 軸
3 羽根車
4 ハブ
5 羽根車の羽根
6 ハブの外側輪郭
7 内側壁部分
8 うず巻室
9 流路
10 うず巻き通路
11 外側壁部分
12 環状通路
13 案内羽根
14 変形可能なねじ
15 破壊設定個所
16 固定継手
F 力
a 変位方向[0001]
BACKGROUND OF THE INVENTION
In the present invention, a radial flow impeller is disposed in a spiral chamber having a spiral flow path composed of a plurality of wall portions, and the impeller is placed on a shaft that is rotatably supported in a bearing housing. A hub has an outer contour of the hub and an outer contour of the inner wall portion of the spiral chamber positioned opposite the hub to form a flow path that is turned radially from the axial direction, and the spiral chamber is formed in the bearing housing. The present invention relates to a fluid machine that is fixed.
[0002]
[Prior art]
The basic construction and operation of a fluid machine, such as a turbocharger radial flow compressor or a radial turbocharger radial flow turbine, is already known and will not be described in detail here. Thus, for example, DE 19502808 describes a fluid machine in the form of a turbocharger radial flow compressor. In that case, the diameter of the hub and the blades increases in the flow direction inside the spiral chamber, and the outer contour of the blade has an arcuate shape and corresponds to the contour of the spiral channel wall curved outwardly adjacent to it. is doing. The spiral chamber passage wall, together with the hub, defines an outwardly redirected passage portion into which vanes are incorporated. An annular passage portion that opens to the spiral passage communicates with the passage portion that is turned outward in the radial direction.
[0003]
In this way different flow directions occur across the passage width. The cause lies in the centrifugal force acting in the turning range of the flow passage. This centrifugal force causes the flow to contact the hub-side passage wall more strongly than the opposite housing wall, resulting in a spatially different flow distribution and correspondingly on the hub side than on the opposite side. A steep entrance angle results. Due to the reaction of the asymmetric compressor flow, a periodic lateral force is generated, which causes rough operation and destroys the impeller during resonance. When the impeller breaks, the debris pops out of the spiral chamber. This must be prevented absolutely, and protection from such debris must be demonstrated today. For this reason, it is common practice today to provide an auxiliary protective device outside the spiral chamber that houses the impeller.
[0004]
[Problems to be solved by the invention]
The object of the present invention is to prevent the broken impeller fragments from jumping out of the spiral chamber with simple and inexpensive means, and to provide an auxiliary destruction protection device outside the spiral chamber. It is to improve so that it is not necessary to provide.
[0005]
[Means for Solving the Problems]
This problem is solved according to the invention by the measures described in the characterizing part of claim 1.
[0006]
The wall portion of the spiral chamber facing the outer contour of the hub of the impeller absorbs the total maximum kinetic energy of the impeller, so that the axis generated inside the spiral chamber is due to the force generated by the broken impeller. By being formed so as to be displaceable in the direction, a spiral chamber having an “impact buffer region” is formed. Therefore, the broken impeller fragments will no longer jump out of it.
[0007]
The auxiliary destruction prevention device outside the spiral chamber is omitted.
[0008]
The inner wall portion of the spiral chamber facing the outer contour of the hub of the impeller is coupled to the outer wall portion of the spiral chamber via a fracture setting location, and the fracture setting location is the spiral chamber during energy absorption. And / or the bearing housing is fixed to break before breaking, and / or the inner wall portion is connected to the outer wall portion of the spiral chamber by a softly deformable soft screw. The spiral chamber without damage is prevented from coming off the bearing housing based on the force derived from the fracture energy, and the fragments are prevented from jumping out through the gap formed between the spiral chamber and the bearing housing.
[0009]
In particular, the axial displacement distance of the inner wall portion in the spiral chamber is determined by a calculation formula for determining the breaking energy, and the breaking energy of the wall portion is determined by the maximum kinetic energy to be absorbed by the impeller. By being set to be equal to or greater than the product of the predetermined safety factor, the safety of the fluid machine when the impeller breaks down is calculated and therefore the cost of destroying the complete fluid machine Such destructive testing is no longer necessary.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the following, the invention will be described in detail with reference to the embodiments shown in the figures.
[0011]
FIG. 1 shows in partial longitudinal section a fluid machine according to the invention in the form of a radial compressor.
[0012]
The exhaust-drive supercharger of the type shown in FIG. 1 has a shaft 2 whose longitudinal center is supported by a bearing housing 1. The shaft 2 has a turbine runner (not shown) at one end of the shaft protruding from the bearing and an impeller 3 (schematically shown) of a radial flow compressor at the opposite shaft end.
[0013]
The impeller 3 has a hub 4 which is rigidly connected on a shaft 2 driven by a turbine runner. The hub 4 is provided with blades 5 protruding radially on the outer peripheral surface. The outer contour 6 of the hub 4, together with the inner wall portion 7 of the spiral chamber 8, defines a flow path 9 that is turned in the radial direction from the axial direction and narrows outward. The cross section of the flow path 9 corresponds to the configuration of the blades 5. The diameter of the hub 4 and the blades 5 increases from the inlet to the outlet so that a longitudinal profile that is asymmetric with respect to the central cross section of the impeller 3 and a correspondingly increasing mass distribution with respect to the length of the impeller 3 results. ing.
[0014]
The flow path 9 that is turned radially outward and defined by the inner wall portion 7 of the spiral chamber 8 communicates with an annular passage 12 that opens to the spiral passage 10 defined by the outer wall portion 11 of the spiral chamber 8. is doing. The annular passage 12 is provided with a fixed guide impeller. The guide vane 13 of this guide impeller is fixed to the outer wall portion 11 of the spiral chamber 8.
[0015]
The inner wall portion 7 of the spiral chamber 8 is connected to the outer wall portion 11 of the spiral chamber 8 on the one hand by a soft screw 14 which can be largely deformed, and on the other hand by a fracture setting point 15. The outer wall portion 11 defines a spiral passage 10 and an annular passage 12 with guide vanes 13.
[0016]
The spiral chamber 8 itself is fixed to the bearing housing 1 by a fixed coupling portion 16.
[0017]
The deformable screw 14, the fracture setting 15 and the fixed joint 16 that allow the inner wall 7 to be displaced relative to the spiral chamber 8 or the outer wall 11 of the spiral chamber 8 are summarized as follows: Must be implemented based on perspective.
[0018]
The inner wall portion 7 that surrounds the impeller 3 or the axial displacement of the impeller 3 exceeds the maximum kinetic energy during maximum rotational operation, that is, preferably a value multiplied by a safety factor of 1.2 or more. It is set so that energy can be absorbed as an “impact buffer region”, that is, absorbed before breaking.
[0019]
For this purpose, the inner wall portion 7 of the spiral chamber 8 is arranged so that it can be displaced in the axial direction a while absorbing the kinetic energy of the impeller 3 under the action of the axial force F given by the fragments of the impeller 3. It is fixed to the wall portion 11.
[0020]
In that case, the fracture energy E bsp per unit volume of the material displaced in the axial direction is calculated by the following equation.
[Expression 1]
Figure 0004880148
Where σ is the stress of the material and ε is the elongation of the material.
[0021]
The maximum kinetic energy E kin of the impeller is expressed by the following equation.
E kin = I P · (ω 2/2)
Here, I P is the mass moment of inertia of the impeller with respect to the rotation axis, and ω is the maximum angular velocity of the impeller.
[0022]
Thus, breaking energy E B is obtained by the following equation.
E B ≧ safety factor ・ E kin (safety factor ≧ 1.2)
E B = Volume · E bsp
[Brief description of the drawings]
FIG. 1 is a partial longitudinal sectional view of a fluid machine according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bearing housing 2 Shaft 3 Impeller 4 Hub 5 Impeller blade | wing 6 Outer outline 7 Inner side wall part 8 Spiral winding chamber 9 Channel 10 Spiral winding path 11 Outer side wall part 12 Annular path 13 Guide vane 14 Deformable screw 15 Destruction setting point 16 Fixed joint F Force a Displacement direction

Claims (4)

複数の壁部分(7、11)から成りうず巻き状流路(9)を備えたうず巻室(8)内に半径流羽根車(3)が配置され、この羽根車(3)が軸受ハウジング(1)内に駆動回転可能に支持された軸(2)上に置かれたハブ(4)を有し、ハブ(4)の外側輪郭とハブ(4)に対向位置するうず巻室(8)の内側壁部分(7)の外側輪郭とが、軸線方向から半径方向に転向された流路(9)を形成し、うず巻室(8)が軸受ハウジング(1)に固定されている流体機械において、羽根車(3)のハブ(4)の外側輪郭(6)に対向位置するうず巻室(8)の壁部分が、羽根車(3)の最大運動エネルギ、即ち、羽根車の質量慣性モーメントと最大角速度とに基づいて定められる運動エネルギを吸収するために、破壊した羽根車のために生ずる力(F)によって、うず巻室(8)の内部で軸線方向(a)に変位できるように形成され、前記羽根車(3)のハブ(4)の外側輪郭(6)に対向位置するうず巻室(8)の内側壁部分(7)が、うず巻室(8)の外側壁部分(11)に破壊設定個所(15)を介して結合され、その破壊設定個所(15)が、エネルギ吸収中にうず巻室(8)と軸受ハウジング(1)との固定部(16)が壊れる前に破壊するように設定されていることを特徴とする流体機械。A radial flow impeller (3) is disposed in a spiral chamber (8) having a spiral flow path (9) composed of a plurality of wall portions (7, 11), and the impeller (3) is connected to a bearing housing ( 1) A swirl chamber (8) having a hub (4) placed on a shaft (2) supported in a drive-rotatable manner in the outer contour of the hub (4) and facing the hub (4) And the outer contour of the inner wall portion (7) of the inner side form a flow path (9) turned in the radial direction from the axial direction, and the spiral machine (8) is fixed to the bearing housing (1). in the wall portion of the hub vortex chamber facing located outside contour (6) (4) (8) of the impeller (3) is the maximum kinetic energy of the impeller (3), i.e., the mass of the impeller to absorb the kinetic energy determined based on the moment of inertia and the maximum angular velocity, the force arises because of a fractured impeller By F), are formed so as to be displaced in the axial direction (a) in the interior of the vortex chamber (8), spiral chamber which faces located outside contour (6) of the hub (4) of the impeller (3) The inner wall portion (7) of (8) is coupled to the outer wall portion (11) of the spiral chamber (8) via a fracture setting location (15), and the fracture setting location (15) is absorbing energy. A fluid machine characterized in that it is set so that the fixed portion (16) between the spiral chamber (8) and the bearing housing (1) is broken before breaking . 羽根車(3)のハブ(4)の外側輪郭(6)に対向位置するうず巻室(8)の内側壁部分(7)が、うず巻室(8)の外側壁部分(11)に大きく変形可能な軟らかいねじ(14)によって結合されていることを特徴とする請求項1記載の流体機械。  The inner wall portion (7) of the spiral chamber (8) facing the outer contour (6) of the hub (4) of the impeller (3) is greatly larger than the outer wall portion (11) of the spiral chamber (8). 2. Fluid machine according to claim 1, characterized in that it is connected by a deformable soft screw (14). うず巻室(8)の内部における内側壁部分(7)の軸線方向変位距離が、破壊エネルギを求める計算式、即ち、前記軸線方向に変位する材料に作用する応力と伸びと、前記材料の容積とに基づいて求める計算式で定められ、その計算式によって、前記内側壁部分(7)の破壊エネルギが、羽根車(3)の吸収すべき最大運動エネルギと予め定められた安全係数との積と同じかそれより大きく定められていることを特徴とする請求項1記載の流体機械。The axial displacement distance of the inner wall portion (7) inside the spiral chamber (8) is a calculation formula for obtaining the fracture energy, that is, the stress and elongation acting on the material displaced in the axial direction, and the volume of the material. defined by the formula obtained based on the bets, the product of the the formula, breaking energy of the inner wall portion (7), the maximum kinetic energy with a predetermined safety factor to be absorbed in the impeller (3) The fluid machine according to claim 1, wherein the fluid machine is defined to be equal to or larger than. 予め定められた安全係数が1.2以上であることを特徴とする請求項記載の流体機械。The fluid machine according to claim 3, wherein the predetermined safety factor is 1.2 or more.
JP2001290556A 2000-10-13 2001-09-25 Fluid machinery Expired - Fee Related JP4880148B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000150931 DE10050931C5 (en) 2000-10-13 2000-10-13 Turbomachine with radial impeller
DE10050931.2 2000-10-13

Publications (2)

Publication Number Publication Date
JP2002147397A JP2002147397A (en) 2002-05-22
JP4880148B2 true JP4880148B2 (en) 2012-02-22

Family

ID=7659767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001290556A Expired - Fee Related JP4880148B2 (en) 2000-10-13 2001-09-25 Fluid machinery

Country Status (3)

Country Link
JP (1) JP4880148B2 (en)
CH (1) CH695741A5 (en)
DE (1) DE10050931C5 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004028133C5 (en) * 2004-06-09 2017-10-26 Man Diesel & Turbo Se Turbomachine, in particular exhaust gas turbocharger
DE502005002724D1 (en) * 2005-05-03 2008-03-20 Abb Turbo Systems Ag Burst protection device for centrifugal compressors
DE102005039820B4 (en) * 2005-08-22 2007-06-28 Man Diesel Se Containment safety device for turbomachinery with radial flow compressor wheel
US7568338B2 (en) * 2005-12-23 2009-08-04 Honeywell International Inc. Multi-piece compressor housing
DE102006028553B4 (en) 2006-06-22 2018-05-24 Daimler Ag Exhaust gas turbocharger and internal combustion engine with such an exhaust gas turbocharger
WO2008055717A1 (en) 2006-11-10 2008-05-15 Abb Turbo Systems Ag Housing connection of an exhaust gas turbocharger
EP2216516A1 (en) * 2009-02-04 2010-08-11 ABB Turbo Systems AG Burst protection device for radial compressor
GB2499627A (en) 2012-02-23 2013-08-28 Napier Turbochargers Ltd Turbocharger casing
JP6037906B2 (en) 2013-03-21 2016-12-07 三菱重工業株式会社 Centrifugal fluid machine
DE102013107134A1 (en) * 2013-07-05 2015-01-08 Abb Turbo Systems Ag Air inlet of a compressor of an exhaust gas turbocharger
JP6391970B2 (en) * 2014-03-31 2018-09-19 三菱重工業株式会社 Centrifugal compressor, supercharger, centrifugal compressor manufacturing method, and silencer
DE102014009504A1 (en) * 2014-06-26 2015-12-31 Mtu Friedrichshafen Gmbh Compressor housing for a turbine
JP6486648B2 (en) * 2014-10-28 2019-03-20 三菱重工業株式会社 Centrifugal compressor and supercharger provided with the same
JP6404082B2 (en) * 2014-10-28 2018-10-10 三菱重工業株式会社 Centrifugal compressor and supercharger provided with the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2607776C2 (en) * 1976-02-26 1982-05-27 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Cover disk split in the meridian plane for radial impellers of turbo machines, in particular gas turbine engines
JPH066240Y2 (en) * 1988-07-19 1994-02-16 三菱重工業株式会社 Centrifugal compressor
JP2526316Y2 (en) * 1990-11-28 1997-02-19 三菱重工業株式会社 Gas compressor
US5601406A (en) * 1994-12-21 1997-02-11 Alliedsignal Inc. Centrifugal compressor hub containment assembly
DE19640654A1 (en) * 1996-10-02 1998-04-09 Asea Brown Boveri Burst protection device for radial turbines of turbochargers
GB9721434D0 (en) * 1997-10-10 1997-12-10 Holset Engineering Co Improvements in or relating to compressors and turbines
DE69819654T2 (en) * 1997-10-10 2004-10-07 Holset Engineering Co Compressor or turbine

Also Published As

Publication number Publication date
CH695741A5 (en) 2006-08-15
DE10050931C5 (en) 2007-03-29
DE10050931C1 (en) 2002-08-14
JP2002147397A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
JP4880148B2 (en) Fluid machinery
JP4119654B2 (en) Fluid machine with radial flow impeller
US4152094A (en) Axial fan
JP5074541B2 (en) Protection against bursts
JP5179029B2 (en) Fluid machine with radial compressor impeller and insert housing part for incorporation in a fluid machine
KR19980032381A (en) Break protection device for radial turbine of turbocharger
CN1707123B (en) Turbo-machine with radial through-flow compressor rotor
KR102540138B1 (en) Dual impeller
US7008189B2 (en) Centrifugal fan
JP2005351274A (en) Fluid machine
RU2591750C2 (en) Supersonic compressor unit (versions) and method for assembly thereof
KR20030092128A (en) Burst protection device for radial compressors pertaining to turbochargers
KR20150032282A (en) Wet gas compressor and method
JP4153722B2 (en) Axial-flow turbine for exhaust-driven turbocharger
KR101891903B1 (en) Compressor
JPH1047011A (en) Axial flow turbine of exhaust gas turbo supercharger
KR102309142B1 (en) Suction inducer with sweep function and perm equipped with the same
CN102562671A (en) Light weight vaneless compressor containment design
JP2004190557A (en) Centrifugal compressor
KR101257945B1 (en) Centrifugal compressor comprising vane diffuser
KR20180026204A (en) Turbine
JP3886584B2 (en) Vibration control method for variable capacity turbine
KR100400472B1 (en) a turbo-fan
JP2002081397A5 (en)
RU2732278C1 (en) Device for turbojet engine broken turbine blade localization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110726

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110729

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110826

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110831

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110922

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111201

R150 Certificate of patent or registration of utility model

Ref document number: 4880148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees