JP4876612B2 - 絶縁伝熱構造体及びパワーモジュール用基板 - Google Patents

絶縁伝熱構造体及びパワーモジュール用基板 Download PDF

Info

Publication number
JP4876612B2
JP4876612B2 JP2006036713A JP2006036713A JP4876612B2 JP 4876612 B2 JP4876612 B2 JP 4876612B2 JP 2006036713 A JP2006036713 A JP 2006036713A JP 2006036713 A JP2006036713 A JP 2006036713A JP 4876612 B2 JP4876612 B2 JP 4876612B2
Authority
JP
Japan
Prior art keywords
layer
high thermal
thermal conductor
heat
transfer structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006036713A
Other languages
English (en)
Other versions
JP2006270062A (ja
Inventor
敏之 長瀬
健 根岸
隆二 植杉
和男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006036713A priority Critical patent/JP4876612B2/ja
Publication of JP2006270062A publication Critical patent/JP2006270062A/ja
Application granted granted Critical
Publication of JP4876612B2 publication Critical patent/JP4876612B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、絶縁伝熱構造体及びその製造方法に関し、特に、半導体チップなどの電子部品、電子部品が実装される回路基板などの発熱体とヒートシンク、ヒートブロックなどの放熱体との間に介装される絶縁伝熱構造体及びこれを備えるパワーモジュール用基板に関するものである。
従来、図16に示すように、DBA(Al/AlN/Al)、DBC(Cu/AlN/Cu)などからなる絶縁基板101の一方の面にハンダ層102を介して半導体チップなどの電子部品103を実装し、絶縁基板101の他方の面にハンダ層102を介してAlSiC、Cu/Mo/Cuなどからなる放熱板104を接合し、放熱板104に熱伝導グリース層105を介してAl、Cuからなるヒートシンク106を接合したパワーモジュール用基板100が知られている。
このような構成のパワーモジュール用基板100にあっては、半導体チップなどの電子部品103から発生する熱を放熱板104を介してヒートシンク106に伝達させて放散させることにより、半導体チップなどの電子部品103に作用する熱負荷を軽減させることができるものである。
ところで、上記のような構成のパワーモジュール用基板100aにあっては、放熱板104とヒートシンク106との間に熱伝導グリース層105を介装させて熱伝導性を高めているが、熱伝導グリース層105では熱抵抗を充分に低減させることができず、半導体チップなどの電子部品103の熱を効率良く伝導させて放散させることができない。
一方、上記のような問題に対処するため、図17及び図18に示すように、絶縁基板101と放熱板104との間、及び放熱板104とヒートシンク106との間をロウ付け層107を介して接合することにより、熱抵抗を低減させるように構成したパワーモジュール用基板100b、100cが知られている。
しかし、絶縁基板101の熱膨張率(7×10−6/K)、放熱板104の熱膨張率(10〜15×10−6/K)、及びヒートシンク106の熱膨張率(Al:23×10−6/K、Cu:15〜16×10−6/K)がそれぞれ異なることから、ロウ付け作業後の冷却過程、実使用時の温度サイクルなどによる熱変形によって、絶縁基板101と放熱板104との間及び、放熱体とヒートシンクとの間に剥離、亀裂などが生じてしまう。
特開平1−286348号公報
本発明は、上記のような従来の問題に鑑みなされたもので、発熱体側の熱を効率よく放熱体側に伝導させて放熱することができると共に、温度サイクルなどの作用によって熱変形を受けても、安定した性能を長期にわたって発揮することができる絶縁伝熱構造体及びパワーモジュール用基板を提供することを目的とする。
本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の絶縁伝熱構造体は、絶縁体層と、該絶縁体層の両側に配置され、熱伝導率が150W/mK以上である高熱伝導体層とを備え、前記絶縁体層が、前記高熱伝導体層よりも熱伝導率が低いポリイミドからなる接合層と、前記接合層よりも熱伝導率が高く、熱伝導率が150W/mK以上とされ、かつ前記高熱伝導体層よりも硬度が高い前記高熱伝導体層に突き出されているダイヤモンド粒子からなる絶縁性高熱伝導硬質粒子とを有する絶縁伝熱構造体において、前記高熱伝導体層と前記絶縁体層との界面における前記絶縁性高熱伝導硬質粒子の投影面積が、前記界面の面積の20%以上60%以下であり、前記高熱伝導体層の一方に、半導体チップを搭載するための回路が形成されていることを特徴とする。
この発明によれば、一方の高熱伝導体層と他方の高熱伝導体層とが絶縁性高熱伝導硬質粒子によって連通されているので、絶縁体層の絶縁性高熱伝導硬質粒子を介して一方の高熱伝導体層からの熱が、他方の高熱伝導体層に伝導され、他方の高熱伝導体層で放散される。ここで、高熱伝導体層と絶縁体層との界面における絶縁性高熱伝導硬質粒子の投影面積が界面の面積の20%以上60%以下であることで、絶縁性高熱伝導硬質粒子が高熱伝導体層内に十分に突き出され、絶縁性高熱伝導硬質粒子と高熱伝導体層とが良好に接触していることとなる。これにより、十分な熱伝導率が得られると共に、絶縁性高熱伝導硬質粒子の密度が高過ぎることで接合層と絶縁性高熱伝導硬質粒子との間に空隙が生じて絶縁耐圧が低下することを回避する。したがって、温度サイクルなどの作用によって熱変形を受けても、安定した性能を長期にわたって発揮することができる。
なお、本発明において、投影面積とは高熱伝導体層と絶縁体層との界面で切断した面のうち、絶縁性高熱伝導硬質粒子の占める面積を示している。ここで、投影面積の測定方法は、絶縁伝熱構造体の高熱伝導体層を塩化第二鉄などを用いたエッチングにより除去した後、表面をSEM(走査型電子顕微鏡)や光学顕微鏡などにより撮影し、撮影した画像の面積に対する絶縁性高熱伝導硬質粒子の占める面積を画像処理などによって求めることによって行っている。
ここで、回路上に半導体チップを搭載すると、この半導体チップで発生した熱を、半導体チップが搭載された一方の高熱伝導体層から他方の高熱伝導体層に伝導する。
また、本発明の絶縁伝熱構造体は、前記絶縁性高熱伝導硬質粒子のうち、70質量%以上が切頭八面体形状を有するダイヤモンド粒子によって構成されていることが好ましい。
この発明によれば、絶縁性高熱伝導硬質粒子が切頭八面体形状を有するダイヤモンド粒子を含有することで、ダイヤモンド粒子の(100)面または(111)面が高熱伝導体層と対向するように配置されやすくなる。これにより、ダイヤモンド粒子が高熱伝導体層に対して十分に突き出させることができる。したがって、一方の高熱伝導体層から他方の高熱伝導体層への熱伝導がより効率よく行われる。また、低熱膨張係数でかつ熱伝導率の高いダイヤモンドを用いることで、絶縁体層と一方の高熱伝導体層とを合わせた熱膨張係数を小さくでき、かつ絶縁体層の両側に配置された高熱伝導体層間で良好に熱を伝達することができる。
また、本発明の絶縁伝熱構造体は、前記絶縁性高熱伝導硬質粒子の粒径が、50μm以上500μm以下であることが好ましい。
この発明によれば、絶縁性高熱伝導硬質粒子の粒径を50μm以上とすることで、高熱伝導体層間の耐電圧特性の劣化を防止して高熱伝導体層間の絶縁性を維持することができる。また、絶縁性高熱伝導硬質粒子の粒径を500μm以下とすることで、絶縁性高熱伝導硬質粒子のコストを低減し、絶縁伝熱構造体の製造コストが増大することを防止すると共に、接合層が厚くなることで全体の熱膨張率が増大し、高熱伝導体層の上面にハンダ層を介して半導体チップなどを搭載したときにハンダ層にクラックが発生することを抑制する。
なお、絶縁性高熱伝導硬質粒子の粒径は、100μm以上300μm以下であることがより好ましい。このようにすることで、より高熱伝導体層間の耐電圧特性の劣化を防止すると共に、絶縁伝熱構造体の製造コストの増大を防止することやハンダ層にクラックが発生することができる。
また、本発明の絶縁伝熱構造体は、前記高熱伝導体層が、Al、Cu、AgまたはAuによって形成されていることが好ましい。
この発明によれば、Al、Cu、AgまたはAuの熱伝導率が高いことから、発熱体の熱が良好に伝達されることになる。また、Alは、歪み量に対する変形応力が小さく、熱サイクルによる熱硬化が少ないことから、信頼性が向上する。
また、本発明の絶縁伝熱構造体は、前記高熱伝導体層の一方に、半導体チップを搭載するための回路が形成されていることが好ましい。
この発明によれば、回路上に半導体チップを搭載して、この半導体チップで発生した熱を、半導体チップが搭載された一方の高熱伝導体層から他方の高熱伝導体層に伝導する。
また、本発明の絶縁伝熱構造体は、前記分割して形成された高熱伝導体層のうちの1つの厚みが、前記分割して形成された高熱伝導体層のうちの他の少なくとも1つの厚みと異なることが好ましい。
この発明によれば、高熱伝導体層の1つに半導体チップを搭載して、他の高熱伝導体層とこの半導体チップの電極をワイヤなどで接続し、電子回路として使用することができる。
また、本発明の絶縁伝熱構造体は、前記分割して形成された高熱伝導体層のうちの1つの厚みが、他の前記高熱伝導体層のうちの少なくとも1つの厚みと異なることが好ましい。
この発明によれば、分割形成された高熱伝導体層の厚みを適宜変更することで、過渡熱を抑制することができる。
また、本発明の絶縁伝熱構造体は、前記回路が形成された高熱伝導体層の表面が、ニッケルメッキ層によって被覆されていることが好ましい。
この発明によれば、ニッケルメッキ層によってハンダとの良好な接合性が得られるので、高い放熱性を維持することができる。したがって、製品寿命が向上する。
また、本発明の絶縁伝熱構造体は、他方の前記高熱伝導体層が、放熱体であることが好ましい。
この発明によれば、放熱体によって効率よく放熱することができる。
また、本発明の絶縁伝熱構造体は、前記一方の高熱伝導体層の少なくとも一部に、他の電子回路と接続される端子構造が形成されていることが好ましい。
この発明によれば、端子構造を介して他の電子回路などと接続される。
また、本発明のパワーモジュール用基板は、上記記載の絶縁伝熱構造体の前記回路が形成された一方の高熱伝導体層の上面に半導体チップが設けられたことを特徴とする。
この発明によれば、半導体チップの生じる熱が絶縁伝熱構造体を介して放熱され、使用時に熱サイクルが生じたとしても、高熱伝導体層と絶縁体層との間に剥離や亀裂が生じない。
また、本発明のパワーモジュール用基板は、他の前記高熱伝導体層の下面に放熱板が接合されていることが好ましい。
この発明によれば、上述と同様に、高熱伝導体層と絶縁体層との間に剥離や亀裂が生じない。また、半導体チップの生じる熱が伝導されたときに、より効率よく放熱することができる。
また、本発明のパワーモジュール用基板は、当該パワーモジュール用基板の下面にヒートシンクが設けられていることが好ましい。
この発明によれば、絶縁伝熱構造体をヒートシンクに対して付勢することで、絶縁伝熱構造体とヒートシンクとの接触が良好となるので、半導体チップに生じる熱をより効率よく伝達させることができる。
また、本発明のパワーモジュール用基板は、前記絶縁伝熱構造体を前記ヒートシンクに対して付勢させる付勢部材を備えることが好ましい。
この発明によれば、絶縁伝熱構造体をヒートシンクに対して付勢することで、絶縁伝熱構造体とヒートシンクとの接触が良好となるので、半導体チップに生じる熱をより効率よく伝達させることができる。
この発明にかかる絶縁伝熱構造体及びパワーモジュール用基板によれば、高熱伝導体層と絶縁体層との界面における絶縁性高熱伝導硬質粒子の投影面積が、界面の面積の20%以上60%以下であることで、絶縁性高熱伝導硬質粒子が高熱伝導体層内に十分に突き出されると共に絶縁性高熱伝導硬質粒子と高熱伝導体層とが十分に接触していることとなる。これにより、一方の高熱伝導体層から他方の高熱伝導体層への熱の伝導が効率よく行われる。
以下、本発明にかかる絶縁伝熱構造体の第1の実施形態を図面に基づいて説明する。
本実施形態による絶縁伝熱構造体1は、図1に示すように、絶縁体層2と、絶縁体層2の両側に配置される高熱伝導体層3、4とを備えている。
なお、本明細書において、絶縁伝熱構造体1を構成する絶縁体層2及び高熱伝導体層3、4の積層方向のうち高熱伝導体層3側(図1に示す上側)を上方とし、高熱伝導体層4側(図1に示す下側)を下方とする。
絶縁体層2は、高熱伝導体層3、4間を一体に接続する絶縁性及び耐熱性を有する接合層5と、接合層5に混入または貼着される絶縁性、高熱伝導性及び硬質性を有するダイヤモンド粒子(絶縁性高熱伝導硬質粒子)6とによって構成され、ダイヤモンド粒子6の高熱伝導体層3、4側に位置している部分が、高熱伝導体層3、4内に突き出されている。
接合層5は、厚さ70μmのポリイミド製の両面粘着テープによって構成されており、絶縁抵抗が1010Ω・cm以上、融点が450〜600℃(連続使用温度250℃以上に耐えることが可能な温度(ハンダの融点温度以上))となっている。なお、接合層5の厚さは、ダイヤモンド粒子6の粒径や所望する絶縁耐圧の値によって適宜変更してもよい。
ダイヤモンド粒子6は、絶縁抵抗が接合層5と同様に1010Ω・cm以上、熱伝導率がAlより高い150W/mK以上であると共に硬度が高熱伝導体層3、4の硬さの10倍以上(高熱伝導体層3、4をHv50〜100の純金属で構成した場合にはHv500〜1000の硬さ)である。また、ダイヤモンド粒子6は、その粒径が100μm以上300μm以下であると共に平均粒径が200μmとなっており、図2に示す切頭八面体形状を有している。
このダイヤモンド粒子6は、絶縁体層2の両側に高熱伝導体層3、4を配置し、高熱伝導体層3、4を熱間圧着したときに、高熱伝導体層3、4側に位置している部分が高熱伝導体層3、4内に突き出される。このとき、ダイヤモンド粒子6が切頭八面体形状を有することで、その(100)面(図2に示す面A)または(111)面(図2に示す面B)が高熱伝導体層3、4と対向するように配置される。また、高熱伝導体層3、4と絶縁体層2との界面におけるダイヤモンド粒子6の投影面積が、界面の面積の20%以上60%以下となっており、ダイヤモンド粒子6と高熱伝導体層3、4との接触面積が、界面の面積の30%以上90%以下となっている。
ここで、本明細書において、投影面積とは高熱伝導体層3、4と絶縁体層2との界面で切断した面のうち、ダイヤモンド粒子6の占める面積を示している。また、投影面積の測定方法は、絶縁伝熱構造体1の高熱伝導体層3、4を塩化第二鉄などを用いたエッチングにより除去した後、表面をSEMや光学顕微鏡などにより撮影し、撮影した画像の面積に対するダイヤモンド粒子6の占める面積を画像処理などによって求めることによって行っている。
高熱伝導体層3、4は、それぞれ電気伝導性を有するAlの薄板によって構成されている。この高熱伝導体層3、4は、熱伝導率が50W/mK以上、好ましくは150W/mK以上の金属を材料として薄板状などに形成されている。また、高熱伝導体層3、4は、絶縁体層2の両側に位置した状態でプレスなどによって加圧することにより、絶縁体層2の両側に積層された状態で配置される。この高熱伝導体層3、4は、ダイヤモンド粒子6よりも軟らかい材料によって形成されており、絶縁体層2と対向する面にダイヤモンド粒子6の一部が突き出されている。
次に、上述した構成の絶縁伝熱構造体1の製造方法について説明する。まず、図3に示すように、ポリイミド製の両面粘着テープからなる接合層5の両面に所定量のダイヤモンドのダイヤモンド粒子6を貼着して絶縁体層2を構成する。
次に、絶縁体層2の両側にAl(99.99%)製の薄板からなる高熱伝導体層3、4を配置し、この状態でプレスなどにより矢印方向から両高熱伝導体層3、4を、例えば180℃に加熱した熱間圧延することで、両高熱伝導体層3、4の間に接合層5を介在させた状態で一体に接合する。
このとき、ダイヤモンド粒子6が切頭八面体形状を有しているため、この切頭八面体のダイヤモンドの平面である(100)面または(111)面が高熱伝導体層3、4と対向するようになる。そして、この状態で高熱伝導体層3、4内に突き出させる。
以上のようにして、図4に示すように、絶縁体層2の両側に高熱伝導体層3、4を積層した状態で配置した絶縁伝熱構造体1が製造される。
また、ダイヤモンド粒子6の表面をCuメッキまたはNiメッキで被覆し、ダイヤモンド粒子6と高熱伝導体層3、4との接合性を高めてもよい。
そして、上述のように構成した絶縁伝熱構造体1の一方の高熱伝導体層3を発熱体側として使用し、他方の高熱伝導体層4を放熱体側として使用することにより、一方の高熱伝導体層3側の熱が絶縁体層2のダイヤモンド粒子6を介して他方の高熱伝導体層4側に伝導されて放散されることになる。
このように構成された絶縁伝熱構造体1によれば、高熱伝導体層3、4と絶縁体層2との界面におけるダイヤモンド粒子6の投影面積が、界面の面積の20%以上60%以下であることで、ダイヤモンド粒子6が高熱伝導体層3、4内に十分に突き出してダイヤモンド粒子6と高熱伝導体層3、4とが十分に接触していることとなる。これにより、高熱伝導体層3、4間の熱の伝導が効率よく行われる。
ここで、ダイヤモンド粒子6が切頭八面体形状を有することで、平面となっている(100)面または(111)面が、突き出す際に高熱伝導体層3、4と対向しやすくなる。これにより、ダイヤモンド粒子6が高熱伝導体層3、4に対して十分に突き出しやすくなる。
次に、第2の実施形態について図5を参照しながら説明する。なお、ここで説明する実施形態は、その基本的構成が上述した第1の実施形態と同様であり、上述の第1の実施形態に別の要素を付加したものである。したがって、図5においては、図1と同一構成要素に同一符号を付し、この説明を省略する。
第2の実施形態におけるパワーモジュール用基板10は、絶縁体層2の上面側に一方の高熱伝導体層3a、3bであるAlなどからなる回路層が分割して配置され、絶縁体層2の下面側に他方の高熱伝導体層4であるAlなどからなる薄板が配置されている。そして、これらを加熱、加圧することにより両高熱伝導体層3a、3b、4を絶縁体層2の接合層5を介して一体的に接合し、絶縁体層2のダイヤモンド粒子6の一部を両高熱伝導体層3a、3b、4内に突き出させた構成とされている。
このように構成されたパワーモジュール用基板10によれば、上述した第1の実施形態と同様に、高熱伝導体層3a、3b、4間の熱の伝導が効率よく行われる。
次に、第3の実施形態について図6を参照しながら説明する。なお、ここで説明する実施形態は、その基本的構成が上述した第2の実施形態と同様であり、上述の第2の実施形態に別の要素を付加したものである。したがって、図6においては、図5と同一構成要素に同一符号を付し、この説明を省略する。
第3の実施形態におけるパワーモジュール用基板15は、高熱伝導体層3a、3b及び高熱伝導体層4の表面がニッケルメッキ層(以下、Niメッキ層と省略する)16で被覆されている。
このように構成されたパワーモジュール用基板15においても、上述した第2の実施形態と同様の作用、効果を有するが、高熱伝導体層3a、3b及び高熱伝導体層4の表面をNiメッキ層16で被覆することによって、ハンダを用いて他の部材と接合したときに、ハンダとの良好な接合性が得られるので、高い放熱性を維持することができる。したがって、製品寿命が向上する。
次に、第4の実施形態について図7を参照しながら説明する。なお、ここで説明する実施形態は、その基本的構成が上述した第2の実施形態と同様であり、上述の第2の実施形態に別の要素を付加したものである。したがって、図7においては、図5と同一構成要素に同一符号を付し、この説明を省略する。
第4の実施形態におけるパワーモジュール用基板20は、一方の高熱伝導体層3a、3bとして互いに厚さの異なるCu製のヒートブロックが配置され、他方の高熱伝導体層4としてAlなどからなる薄板が配置されている。
このように構成されたパワーモジュール用基板20によれば、上述した第2の実施形態と同様の作用、効果を有するが、分割形成された高熱伝導体層3a、3bの厚みを適宜変更することで、過渡熱を効率よく抑制することができる。
次に、第5の実施形態について図8を参照しながら説明する。なお、ここで説明する実施形態は、その基本的構成が上述した第4の実施形態と同様であり、上述の第4の実施形態に別の要素を付加したものである。したがって、図8においては、図7と同一構成要素に同一符号を付し、この説明を省略する。
第4の実施形態におけるパワーモジュール用基板25は、上述した第3の実施形態と同様に、高熱伝導体層3a、3b及び高熱伝導体層4の表面がNiメッキ層16で被覆されている。
このように構成されたパワーモジュール用基板25においても、上述した第4の実施形態と同様の作用、効果を有するが、高熱伝導体層3a、3b及び高熱伝導体層4の表面をNiメッキ層16で被覆することによって、上述した第3の実施形態と同様に、ハンダとの良好な接合性が得られるので、高い放熱性を維持することができる。したがって、製品寿命が向上する。
次に、第6の実施形態について図9を参照しながら説明する。なお、ここで説明する実施形態は、その基本的構成が上述した第2の実施形態と同様であり、上述の第2の実施形態に別の要素を付加したものである。したがって、図9においては、図5と同一構成要素に同一符号を付し、この説明を省略する。
第6の実施形態におけるパワーモジュール用基板30は、一方の高熱伝導体層3としてCu製の回路層が配置され、他方の高熱伝導体層4としてAl製のヒートブロックが配置されている。そして、高熱伝導体層3である回路層の表面にハンダ層31を介して半導体チップ32が実装されている。
このように構成されたパワーモジュール用基板30によれば、上述した第2の実施形態と同様の作用、効果を有するが、高熱伝導体層4をヒートブロックとして構成することで、半導体チップ32で生じた熱を高熱伝導体層4で効率よく放熱することができる。
次に、第7の実施形態について図10を参照しながら説明する。なお、ここで説明する実施形態は、その基本的構成が上述した第6の実施形態と同様であり、上述の第6の実施形態に別の要素を付加したものである。したがって、図10においては、図9と同一構成要素に同一符号を付し、この説明を省略する。
第7の実施形態におけるパワーモジュール用基板35は、一方の高熱伝導体層3としてCu製の回路層が配置され、他方の高熱伝導体層4としてAl製のヒートシンクが配置されている。
このように構成されたパワーモジュール用基板35によれば、上述した第6の実施形態と同様の作用、効果を有する。
次に、第8の実施形態について図11を参照しながら説明する。ここで説明する実施形態は、その基本的構成が上述した第2の実施形態と同様であり、上述の第2の実施形態に別の要素を付加したものである。したがって、図11においては、図5と同一構成要素に同一符号を付し、この説明を省略する。
第8の実施形態におけるパワーモジュール用基板40は、一方の高熱伝導体層3a、3bの表面をNiメッキ層16で被覆したCu製の回路層が配置され、他方の高熱伝導体層4としてAl製のヒートシンクが配置されている。
このように構成されたパワーモジュール用基板40においても、上述した第2の実施形態と同様の作用、効果を有するが、高熱伝導体層4としてAl製のヒートシンクを配置することで、効率よく放熱することができる。
次に、第9の実施形態について図12を参照しながら説明する。ここで説明する実施形態は、その基本的構成が上述した第3の実施形態と同様であり、上述の第3の実施形態に別の要素を付加したものである。したがって、図12においては、図6と同一構成要素に同一符号を付し、この説明を省略する。
第9の実施形態におけるパワーモジュール用基板45は、一方の高熱伝導体層3a、3bとして表面をNiメッキ層16で被覆したCu製の回路層及びCu製の端子部材が配置され、他方の高熱伝導体層4として表面がNiメッキ層16で被覆されたAlなどからなる薄板が配置されている。
このように構成されたパワーモジュール用基板45においても、上述した第2の実施形態と同様の作用、効果を有するが、高熱伝導体層3bを端子構造とすることで、この端子構造を介して他の電子回路などと接続される。
次に、第10の実施形態について図13を参照しながら説明する。なお、ここで説明する実施形態は、その基本的構成が上述した第3の実施形態と同様であり、上述の第3の実施形態に別の要素を付加したものである。したがって、図13においては、図6と同一構成要素に同一符号を付し、この説明を省略する。
第10の実施形態におけるパワーモジュール用基板50は、一方の高熱伝導体層3a、3bとして表面をNiメッキ層16で被覆したCu製のヒートブロックが配置され、他方の高熱伝導体層4として表面をNiメッキ層16で被覆したAlなどからなる薄板が配置されている。
高熱伝導体層3aの表面には、ハンダ層31を介して半導体チップ32が実装されており、半導体チップ32の表面と高熱伝導体層3bの表面とをAlワイヤ51で接続されている。また、高熱伝導体層4の下面に放熱板52が接合されている。
このように構成されたパワーモジュール用基板50においても、上述した第3の実施形態と同様の作用、効果を有するが、半導体チップ32と高熱伝導体層3bとがAlワイヤ51によって電気的に接続されると共に、半導体チップ32で生じた熱を高熱伝導体層4に効率よく伝導させて放熱板52で効率よく放熱させる。
次に、第11の実施形態について図14を参照しながら説明する。なお、ここで説明する実施形態は、その基本的構成が上述した第10の実施形態と同様であり、上述の第10の実施形態に別の要素を付加したものである。したがって、図14においては、図13と同一構成要素に同一符号を付し、この説明を省略する。
第11の実施形態におけるパワーモジュール用基板55は、放熱板52の下面に熱伝導グリース層(図示略)を介在させた状態でネジ56を用いてヒートシンク57が取り付けられている。
このように構成されたパワーモジュール用基板55においても、上述した第10の実施形態と同様の作用、効果を有するが、半導体チップ32で生じた熱を放熱板52及びヒートシンク57で効率よく放熱させる。
次に、第12の実施形態について図15を参照しながら説明する。なお、ここで説明する実施形態は、その基本的構成が上述した第10の実施形態と同様であり、上述の第10の実施形態に別の要素を付加したものである。したがって、図15においては、図13と同一構成要素に同一符号を付し、この説明を省略する。
第12の実施形態におけるパワーモジュール用基板60は、上フランジ部61a及び下フランジ部61bを備える付勢部材61を有している。この付勢部材61は、上フランジ部61aを高熱伝導体層3a、3bの外縁部に当接させ、下フランジ部61bをヒートシンク57に当接させて高熱伝導体層4の下面に熱伝導グリース層(図示略)を介在させた状態でネジ62を用いてヒートシンク57に取り付けられている。
このように構成されたパワーモジュール用基板60においても、上述した第10の実施形態と同様の作用、効果を有するが、付勢部材61によって高熱伝導体層4とヒートシンク57との接触が良好となり、半導体チップ32で生じた熱をヒートシンクで効率よく放熱させることができる。
以下の条件の絶縁伝熱構造体を、実施例により具体的に説明する。
すべて切頭八面体形状を有する粒径250μmのダイヤモンド粒子を用い、絶縁伝熱構造体を製造した。ダイヤモンド粒子は、高熱伝導体層内に突き出ている。ここで、高熱伝導体層と絶縁体層との界面におけるダイヤモンド粒子の投影面積が、高熱伝導体層と絶縁体層との界面の面積の47.9%となっており、ダイヤモンド粒子と高熱伝導体層との接触面積が76.5%となっている。
このように構成された絶縁伝熱構造体を用いて、レーザフラッシュ法(JIS R−1611準拠)により熱伝導率の測定を行った。この結果、絶縁伝熱構造体の熱伝導率が150Wであることを確認した。以上より、ダイヤモンド粒子と高熱伝導体層との接触面積が十分であるため、良好な熱伝導率を有することがよくわかる。
なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることができる。
例えば、接合層は、絶縁抵抗が1010Ω・cm以上、融点が450〜600℃であればよく、ポリイミド製の両面粘着テープに限らず、アクリル熱圧着テープやエポキシやポリイミド、PBI(ポリベンズイミダゾール)、PEEK(ポリエーテルエーテルケトン)、PAI(ポリアミドイミド)、各種の熱硬化性樹脂を用いてもよい。
ここで、接合層としてエポキシ樹脂層を用いる場合には、絶縁性高熱伝導硬質粒子の両側に高熱伝導体層を配置した後に、両高熱伝導体層にアンダーフィル法などによって溶融樹脂を充填して硬化させることによって製造する。
また、接合層として、ガラス相またはガラス相に結晶相もしくはセラミック粒子が分散した複合相を用いてもよい。接合層として用いられる材料は、連続使用温度250℃以上に耐え得る温度(はんだの融点温度以上)のガラス相またはガラス相に結晶相もしくはセラミック粒子が分散した複合相が好ましい。例えば、ガラス系としては、PbO−B系、Bi−B系、P系、TeO系などの低軟化ガラス系が望ましく、分散するセラミック粒子としては、アルミナ、ジルコン、ムライト、チタニアなどの低熱膨張酸化物が望ましい。ここで、ガラス相またはガラス相に結晶相もしくはセラミック粒子が分散した複合相を用いた場合には、例えばガラス粉末もしくはガラスとセラミックスとの混合粉末をペースト化し、これをダイヤモンド粒子と共にAl板上に塗布する。この上にAl板を載置し、加圧した後、300℃で加熱する脱脂処理を行う。さらに、450℃〜600℃でガラスを流動させることによって製造する。
また、絶縁性高熱伝導硬質粒子として切頭八面体形状を有するダイヤモンド粒子を用いたが、用いたダイヤモンド粒子のうち、その70質量%以上が切頭八面体形状を有するダイヤモンド粒子であればよい。
また、絶縁性高熱伝導硬質粒子として用いられる材料は、絶縁抵抗が接合層と同様に1010Ω・cm以上、熱伝導率が50W/mK以上であると共に硬度が高熱伝導体層よりも高いものであればよく、ダイヤモンドに限らず、SiC、Si、AlN、BNなどを用いてもよい。ここで、上述と同様に、熱伝導率がAlより高い150W/mK以上であることが好ましく、絶縁性高熱伝導硬質粒子の硬度が高熱伝導体層の硬さの10倍以上(例えば、高熱伝導体層3、4をHv50〜100の純金属で構成した場合にはHv500〜1000の硬さ)よりも高いことが好ましい。
また、高熱伝導体層として用いられる材料は、絶縁性高熱伝導硬質粒子よりも硬度が低く、熱伝導率が50W/mK以上、好ましくは150W/mK以上であればよく、ビッカース硬さがHv50〜100の純金属(Cu、Ag、Auなど)や、それらの合金などを用いることができる。ただし、これらに限定することなく、同様の特性を有する純金属、合金などを用いてもよい。
この発明にかかるパワーモジュール用基板によれば、発熱体側の熱を効率よく放熱体側に伝導させて放熱し、温度サイクルなどの作用によって熱変形を受けても、安定した性能を長期にわたって発揮することができ、産業上の利用可能性が認められる。
本発明の第1の実施形態における絶縁伝熱構造体を示す概略断面図である。 絶縁性高熱伝導硬質粒子を示す斜視図である。 絶縁性高熱伝導硬質粒子と接合層と高熱伝導体層との関係を示した説明図である。 第1の実施の形態の絶縁伝熱構造体の変形例を示した概略断面図である。 本発明の第2の実施形態における絶縁伝熱構造体を示す説明図であって、パワーモジュール用基板に適用した例を示す概略断面図である。 本発明の第3の実施形態における絶縁伝熱構造体を示す説明図であって、パワーモジュール用基板に適用した例を示す概略断面図である。 本発明の第4の実施形態における絶縁伝熱構造体を示す説明図であって、パワーモジュール用基板に適用した例を示す概略断面図である。 本発明の第5の実施形態における絶縁伝熱構造体を示す説明図であって、パワーモジュール用基板に適用した例を示す概略断面図である。 本発明の第6の実施形態における絶縁伝熱構造体を示す説明図であって、パワーモジュール用基板に適用した例を示す概略断面図である。 本発明の第7の実施形態における絶縁伝熱構造体を示す説明図であって、パワーモジュール用基板に適用した例を示す概略断面図である。 本発明の第8の実施形態における絶縁伝熱構造体を示す説明図であって、パワーモジュール用基板に適用した例を示す概略断面図である。 本発明の第9の実施形態における絶縁伝熱構造体を示す説明図であって、パワーモジュール用基板に適用した例を示す概略断面図である。 本発明の第10の実施形態における絶縁伝熱構造体を示す説明図であって、パワーモジュール用基板に適用した例を示す概略断面図である。 本発明の第11の実施形態における絶縁伝熱構造体を示す説明図であって、パワーモジュール用基板に適用した例を示す概略断面図である。 本発明の第12の実施形態における絶縁伝熱構造体を示す説明図であって、パワーモジュール用基板に適用した例を示す概略断面図である。 従来のパワーモジュール用基板の一例を示した概略断面図である。 従来のパワーモジュール用基板の他の例を示した概略断面図である。 従来のパワーモジュール用基板の他の例を示した概略断面図である。
符号の説明
1 絶縁伝熱構造体
2 絶縁体層
3、4 高熱伝導体層
5 接合層
6 ダイヤモンド粒子(絶縁性高熱伝導硬質粒子)
10、15、20、25、30、35、40、45、50、55、60 パワーモジュール用基板
16 Niメッキ層(ニッケルメッキ層)
32 半導体チップ
52 放熱板
57 ヒートシンク
61 付勢部材

Claims (13)

  1. 絶縁体層と、該絶縁体層の両側に配置され、熱伝導率が150W/mK以上である高熱伝導体層とを備え、
    前記絶縁体層が、前記高熱伝導体層よりも熱伝導率が低いポリイミドからなる接合層と、前記接合層よりも熱伝導率が高く、熱伝導率が150W/mK以上とされ、かつ前記高熱伝導体層よりも硬度が高い前記高熱伝導体層に突き出されているダイヤモンド粒子からなる絶縁性高熱伝導硬質粒子とを有する絶縁伝熱構造体において、
    前記高熱伝導体層と前記絶縁体層との界面における前記絶縁性高熱伝導硬質粒子の投影面積が、前記界面の面積の20%以上60%以下であり、
    前記高熱伝導体層の一方に、半導体チップを搭載するための回路が形成されていることを特徴とする絶縁伝熱構造体。
  2. 前記絶縁性高熱伝導硬質粒子のうち、70質量%以上が切頭八面体形状を有するダイヤモンド粒子によって構成されていることを特徴とする請求項1に記載の絶縁伝熱構造体。
  3. 前記絶縁性高熱伝導硬質粒子の粒径が、50μm以上500μm以下であることを特徴とする請求項1または2に記載の絶縁伝熱構造体。
  4. 前記高熱伝導体層が、Al、Cu、AgまたはAuによって形成されていることを特徴とする請求項1から3のいずれか1項に記載の絶縁伝熱構造体。
  5. 前記回路が形成された高熱伝導体層が、前記絶縁体層の一面に分割して形成されていることを特徴とする請求項1に記載の絶縁伝熱構造体
  6. 前記分割して形成された高熱伝導体層のうちの1つの厚みが、前記分割して形成された高熱伝導体層のうちの他の少なくとも1つの厚みと異なることを特徴とする請求項5に記載の絶縁伝熱構造体。
  7. 前記回路が形成された高熱伝導体層の表面が、ニッケルメッキ層によって被覆されていることを特徴とする請求項1から6のいずれか1項に記載の絶縁伝熱構造体。
  8. 他方の前記高熱伝導体層が、放熱体であることを特徴とする請求項1から7のいずれか1項に記載の絶縁伝熱構造体。
  9. 前記一方の高熱伝導体層の少なくとも一部に、他の電子回路と接続される端子構造が形成されていることを特徴とする請求項1から8のいずれか1項に記載の絶縁伝熱構造体。
  10. 請求項1から9のいずれか1項に記載の絶縁伝熱構造体の前記回路が形成された一方の高熱伝導体層の上面に半導体チップが設けられたことを特徴とするパワーモジュール用基板。
  11. 他方の前記高熱伝導体層の下面に放熱板が接合されていることを特徴とする請求項10に記載のパワーモジュール用基板。
  12. 当該パワーモジュール用基板の下面にヒートシンクが設けられていることを特徴とする請求項10または11に記載のパワーモジュール用基板。
  13. 前記絶縁伝熱構造体を前記ヒートシンクに対して付勢させる付勢部材を備えることを特徴とする請求項12に記載のパワーモジュール用基板。
JP2006036713A 2005-02-22 2006-02-14 絶縁伝熱構造体及びパワーモジュール用基板 Active JP4876612B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036713A JP4876612B2 (ja) 2005-02-22 2006-02-14 絶縁伝熱構造体及びパワーモジュール用基板

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005045258 2005-02-22
JP2005045258 2005-02-22
JP2006036713A JP4876612B2 (ja) 2005-02-22 2006-02-14 絶縁伝熱構造体及びパワーモジュール用基板

Publications (2)

Publication Number Publication Date
JP2006270062A JP2006270062A (ja) 2006-10-05
JP4876612B2 true JP4876612B2 (ja) 2012-02-15

Family

ID=37205624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036713A Active JP4876612B2 (ja) 2005-02-22 2006-02-14 絶縁伝熱構造体及びパワーモジュール用基板

Country Status (1)

Country Link
JP (1) JP4876612B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5877056B2 (ja) * 2011-12-22 2016-03-02 日本シイエムケイ株式会社 パワーモジュール用絶縁放熱基板とその製造方法
US10074589B2 (en) * 2016-04-14 2018-09-11 Hamilton Sundstrand Corporation Embedding diamond and other ceramic media into metal substrates to form thermal interface materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68923778T2 (de) * 1988-12-01 1996-04-11 Akzo Nobel Nv Halbleitermodul.
JP3180677B2 (ja) * 1996-08-22 2001-06-25 三菱マテリアル株式会社 ヒートシンク付セラミック回路基板
JP2000082774A (ja) * 1998-06-30 2000-03-21 Sumitomo Electric Ind Ltd パワ―モジュ―ル用基板およびその基板を用いたパワ―モジュ―ル
JP4597279B2 (ja) * 1998-07-31 2010-12-15 弘治 大石橋 熱良導複合材料

Also Published As

Publication number Publication date
JP2006270062A (ja) 2006-10-05

Similar Documents

Publication Publication Date Title
JP2010109132A (ja) 熱電モジュールを備えたパッケージおよびその製造方法
JP2007251076A (ja) パワー半導体モジュール
JP4407521B2 (ja) 絶縁伝熱構造体及びパワーモジュール用基板
JP2006269966A (ja) 配線基板およびその製造方法
JP6337954B2 (ja) 絶縁基板及び半導体装置
JP2004022973A (ja) セラミック回路基板および半導体モジュール
JP2004356625A (ja) 半導体装置及びその製造方法
JP4407509B2 (ja) 絶縁伝熱構造体及びパワーモジュール用基板
JP4797676B2 (ja) 絶縁伝熱構造体及びパワーモジュール用基板並びに絶縁伝熱構造体の製造方法
JP4876612B2 (ja) 絶縁伝熱構造体及びパワーモジュール用基板
JP7135364B2 (ja) 絶縁回路基板、及び、絶縁回路基板の製造方法
JP6881304B2 (ja) 半導体装置及び半導体装置の製造方法
JP2014143342A (ja) 半導体モジュール及びその製造方法
JP4635977B2 (ja) 放熱性配線基板
JP2004096034A (ja) モジュール構造体の製造方法並びに回路基板の固定方法及び回路基板
JP2006269572A (ja) 熱電変換モジュール、回路基板及び熱電変換モジュールの製造方法
JP4667154B2 (ja) 配線基板、電気素子装置並びに複合基板
JP6983119B2 (ja) 放熱板、半導体パッケージおよび半導体装置
JP4395747B2 (ja) 絶縁回路基板およびパワーモジュール構造体
JP2003068954A (ja) 半導体素子収納用パッケージ
JP7087446B2 (ja) 放熱板付絶縁回路基板、及び、放熱板付絶縁回路基板の製造方法
JP2006013420A (ja) 電子部品収納用パッケージおよび電子装置
JP7363613B2 (ja) ヒートシンク一体型絶縁回路基板
WO2023171019A1 (ja) ヒートシンク一体型絶縁回路基板、および、電子デバイス
JP6825411B2 (ja) 絶縁回路基板、絶縁回路基板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Ref document number: 4876612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3