JP4875546B2 - 排熱発電装置、排熱発電装置の作動媒体蒸気過熱度制御方法 - Google Patents

排熱発電装置、排熱発電装置の作動媒体蒸気過熱度制御方法 Download PDF

Info

Publication number
JP4875546B2
JP4875546B2 JP2007156850A JP2007156850A JP4875546B2 JP 4875546 B2 JP4875546 B2 JP 4875546B2 JP 2007156850 A JP2007156850 A JP 2007156850A JP 2007156850 A JP2007156850 A JP 2007156850A JP 4875546 B2 JP4875546 B2 JP 4875546B2
Authority
JP
Japan
Prior art keywords
working medium
exhaust heat
generator
steam
superheat degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007156850A
Other languages
English (en)
Other versions
JP2008309046A (ja
Inventor
知行 内村
毅一 入江
修行 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2007156850A priority Critical patent/JP4875546B2/ja
Publication of JP2008309046A publication Critical patent/JP2008309046A/ja
Application granted granted Critical
Publication of JP4875546B2 publication Critical patent/JP4875546B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、排熱源の熱エネルギーを電気エネルギーに変換する排熱発電装置、特に低温の排熱を熱源として発電を行う排熱発電装置、及び排熱発電装置の作動媒体蒸気過熱度制御方法に関するものである。
近年、省エネルギー推進の必要性から、排熱源からの排熱の有効利用が種々の方法で推進されている。しかしながら、有効利用の容易な高温若しく大容量の排熱に関してはほぼ利用され尽くしており、新規に設置される機器でも、省エネルギー化の進んだ結果、排出される排熱の温度は低下する傾向にある。従って、更に省エネルギー化を推進しようとすれば、低温且つ小容量の排熱を有効に利用することが必要不可欠となる。
図1は従来のこの種の排熱発電装置の構成例を示す図である。本排熱発電装置は、発電装置100を備え、該発電装置100に排熱源120から80℃程度の温水を熱源とし、冷却塔130により冷却された冷却水を低温熱源として発電する排熱発電装置である。発電装置100は、蒸気発生器101、液滴分離器102、調速弁(図示せず)及び主蒸気弁103、膨張機としてのタービン104及び高速発電機105を有するタービン発電機106、凝縮器107、給液ポンプ108を備え、これらを作動媒体配管109で接続した構成である。発電装置100は制御盤110により制御され、高速発電機105で発電された交流電力は高周波整流器111で直流電力に変換され、更に系統連携装置112で交流電力(一般には50Hz又は60Hzの商用電力)に変換され、系統113に送電される。ここで蒸気発生器101としてプレート式の熱交換器を用いている。
排熱源120から温水循環ポンプ121で温水を蒸気発生器101に供給することにより、給液ポンプ108で凝縮器107から該蒸気発生器101に供給された作動媒体液は加熱され、作動媒体蒸気となって作動媒体配管109を通って液滴分離器102に供給され、該液滴分離器102で作動媒体蒸気中の液滴は分離除去される。液滴分が除去された作動媒体蒸気は調速弁(図示せず)及び主蒸気弁103を通ってタービン発電機106のタービン104に供給され、該タービン104により高速発電機105が駆動される。タービン104から吐き出された作動媒体蒸気は凝縮器107に供給され、該凝縮器107で冷却塔130から冷却水ポンプ131により供給される冷却水により冷却され、凝縮して作動媒体液となる。該作動媒体液は給液ポンプ108により、蒸気発生器101に送られ作動媒体は循環する。なお、排熱発電装置の熱源としては、排熱源からの温水に代えて排熱源からの排気ガスを熱源とするもの、低温熱源も冷却水と冷却塔の組み合わせではなく、空気による冷却(空冷凝縮器)や、河川水などの別の低温熱源を用いるものもある。また、この低温熱源と熱交換する二次流体を用いたり、これらと同等の別の技術を用いるものもある。また、排熱源としては工場排熱、原動機等の排熱、温泉水(地熱)、太陽熱等、様々なものがあり、更にこれらの熱源によって生成される温水や低圧蒸気等もある。
図1の排熱発電装置では、蒸気発生器101に供給された排熱源120からの熱源温水を用いて作動媒体液を気化させ、その作動媒体蒸気によりタービン発電機106のタービン104を駆動して発電する。タービン104を出た作動媒体蒸気は、凝縮器107で再び作動媒体液となり、給液ポンプ108で循環する。発電装置100の送出電力は、高速発電機105で発電した電力(発電電力)から、給液ポンプ108や潤滑油循環ポンプ(図示せず)、制御盤110等の消費電力を差し引いたものとなり、本明細書ではこれをネット出力と称する。
従来、このような排熱発電装置では、タービン発電機106に設置された調速装置によりタービン発電機106の回転速度が制御される。調速装置は、回転速度の検出器(図示せず)、調速弁103、制御装置(図示せず)により構成され、タービン104の回転速度が定格回転速度を超える(若しくは超えることが予測される)と、調速弁103の開度を下げ、下回ると開度を上げて回転速度を一定に維持する。また、これと併せて、高速発電機105の負荷制御が行われる。通常、高速発電機105の負荷は回転速度を一定に保つことで自動的に制御される。このような制御を行うため、調速弁は常時、全開とはせず、制御に必要な最小限の開度、閉めた状態で運転する必要がある。このため、次のような課題が生じる。
・調速弁は作動媒体配管中にあって圧力損失となるため、発電装置100の発電効率の低下を招く。
・上記の圧力損失により、タービン104に必要な蒸気圧力以上に蒸気発生器101内の圧力が上昇する。
本願発明者等は特許文献1に記載するように、逆変換器を用いる系統連携装置の出力を、系統連携装置内の直流電圧が設定された電圧となるように制御することで、調速弁によらずタービン発電機の回転を適正に保ち、発電電力を最大化できることを提案している。これにより、発電装置は供給される排熱を余さず蒸気として回収し、且つそれを有効に用いて発電することができるようになった。しかしながら、この方法では下記のような従来とは異なる蒸気発生器の制御が必要となる。
従来の発電用ボイラ(蒸気発生器)の制御は、主として主蒸気圧力を一定とするように、加熱量が制御される。そして、それにより変動するボイラ液面を規定範囲内に納めるように給水量などを制御する。これは、調速装置の動作においては、調整弁の前後に一定の圧力差が必要であり、主蒸気圧力を一定とすることで、タービン発電機を安定して運転できるからである。しかしながら、調速弁を有しない(あるいは運用しない)、上記のような排熱発電装置においては、圧力は主蒸気量とタービンの運転条件により決まる値であり、制御指標として適さない。また、前述したように、排熱は燃料と違い、節減することは必ずしも必要でなく、むしろ供給された排熱は余さず利用して発電に供することが求められる。
図2は従来の発電用としてポピュラーな、ドラム型蒸気発生器を用いた排熱発電装置の構成例を示す図である。発電装置100はドラム型蒸気発生器(ドラム型ボイラと同等)140、気液分離器(ドラム)141、液面計142、過熱器143、主蒸気弁144、膨張機としてのタービン104及び高速発電機105を有するタービン発電機106、凝縮器107、給液ポンプ108を備え、これらを作動媒体配管109で接続した構成である。ドラム型蒸気発生器140は、作動媒体液を加熱し、給液の80%くらいを気化させ、これを気液分離器(ドラム)141で作動媒体蒸気を分離し、気化しなかった作動媒体液はドラム型蒸気発生器140に戻し(再循環させ)、分離した作動媒体蒸気を次段の過熱器143に送り、過熱(スーパヒート)させる(このスーパヒートは必要に応じて行う)。スーパヒートは、作動媒体蒸気がタービン104で凝縮して液滴になる場合に必要で、特に作動媒体が水である場合は不可欠といってよい。
この場合、一般的には気液分離器(ドラム)141の液位を見て給液量を制御し、蒸気圧力で加熱量を制御する。排熱発電装置の場合は、加熱量の制御は不要であるが、装置を小型化するとドラム型蒸気発生器140の圧力損失(入口と出口の圧力差)が大きくなり、ドラム型蒸気発生器140の液位と気液分離器(ドラム)141の液位とが合わなくなったり、分離液をドラム型蒸気発生器140へ戻せなくなったりする。また、応答速度の速い(小型の)ドラム型蒸気発生器140では、給液量の変化が蒸気圧力変動に影響することなどを防止するために、発生する作動媒体蒸気量を計測して制御に用いる等、実際には多くの計測器と複雑な制御が必要となる。
図3は従来の発電用としてポピュラーな、貫流型蒸気発生器(貫流型ボイラと同等)を用いた排熱発電装置の構成例を示す図である。発電装置100は貫流型蒸気発生器150、気液分離器(ドラム)141、液面計142、過熱器143、主蒸気弁103、膨張機としてのタービン104及び高速発電機105を有するタービン発電機106、凝縮器107、給液ポンプ108を備え、これらを作動媒体配管109で接続した構成である。貫流型蒸気発生器150では、一般的には圧力を目標圧力とするように給液量を制御し、蒸気の温度により加熱量を制御している。但し、これらの物理量は相互に影響し合うので、それぞれ補正を行う必要がある。また、作動媒体の液滴がタービン104に流入することを防止し、タービン104中の媒体の凝縮を抑止するため、過熱器143を設ける場合がある。気液分離器141は、起動時や制御不調時等のために設けているが、通常は使用されない。前述したように、排熱発電装置では回収熱量を最大化することが望ましく、圧力を目標値とすることは目的に適わない。回収熱量を最大化し、適切な作動媒体供給量を確保するための制御が必要である。
また、排熱発電装置は、従来の発電用火力設備に比較して小規模で応答が速く、従来の制御方法では、発電装置を安定的に運転することが困難であった。また、蒸気量等の計測が必要となる場合があり、装置の低廉化のために大きな障害となる。
特開2005−312289号公報 特開2006−37857号公報 特開2006−316767号公報
上記のように排熱発電装置の蒸気発生器の制御においては、下記の3点が重要となる。
・回収熱量を最大化すること
タービン発電機の必要作動媒体蒸気量に合わせて、発電装置に供給される熱量を制御するのではなく、供給される排熱を可能な限り回収し、できるだけ多くの作動媒体蒸気を発生することが、排熱発電装置の蒸気発生器には求められる。
・蒸気発生器の伝熱効率を維持すること
供給熱量に対し、蒸気発生器への作動媒体液の供給量が過小であると、蒸気発生器の伝熱面に作動媒体液が行き渡らず、実効上の伝熱面積が少なくなる。このようになると、発電装置の排熱回収能力が低下し、発電出力の低下を招く。
・蒸気発生器の出口作動媒体蒸気中の液滴を抑制すること
供給熱量に対し、蒸気発生器への作動媒体液の供給量が過大であると、蒸発できなかった作動媒体液が、蒸気発生器の出口から出る作動媒体蒸気中に混じる。この作動媒体蒸気中に混ざる液量が若干であれば、液滴分離器等を設けることで作動媒体蒸気から液滴を分離・除去できるが、液滴量が過大である場合などでは分離できず、タービンに流入する。この場合、タービン効率が低下したり、潤滑系に作動媒体が混入する原因となったり、はなはだしい場合はタービン自身が液滴により損傷する場合がある。
本発明は上述の点に鑑みてなされたもので、上記回収熱量の最大化、蒸気発生器の伝熱効率の維持、及び作動媒体蒸気中の液滴の抑制が実現できる排熱発電装置を提供することを目的とする。
上記課題を解決するため本願発明は、蒸気発生器を備え、排熱源からの排熱媒体を前記蒸気発生器に導入し、発生した作動媒体蒸気を膨張機に導き、該膨張機で発電機を駆動して発電すると共に、吐出される作動媒体蒸気を凝縮器に導き低熱源からの低熱媒体により前記作動媒体蒸気を冷却・凝縮し、該凝縮した作動媒体液を前記蒸気発生器に供給するように構成した排熱発電装置において、前記蒸気発生器に供給する作動媒体液流量を増減して該蒸気発生器から前記膨張機に導く前記作動媒体蒸気の過熱度を所定の目標値に制御する作動媒体蒸気過熱度制御手段を設け、前記作動媒体蒸気過熱度制御手段は、当該排熱発電装置が起動してから一定の時間が経過するまでは前記過熱度の目標値を前記所定の目標値より低く設定して作動媒体液流量を増減制御する機能を備えていることを特徴とする。
上記のように作動媒体液流量を増減して作動媒体蒸気の過熱度を制御する作動媒体蒸気過熱度制御手段を設けることにより、蒸気発生器の蒸気吐出口又は相当する部分の作動媒体蒸気の過熱度は所定の目標値に維持されることになり、過熱器や液滴分離器を備えなくても、タービン発電機のタービンに液滴が流入することがなく、タービンの効率低下や損傷の恐れがない。また、作動媒体蒸気過熱度制御手段は、当該排熱発電装置が起動してから一定の時間が経過するまでは過熱度の目標値を所定の目標値より低く設定して作動媒体液流量を増減制御する機能を備えているので、起動時は作動媒体蒸気の過熱度を低く抑えることで作動媒体の循環量を多めにして、一定の時間が経過したら過熱度を本来の目標値とし、本来の作動媒体の循環量とすることにより、蒸気発生器内で作動媒体の偏流を抑制することができる。
また、本願発明は、上記排熱発電装置において、前記蒸気発生器はプレート式熱交換器であることを特徴とする。
また、本願発明は、上記排熱発電装置において、前記作動媒体蒸気過熱度制御手段は、前記蒸気発生器に作動媒体液を供給する給液ポンプの回転速度を増減して作動媒体液流量を増減する機能を備えていることを特徴とする。
また、本願発明は、上記排熱発電装置において、前記作動媒体蒸気過熱度制御手段は、前記蒸気発生器から前記膨張機に導く前記作動媒体蒸気の圧力と温度から該作動媒体蒸気の過熱度を演算する過熱度演算機能と、該過熱度演算機能で演算して得られた演算過熱度と、前記設定された目標過熱度を比較し、該演算過熱度が高い場合は前記作動媒体液流量を増し、低い場合は該作動媒体液流量を減じて前記演算過熱度を前記目標過熱度に制御する制御機能を備えていることを特徴とする。
上記のように作動媒体蒸気過熱度制御手段は、演算過熱度を目標過熱度に制御する制御機能を備えるので、蒸気発生器の蒸気吐出口又は相当する部分の作動媒体蒸気の過熱度を常に目標過熱度に維持でき、タービン発電機のタービンの効率を良好な状態に維持できる。
また、本願発明は、上記排熱発電装置において、前記作動媒体蒸気過熱度制御手段は、前記蒸気発生器の蒸発吐出口又は該蒸気発生器から前記膨張機に前記作動媒体蒸気を導く配管又は前記膨張機の蒸気入口の作動媒体蒸気圧の変化により前記作動媒体液流量を増減する圧力変動補正機能を備えていることを特徴とする。
上記のように作動媒体蒸気過熱度制御手段は、圧力変動補正機能を備えるので、作動媒体の循環量が変動し、蒸気圧力が増減した場合、それを相殺できる。
また、本願発明は、上記排熱発電装置において、前記発電機の発電電力を逆変換装置を介して他の電力系統に送電する場合、該逆変換装置内の直流電圧が一定となるように、該逆変換装置の出力を増減する手段を設けたことを特徴とする。
また、本願発明は、プレート式熱交換器からなる蒸気発生器を備え、排熱源からの排熱媒体を前記蒸気発生器に導入し、発生した作動媒体蒸気を膨張機に導き、該膨張機で発電機を駆動して発電すると共に、吐出される作動媒体蒸気を凝縮器に導き低熱源からの低熱媒体により前記作動媒体蒸気を冷却・凝縮し、該凝縮した作動媒体液を前記蒸気発生器に供給するように構成した排熱発電装置の前記蒸気発生器から前記膨張機に導く前記作動媒体蒸気の過熱度を所定の目標値に制御する排熱発電装置の作動媒体蒸気過熱度制御方法であって、当該排熱発電装置が起動してから一定の時間が経過するまでは過熱度の目標値を前記所定の目標値より低く設定し、前記蒸気発生器に供給する作動媒体液流量を増減して前記作動媒体蒸気の過熱度を該低く設定した目標値になるように制御し、前記一定の時間の経過後は前記目標値を前記所定の目標値とし、前記蒸気発生器に供給する作動媒体液流量を増減して前記作動媒体蒸気の過熱度を前記所定の目標過熱度に制御することを特徴とする。
本願発明によれば、作動媒体蒸気過熱度制御手段により蒸気発生器に供給する作動媒体液流量を増減して該蒸気発生器の蒸気吐出口又は相当する部分の作動媒体蒸気の過熱度を所定の目標値にするので、回収熱量の最大化、蒸気発生器の伝熱効率の維持、及び作動媒体蒸気中の液滴の抑制が実現できる排熱発電装置、及び排熱発電装置の作動媒体蒸気過熱度制御方法を提供できる。また、排熱発電装置の起動時は作動媒体蒸気の過熱度を低く抑えることで作動媒体の循環量を多めにして、一定の時間が経過したら過熱度を本来の目標値とし、本来の作動媒体の循環量とすることにより、蒸気発生器内で作動媒体の偏流を抑制することができる


以下、本願発明の実施の形態例を図面に基づいて説明する。図4は本発明に係る排熱発電装置の構成例を示す図である。本排熱発電装置は、発電装置10を備え、排熱源30から80℃程度の温水を熱源とし、冷却塔40からの冷却水を低温熱源として発電する排熱発電装置である。発電装置10は、蒸気発生器11、液滴分離器12、主蒸気弁13、膨張機としてのタービン14及び高速発電機15を有するタービン発電機16、凝縮器17、給液ポンプ18を備え、これらを作動媒体配管19で接続した構成である。発電装置10は制御盤20により制御され、高速発電機15で発電された交流電力は高周波整流器21で直流電力に変換され、更に系統連携装置22で交流電力(一般には50Hz又は60Hzの商用電力)に変換され、系統23に送電される。ここで蒸気発生器11としてプレート式の熱交換器を用いている。
排熱源30から温水循環ポンプ31で温水を蒸気発生器11に供給することにより、給液ポンプ18により凝縮器17から該蒸気発生器11に供給された作動媒体液を加熱し、作動媒体蒸気となって蒸発発生器11の蒸気吐出口から吐き出され作動媒体配管19を通って液滴分離器12に供給される。蒸気吐出口に接続された作動媒体配管19には作動媒体蒸気の圧力を測定する圧力センサ24、温度を測定する温度センサ25が設けられており、その出力は制御盤20に伝送されるようになっている。液滴分離器12で液滴が分離除去された作動媒体蒸気は主蒸気弁13を通ってタービン発電機16のタービン14に供給され、分離された液滴は開閉弁27を及び配管26を通って凝縮器17に送られる。
作動媒体蒸気が供給されたタービン14は回転し、高速発電機15を駆動する。タービン14から吐き出された作動媒体蒸気は凝縮器17に供給され、該凝縮器17で冷却水ポンプ41により冷却塔40から供給される冷却水により冷却され、凝縮されて作動媒体液となる。該作動媒体液は給液ポンプ18により、再び蒸発発生器11に送られ作動媒体は循環する。なお、作動媒体としてはここでは低沸点(沸点が40℃前後)の作動媒体、例えばジクロロトリフルオロエタンHFC13或いはトリフルオロエタノールCF3CH2OH等を用いることが好ましい。
制御盤20は、圧力センサ24で測定された蒸気発生器11の蒸気発生器出口からの作動媒体蒸気の圧力と温度センサ25で測定された蒸気発生器11の出口の作動媒体蒸気の温度から、過熱度を演算して求める。過熱度は、蒸気発生器出口において検出しても良く、タービン14の入口や、相当する配管中などにおいて検出しても良い。この演算して得られた演算過熱度が目標の過熱度と比較して低い場合は給液ポンプ18の回転速度を減じて蒸気発生器11に供給される作動媒体液流量を減らし、該演算過熱度が目標の過熱度と比較して高い場合は給液ポンプ18の回転速度を増やし蒸気発生器11に供給される作動媒体液流量を増し、蒸気発生器11から吐出される作動媒体蒸気の過熱度が一定になるように制御する。これに作動媒体の循環量が変動した場合の補正として、蒸気発生器11の蒸気出口からの作動媒体蒸気圧を圧力センサ24で監視し、該圧力が増減した場合、それを相殺するため、給液ポンプ18の回転速度を増減する。即ち、作動媒体蒸気圧が増加した場合給液ポンプ18の回転速度を増し、作動媒体蒸気圧が減少した場合給液ポンプ18の回転速度を減じる。なお、過熱度に代えて、例えば、作動媒体蒸気の温度から飽和圧力を計算し、作動媒体圧力と飽和圧力との差を指標としても、略同等の効果を得ることができる。
上記のように制御盤20は、圧力センサ24の出力と温度センサ25の出力から作動媒体蒸気の過熱度を演算し、この演算して得られた演算過熱度が目標の過熱度と比較して低い場合は作動媒体液流量を減らし、該演算過熱度が目標の過熱度と比較して高い場合は作動媒体液流量を増すので、蒸気発生器11の蒸気出口において作動媒体蒸気は一定の過熱度を有することになり、蒸気発生器11の蒸気出口から吐出される作動媒体蒸気を過熱するための過熱器を設ける必要がない。なお、上記例では、作動媒体液流量の増減を給液ポンプ18の回転速度の増減で行うが、作動媒体液流量の増減ができれば、給液ポンプ18の回転速度の増減に限定されるものではない。
図5は上記排熱発電装置における作動媒体蒸気の過熱度を一定制御した時の蒸気発生器内のイメージを示す図である。給液ポンプ18によりプレート式の熱交換器である蒸気発生器11の液入口11aから供給される凝縮器17からの作動媒体液はプレートとプレートの間の流路11bを通って加熱され、作動媒体蒸気となって蒸気出口11cから作動媒体配管19を通ってタービン14へ送られる。蒸気発生器11の内部は、下方から作動媒体予熱部A1と、作動媒体気化部A2と、作動媒体過熱部A3とに区分される。給液ポンプ18により蒸気発生器11に供給される作動媒体液の供給量が過大(作動媒体循環量が過大)となると作動媒体過熱部A3が縮小し、作動媒体蒸気の過熱度が低下し、制御盤20の上記制御により給液ポンプ18の回転速度が減少し作動媒体の循環量が減る。また、給液ポンプ18により蒸気発生器11に凝縮器17から供給される作動媒体液の供給量が不足(作動媒体循環量が不足)すると作動媒体過熱部A3が拡大し、作動媒体蒸気の過熱度が上昇し、制御盤20の上記制御により給液ポンプ18の回転速度が増加し作動媒体の循環量が増える。
制御盤20は、過熱度演算部20−1、PID演算部20−2、目標値(目標過熱度)設定部20−3、圧力変動補正部20−4、及び回転速度制御部20−5を備えている。蒸気発生器11の蒸気出口11cに接続された作動媒体配管19に設けた、圧力センサ24及び温度センサ25で測定された作動媒体蒸気圧及び作動媒体蒸気温度は過熱度演算部20−1に入力され、該過熱度演算部20−1で作動媒体蒸気の過熱度が演算される。PID演算部20−2ではこの演算過熱度が目標値設定部20−3で設定された目標の過熱度(3℃程度)と比較し、低い場合は回転速度制御部20−5に給液ポンプ18の回転速度を所定量減速するよう指令し、該演算過熱度が目標の過熱度と比較して高い場合は給液ポンプ18の回転速度を所定量増速するよう指令する。
また、作動媒体の循環量が変動して蒸気発生器11の蒸気出口11cからの作動媒体蒸気圧が増減した場合、それを圧力センサ24で検出し、この作動媒体の循環量の変動を相殺するため、回転速度制御部20−5に給液ポンプ18の回転速度を増減する指令を出す。即ち、作動媒体蒸気圧が増加した場合給液ポンプ18の回転速度を増し、作動媒体蒸気圧が減少した場合給液ポンプ18の回転速度を減じる。この増減の量は、作動媒体蒸気圧力の変化量に比例するようにすると良い。また、制御が不安定となることを避けるため、給液ポンプ18の回転速度の増減量には、上限及び下限を設けることが好ましい。
上記のように排熱源30から発電装置10の蒸気発生器11に供給される排熱量に対して作動媒体液の供給量が過小であると、作動媒体液の行き渡らなかった伝熱面が過熱器として働き、過熱度が上昇する。また、蒸気発生器11に供給される排熱量に対して作動媒体液の供給量が過大であると、過熱器として働く伝熱面が小さくなるため、過熱度が低下する。従って、蒸気発生器11の蒸気出口11c、或いは相当する作動媒体配管19中において、過熱度を一定とするように作動媒体の供給量を制御することで、排熱の供給量に対して適正な流量の作動媒体を供給することが可能となり、供給された排熱を無駄なく利用し、発電装置10の作動媒体を適切に維持できる。
具体的には上記のように、蒸気発生器11の蒸気出口11cにおける作動媒体蒸気の過熱度に目標値を設定し、過熱度が目標値以上となったら、或いは目標以上となることが予測された場合、蒸気発生器11への作動媒体液の供給量を増し、過熱度が目標値以下となったら、或いは目標値以下となることが予測された場合、蒸気発生器11への作動媒体液の供給量を減ずる。本実施形態に基づく発明者らの実験では、この目標過熱度を1〜3℃程度とすると、蒸気発生器11の蒸気出口11cから出る作動媒体蒸気中の液滴が極めて少なく、安定した運転を行いながら、熱回収量を最大化することができた。これは作動媒体、温度センサや圧力センサの精度や応答速度により、最適な値は異なるものと予想されるが、発明者等の検証では、多くの場合で1〜3℃が適切となるようである。
また、作動媒体の循環を開始した直後は、温水温度や媒体温度が安定しておらず、伝熱条件が設計条件から外れてしまい、作動媒体の循環の偏り(偏流)を生じたり、制御が不調となったりしやすい。そこで制御盤20は、作動媒体の循環を開始してから一定の時間が経過するまでは過熱度の目標値を本来の目標値より低く設定して作動媒体液流量を増減制御する機能を備えている。これにより起動時は作動媒体蒸気の過熱度を低く抑えることで循環量を多めにして、一定の時間が経過したら過熱度を本来の目標値とし、本来の循環量とする。このようにすると、蒸気発生器11内で作動媒体の偏流を抑制することができる。なお、この切替は瞬時に行っても、徐々に変化させてもよく、切替は循環開始からの時間によるほか、温水や作動媒体蒸気の温度や圧力、及びその変化率等を指標としても良い。
また、上記排熱発電装置において、制御盤20は、タービン発電機16の発電電力を逆変換装置(系統連携装置22)を介して系統23に送電する場合、該逆変換装置内の直流電圧が一定となるように、該逆変換装置の出力を増減することで、タービン発電機16の回転を適正に保ち発電電力を最大化にすることができる。図6は逆変換装置の構成例を示す図である。タービン発電機16の高速発電機15の交流出力は高周波整流器21で直流に変換され、平滑コンデンサ22−1で平滑される。インバータ22−3はこの直流を交流に変換し、系統23に送電する。高周波整流器21の出力側直流電圧は電圧計22−2で測定し、制御盤20(図4参照)に出力される。制御盤20は、この直流電圧が所定の一定電圧値となるように、インバータ22−3の出力を増減することで、タービン発電機16の回転を適正に保ち発電電力を最大化することができる。
なお、上記排熱発電装置では、排熱源30から温水を熱源とし蒸気発生器11に導入し、凝縮器17に冷却塔40からの冷却水を低温源とする例を示したが、熱源及び低温源はこれに限定されるものではなく、例えば排熱源からの排ガスを熱源とし、空気(空冷凝縮器)や河川水などを低温熱源としてもよい。また、この低温熱源と熱交換による二次流体を用いたり、これらと同等の別の技術を用いるものもある。また、排熱源としては工場排熱、原動機等の排熱、温泉水(地熱)、太陽熱など、様々なものがあり、更にこれらの熱源によって生成される温水や低圧蒸気等であっても良い。
以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。例えば、上記例では膨張機としてタービン14を用い高速発電機15を駆動するタービン発電機16を説明したが、膨張機に作動媒体蒸気を供給し、該作動媒体蒸気の膨張により発生する機械的回転力で発電機を駆動する構成であればよい。
蒸気発生器にプレート式熱交換器を用いた従来の排熱発電装置の構成例を示す図である。 蒸気発生器にドラム型蒸気発生器を用いた従来の排熱発電装置の構成例を示す図である。 蒸気発生器に貫流型蒸気発生器を用いた従来の排熱発電装置の構成例を示す図である。 本発明に係る排熱発電装置の構成例を示す図である。 本発明に係る排熱発電装置の過熱度一定制御時の蒸気発生器内のイメージを示す図である。 本発明に係る排熱発電装置の逆変換装置の構成例を示す図である。
符号の説明
10 発電装置
11 蒸気発生器
12 液滴分離器
13 主蒸気弁
14 タービン
15 高速発電機
16 タービン発電機
17 凝縮器
18 給液ポンプ
19 作動媒体配管
20 制御盤
21 高周波整流器
22 系統連携装置
23 系統
24 圧力センサ
25 温度センサ
26 配管
27 開閉弁
30 排熱源
31 温水循環ポンプ
40 冷却塔
41 冷却水ポンプ

Claims (7)

  1. 蒸気発生器を備え、排熱源からの排熱媒体を前記蒸気発生器に導入し、発生した作動媒体蒸気を膨張機に導き、該膨張機で発電機を駆動して発電すると共に、吐出される作動媒体蒸気を凝縮器に導き低熱源からの低熱媒体により前記作動媒体蒸気を冷却・凝縮し、該凝縮した作動媒体液を前記蒸気発生器に供給するように構成した排熱発電装置において、
    前記蒸気発生器に供給する作動媒体液流量を増減して該蒸気発生器から前記膨張機に導く前記作動媒体蒸気の過熱度を所定の目標値に制御する作動媒体蒸気過熱度制御手段を設け、
    前記作動媒体蒸気過熱度制御手段は、当該排熱発電装置が起動してから一定の時間が経過するまでは前記過熱度の目標値を前記所定の目標値より低く設定して作動媒体液流量を増減制御する機能を備えていることを特徴とする排熱発電装置。
  2. 請求項1に記載の排熱発電装置において、
    前記蒸気発生器はプレート式熱交換器であることを特徴とする排熱発電装置。
  3. 請求項1又は2に記載の排熱発電装置において、
    前記作動媒体蒸気過熱度制御手段は、前記蒸気発生器に作動媒体液を供給する給液ポンプの回転速度を増減して作動媒体液流量を増減する機能を備えていることを特徴とする排熱発電装置。
  4. 請求項1乃至3のいずれか1項に記載の排熱発電装置において、
    前記作動媒体蒸気過熱度制御手段は、前記蒸気発生器から前記膨張機に導く前記作動媒体蒸気の圧力と温度から該作動媒体蒸気の過熱度を演算する過熱度演算機能と、該過熱度演算機能で演算して得られた演算過熱度と、前記設定された目標過熱度を比較し、該演算過熱度が高い場合は前記作動媒体液流量を増し、低い場合は該作動媒体液流量を減じて前記演算過熱度を前記目標過熱度に制御する制御機能を備えていることを特徴とする排熱発電装置。
  5. 請求項1乃至4のいずれか1項に記載の排熱発電装置において、
    前記作動媒体蒸気過熱度制御手段は、前記蒸気発生器の蒸発吐出口又は該蒸気発生器から前記膨張機に前記作動媒体蒸気を導く配管又は前記膨張機の蒸気入口の作動媒体蒸気圧の変化により前記作動媒体液流量を増減する圧力変動補正機能を備えていることを特徴とする排熱発電装置。
  6. 請求項1乃至のいずれか1項に記載の排熱発電装置において、
    前記発電機の発電電力を逆変換装置を介して他の電力系統に送電する場合、該逆変換装置内の直流電圧が一定となるように、該逆変換装置の出力を増減する手段を設けたことを特徴とする排熱発電装置。
  7. プレート式熱交換器からなる蒸気発生器を備え、排熱源からの排熱媒体を前記蒸気発生器に導入し、発生した作動媒体蒸気を膨張機に導き、該膨張機で発電機を駆動して発電すると共に、吐出される作動媒体蒸気を凝縮器に導き低熱源からの低熱媒体により前記作動媒体蒸気を冷却・凝縮し、該凝縮した作動媒体液を前記蒸気発生器に供給するように構成した排熱発電装置の前記蒸気発生器から前記膨張機に導く前記作動媒体蒸気の過熱度を所定の目標値に制御する排熱発電装置の作動媒体蒸気過熱度制御方法であって、
    当該排熱発電装置が起動してから一定の時間が経過するまでは過熱度の目標値を前記所定の目標値より低く設定し、前記蒸気発生器に供給する作動媒体液流量を増減して前記作動媒体蒸気の過熱度を該低く設定した目標値になるように制御し、前記一定の時間の経過後は前記目標値を前記所定の目標値とし、前記蒸気発生器に供給する作動媒体液流量を増減して前記作動媒体蒸気の過熱度を前記所定の目標過熱度に制御することを特徴とする排熱発電装置の作動媒体蒸気過熱度制御方法。
JP2007156850A 2007-06-13 2007-06-13 排熱発電装置、排熱発電装置の作動媒体蒸気過熱度制御方法 Expired - Fee Related JP4875546B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007156850A JP4875546B2 (ja) 2007-06-13 2007-06-13 排熱発電装置、排熱発電装置の作動媒体蒸気過熱度制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007156850A JP4875546B2 (ja) 2007-06-13 2007-06-13 排熱発電装置、排熱発電装置の作動媒体蒸気過熱度制御方法

Publications (2)

Publication Number Publication Date
JP2008309046A JP2008309046A (ja) 2008-12-25
JP4875546B2 true JP4875546B2 (ja) 2012-02-15

Family

ID=40236870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156850A Expired - Fee Related JP4875546B2 (ja) 2007-06-13 2007-06-13 排熱発電装置、排熱発電装置の作動媒体蒸気過熱度制御方法

Country Status (1)

Country Link
JP (1) JP4875546B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087864A1 (ja) 2012-12-03 2014-06-12 東京博善株式会社 火葬システム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5195653B2 (ja) * 2009-06-09 2013-05-08 トヨタ自動車株式会社 廃熱回収装置及びエンジン
JP5639515B2 (ja) * 2011-03-24 2014-12-10 株式会社神戸製鋼所 バイナリー発電装置及びその制御方法
WO2013020256A1 (zh) * 2011-08-08 2013-02-14 Tang Zhongsheng 喷水式蒸汽发动机
CN102392701B (zh) * 2011-08-08 2015-03-18 唐忠盛 喷水式蒸汽发动机
JP5891146B2 (ja) * 2012-08-29 2016-03-22 株式会社神戸製鋼所 発電装置及び発電装置の制御方法
JP6064548B2 (ja) 2012-11-28 2017-01-25 株式会社Ihi 廃熱発電装置
JP5957410B2 (ja) * 2013-04-16 2016-07-27 株式会社神戸製鋼所 排熱回収装置
JP6334270B2 (ja) * 2013-05-31 2018-05-30 メタウォーター株式会社 有機性廃棄物燃焼プラントの制御方法。
JP6060040B2 (ja) * 2013-06-07 2017-01-11 株式会社神戸製鋼所 排熱回収装置および排熱回収装置の運転制御方法
CN108825318A (zh) * 2018-09-20 2018-11-16 北京宏远佰思德科技有限公司 一种低温工质发电***及动力***
CN112786223B (zh) * 2021-01-14 2023-10-31 中广核研究院有限公司 余热排出***及流量稳定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6981377B2 (en) * 2002-02-25 2006-01-03 Outfitter Energy Inc System and method for generation of electricity and power from waste heat and solar sources
JP4277608B2 (ja) * 2003-07-10 2009-06-10 株式会社日本自動車部品総合研究所 ランキンサイクル
JP4889956B2 (ja) * 2004-03-22 2012-03-07 株式会社荏原製作所 発電装置
JP4659503B2 (ja) * 2005-03-31 2011-03-30 株式会社荏原製作所 発電装置及び潤滑油回収方法
JP4808006B2 (ja) * 2005-11-04 2011-11-02 株式会社荏原製作所 駆動システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087864A1 (ja) 2012-12-03 2014-06-12 東京博善株式会社 火葬システム
US9822972B2 (en) 2012-12-03 2017-11-21 Tokyo Hakuzen Co., Ltd. Cremation system

Also Published As

Publication number Publication date
JP2008309046A (ja) 2008-12-25

Similar Documents

Publication Publication Date Title
JP4875546B2 (ja) 排熱発電装置、排熱発電装置の作動媒体蒸気過熱度制御方法
KR101419261B1 (ko) 열 사이클 공정의 제어 방법 및 이를 포함하는 장치 및 컴퓨터 프로그램
JP4578354B2 (ja) 蒸気タービンプラントの廃熱利用設備
RU2502880C2 (ru) Органический цикл ренкина прямого нагрева
JP5981693B2 (ja) 複合サイクル動作における安全なドラム水位を決定する方法およびシステム
AU2012214955B2 (en) Method and apparatus of producing and utilizing thermal energy in a combined heat and power plant
JP5595595B2 (ja) 複合型ガス・蒸気タービン設備の運転方法並びにこの方法を実施するためのガス・蒸気タービン設備および対応する調節装置
WO2013129569A1 (ja) 廃熱回収ランキンサイクルシステム
JP5788235B2 (ja) 蒸気発生装置
US11261760B2 (en) On-demand vapor generator and control system
JP2005312289A (ja) 発電装置
JP4684762B2 (ja) 発電装置
US10472992B2 (en) On-demand steam generator and control system
JP5192736B2 (ja) 排熱発電装置、排熱発電装置の運転方法
JP2008267341A (ja) 廃熱回収装置
KR20110079446A (ko) Orc시스템 펌프 제어방법
JP5424711B2 (ja) 蒸気タービン発電システム
KR101613227B1 (ko) 선박의 폐열을 이용한 전력 생산 장치 및 방법
JP6516993B2 (ja) コンバインドサイクルプラント並びにボイラの蒸気冷却方法
JPH1136818A (ja) 排熱利用複合発電プラントの制御装置
JP2002156493A (ja) 原子力発電所の所内熱供給設備
JP2019027399A (ja) コンバインドサイクル発電プラントと、その運転方法、並びに改造方法
RU2067668C1 (ru) Способ работы парогазовой установки
JPH05296401A (ja) 排熱回収ボイラ系統およびその主蒸気温度制御装置
JP2021156498A (ja) 蒸気利用プラント

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4875546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees