JP4859714B2 - Gas hydrate concentration measuring device - Google Patents

Gas hydrate concentration measuring device Download PDF

Info

Publication number
JP4859714B2
JP4859714B2 JP2007062113A JP2007062113A JP4859714B2 JP 4859714 B2 JP4859714 B2 JP 4859714B2 JP 2007062113 A JP2007062113 A JP 2007062113A JP 2007062113 A JP2007062113 A JP 2007062113A JP 4859714 B2 JP4859714 B2 JP 4859714B2
Authority
JP
Japan
Prior art keywords
gas
gas hydrate
valve
water
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007062113A
Other languages
Japanese (ja)
Other versions
JP2008224378A (en
Inventor
新井  敬
徹 岩崎
英教 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2007062113A priority Critical patent/JP4859714B2/en
Publication of JP2008224378A publication Critical patent/JP2008224378A/en
Application granted granted Critical
Publication of JP4859714B2 publication Critical patent/JP4859714B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、ガスハイドレート濃度の測定方法及び測定装置に関する。   The present invention relates to a method and an apparatus for measuring a gas hydrate concentration.

近年、天然ガスやメタンなどの安全かつ経済的な輸送・貯蔵手段として、それら原料ガスの固体状の水和物であるガスハイドレートを用いる方法が注目されている。   In recent years, a method using gas hydrate, which is a solid hydrate of these raw material gases, has attracted attention as a safe and economical means for transporting and storing natural gas and methane.

このガスハイドレートは一般に高圧・低温下(例えば、5.4MPa・5℃)で生成され、その生成方法としては、原料水中に原料ガスを気泡として吹き込みながら撹拌するいわゆる「気液撹拌方式」(例えば、特許文献1を参照)が代表的なものとして知られている。   This gas hydrate is generally produced under high pressure and low temperature (for example, 5.4 MPa · 5 ° C.), and as its production method, a so-called “gas-liquid agitation method” in which the raw material gas is blown into the raw material water as bubbles is stirred. For example, see Patent Document 1).

ガスハイドレート事業の商業化を図る上からは、ガスハイドレート生成装置により一定の濃度のガスハイドレートを生成する必要があるが、生成されるガスハイドレートは多量の水の中に浮遊してスラリー状となっているため、ガスハイドレート濃度を直接測定することは一般に困難である。   In order to commercialize the gas hydrate business, it is necessary to generate a gas hydrate with a certain concentration using a gas hydrate generator, but the generated gas hydrate is suspended in a large amount of water. Since it is in the form of a slurry, it is generally difficult to directly measure the gas hydrate concentration.

現状のガスハイドレート濃度の測定方法の一例を以下に説明する。   An example of the current method for measuring the gas hydrate concentration will be described below.

この測定方法においては、図5に示すように、あらかじめ内部をガスハイドレートの生成圧力よりも低い圧力(例えば、3.5MPa)に保持したサンプリング容器30を用いる。まず、サンプリング容器30をガスハイドレート生成容器31に、エアロックを構成する2つのボール弁32、33を介して接続する。そして、これらのボール弁32、33を同時に開くことにより、2つの容器間の差圧を利用してサンプリング容器30内にガスハイドレートと付着水からなる液状試料と未反応の原料ガスを導入する。所定の量を導入した後にボール弁32、33を閉じ、その中間部でサンプリング容器30を生成容器31から切り離す。切り離し後のサンプリング容器30を大気圧下でガスハイドレートが分解しにくい温度(約−20℃)まで冷却して液状試料を凍結させてから、ガス抜き弁34を開いて未反応の原料ガスを外部へ放出する。ガスを放出した後に、サンプリング容器30の総重量と風袋重量から液状試料の重量Wを求める。最後に、サンプリング容器30をガスハイドレートの生成温度以上まで加熱してガスハイドレートを原料ガスと原料水に分解した後に、サンプリング容器30内の残留水を取り出してその重量Wを測定する。 In this measurement method, as shown in FIG. 5, a sampling container 30 is used in which the interior is previously maintained at a pressure lower than the gas hydrate generation pressure (for example, 3.5 MPa). First, the sampling container 30 is connected to the gas hydrate generation container 31 via two ball valves 32 and 33 constituting an air lock. By opening these ball valves 32 and 33 simultaneously, a liquid sample composed of gas hydrate and adhering water and an unreacted source gas are introduced into the sampling container 30 by utilizing the differential pressure between the two containers. . After the predetermined amount is introduced, the ball valves 32 and 33 are closed, and the sampling container 30 is separated from the production container 31 at an intermediate portion thereof. After the separation, the sampling container 30 is cooled to a temperature (about −20 ° C.) at which the gas hydrate is not easily decomposed at atmospheric pressure to freeze the liquid sample, and then the gas release valve 34 is opened to remove the unreacted source gas. Release to the outside. After releasing the gas, obtains the weight W s of the liquid sample from the total weight and the tare weight of the sampling vessel 30. Finally, the sampling vessel 30 is heated to a gas hydrate production temperature or higher to decompose the gas hydrate into raw material gas and raw water, and then the residual water in the sampling vessel 30 is taken out and its weight Ww is measured.

このようにして測定した液状試料の重量Wと残留水(付着水+原料水)の重量Wから、ガスハイドレートを生成していた原料ガスの重量Wを求める。
=W−W ---(1)
From the weight W s of the liquid sample thus measured and the weight W w of the residual water (attached water + raw material water), the weight W g of the raw material gas that has generated the gas hydrate is obtained.
W g = W s −W w --- (1)

ガスハイドレートの重量Wは、水和数をnとすると以下のようになる。
=W×(1+n×M/M) ---(2)
The weight W h of the gas hydrate is as follows when the hydration number is n.
W h = W g × (1 + n × M w / M g ) --- (2)

ここで、M及びMは、それぞれ原料ガス及び原料水の分子量を表す。 Here, M w and M g each represent molecular weight of the raw material gas and the raw water.

従って、ガスハイドレート濃度α(重量%)は、次のように求められる。
α=W/W×100 ---(3)
Accordingly, the gas hydrate concentration α h (% by weight) is obtained as follows.
α h = W h / W s × 100 --- (3)

しかし、このようなガスハイドレート濃度の測定方法では、サンプリング容器を−20℃まで冷却して液状試料を凍結させる必要があるため、測定に費用と時間がかかり効率が悪いという問題があった。
特開2000−302701号公報
However, in such a gas hydrate concentration measurement method, it is necessary to cool the sampling container to −20 ° C. to freeze the liquid sample, and thus there is a problem that the measurement is expensive and time consuming and the efficiency is poor.
JP 2000-302701 A

本発明の目的は、ガスハイドレート濃度を効率よく測定することができる測定方法及びその装置を提供することにある。   The objective of this invention is providing the measuring method and its apparatus which can measure a gas hydrate density | concentration efficiently.

上記の目的を達成するため本発明は、原料ガス及び原料水から生成されるガスハイドレートと付着水とからなる液状試料中のガスハイドレート濃度の測定装置であって、前記液状試料が流れる管路(3)に入口弁(10)及び出口弁(11)を両端にそれぞれ有するバイパス管(4)を介して接続する測定容器(5)と、前記測定容器(5)の外側に設置された加熱ヒーター(6)と、前記測定容器(5)に外部へ向けて順に接続する排気弁(12)、差圧弁(7)、ガス流量計(8)及びガスクロマトグラフィ(14)と、前記排気弁(12)と差圧弁(7)との間に接続する圧力計(13)と、前記測定容器(5)に接続する排水弁(9)と、を備え、前記入口弁(10)及び出口弁(11)を開弁して前記測定容器(5)内に前記液状試料を通過させた後に、前記出口弁(11)及び入口弁(10)を順に閉弁して前記測定容器(5)内に前記液状試料を貯留させ、前記加熱ヒーター(6)で前記測定容器(5)内を前記ガスハイドレートの平衡温度以上に加熱して前記ガスハイドレートを前記原料ガスと前記原料水とに分解し、前記排気弁(12)を開弁して前記測定容器(5)内が貯留時の圧力に維持されるように前記圧力計(13)を確認しつつ前記差圧弁(7)を開弁して前記原料ガスの体積V g を前記ガス流量計(8)で測定するとともに、前記原料ガスの組成を前記ガスクロマトグラフィ(14)で分析し、前記排水弁(9)を開弁して前記測定容器(5)内に残留する前記原料水及び付着水を抜き出してその重量をW w を測定し、前記原料ガスの体積V g を前記ガスクロマトグラフィ(14)の組成分析結果を基に前記原料ガスの重量W g に変換し、W s =W g +W w 、W h =W g ×(1+n×M w /M g )及びα h =W h /W s ×100からなる3つの式を用いてガスハイドレート濃度α h を算出することを特徴とするガスハイドレート濃度の測定装置である。なお、W s は液状試料の重量、W h はガスハイドレートの重量、M w は原料ガスの分子量、M g は原料水の分子量及びnはガスハイドレートの水和数を示す。 The present invention for achieving the above object, there is provided a measuring apparatus for a gas hydrate concentration in the liquid sample of the material gas and the raw water or et gas hydrate produced and deposited water, the liquid sample A measuring container (5) connected to a flowing pipe line (3) via a bypass pipe (4) having an inlet valve (10) and an outlet valve (11) at both ends, respectively, and installed outside the measuring container (5) The heated heater (6), the exhaust valve (12), the differential pressure valve (7), the gas flow meter (8), and the gas chromatography (14) connected in order to the outside of the measurement container (5), A pressure gauge (13) connected between the exhaust valve (12) and the differential pressure valve (7), and a drain valve (9) connected to the measurement container (5), the inlet valve (10) and The outlet valve (11) is opened and the liquid is put into the measuring container (5). After passing the sample, the outlet valve (11) and the inlet valve (10) are sequentially closed to store the liquid sample in the measurement container (5), and the measurement container is heated by the heater (6). (5) The inside is heated above the equilibrium temperature of the gas hydrate to decompose the gas hydrate into the raw material gas and the raw water, and the exhaust valve (12) is opened to open the measuring vessel (5 ) Opening the differential pressure valve (7) while checking the pressure gauge (13) so that the inside is maintained at the pressure at the time of storage, and the volume V g of the source gas is determined by the gas flow meter (8). While measuring, the composition of the raw material gas is analyzed by the gas chromatography (14), the drain valve (9) is opened, and the raw water and adhering water remaining in the measuring vessel (5) are extracted. the weight was measured W w, before the volume V g of the raw material gas The composition analysis results of gas chromatography (14) into the weight W g of the raw material gas based, W s = W g + W w, W h = W g × (1 + n × M w / M g) and alpha h = The gas hydrate concentration measuring apparatus is characterized in that the gas hydrate concentration α h is calculated using three equations of W h / W s × 100 . Incidentally, W s is the weight of the liquid sample, W h denotes the weight of the gas hydrate, the molecular weight M w of the raw material gas, the molecular weight and n M g raw material water hydration number of the gas hydrate.

この原料ガスとしては天然ガスを用いることが望ましい。   As this raw material gas, it is desirable to use natural gas.

この測定容器(5)、排水弁(9)を最低部に有する下に凸のU字状であることが望ましい。 The measurement container (5) preferably has a downward U-shape having a drain valve (9) at the lowest part .

本発明であるガスハイドレート濃度の測定装置によれば、ガスハイドレートと付着水が流れる管路に測定容器をバイパスとして接続することにより測定容器内に液状試料を導入し、測定容器をガスハイドレートの平衡温度以上に加熱してガスハイドレートを原料ガスと原料水とに分解し、次いで測定容器外に放出された原料ガスの体積及び組成と、測定容器内に残留した原料水と付着水との重量とからガスハイドレートの濃度を求めるようにしたので、測定容器を冷却して液状試料を凍結させる必要がないため、ガスハイドレートの濃度を効率よく測定することができる。 According to the gas hydrate concentration measuring apparatus of the present invention, a liquid sample is introduced into a measurement container by connecting the measurement container as a bypass to a pipeline through which the gas hydrate and adhering water flow. The gas hydrate is heated to a temperature equal to or higher than the equilibrium temperature of the rate to decompose the gas hydrate into raw material gas and raw material water, and then the volume and composition of the raw material gas released to the outside of the measuring vessel, and the raw material water and adhering water remaining in the measuring vessel Since the gas hydrate concentration is obtained from the weight of the gas sample, there is no need to cool the measurement container and freeze the liquid sample, so that the gas hydrate concentration can be measured efficiently.

以下に、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明に係るガスハイドレート濃度の測定装置は、ガスハイドレートと付着水とからなる液状試料中に含まれるガスハイドレートの濃度を測定するものである。ガスハイドレートを生成する原料ガスとしては天然ガスが例示されるが、所定の圧力及び温度でガスハイドレートを生成するものならば特に種類は問わず、天然ガスの成分であるメタン、エタン、プロパンなどの炭化水素ガス及びそれらの混合ガス、あるいは二酸化炭素、硫化水素及びそれらの混合ガスなどでもよい。また、ガスハイドレートの生成圧力及び生成温度とは、上記のそれぞれの原料ガスと水からガスハイドレートを生成する際の圧力範囲及び温度範囲をいう。この生成圧力と生成温度は、ガスハイドレートとガスと水(又は氷)が平衡状態にある三相平衡条件よりも低温・高圧側である安定領域の圧力と温度に設定する必要がある。 The gas hydrate concentration measuring apparatus according to the present invention measures the concentration of gas hydrate contained in a liquid sample composed of gas hydrate and adhering water. Natural gas is exemplified as a raw material gas for producing gas hydrate, but any kind of gas may be used as long as it produces gas hydrate at a predetermined pressure and temperature, and methane, ethane, and propane, which are components of natural gas. Or a mixed gas thereof, or carbon dioxide, hydrogen sulfide and a mixed gas thereof. Further, the gas hydrate production pressure and production temperature refer to the pressure range and temperature range in producing gas hydrate from each of the above raw material gases and water. It is necessary to set the generation pressure and the generation temperature to a pressure and temperature in a stable region at a lower temperature and a higher pressure than a three-phase equilibrium condition in which gas hydrate, gas, and water (or ice) are in an equilibrium state.

図1は、本発明の実施形態からなるガスハイドレート濃度の測定装置である。   FIG. 1 is a gas hydrate concentration measuring apparatus according to an embodiment of the present invention.

このガスハイドレート濃度の測定装置(以下、単に「測定装置」という。)1は、ガスハイドレートと付着水からなるスラリー状のガスハイドレート2が流れる管路3にバイパス管4を介して接続する測定容器5と、その測定容器5の外側に設置された加熱ヒーター6及び測定容器5に接続された差圧弁7、ガス流量計8及び排水弁9から主に構成される。測定容器5は、バイパス管4の一部として形成することもできる。バイパス管4には、上流側及び下流側に開閉手段である入口弁10及び出口弁11が、それぞれ設けられている。差圧弁7とガス流量計8は排気弁12を介して測定容器5に順に接続されており、差圧弁7と排気弁12の間には圧力計13が設置されている。また、ガス流量計8の下流側には、ガスの組成を分析するガスクロマトグラフィ14が接続されている。なお、温度計15は、測定容器5の内部温度を測定するためのものである。   This gas hydrate concentration measuring device (hereinafter simply referred to as “measuring device”) 1 is connected via a bypass pipe 4 to a conduit 3 through which a slurry-like gas hydrate 2 composed of gas hydrate and adhering water flows. The measurement vessel 5 is mainly composed of a heater 6 installed outside the measurement vessel 5, a differential pressure valve 7 connected to the measurement vessel 5, a gas flow meter 8, and a drain valve 9. The measurement container 5 can also be formed as a part of the bypass pipe 4. The bypass pipe 4 is provided with an inlet valve 10 and an outlet valve 11 as opening / closing means on the upstream side and the downstream side, respectively. The differential pressure valve 7 and the gas flow meter 8 are sequentially connected to the measurement container 5 via an exhaust valve 12, and a pressure gauge 13 is installed between the differential pressure valve 7 and the exhaust valve 12. A gas chromatograph 14 for analyzing the gas composition is connected to the downstream side of the gas flow meter 8. The thermometer 15 is for measuring the internal temperature of the measurement container 5.

スラリー状のガスハイドレート2が流れる管路3としては、図2に示すような、ガスハイドレート生成装置20の循環水ライン21を例示することができる。このガスハイドレート生成装置20は、耐圧容器22内に貯留する冷水23内に気泡として吹き出された原料ガス24を回転する撹拌羽根25により撹拌することで原料ガス24を水和させてガスハイドレートを生成するものである。その生成されたガスハイドレートは、スラリー状となって耐圧容器22の底部から送出ポンプ25により脱水装置等の図示しない次工程へ送り出されるが、その一部は循環水ライン21に流れ込んで熱交換器26で反応熱が除去された後に、原料となる水27と共に耐圧容器内へ戻されるようになっている。本発明に係る測定装置1は、この循環水ライン21における送出ポンプ25の下流側に設置するのが望ましい。なお、ここではいわゆる気液撹拌方式によるガスハイドレート生成装置を示しているが、いわゆる水スプレー方式(例えば、特開2000−264852号公報を参照)によるガスハイドレート生成装置でもよい。   As the pipe line 3 through which the slurry-like gas hydrate 2 flows, a circulating water line 21 of the gas hydrate generator 20 as shown in FIG. 2 can be exemplified. The gas hydrate generator 20 hydrates the raw material gas 24 by stirring the raw material gas 24 blown out as bubbles in the cold water 23 stored in the pressure resistant vessel 22 with a rotating stirring blade 25 to gas hydrate the gas hydrate. Is generated. The generated gas hydrate is in the form of a slurry and is sent from the bottom of the pressure vessel 22 to the next process (not shown) such as a dehydrator by the delivery pump 25. A part of the gas hydrate flows into the circulating water line 21 to exchange heat. After the reaction heat is removed by the vessel 26, it is returned to the pressure vessel together with water 27 as a raw material. The measuring device 1 according to the present invention is desirably installed on the downstream side of the delivery pump 25 in the circulating water line 21. In addition, although the gas hydrate production | generation apparatus by what is called a gas-liquid stirring system is shown here, the gas hydrate production | generation apparatus by what is called a water spray system (for example, refer Unexamined-Japanese-Patent No. 2000-264852) may be used.

このような測定装置を用いたガスハイドレート濃度の測定方法を以下に説明する。   A method for measuring the gas hydrate concentration using such a measuring apparatus will be described below.

まず、入口弁10と出口弁11を開くことにより管路3からガスハイドレートと付着水2が測定容器5内を通過するようにバイパスさせる。なお、管路3に切替弁16を設けて、ガスハイドレートと付着水2の全量がバイパス管4へ流れるようにしてもよい。これにより、測定容器5内はガスハイドレートの生成圧力(例えば、5.4MPa)及び生成温度(例えば、5℃)に維持されることになる。次に、出口弁11を閉じて、測定対象となる液状試料を測定容器5内に貯留させる。一定時間経過後に入口弁10を閉じ、加熱ヒーター6により測定容器5を容器内の圧力で決まるガスハイドレートの平衡温度以上(例えば、10℃)に加熱してガスハイドレートを原料ガスと原料水に分解する。そして排気弁12を開き、測定容器5内が液状試料の貯留時の圧力に維持されるように、圧力計13を確認しつつ差圧弁7を開いて、測定容器5内の原料ガスをガス流量計8へ流して体積Vを測定すると共に、ガスクロマトグラフィ14でガスの組成を分析する。測定容器5の内部に残留した原料水と付着水は、排水弁9を開いて測定容器5外に抜き出して重量Wを測定する。 First, the inlet valve 10 and the outlet valve 11 are opened to bypass the gas hydrate and the adhering water 2 from the pipe line 3 so as to pass through the measurement container 5. Note that a switching valve 16 may be provided in the pipe line 3 so that the entire amount of gas hydrate and adhering water 2 flows to the bypass pipe 4. Thereby, the inside of the measurement container 5 is maintained at the generation pressure (for example, 5.4 MPa) and the generation temperature (for example, 5 ° C.) of the gas hydrate. Next, the outlet valve 11 is closed, and the liquid sample to be measured is stored in the measurement container 5. After a predetermined time has elapsed, the inlet valve 10 is closed, and the measuring vessel 5 is heated by the heater 6 to a temperature equal to or higher than the equilibrium temperature of the gas hydrate determined by the pressure in the vessel (for example, 10 ° C.). Disassembled into Then, the exhaust valve 12 is opened, and the differential pressure valve 7 is opened while checking the pressure gauge 13 so that the inside of the measurement container 5 is maintained at the pressure at the time of storing the liquid sample, and the raw material gas in the measurement container 5 is supplied to the gas flow rate. The gas is flowed to a total of 8 to measure the volume V g and the gas composition is analyzed by the gas chromatography 14. The raw material water and adhering water remaining inside the measurement container 5 are opened to the outside of the measurement container 5 by opening the drain valve 9, and the weight Ww is measured.

なお、図3に示す別の実施形態のように、測定容器5の形状を下に凸のU字状として、その最底部に排水弁9を設けることにより、原料水と付着水を測定容器5外へ容易に抜き出すことができる。あるいは、図4に示す参考例のように、排水弁9を設ける代わりに入口弁10と出口弁11を二重にして、測定容器5を管路3に対して脱着可能とすることで、測定容器5の風袋重量と取り外し後の測定重量から原料水と付着水の重量Wwを求めることもできる。 In addition, like another embodiment shown in FIG. 3, the shape of the measurement container 5 is made downward U-shaped, and the drainage valve 9 is provided at the bottom of the measurement container 5 so that the raw water and the adhering water are measured in the measurement container 5. Can be easily pulled out. Alternatively, as in the reference example shown in FIG. 4, instead of providing the drain valve 9, the inlet valve 10 and the outlet valve 11 are doubled so that the measurement container 5 can be attached to and detached from the pipe line 3. From the tare weight of the container 5 and the measured weight after removal, the weight Ww of raw material water and adhering water can also be obtained.

測定した原料ガスの体積Vについては、原料ガスの組成分析結果を基に重量Wに変換する。そして、原料ガスの重量W及び原料水と付着水の重量Wから液状試料の重量Wを以下のように求める。
=W+W ---(4)
The measured volume V g of the source gas is converted into a weight W g based on the composition analysis result of the source gas. Then, determine the weight W g and raw water of the raw material gas from the weight W w of water adhered to the weight W s of the liquid sample, as follows.
W s = W g + W w --- (4)

これから、前出の(1)〜(3)式を用いることにより、ガスハイドレート濃度αを求めることができる。 From this, the gas hydrate concentration α h can be obtained by using the above-described equations (1) to (3).

以上のように、本発明に係るガスハイドレート濃度の測定装置によれば、測定容器を冷却して液状試料を凍結させる必要がないため、液状試料中のガスハイドレート濃度を効率よく測定することができる。 As described above, according to the measurement apparatus for a gas hydrate concentration according to the present invention, since the measurement container does not need to be cooled to freeze the liquid sample, measuring the gas hydrate concentration in the liquid sample effectively be able to.

本発明の実施形態からなるガスハイドレート濃度の測定装置である。1 is a gas hydrate concentration measuring apparatus according to an embodiment of the present invention. 本発明に係るガスハイドレート濃度の測定装置の設置場所の一例を示す系統図である。It is a systematic diagram which shows an example of the installation place of the measuring apparatus of the gas hydrate concentration which concerns on this invention. 本発明の別の実施形態からなるガスハイドレート濃度の測定装置である。It is a measuring device of gas hydrate concentration which consists of another embodiment of the present invention. 本発明の更に別の実施形態からなるガスハイドレート濃度の測定装置である。It is a gas hydrate density | concentration measuring apparatus which consists of another embodiment of this invention. 従来のガスハイドレート濃度の測定装置である。This is a conventional gas hydrate concentration measuring apparatus.

符号の説明Explanation of symbols

1 測定装置
2 スラリー状のガスハイドレート
3 管路
4 バイパス管
5 測定容器
6 加熱ヒーター
7 差圧弁
8 ガス流量計
9 排水弁
10 入口弁
11 出口弁
12 排気弁
13 圧力計
14 ガスクロマトグラフィ
15 温度計
16 切替弁
20 ガスハイドレート生成装置
21 循環水ライン
22 耐圧容器
23 冷水
24 原料ガス
25 撹拌羽根
26 熱交換器
27 水
DESCRIPTION OF SYMBOLS 1 Measuring apparatus 2 Slurry gas hydrate 3 Pipe line 4 Bypass pipe 5 Measuring container 6 Heater 7 Differential pressure valve 8 Gas flow meter 9 Drain valve 10 Inlet valve 11 Outlet valve 12 Exhaust valve 13 Pressure gauge 14 Gas chromatography 15 Thermometer 16 Switching valve 20 Gas hydrate generator 21 Circulating water line 22 Pressure vessel 23 Cold water 24 Raw material gas 25 Stirring blade 26 Heat exchanger 27 Water

Claims (3)

原料ガス及び原料水から生成されるガスハイドレートと付着水とからなる液状試料中のガスハイドレート濃度の測定装置であって、
前記液状試料が流れる管路(3)に入口弁(10)及び出口弁(11)を両端にそれぞれ有するバイパス管(4)を介して接続する測定容器(5)と、
前記測定容器(5)の外側に設置された加熱ヒーター(6)と、
前記測定容器(5)に外部へ向けて順に接続する排気弁(12)、差圧弁(7)、ガス流量計(8)及びガスクロマトグラフィ(14)と、
前記排気弁(12)と差圧弁(7)との間に接続する圧力計(13)と、
前記測定容器(5)に接続する排水弁(9)と、を備え、
前記入口弁(10)及び出口弁(11)を開弁して前記測定容器(5)内に前記液状試料を通過させた後に、前記出口弁(11)及び入口弁(10)を順に閉弁して前記測定容器(5)内に前記液状試料を貯留させ、
前記加熱ヒーター(6)で前記測定容器(5)内を前記ガスハイドレートの平衡温度以上に加熱して前記ガスハイドレートを前記原料ガスと前記原料水とに分解し、
前記排気弁(12)を開弁して前記測定容器(5)内が貯留時の圧力に維持されるように前記圧力計(13)を確認しつつ前記差圧弁(7)を開弁して前記原料ガスの体積V g を前記ガス流量計(8)で測定するとともに、前記原料ガスの組成を前記ガスクロマトグラフィ(14)で分析し、
前記排水弁(9)を開弁して前記測定容器(5)内に残留する前記原料水及び付着水を抜き出してその重量をW w を測定し、
前記原料ガスの体積V g を前記ガスクロマトグラフィ(14)の組成分析結果を基に前記原料ガスの重量W g に変換し、
以下に示す(1)〜(3)式を用いてガスハイドレート濃度α h を算出することを特徴とするガスハイドレート濃度の測定装置。
s =W g +W w ---(1)
h =W g ×(1+n×M w /M g ) ---(2)
α h =W h /W s ×100 ---(3)
但し、W s :液状試料の重量、W h :ガスハイドレートの重量、M w :原料ガスの分子量、M g :原料水の分子量、n:ガスハイドレートの水和数
A measuring apparatus for a gas hydrate concentration in the liquid sample of the material gas and the raw water or et gas hydrate produced and deposited water,
A measurement vessel (5) connected to a pipe line (3) through which the liquid sample flows via a bypass pipe (4) having an inlet valve (10) and an outlet valve (11) at both ends;
A heater (6) installed outside the measurement vessel (5);
An exhaust valve (12), a differential pressure valve (7), a gas flow meter (8), and a gas chromatography (14), which are sequentially connected to the measurement container (5) toward the outside;
A pressure gauge (13) connected between the exhaust valve (12) and the differential pressure valve (7);
A drain valve (9) connected to the measurement container (5),
After the inlet valve (10) and the outlet valve (11) are opened to allow the liquid sample to pass through the measurement container (5), the outlet valve (11) and the inlet valve (10) are closed in order. And storing the liquid sample in the measurement container (5),
The inside of the measurement vessel (5) is heated above the equilibrium temperature of the gas hydrate with the heater (6) to decompose the gas hydrate into the source gas and the source water,
Open the exhaust valve (12) and open the differential pressure valve (7) while checking the pressure gauge (13) so that the inside of the measurement container (5) is maintained at the pressure during storage. While measuring the volume V g of the source gas with the gas flow meter (8), the composition of the source gas is analyzed with the gas chromatography (14),
Open the drain valve (9), extract the raw material water and adhering water remaining in the measurement container (5), measure the weight W w ,
The volume V g of the source gas is converted into the weight W g of the source gas based on the composition analysis result of the gas chromatography (14) ,
An apparatus for measuring a gas hydrate concentration, wherein the gas hydrate concentration α h is calculated using the following equations (1) to (3) .
W s = W g + W w --- (1)
W h = W g × (1 + n × M w / M g ) --- (2)
α h = W h / W s × 100 --- (3)
However, W s: weight of the liquid sample, W h: weight of gas hydrate, M w: molecular weight of the raw material gas, M g: molecular weight of the raw water, n: number hydration of gas hydrate
前記原料ガスが天然ガスである請求項1に記載のガスハイドレート濃度の測定装置The apparatus for measuring a gas hydrate concentration according to claim 1, wherein the source gas is natural gas. 前記測定容器(5)、前記排水弁(9)を最低部に有する下に凸のU字状である請求項1又は2に記載のガスハイドレート濃度の測定装置。 The gas hydrate concentration measuring device according to claim 1 or 2 , wherein the measuring container (5) has a downwardly convex U shape having the drain valve (9) at a lowest part .
JP2007062113A 2007-03-12 2007-03-12 Gas hydrate concentration measuring device Expired - Fee Related JP4859714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062113A JP4859714B2 (en) 2007-03-12 2007-03-12 Gas hydrate concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062113A JP4859714B2 (en) 2007-03-12 2007-03-12 Gas hydrate concentration measuring device

Publications (2)

Publication Number Publication Date
JP2008224378A JP2008224378A (en) 2008-09-25
JP4859714B2 true JP4859714B2 (en) 2012-01-25

Family

ID=39843189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062113A Expired - Fee Related JP4859714B2 (en) 2007-03-12 2007-03-12 Gas hydrate concentration measuring device

Country Status (1)

Country Link
JP (1) JP4859714B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323352A (en) * 2013-06-07 2013-09-25 中国石油天然气股份有限公司 Experimental device and method for dynamic triaxial mechanical-acoustic-electrical synchronous testing of natural gas hydrate sediment
CN108240957A (en) * 2018-01-25 2018-07-03 中国科学院力学研究所 The measuring method and device of a kind of dynamic characteristics

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101458245B (en) * 2008-12-31 2013-05-15 四川大学 Portable high-pressure and gas hydrate experimental device
CN101701955B (en) * 2009-10-27 2013-04-03 中国科学院力学研究所 Experimental device and experimental method for simulating obvious stratum damage resulted from hydrate decomposition
CN101781983A (en) * 2010-03-01 2010-07-21 中国石油集团川庆钻探工程有限公司 Method for gas drilling midway test
JP5216039B2 (en) 2010-03-31 2013-06-19 三井造船株式会社 Gas hydrate rate measuring apparatus and control method thereof
CN107746735A (en) * 2017-03-29 2018-03-02 哈尔滨工程大学 A kind of mixed gas supply system that experimental provision is prepared for hydrate
CN108426801A (en) * 2018-04-23 2018-08-21 西南石油大学 A kind of method of the easy precipitate content of low temperature in measurement natural gas
CN116026624B (en) * 2023-02-10 2023-07-18 中核四川环保工程有限责任公司 Single-pass water vapor decomposition efficiency testing system and testing method of water vapor decomposition device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257784A (en) * 1988-08-17 1990-02-27 Toshiba Corp Method of preventing valve leakage
JPH03188209A (en) * 1989-12-18 1991-08-16 Nkk Corp Apparatus for exhausting drain in gas piping
JPH09152202A (en) * 1995-12-01 1997-06-10 Matsushita Refrig Co Ltd Air-conditioner
JP2002241775A (en) * 2001-02-21 2002-08-28 Meidensha Corp Apparatus for treating sludge-digested gas
JP2003064385A (en) * 2001-08-24 2003-03-05 Mitsubishi Heavy Ind Ltd System and method for producing gas hydrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323352A (en) * 2013-06-07 2013-09-25 中国石油天然气股份有限公司 Experimental device and method for dynamic triaxial mechanical-acoustic-electrical synchronous testing of natural gas hydrate sediment
CN103323352B (en) * 2013-06-07 2015-04-08 中国石油天然气股份有限公司 Experimental device and method for dynamic triaxial mechanical-acoustic-electrical synchronous testing of natural gas hydrate sediment
CN108240957A (en) * 2018-01-25 2018-07-03 中国科学院力学研究所 The measuring method and device of a kind of dynamic characteristics
CN108240957B (en) * 2018-01-25 2020-09-15 中国科学院力学研究所 Method and device for measuring dynamic mechanical characteristics

Also Published As

Publication number Publication date
JP2008224378A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP4859714B2 (en) Gas hydrate concentration measuring device
Linga et al. Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures
Park et al. Hydrate-based pre-combustion capture of carbon dioxide in the presence of a thermodynamic promoter and porous silica gels
Majid et al. A perspective on rheological studies of gas hydrate slurry properties
Kondo et al. Clathrate-hydrate formation from a hydrocarbon gas mixture: Compositional evolution of formed hydrate during an isobaric semi-batch hydrate-forming operation
Mali et al. Investigation into the effect of subcooling on the kinetics of hydrate formation
JP2019501381A (en) Method and system for measuring sulfur solubility in gas
Zhang et al. Replacement of CH4 in hydrate in porous sediments with liquid CO2 injection
US4426880A (en) Method and apparatus for fluid sampling and testing
CN111239361A (en) Accurate measurement device for hydrate generation induction time and application thereof
CN110554038A (en) device and method capable of realizing synchronous mesoscopic observation of formation and decomposition of gas hydrate
JP5216039B2 (en) Gas hydrate rate measuring apparatus and control method thereof
Park et al. Life cycle cost analysis of CO2 compression processes coupled with a cryogenic distillation unit for purifying high-CO2 natural gas
Costa et al. Carbon capture and storage toward industrialization: a novel continuous process for the production of carbon dioxide clathrates
Rivas et al. Influence of methane and carbon monoxide in the volumetric behaviour of the anthropogenic CO2: Experimental data and modelling in the critical region
Lee et al. Molecular guest exchange and subsequent structural transformation in CH4–CO2 replacement occurring in sH hydrates as revealed by 13C NMR spectroscopy and molecular dynamic simulations
ES2547315T3 (en) Method of operating a catalytic water-hydrocarbon vapor reformer
Sayani et al. Experimental investigation on the phase behaviour for gas hydrates in CO2 rich gas mixtures & multiphase system
RU2532815C2 (en) Method for survey of gas and gas-condensate wells
Vandyshev et al. Analysis of the calculated parameters of a model membrane-catalytic converter for the production of high-purity hydrogen from methane
CN212301544U (en) Multifunctional hydrate synthesis and decomposition simulation experiment system
RU2586320C1 (en) Installation for analysis of process of producing synthetic oil
RU2692374C1 (en) Method of sampling and preparation of gas samples for in-line analysis and a process line for its implementation
Dholabhal et al. Evaluation of gas hydrate formation and deposition in condensate pipelines: pilot plant studies
Haddad et al. Modelling of CO2 Frost Formation and Growth on a Flat Plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Ref document number: 4859714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees