JP4858680B2 - Coil cooling mechanism - Google Patents

Coil cooling mechanism Download PDF

Info

Publication number
JP4858680B2
JP4858680B2 JP2005353978A JP2005353978A JP4858680B2 JP 4858680 B2 JP4858680 B2 JP 4858680B2 JP 2005353978 A JP2005353978 A JP 2005353978A JP 2005353978 A JP2005353978 A JP 2005353978A JP 4858680 B2 JP4858680 B2 JP 4858680B2
Authority
JP
Japan
Prior art keywords
coil
cooling mechanism
cooling
shaft
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005353978A
Other languages
Japanese (ja)
Other versions
JP2007159325A (en
Inventor
弘之 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2005353978A priority Critical patent/JP4858680B2/en
Publication of JP2007159325A publication Critical patent/JP2007159325A/en
Application granted granted Critical
Publication of JP4858680B2 publication Critical patent/JP4858680B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)

Description

本発明は、ダイナモ等のコイルの冷却機構に係り、特に、極限までに小径化を可能にしたコイルの冷却機構の改良に関する。   The present invention relates to a coil cooling mechanism such as a dynamo, and more particularly to an improvement of a coil cooling mechanism that enables a diameter to be reduced to the limit.

回転電機の固定子コイルの冷却機構の一例としては、特許文献1に記載のものが開示されている。
この特許文献1記載の固定子コイルの冷却機構について、図3及び図4を用いて説明する。
図3は、従来の固定子コイルの冷却機構を説明するための一部裁断側面図で、特許文献1の図1に相当する。
図4は、従来の固定子コイルの冷却機構を説明するための一部構成を示す正面図で、特許文献1の図2に相当する。
As an example of a cooling mechanism for a stator coil of a rotating electrical machine, one disclosed in Patent Document 1 is disclosed.
The stator coil cooling mechanism described in Patent Document 1 will be described with reference to FIGS.
FIG. 3 is a partially cut side view for explaining a conventional stator coil cooling mechanism, and corresponds to FIG.
FIG. 4 is a front view showing a partial configuration for explaining a conventional stator coil cooling mechanism, and corresponds to FIG.

この従来の固定子コイルの冷却機構は、ステータ50の内部に適宜な間隔で環状に配置されているコイル60と、これらのコイル60のコイルエンド62の外周側に接するようにリング状の配管部70を備えている。
また、このリング状の配管部70には、図4に示すように複数の噴出口70aが設けられている構造である。
This conventional stator coil cooling mechanism includes a ring-shaped piping portion so as to be in contact with the outer peripheral side of the coil 60 and the coil ends 62 of these coils 60 that are annularly arranged inside the stator 50 at appropriate intervals. 70.
Further, as shown in FIG. 4, the ring-shaped piping part 70 has a structure in which a plurality of jet outlets 70a are provided.

この配管部70には、供給管72から冷媒となる冷却油Lが供給され、冷却油Lは噴出口70aから噴出され、配管部70内の冷却油Lとともにコイルエンド62を冷却する構造となっている。   The piping section 70 is supplied with a cooling oil L serving as a refrigerant from a supply pipe 72, and the cooling oil L is ejected from a jet outlet 70 a to cool the coil end 62 together with the cooling oil L in the piping section 70. ing.

従って、上記従来のコイルの冷却機構では、リング状の配管部70が発熱時のコイルエンド62の広がりを抑えるとともに、冷却油Lを180度全周から半径方向に噴出させて、コイルエンド62を効率よく冷却することにより、部品点数を削減して、回転電機の小型化を図るようにしている。   Therefore, in the conventional coil cooling mechanism, the ring-shaped piping part 70 suppresses the spread of the coil end 62 when heat is generated, and the cooling oil L is ejected radially from the entire circumference of 180 degrees to By efficiently cooling, the number of parts is reduced and the rotating electric machine is reduced in size.

特開2004−72812JP 2004-72812 A

ところで、例えば、小型自動車のエンジンを模擬するための小径、長尺(φ120mm以下、L400mm以上)のダイナモ等では、小型自動車用の自動変速装置は、入力軸と出力軸との間隔が極めて狭いため、この間隔の中にダイナモと出力軸シャフトとを並行に配置するためには、ダイナモを極力小径化する必要がある。
このようなダイナモでは、小径化と高トルクの確保を両立させるために、ステータコアがスペースぎりぎりの大きさに作られており、径方向にスペースの余裕が殆どないのが実情である。
By the way, for example, in a dynamo having a small diameter and a long length (φ120 mm or less, L400 mm or more) for simulating an engine of a small car, an automatic transmission for a small car has a very small distance between an input shaft and an output shaft. In order to arrange the dynamo and the output shaft shaft in parallel in this interval, it is necessary to reduce the diameter of the dynamo as much as possible.
In such a dynamo, in order to achieve both a reduction in diameter and securing of high torque, the stator core is made to the size of the space, and there is almost no space in the radial direction.

従って、このようなダイナモのコイルエンドを冷却する場合、上記従来例で説明したリング状の配管部を設けるスペースがなく、冷却の手段がないという問題を備えていた。   Therefore, when cooling such a dynamo coil end, there is no space for providing the ring-shaped piping portion described in the above-mentioned conventional example, and there is a problem that there is no means for cooling.

本発明は、上記課題(問題点)を解決し、極限までに小径化を可能にしたコイルの冷却機構を提供することを目的とする。   An object of the present invention is to solve the above problems (problems) and to provide a coil cooling mechanism capable of reducing the diameter to the limit.

本発明のコイルの冷却機構は、請求項1に記載のものでは、軸方向に冷却油の給油路が形成されたシャフトと、前記シャフトに形成された給油路に連通する噴射ノズルと、前記噴射ノズルから噴射された冷却油を飛沫若しくはミスト状にするとともに、前記冷却油をコイルのコイルエンドに誘導するための、径方向に対して所定の傾斜角度を有する傾斜面が形成された反射コーンとを具備した構成とした。 In the coil cooling mechanism according to the first aspect of the present invention, a shaft having a cooling oil supply passage formed in an axial direction, an injection nozzle communicating with the oil supply passage formed in the shaft, and the injection A reflection cone formed with an inclined surface having a predetermined inclination angle with respect to the radial direction, in order to make the cooling oil sprayed from the nozzle splash or mist, and to guide the cooling oil to the coil end of the coil; It was set as the structure comprised.

請求項2に記載のコイルの冷却機構は、前記反射コーンは、軸方向に取り付けられる両側カバに一体的に形成されるように構成した。   The coil cooling mechanism according to claim 2 is configured such that the reflection cone is integrally formed on both side covers attached in the axial direction.

請求項3に記載のコイルの冷却機構は、前記反射コーンは、その底部の取付位置が、前記シャフトの軸受近傍となるように配置されている構成とした。   The coil cooling mechanism according to claim 3 is configured such that the reflection cone is disposed so that the mounting position of the bottom thereof is in the vicinity of the bearing of the shaft.

本発明のコイルの冷却機構は、上記のように構成したために、以下のような優れた効果を有する。
(1)請求項1に記載したように構成すると、従来のようなリング状の配管部を用いる必要がなくなるので、部品点数が大幅に削減できる。
(2)また、配管部を設置するスペースを別途設ける必要がないので、この冷却機構を備えたダイナモ等では、極限までの小径化が可能となる。
Since the coil cooling mechanism of the present invention is configured as described above, it has the following excellent effects.
(1) Since it becomes unnecessary to use the ring-shaped piping part like the past if it comprises as described in Claim 1, the number of parts can be reduced significantly.
(2) In addition, since it is not necessary to provide a space for installing the piping part, a dynamo or the like equipped with this cooling mechanism can reduce the diameter to the limit.

(3)請求項2に記載したように構成すると、冷却油を飛沫若しくはミストにし、冷却油をコイルエンドに誘導するための反射コーンを両側カバと一体的に形成しているために、コイルエンドを冷却するための部品を、コイルエンド外周や、シャフトに別途設ける必要がなく、部品点数の削減及び一層の小型化が可能となる。 (3) According to the second aspect of the present invention, since the cooling oil is splashed or misted, and the reflection cone for guiding the cooling oil to the coil ends is formed integrally with the both side covers, the coil ends It is not necessary to separately provide components for cooling the coil end outer periphery and the shaft, and the number of components can be reduced and the size can be further reduced.

(4)請求項3に記載したように構成すると、冷却油を軸受の潤滑油としても使用できるようになるため、軸受の潤滑油路を別途設ける必要がなくなり、製造コストの大幅な削減に寄与できる。 (4) With the configuration described in claim 3, the cooling oil can also be used as a lubricating oil for the bearing, so there is no need to separately provide a lubricating oil passage for the bearing, contributing to a significant reduction in manufacturing costs. it can.

本発明のコイルの冷却機構をダイナモに適用した場合の一実施の形態について、図1及び図2を用いて説明する。
図1は、本発明のコイルの冷却機構の一実施の形態を説明するための縦断側面図である。
図2は、本発明のコイルの冷却機構の一実施の形態を説明するための要部側面図である。
An embodiment in which the coil cooling mechanism of the present invention is applied to a dynamo will be described with reference to FIGS.
FIG. 1 is a longitudinal side view for explaining an embodiment of a coil cooling mechanism of the present invention.
FIG. 2 is a side view of an essential part for explaining an embodiment of the coil cooling mechanism of the present invention.

以下、本発明のコイルの冷却機構を適用したダイナモ10の主要構成は、図1に示すように、ステータコア12、ロータコア14、ステータコア12を励磁するコイル16、シャフト20、このシャフト20の軸受24、P側カバ40、S側カバ44である。   Hereinafter, as shown in FIG. 1, the main configuration of the dynamo 10 to which the coil cooling mechanism of the present invention is applied is the stator core 12, the rotor core 14, the coil 16 for exciting the stator core 12, the shaft 20, the bearing 24 of the shaft 20, P side cover 40 and S side cover 44.

また、本実施の形態のコイルの冷却機構では、シャフト20には、軸方向に冷却油Lの給油路22が形成され、また、このシャフト20の給油路22に連通する噴射ノズル30A、30Bが設けられている。   In the coil cooling mechanism of the present embodiment, the shaft 20 is formed with an oil supply passage 22 for the cooling oil L in the axial direction, and the injection nozzles 30A and 30B communicating with the oil supply passage 22 of the shaft 20 are provided. Is provided.

更に、噴射ノズル30A、30Bから噴射された冷却油Lをステータコイル16のコイルエンド16aに誘導するための所定の傾斜角度を有する傾斜面が形成された反射コーン42、46が、それぞれ、P側カバ40、S側カバ44に一体的に形成されている。   Further, reflection cones 42 and 46 each having an inclined surface having a predetermined inclination angle for guiding the cooling oil L injected from the injection nozzles 30A and 30B to the coil end 16a of the stator coil 16 are respectively provided on the P side. The cover 40 and the S-side cover 44 are integrally formed.

また、本実施の形態のコイルの冷却機構では、反射コーン42、46は、その底部が、図2に示すように、シャフト20の軸受24近傍に取り付けられ、軸受24の端面と段差が生じないように配置されている。   In the coil cooling mechanism of the present embodiment, the bottoms of the reflection cones 42 and 46 are attached in the vicinity of the bearing 24 of the shaft 20 as shown in FIG. Are arranged as follows.

以上の構成で、本実施の形態のコイルの冷却機構の基本動作を図1及び図2を用いて説明する。
図1に示すようにS側カバ44側のシャフト20の給油路22の給油口から冷却油Lが供給され、シャフト20が回転すると、シャフト20の回転による遠心力で冷却油Lが噴射ノズル30A、30Bから噴射されるようになる。
この噴射された冷却油LはP側及びS側カバ40、44に一体的に形成された反射コーン42、46の傾斜面に衝突する。
With the above configuration, the basic operation of the coil cooling mechanism of the present embodiment will be described with reference to FIGS.
As shown in FIG. 1, when the cooling oil L is supplied from the oil supply port of the oil supply passage 22 of the shaft 20 on the S-side cover 44 side and the shaft 20 rotates, the cooling oil L is injected into the injection nozzle 30 </ b> A by centrifugal force due to the rotation of the shaft 20. , 30B will be injected.
The injected cooling oil L collides with the inclined surfaces of the reflection cones 42 and 46 formed integrally with the P-side and S-side covers 40 and 44.

反射コーン42、46の傾斜面に衝突した冷却油Lはその衝撃により飛沫となり、また、反射コーン42、46の傾斜面によりその進行方向が偏向され、ステータコイル16のコイルエンド16aに降りかかることになる。   The cooling oil L that has collided with the inclined surfaces of the reflecting cones 42 and 46 is splashed by the impact, and its traveling direction is deflected by the inclined surfaces of the reflecting cones 42 and 46 and falls on the coil end 16a of the stator coil 16. Become.

シャフト20の回転数が上昇すると、冷却油Lの噴射速度も増大するために、反射コーン42、46の傾斜面に衝突した冷却油Lはその衝撃によりミスト状の粒子に分散し、コイルエンド16aに降りかかることにより一層冷却効果が向上する。
冷却油Lの飛沫若しくはミスト状の冷却油Lの飛散する範囲は、重力の影響を無視すると、概ね、図2に示すように、反射コーン42、46の傾斜面の傾斜角度θ1から入射角度θiまでである。
よって、この飛散する範囲内にステータコイル16のコイルエンド16aを配置するように構成する。
When the rotational speed of the shaft 20 is increased, the injection speed of the cooling oil L is also increased. Therefore, the cooling oil L that collides with the inclined surfaces of the reflection cones 42 and 46 is dispersed into mist-like particles by the impact, and the coil end 16a. The cooling effect is further improved by falling on the.
When the influence of gravity is ignored, the range in which the cooling oil L splashes or the mist-like cooling oil L scatters, as shown in FIG. 2, from the inclination angle θ1 of the inclined surfaces of the reflection cones 42 and 46 to the incident angle θi. Up to.
Therefore, the coil end 16a of the stator coil 16 is arranged within the range of scattering.

従って、本実施の形態のコイルの冷却機構を適用したダイナモ10では、従来のようなリング状の配管部70(図3参照)を用いる必要がなくなるので、部品点数が大幅に削減できる。
また、配管部を設置するスペースを別途設ける必要がないので、この冷却機構を備えたダイナモ10を極限まで小径化が可能となる。
Therefore, in the dynamo 10 to which the coil cooling mechanism according to the present embodiment is applied, it is not necessary to use the conventional ring-shaped piping part 70 (see FIG. 3), and the number of parts can be greatly reduced.
Moreover, since it is not necessary to provide a space for installing the piping portion, the diameter of the dynamo 10 provided with this cooling mechanism can be reduced to the limit.

更に、冷却油Lを飛沫若しくはミストにし、この冷却油Lをコイルエンド16a誘導にするための反射コーン42、46をP側及びS側カバ40、44と一体的に形成しているために、コイルエンド16aを冷却するための部品を、コイルエンド16a外周や、シャフト20に別途設ける必要がなく、部品点数の削減及び一層の小型化が可能となる。   Further, since the cooling oil L is splashed or misted and the reflection cones 42 and 46 for guiding the cooling oil L to the coil end 16a are formed integrally with the P side and S side covers 40 and 44, There is no need to separately provide a component for cooling the coil end 16a on the outer periphery of the coil end 16a or the shaft 20, so that the number of components can be reduced and the size can be further reduced.

また、本実施の形態のコイルの冷却機構では、反射コーン42、46は、その底部が、図2に示すように、シャフト20の軸受24の端面と段差が生じないように配置されているため、反射コーン42、46の傾斜面に衝突した冷却油Lの飛沫若しくはミストの一部は、重力により反射コーン42、46側面を伝って軸受24にも供給される。
このため、冷却油Lを軸受24の潤滑油にも利用できるという、従来にない副次的な効果を奏することができる。
よって、これにより、従来必要であった、軸受24の潤滑油路をP側カバ40、S側カバ44に設ける必要がなくなり、本実施の形態のコイルの冷却機構を適用することにより、ダイナモ10の製作コストを大幅に削減することが可能になる。
Further, in the coil cooling mechanism of the present embodiment, the bottoms of the reflection cones 42 and 46 are arranged such that no step is generated from the end face of the bearing 24 of the shaft 20 as shown in FIG. Part of the splash or mist of the cooling oil L that collides with the inclined surfaces of the reflection cones 42 and 46 is supplied to the bearing 24 along the side surfaces of the reflection cones 42 and 46 by gravity.
For this reason, the secondary effect that the cooling oil L can be utilized also for the lubricating oil of the bearing 24 can be produced.
Therefore, it is not necessary to provide the lubricating oil passage of the bearing 24 in the P-side cover 40 and the S-side cover 44, which has been necessary in the past, and by applying the coil cooling mechanism of the present embodiment, the dynamo 10 It is possible to significantly reduce the manufacturing cost of the.

本発明のコイルの冷却機構の一実施の形態を説明するための縦断側面図である。It is a vertical side view for demonstrating one Embodiment of the cooling mechanism of the coil of this invention. 本発明のコイルの冷却機構の一実施の形態を説明するための要部側面図である。It is a principal part side view for demonstrating one Embodiment of the cooling mechanism of the coil of this invention. 従来の固定子コイルの冷却機構を説明するための一部裁断側面図である。It is a partially cutaway side view for demonstrating the cooling mechanism of the conventional stator coil. 従来の固定子コイルの冷却機構を説明するための一部構成を示す正面図である。It is a front view which shows the partial structure for demonstrating the cooling mechanism of the conventional stator coil.

符号の説明Explanation of symbols

10:ダイナモ
16:コイル
16a:コイルエンド
20:シャフト
22:給油路
24:軸受
30A、30B:噴射ノズル
40:P側カバ
44:S側カバ
42、46:反射コーン
L:冷却油
10: Dynamo
16: Coil 16a: Coil end
20: Shaft
22: Refueling route
24: Bearing 30A, 30B: Injection nozzle
40: P side cover
44: S side cover 42, 46: Reflection cone
L: Cooling oil

Claims (3)

軸方向に冷却油の給油路が形成されたシャフトと、
前記シャフトに形成された給油路に連通する噴射ノズルと、
前記噴射ノズルから噴射された冷却油を飛沫若しくはミスト状にするとともに、前記冷却油をコイルのコイルエンドに誘導するための、径方向に対して所定の傾斜角度を有する傾斜面が形成された反射コーンとを具備したことを特徴とするコイルの冷却機構。
A shaft in which a cooling oil supply passage is formed in the axial direction;
An injection nozzle communicating with an oil supply passage formed in the shaft;
Reflection in which an inclined surface having a predetermined inclination angle with respect to the radial direction is formed to make the cooling oil sprayed from the spray nozzle into a droplet or mist and to guide the cooling oil to a coil end of a coil. A coil cooling mechanism comprising a cone.
前記反射コーンは、軸方向に取り付けられる両側カバに一体的に形成されるようにしたことを特徴とする請求項1に記載のコイルの冷却機構。 2. The coil cooling mechanism according to claim 1, wherein the reflection cone is integrally formed on both side covers attached in the axial direction. 前記反射コーンは、その底部の取付位置が、前記シャフトの軸受近傍となるように配置されていることを特徴とする請求項1又は2に記載のコイルの冷却機構。 The coil cooling mechanism according to claim 1 or 2, wherein the reflection cone is disposed such that a mounting position of a bottom portion thereof is in the vicinity of the bearing of the shaft.
JP2005353978A 2005-12-07 2005-12-07 Coil cooling mechanism Expired - Fee Related JP4858680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005353978A JP4858680B2 (en) 2005-12-07 2005-12-07 Coil cooling mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005353978A JP4858680B2 (en) 2005-12-07 2005-12-07 Coil cooling mechanism

Publications (2)

Publication Number Publication Date
JP2007159325A JP2007159325A (en) 2007-06-21
JP4858680B2 true JP4858680B2 (en) 2012-01-18

Family

ID=38242957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005353978A Expired - Fee Related JP4858680B2 (en) 2005-12-07 2005-12-07 Coil cooling mechanism

Country Status (1)

Country Link
JP (1) JP4858680B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291056A (en) * 2008-06-02 2009-12-10 Ntn Corp Motor cooling structure
JP5188593B2 (en) * 2011-03-31 2013-04-24 株式会社小松製作所 Generator motor cooling structure and generator motor
JP5188592B2 (en) * 2011-03-31 2013-04-24 株式会社小松製作所 Generator motor cooling structure and generator motor
JP5734765B2 (en) * 2011-06-24 2015-06-17 トヨタ自動車株式会社 Cooling structure of rotating electric machine
RU2702350C2 (en) * 2015-07-28 2019-10-08 Ниссан Мотор Ко., Лтд. Cooling structure for dynamo-electric machine
JP2019154197A (en) * 2018-03-06 2019-09-12 本田技研工業株式会社 Rotary electric machine
JP2019170082A (en) * 2018-03-23 2019-10-03 本田技研工業株式会社 Rotary electric machine and vehicle with the same
JP7121261B2 (en) 2018-04-23 2022-08-18 シンフォニアテクノロジー株式会社 rotating machine
JP7164806B2 (en) * 2018-07-03 2022-11-02 シンフォニアテクノロジー株式会社 rotating machine
JP2023017291A (en) * 2021-07-26 2023-02-07 日立Astemo株式会社 Rotary electric machine
JP7192941B1 (en) 2021-09-22 2022-12-20 株式会社明電舎 Rotating electric machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50103603A (en) * 1974-01-22 1975-08-15
JPS52123610A (en) * 1976-04-09 1977-10-18 Olympus Optical Co Ltd Production of magnetic head
JPS5579654A (en) * 1978-12-12 1980-06-16 Fanuc Ltd Cooling device of rotary machine
JPH09154258A (en) * 1995-11-29 1997-06-10 Mitsubishi Heavy Ind Ltd Forcible oil cooled motor or cooling structure of motor
JP3967624B2 (en) * 2002-04-26 2007-08-29 株式会社日本自動車部品総合研究所 Electric motor
JP2004215353A (en) * 2002-12-27 2004-07-29 Toyota Motor Corp Rotary electric machine

Also Published As

Publication number Publication date
JP2007159325A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP4858680B2 (en) Coil cooling mechanism
JP5064945B2 (en) Power unit
EP2194296B1 (en) Lubricating system for gear train
JP5448559B2 (en) Motor cooling structure
JP6144024B2 (en) Cooling structure of bearing device
WO2016072309A1 (en) Cooling structure for bearing device
JP4651488B2 (en) Engine generator cooling structure
WO2020105467A1 (en) Motor oil cooling structure
JP2011012805A (en) Lubricating device for gear train
JP2009273284A (en) Motor
JP2010127399A (en) Bearing lubricating device
JP5013751B2 (en) Electric motor
JP6234017B2 (en) Lubrication structure of bearing device
JP7164962B2 (en) Cooling structure of bearing device
US20200102985A1 (en) Oil jet in a confined axial space
JP2008075738A (en) Bearing device
WO2018221237A1 (en) Dynamo-electric machine for internal combustion engine
JP5653790B2 (en) Bearing device and rotating machine
WO2019156196A1 (en) Lubricant supply structure and in-wheel motor drive device
JP2016005308A (en) Rotary electric machine rotor
JP2019140906A (en) Lubrication oil supply structure and in-wheel motor drive device
JP2014092216A (en) Driving device
JP6609003B2 (en) Cooling structure of bearing device
US9831745B2 (en) Electric machine
WO2016204670A1 (en) Arrangement for distributing oil in an electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Ref document number: 4858680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees