JP4850117B2 - Adsorbent for vacuum adsorption device and vacuum adsorption device - Google Patents

Adsorbent for vacuum adsorption device and vacuum adsorption device Download PDF

Info

Publication number
JP4850117B2
JP4850117B2 JP2007106728A JP2007106728A JP4850117B2 JP 4850117 B2 JP4850117 B2 JP 4850117B2 JP 2007106728 A JP2007106728 A JP 2007106728A JP 2007106728 A JP2007106728 A JP 2007106728A JP 4850117 B2 JP4850117 B2 JP 4850117B2
Authority
JP
Japan
Prior art keywords
adsorbent
adsorbed
adsorption
vacuum
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007106728A
Other languages
Japanese (ja)
Other versions
JP2008270233A (en
Inventor
和光 平野
Original Assignee
有明マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有明マテリアル株式会社 filed Critical 有明マテリアル株式会社
Priority to JP2007106728A priority Critical patent/JP4850117B2/en
Publication of JP2008270233A publication Critical patent/JP2008270233A/en
Application granted granted Critical
Publication of JP4850117B2 publication Critical patent/JP4850117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、半導体ウェハ等の非吸着物の研磨、研削、精密測定を行う際に非吸着体を吸引固定する多孔質セラミックスからなる真空吸着装置用吸着体、及び同吸着体を備える真空吸着装置に関する。   The present invention relates to an adsorbent for a vacuum adsorber made of porous ceramics for sucking and fixing a non-adsorbent when performing polishing, grinding, and precision measurement of a non-adsorbent such as a semiconductor wafer, and a vacuum adsorber including the adsorbent About.

従来、半導体ウェハーやガラス基板などの被吸着物の研削加工や研磨加工および精密測定を行う場合、真空吸引して被吸着物を真空吸着装置の吸着体の表面に固定した後、加工等を行うことが通常行われている。   Conventionally, when performing grinding processing, polishing processing, and precise measurement of an object to be adsorbed such as a semiconductor wafer or a glass substrate, the object to be adsorbed is fixed to the surface of the adsorbent of the vacuum adsorbing apparatus by vacuum suction, and then processing is performed. It is usually done.

この吸着面を構成する吸着体の材料は、例えば多孔質セラミックスや焼結プラスチックからなる多孔質体が使用されている。   For example, a porous body made of porous ceramics or sintered plastic is used as the material of the adsorbent constituting the adsorption surface.

上記多孔質体からなる吸着体として、円板状の多孔質セラミックスからなる吸着部材の周囲にリング状の緻密質セラミックス材からなる支持部材をガラスを用いて接合した吸着体がある。この吸着体を備える真空吸着装置は、吸着体をなす多孔質セラミックスの裏側から気孔を通して空気を真空ポンプを用いて吸引することにより、被吸着物を吸着体の表面上に吸引固定している。   As the adsorbent made of the porous body, there is an adsorbent in which a supporting member made of a ring-shaped dense ceramic material is joined around glass around an adsorbing member made of a disk-shaped porous ceramic. In a vacuum adsorption device including this adsorbent, an object to be adsorbed is sucked and fixed onto the surface of the adsorbent by sucking air from the back side of the porous ceramics constituting the adsorbent through a pore using a vacuum pump.

しかし、一般的に吸着体をなす多孔質セラミックは前記支持部材をなす緻密質セラミックに比べて硬度が低いため、吸着面全体を平滑平坦な面に加工することが難しい問題がある。そこで、多孔質体からなる吸着部と緻密質部からなる支持部材とを一体的に形成した吸着体が提案されている(特許文献1)。   However, since the porous ceramic that forms the adsorbent generally has a lower hardness than the dense ceramic that forms the support member, it is difficult to process the entire adsorbing surface into a smooth and flat surface. Therefore, an adsorbent in which an adsorbing portion made of a porous body and a support member made of a dense portion are integrally formed has been proposed (Patent Document 1).

また、被吸着物の面積が吸着体の吸着部の面積に対し小さい場合、または吸着体にスルーホールやスリットが存在する場合は、その部分から空気が大量に流入し、その結果真空度が低下して非吸着物を吸着固定できない問題がある。この問題を解決するために、被吸着物で覆われていない吸着部を何らかの手段で塞ぐという方法が取られている。しかし、この手法では被吸着物が変更される度に被吸着物で覆われていない吸着部分を塞ぐ調整が必要となり、そのために時間がかかるという問題が存在する。そこで、被吸着物の形状や大きさが変っても確実に吸引固定のできる汎用吸着体が提案されている(特許文献2)。この吸着体の提案は、多孔質体からなる吸着層と空気の透過を遮断する環状隔壁層とからなり、被吸着物のサイズや形状に応じ吸引する吸着層を選択できる吸着体である。
特開平8-19927(特許請求の範囲) 特開2005-279789(特許請求の範囲)
Also, if the area of the object to be adsorbed is smaller than the area of the adsorption part of the adsorbent, or if there are through holes or slits in the adsorbent, a large amount of air will flow from that part, resulting in a decrease in vacuum Thus, there is a problem that non-adsorbed substances cannot be adsorbed and fixed. In order to solve this problem, a method has been adopted in which an adsorbing portion that is not covered with an object to be adsorbed is blocked by some means. However, in this method, every time the object to be adsorbed is changed, it is necessary to make an adjustment for closing the adsorbed part that is not covered with the object to be adsorbed. Therefore, a general-purpose adsorbent that can be reliably fixed by suction even when the shape and size of the object to be adsorbed has been proposed (Patent Document 2). The proposal of this adsorbent is an adsorbent that comprises an adsorbing layer made of a porous material and an annular partition layer that blocks air permeation, and can select an adsorbing layer to be sucked according to the size and shape of the object to be adsorbed.
JP-A-8-19927 (Claims) JP 2005-279789 (Claims)

前記特許文献2に示される吸着体は、吸着層と隔壁層の二層構造になっているため、吸着層でのみ吸着力が働き、隔壁層では吸着力が働かない。そのため吸着面の場所により吸着力に差が生じる問題がある。また、特許文献1に示される吸着体と同様、吸着層・隔壁層両層の硬度差が吸着面での加工精度に制限を与え、平滑な平面となり難い。さらに、被吸着物を加熱加工する時、または被吸着物の研磨時等に生じる熱による熱膨張係数の差が被吸着物の加工面の平面度の歪みを発生させる問題も存在する。   Since the adsorbent shown in Patent Document 2 has a two-layer structure of an adsorbing layer and a partition layer, an adsorbing force works only in the adsorbing layer, and no adsorbing force works in the partition layer. Therefore, there is a problem that a difference occurs in the suction force depending on the location of the suction surface. Further, like the adsorbent shown in Patent Document 1, the difference in hardness between the adsorbing layer and the partition wall layer limits the processing accuracy on the adsorbing surface, and it is difficult to form a smooth flat surface. Furthermore, there is also a problem that a difference in thermal expansion coefficient due to heat generated when the object to be adsorbed is heated or when the object to be adsorbed is polished causes distortion in flatness of the processed surface of the object to be adsorbed.

そこで本発明では、従来の手法における前記問題点を解決し、被吸着物の大きさ、外形及びスルーホールなどの影響を受けずに被吸着物を吸着することのできる汎用吸着体を提供することを目的とする。   Accordingly, the present invention provides a general-purpose adsorbent that can solve the above-mentioned problems in the conventional method and can adsorb the adsorbed material without being affected by the size, outer shape, and through hole of the adsorbed material. With the goal.

上記課題を解決するための本発明は、以下に記載するものである。 The present invention for solving the above problems is described below.

〔1〕平均気孔径が2〜5 μm、気孔率が30〜40%の平板状多孔質セラミックスからなることを特徴とする真空吸着装置用吸着体。   [1] An adsorbent for a vacuum adsorbing device, characterized by comprising a flat porous ceramic having an average pore diameter of 2 to 5 μm and a porosity of 30 to 40%.

〔2〕多孔質セラミックスが快削性多孔質セラミックスからなる〔1〕に記載の真空吸着装置用吸着体。   [2] The adsorbent for a vacuum adsorber according to [1], wherein the porous ceramic is a free-cutting porous ceramic.

〔3〕吸着体内部に通気孔が配されている〔1〕又は〔2〕に記載の真空吸着装置用吸着体。   [3] The adsorbent for a vacuum adsorbing device according to [1] or [2], wherein a ventilation hole is arranged inside the adsorbent.

〔4〕吸着体内部に互いに連通する外部と隔離された複数の通気孔を有すると共に前記通気孔と吸着体の外表面に開孔している吸引孔とを連通してなる吸引孔を有する〔3〕に記載の真空吸着装置用吸着体。   [4] A plurality of ventilation holes that are separated from the outside and communicate with each other inside the adsorption body, and a suction hole that is formed by communicating the ventilation hole and a suction hole that is opened on the outer surface of the adsorption body. 3] The adsorbent for a vacuum adsorber according to [3].

〔5〕快削性多孔質セラミックスがワラストナイト系多孔質セラミックスである〔2〕に記載の真空吸着装置用吸着体。   [5] The adsorbent for a vacuum adsorption device according to [2], wherein the free-cutting porous ceramic is a wollastonite porous ceramic.

〔6〕上面に吸引溝を形成すると共に前記吸引溝と連結する吸気孔をその内部に形成してなる基盤と、前記基盤上面に載置する吸着体とを少なくとも有し、前記吸着体が平均気孔径が2〜5 μm、気孔率が30〜40%の平板状多孔質セラミックスからなることを特徴とする真空吸着装置。   [6] A base having a suction groove formed on the upper surface and an intake hole connected to the suction groove formed therein, and an adsorbent placed on the upper surface of the base, and at least the adsorbent is an average A vacuum adsorption device comprising a flat porous ceramic having a pore diameter of 2 to 5 μm and a porosity of 30 to 40%.

本発明においては、真空吸着装置用の吸着体として通気孔の平均気孔径が2〜5 μm、より望ましくは平均気孔径2.5〜4μmであり、また平均気孔率が30〜40 % である多孔質セラミックス用いているので、被吸着物の平面形状、面積にかかわらず、被吸着物の吸着・保持が可能となる。   In the present invention, the average pore diameter of the ventilation holes as the adsorbent for the vacuum adsorption apparatus is 2 to 5 μm, more preferably the average pore diameter is 2.5 to 4 μm, and the average porosity is 30 to 40%. Since porous ceramics are used, the object to be adsorbed can be adsorbed and held regardless of the planar shape and area of the object to be adsorbed.

以下、本発明の実施形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1の形態)
第1の形態の吸着体の一例につき、図1を参照して詳細に説明する。図1中、(a)は平面図で、(b)は図1(a)中のA−A線に沿う断面図である。図1中、2は、円盤状の多孔質セラミックスで形成された吸着体で、その内部に、吸着体2の径方向に沿う複数(本例では4本)の通気孔4が、吸着体2を貫通して形成されている。従って、各通気孔4は、円盤状の吸着体2の中心で互いに連通されている。
(First form)
An example of the adsorbent of the first embodiment will be described in detail with reference to FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line AA in FIG. In FIG. 1, reference numeral 2 denotes an adsorbent formed of a disk-shaped porous ceramic, and a plurality (four in this example) of air holes 4 along the radial direction of the adsorbent 2 are disposed inside the adsorbent 2. Is formed. Accordingly, the air holes 4 are communicated with each other at the center of the disc-like adsorbent 2.

各通気孔4と円盤の表面との距離は5〜10 mmが好ましい。また、円盤状の吸着体2の厚さは14〜24 mmが好ましく、16〜20 mmがより好ましい。   The distance between each air hole 4 and the surface of the disk is preferably 5 to 10 mm. Further, the thickness of the disc-shaped adsorbent 2 is preferably 14 to 24 mm, and more preferably 16 to 20 mm.

上記吸着体2を構成する多孔質セラミックスの平均気孔径は2〜5 μmが好ましく、2.5〜4 μmがより好ましい。なお、この平均気孔径は従来の吸着冶具用吸着体として用いられている多孔質体の平均気孔径の1/3から1/10である。上記多孔質セラミックの平均気孔率は30〜40 % が望ましい。   The average pore diameter of the porous ceramic constituting the adsorbent 2 is preferably 2 to 5 μm, and more preferably 2.5 to 4 μm. The average pore diameter is 1/3 to 1/10 of the average pore diameter of a porous body used as a conventional adsorbent for an adsorption jig. The average porosity of the porous ceramic is preferably 30 to 40%.

吸着体として用いる多孔質セラミックスの気孔径が5μmを超える場合、この気孔を通って吸引される空気のリークが大きくなるため、通気孔4内の真空度が十分上がらない。そのため、被吸着物面積が吸着体の吸着面の全面積より小さいと、被吸着体が吸着面を覆っていない部分から空気が通気孔4に多量に流入して通気孔4の真空度が低下し、被吸着物に対する十分な吸着力が得られなくなる。逆に気孔径が2μm未満の場合は閉塞気味となり、この場合もまた十分な吸着力は得られない。   When the pore diameter of the porous ceramic used as the adsorbent exceeds 5 μm, the leak of air sucked through the pores increases, so that the degree of vacuum in the vent hole 4 does not sufficiently increase. For this reason, if the area to be adsorbed is smaller than the total area of the adsorption surface of the adsorbent, a large amount of air flows into the vent hole 4 from the portion where the adsorbent does not cover the adsorbing face, and the degree of vacuum of the vent hole 4 decreases. As a result, a sufficient adsorption force for the object to be adsorbed cannot be obtained. On the other hand, when the pore diameter is less than 2 μm, it seems to be occluded, and in this case, sufficient adsorption power cannot be obtained.

さらに、多孔質セラミックスの気孔率が30 %未満の場合は、吸着力が弱くなる。気孔率が40 % を超える場合は、吸着面の平坦性が悪くなる。そのため、真空吸着装置用吸着体として用いるためには、気孔率30〜40 % のものが好ましく、気孔率30〜35 %のものが、より望ましい。   Furthermore, when the porosity of the porous ceramic is less than 30%, the adsorptive power becomes weak. When the porosity exceeds 40%, the flatness of the adsorption surface becomes poor. Therefore, in order to use as an adsorbent for a vacuum adsorption device, those having a porosity of 30 to 40% are preferable, and those having a porosity of 30 to 35% are more desirable.

このような多孔質セラミックスとしては、ワラストナイト系多孔質体が特に好ましい。このセラミックスは気孔径、気孔率及び加工性の面から特に好ましいものである。また、快削性多孔質セラミックスを用いることで、より精密な加工が可能となり、表面平滑度も高めることができる。   As such a porous ceramic, a wollastonite porous body is particularly preferable. This ceramic is particularly preferable in terms of pore diameter, porosity, and workability. Further, by using free-cutting porous ceramics, more precise processing can be performed and the surface smoothness can be increased.

前記各通気孔4の各解放端部には一つの解放端部を除いて、全て封止部材6で気密に封止されている。封止部材6としては、金属、セラミックスなどで形成された止めネジ等が好ましい。   Each open end of each vent hole 4 is hermetically sealed with a sealing member 6 except for one open end. The sealing member 6 is preferably a set screw formed of metal, ceramics, or the like.

8は、前記封止部材6で封止されていない解放端部からなる吸気口で、この吸気口8には連結具12を介して排気管10の一端が連結されている。また、排気管10の他端は吸引ポンプ14の吸気側に連結されている。   Reference numeral 8 denotes an intake port composed of an open end not sealed by the sealing member 6, and one end of an exhaust pipe 10 is connected to the intake port 8 via a connector 12. The other end of the exhaust pipe 10 is connected to the intake side of the suction pump 14.

次に、本実施態様の吸着体2を真空吸着装置(不図示)に装備してウエハ等の加工物(非吸着物)を吸着体2に固定する場合に付、説明する。   Next, the case where the adsorbing body 2 of this embodiment is equipped in a vacuum adsorbing apparatus (not shown) and a workpiece (non-adsorbing object) such as a wafer is fixed to the adsorbing body 2 will be described.

吸引ポンプ14を作動させると、排気管10を通して各通気孔4内の空気が吸引され、各通気孔4内は減圧状態になる。これに伴い、吸着体2を構成する多孔質セラミックスの内部に存在する2〜5μmの気孔を通して、吸着体2の表面18から通気孔4に向って空気が吸引される。この時に生じる吸引力により、被吸着物は吸着体2の表面に固定される。   When the suction pump 14 is operated, the air in each vent hole 4 is sucked through the exhaust pipe 10 and the inside of each vent hole 4 is in a reduced pressure state. Along with this, air is sucked from the surface 18 of the adsorbent body 2 toward the vent hole 4 through pores of 2 to 5 μm existing inside the porous ceramics constituting the adsorbent body 2. The object to be adsorbed is fixed to the surface of the adsorbent 2 by the suction force generated at this time.

2〜5μmの平均気孔径の多孔質セラミックスにおいては、この気孔を空気が通過する際の圧力損失は従来の大きい気孔径の多孔質セラミックスのそれと比較し大きい。その結果、吸着体表面に被吸着物が載せられていない場合においても、吸着体2を通して通気孔4内に流入する空気の流入量より真空ポンプの排気量が大きければ、通気孔4内の真空度を上げることが可能となる。それ故、被吸着物16を吸着体2の上表面に載せる場合、その形状、大きさにかかわらず載置されている被吸着物16で覆われている吸着体2の表面18に大気圧との差圧に相当する吸着力が生じ、被吸着物16は吸着体2の表面18に固定される。   In porous ceramics having an average pore diameter of 2 to 5 μm, the pressure loss when air passes through the pores is larger than that of conventional porous ceramics having a large pore diameter. As a result, even when an adsorbed object is not placed on the surface of the adsorbent, the vacuum in the vent 4 can be reduced if the exhaust amount of the vacuum pump is larger than the amount of air flowing into the vent 4 through the adsorbent 2. It becomes possible to raise the degree. Therefore, when the object to be adsorbed 16 is placed on the upper surface of the adsorbent 2, atmospheric pressure is applied to the surface 18 of the adsorbent 2 covered with the object to be adsorbed 16, regardless of its shape and size. An adsorbing force corresponding to the differential pressure is generated, and the object 16 is fixed to the surface 18 of the adsorbing body 2.

一方、吸着体裏面20においても同様の吸着力が生じている。従って、真空吸着装置の作業台の表面が十分平滑である場合は、吸着体2を単に作業台に載せることで、本吸着体2は特別な冶具無しでこの作業台に固定される。   On the other hand, a similar suction force is also generated on the back surface 20 of the suction body. Therefore, when the surface of the work table of the vacuum suction device is sufficiently smooth, the adsorbent 2 is simply fixed on the work table without any special jig by simply placing the adsorber 2 on the work table.

本態様の吸着体は基本的に均質な多孔質体1単体で構成されているため、複数の材質で構成されている従来の吸着体に比べて高い平面度の吸着体を容易に製造できる。また、均質な多孔質体1単位で構成されているため、加熱した場合に生じる熱膨張率の差に起因する熱歪みを考慮する必要が無い。このため、本吸着体は高温下における被吸着物の加工の用途に使用が可能となる。   Since the adsorbent of this aspect is basically composed of a homogeneous porous body 1 alone, an adsorbent with a higher flatness can be easily produced as compared with a conventional adsorbent composed of a plurality of materials. In addition, since it is composed of one unit of a porous body, it is not necessary to consider thermal distortion caused by the difference in coefficient of thermal expansion that occurs when heated. Therefore, the present adsorbent can be used for processing the object to be adsorbed at a high temperature.

上記吸着体は、被吸着物が吸着体の全表面を覆っていなくても吸着力が失われない。したがって、この吸着体は吸着面以外を覆って気密にするための特別な外枠を必要としない。そのため、従来の吸着体のように、多孔質部からなる吸着部と緻密質部からなる支持部とを一体的に形成するための複雑な手順を必要としない。さらに吸着面以外の面にも吸着能力を有するため、この吸着体を平滑な作業台に載せるだけで、特別な固定冶具無しに作業台に吸着体を固定できる。更に、吸着体を多孔質セラミックス単体で作れるので、耐熱性に優れる。また更に、吸着体を多孔質セラミックス単体で作れるので、吸着体の各部分における硬度差も無く、その結果吸着面における加工精度に優れた吸着体が製作可能となる。   Even if the adsorbent does not cover the entire surface of the adsorbent, the adsorbing power is not lost. Therefore, this adsorbent does not require a special outer frame for covering other than the adsorbing surface and making it airtight. Therefore, unlike the conventional adsorbent, a complicated procedure for integrally forming the adsorbing portion made of a porous portion and the supporting portion made of a dense portion is not required. Further, since the surface other than the suction surface has a suction capability, the suction body can be fixed to the work table without any special fixing jig simply by placing the suction body on a smooth work table. Furthermore, since the adsorbent can be made of a single porous ceramic, it has excellent heat resistance. Furthermore, since the adsorbent can be made of a porous ceramic alone, there is no difference in hardness in each part of the adsorbent, and as a result, an adsorbent excellent in processing accuracy on the adsorption surface can be manufactured.

なお、上記態様においては、吸着体の形状を円盤状に形成したが、これに限られず被吸着体の形状に合わせて、例えば多角形、楕円形等の任意の形状に形成しても良い。また、通気孔の数も任意に形成できる。更に、通気孔の形成形態も円盤の径方向に沿って形成する以外に、例えば、碁盤の目状に平行な通気孔を形成する等、任意の形状に形成できる。   In addition, in the said aspect, although the shape of the adsorbent was formed in the disk shape, it is not restricted to this, You may form in arbitrary shapes, such as a polygon and an ellipse, according to the shape of a to-be-adsorbed body. Also, the number of vent holes can be arbitrarily formed. Furthermore, in addition to forming the air holes along the radial direction of the disk, the air holes can be formed in any shape, for example, by forming air holes parallel to the grid shape.

(第2の形態)
第2の形態の吸着体の一例に付、図2を参照して説明する。
(Second form)
It attaches to an example of the adsorbent of a 2nd form, and demonstrates with reference to FIG.

この吸着体200は、吸引部を備える基盤に取付けて使用するものである。基盤を有する真空吸着装置は、従来汎用されている真空吸着装置である。従って、この態様の吸着体は、既存の真空吸着装置に加工、変更を加えることなくそのまま取付けて使用できる。   The adsorbent 200 is used by being attached to a base having a suction part. A vacuum suction device having a base is a vacuum suction device that has been widely used conventionally. Therefore, the adsorbent of this aspect can be used as it is without being processed or changed in an existing vacuum adsorption apparatus.

更に、気孔径、気孔率に関し第1の形態において用いる多孔質セラミックスを用いるので、第1の形態の吸着体と同様に、本吸着体は被吸着物の形状、大きさにかかわらず被吸着物を吸着・保持可能である。   Furthermore, since the porous ceramic used in the first embodiment is used with respect to the pore diameter and the porosity, the adsorbent is adsorbed regardless of the shape and size of the adsorbent as in the first embodiment. Can be adsorbed and retained.

図2(a)は、第2の形態の吸着体50を取付けた基盤52を示す平面図で、図2(b)は図2(a)のA−A線に沿う断面図である。基盤52は、真空吸着装置に取付けられている。この基盤52は、空気不透過性のセラミックス緻密体や金属で円盤状に形成されており、その周縁部には上方に突出た突条54が形成されている。   Fig.2 (a) is a top view which shows the base | substrate 52 which attached the adsorption body 50 of the 2nd form, FIG.2 (b) is sectional drawing which follows the AA line of Fig.2 (a). The base 52 is attached to a vacuum suction device. The base 52 is formed in a disk shape from an air-impermeable ceramic dense body or metal, and a protrusion 54 protruding upward is formed on the peripheral edge thereof.

前記基盤52の周縁部に形成した突条54を除く基盤52の上面は、吸着体を載置する部分(載置部分56)であり、この載置部分56の表面には、通気溝58が設けられている。この通気溝58は、基盤52の中心から同心円状の複数(本図に於いては3個)の円形溝60と、この円形溝60と交錯する複数(本図においては2個)の径方向溝62とからなる。   The upper surface of the base 52 excluding the protrusions 54 formed on the peripheral edge of the base 52 is a portion (a mounting portion 56) on which the adsorbent is placed, and a ventilation groove 58 is formed on the surface of the mounting portion 56. Is provided. The ventilation groove 58 has a plurality of concentric circular grooves 60 (three in the figure) concentric from the center of the base 52 and a plurality (two in the figure) radial directions intersecting with the circular grooves 60. Groove 62.

64は、前記複数の径方向溝62の交点66と基盤52の側面68とを連結する吸気孔である。基盤52の側面68の吸気孔には連結具70を介して排気管72の一端が連結されている。また、排気管72の他端は吸引ポンプ74の吸気側に連結されている。   Reference numeral 64 denotes an intake hole that connects the intersection 66 of the plurality of radial grooves 62 and the side surface 68 of the base 52. One end of an exhaust pipe 72 is connected to the intake hole on the side surface 68 of the base 52 via a connector 70. The other end of the exhaust pipe 72 is connected to the intake side of the suction pump 74.

第2の形態の吸着体50は、単一の多孔質セラミックスで円盤状に形成されている。この吸着体50は、第1の形態の吸着体2と相違し、内部に通気孔等は形成されていない。   The adsorbent 50 of the second form is formed in a disk shape with a single porous ceramic. The adsorbent 50 is different from the adsorbent 2 of the first embodiment, and no air holes or the like are formed therein.

多孔質セラミックスは前記第1の形態において用いた多孔質セラミックスと同様である。即ち、この多孔質セラミックスは平均気孔径は2〜5 μmが好ましく、2.5〜4 μmがより好ましい。多孔質セラミックの平均気孔率は30〜40 % が望ましい。   The porous ceramic is the same as the porous ceramic used in the first embodiment. That is, this porous ceramic has an average pore diameter of preferably 2 to 5 μm, more preferably 2.5 to 4 μm. The average porosity of the porous ceramic is preferably 30 to 40%.

吸着体50の厚さは、5〜10mmが好ましく、6〜8mmがより好ましい。吸着体の吸着面積は、特に制限が無く、被吸着体の面積に応じて適宜選択される。   The thickness of the adsorbent 50 is preferably 5 to 10 mm, and more preferably 6 to 8 mm. The adsorption area of the adsorbent is not particularly limited, and is appropriately selected according to the area of the adsorbent.

吸着体50は、この基盤52表面に接着剤等によって気密に固定される。この基盤52の表面に吸着体50を固定してなる吸着冶具200において、吸着体50の気孔を通して吸着体50の上表面から通気溝58に流れ込む空気流入量に比べ、排気量の大きい真空ポンプ74を用いることで、吸着体50の上表面の一部、または全てが開放されている状態においても通気溝58における真空度を上げることが可能となる。そのため、被吸着物の形状及び大きさに依存せずに被吸着物は吸着面に吸着・保持される。図2(b)において、点線で示される被吸着物76は、吸着体50の上表面(吸着領域)よりも小面積であり、この様な被吸着物76でも確実に吸着体50に固定される。   The adsorbent 50 is airtightly fixed to the surface of the base 52 with an adhesive or the like. In the adsorption jig 200 in which the adsorbent 50 is fixed to the surface of the base 52, the vacuum pump 74 has a large displacement compared to the air inflow amount flowing from the upper surface of the adsorbent 50 into the ventilation groove 58 through the pores of the adsorbent 50. By using this, it is possible to increase the degree of vacuum in the ventilation groove 58 even when a part or all of the upper surface of the adsorbent 50 is open. For this reason, the object to be adsorbed is adsorbed and held on the adsorption surface without depending on the shape and size of the object to be adsorbed. In FIG. 2B, the object to be adsorbed 76 indicated by a dotted line has a smaller area than the upper surface (adsorption region) of the adsorbent 50, and even such an adsorbed object 76 is securely fixed to the adsorbent 50. The

第2の形態の吸着体50は、吸引部を備える基盤に吸着体を設置する従来型の真空吸着装置においても、その吸着体を本吸着体に変更することで、部分吸着可能な真空吸着装置に改良することが可能となる。   The second embodiment of the adsorbent 50 is a vacuum adsorber that can be partially adsorbed by changing the adsorbent to the main adsorber even in a conventional vacuum adsorber in which an adsorbent is installed on a base including a suction unit. It becomes possible to improve.

以下、実施例により本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(多孔質セラミックスの製造)
多孔質セラミックスとして、ワラストナイト系気孔焼結体を以下の方法で製造した。
(Manufacture of porous ceramics)
As a porous ceramic, a wollastonite pore sintered body was produced by the following method.

原料であるワラストナイト(キンセイマテック製FPW#800)、タルク(ソブエクレー商事製PSハイセラタルク)及びネフェリン(稲垣鉱業製MINEX#3)をそれぞれ質量部で100、10、10の割合で配合し、バインダー、消泡剤と共に水120部を投入し混合した。前記混合液をよく攪拌した後壊砕し、スプレードライヤーにて顆粒化した。顆粒径はおよそ100μmであった。この顆粒を成型圧49MPaで一軸成型機により板状に成型し、最高温度1210℃で焼成を行った。   Wollastonite (FPW # 800 manufactured by Kinsei Matech), talc (PS Hicera talc manufactured by Sobueclay Corporation), and nepheline (MINEX # 3 manufactured by Inagaki Mining Co., Ltd.), which are raw materials, are blended at a ratio of 100, 10, and 10 parts by weight, respectively. Then, 120 parts of water was added together with the antifoaming agent and mixed. The mixed solution was thoroughly stirred and then crushed and granulated with a spray dryer. The granule diameter was approximately 100 μm. The granules were molded into a plate shape with a molding pressure of 49 MPa using a uniaxial molding machine and fired at a maximum temperature of 1210 ° C.

以上の操作により、平均気孔径2.6μm及び3.4μm、平均気孔率32%のワラストナイト系多孔質セラミックスを得た。ワラストナイト系多孔質セラミックスは快削性多孔質セラミックスである。平均気孔径は水銀圧入式ポロシメーターにより、平均気孔径はアルキメデス法によりそれぞれ測定した。   By the above operation, wollastonite porous ceramics having average pore diameters of 2.6 μm and 3.4 μm and an average porosity of 32% were obtained. Wollastonite porous ceramics are free-cutting porous ceramics. The average pore diameter was measured by a mercury intrusion porosimeter, and the average pore diameter was measured by the Archimedes method.

実施例1(第1の形態の吸着体)
上記ワラストナイト系多孔質セラミックスを平面研削盤(岡本工作機械製PSG63)にてレジンダイヤモンド砥石を用いて研削加工を施し、厚み18mmに研削加工を行った。加工後の平面度は3μmとした。平面度は三次元測定器((株)ミツトヨ製BRT707)により測定した。
Example 1 (Adsorbent of the first form)
The wollastonite-based porous ceramic was ground using a resin diamond grindstone with a surface grinder (PSG63 manufactured by Okamoto Machine Tool), and ground to a thickness of 18 mm. The flatness after processing was 3 μm. The flatness was measured with a three-dimensional measuring device (BRT707 manufactured by Mitutoyo Corporation).

マシニングセンター((株)牧野フライス製作所製V33)にてφ15ダイヤモンド電着軸付砥石を用いた切削加工を施し、外形寸法をφ210mmに加工し、セラミックス円盤を得た。   Cutting was performed using a grinding wheel with a φ15 diamond electrodeposition shaft at a machining center (V33 manufactured by Makino Milling Mfg. Co., Ltd.), and the outer dimensions were machined to φ210 mm to obtain a ceramic disk.

このセラミックス円盤に、同マシニングセンターにてφ4超硬ドリルを用いた穴加工を施した。穴加工は、円盤の側周面から、円盤の径方向に沿って互いに45度間隔でφ4mmの貫通穴を開けた。この貫通穴の端部側にM5深さ6mmのタップ加工を施した。   This ceramic disk was subjected to drilling using a φ4 carbide drill at the same machining center. In the drilling, through holes with a diameter of 4 mm were formed at intervals of 45 degrees along the radial direction of the disk from the side peripheral surface of the disk. The end of the through hole was tapped with an M5 depth of 6 mm.

加工後軽く水で洗い、超音波洗浄機(BRASON製VS-1200RZ)にて、15分洗浄を施し、さらに高圧洗浄機にて表面の切削粉等を洗い流した。   After processing, it was washed lightly with water, washed with an ultrasonic washer (BRASON VS-1200RZ) for 15 minutes, and then the surface cutting powder was washed away with a high-pressure washer.

洗浄終了後、乾燥機(東京理科機械(株)製NDO-450SU)にて110℃ 1時間保持し乾燥させた。   After completion of washing, it was dried by holding at 110 ° C. for 1 hour in a dryer (NDO-450SU manufactured by Tokyo Science Machine Co., Ltd.).

上記M5タップ穴8箇所のうち、7箇所のタップ穴をM5×6Lの六角穴付止ネジにエポキシ系接着剤を塗布し、封止した。残りの一箇所のタップ穴にはメイルコネクター((株)チヨダ製M5×0.8)を取り付けた。(株)ULBAC製真空ポンプ(DOP-80S)とメイルコネクターとは内径4mm外径6mmのウレタンチューブにて連結した。   Of the 8 M5 tap holes, 7 tap holes were sealed by applying an epoxy adhesive to a M5 × 6L hexagon socket set screw. A mail connector (M5 × 0.8 manufactured by Chiyoda Co., Ltd.) was attached to the remaining one tap hole. The ULBAC vacuum pump (DOP-80S) and the male connector were connected by a urethane tube having an inner diameter of 4 mm and an outer diameter of 6 mm.

実施例2
(吸着体の製造)
ワラストナイト系多孔質セラミックスに平面研削盤(岡本工作機械製PSG63)にてレジンダイヤモンド砥石を用いた研削加工を施し、厚みを7mmに研削加工を行った。加工後の平面度を20μmとした。平面度は(株)ミツトヨ製三次元測定器(BRT707)により測定した。
Example 2
(Manufacture of adsorbent)
The wollastonite porous ceramics was ground using a resin diamond grinding wheel with a surface grinder (PSG63 manufactured by Okamoto Machine Tool Co., Ltd.), and the thickness was ground to 7 mm. The flatness after processing was 20 μm. The flatness was measured with a three-dimensional measuring instrument (BRT707) manufactured by Mitutoyo Corporation.

研削加工後、マシニングセンター((株)牧野フライス製作所製V33)にてφ15ダイヤモンド電着軸付砥石を用いた切削加工を施し、外形寸法をφ210mmに加工し、セラミックス円盤を得た。   After grinding, cutting was performed using a grinding wheel with a φ15 diamond electrodeposition shaft at a machining center (V33 manufactured by Makino Milling Co., Ltd.), and the outer dimensions were machined to φ210 mm to obtain a ceramic disk.

加工後軽く水洗いし、超音波洗浄機(BRASON製VS-1200RZ)にて、15分洗浄を施し、さらに高圧洗浄機にて表面の切削粉等を洗い流した。洗浄後、乾燥機(東京理科機械(株)製NDO-450SU)にて110℃、1時間保持し乾燥させた。   After processing, it was lightly washed with water, washed with an ultrasonic washer (BRASON VS-1200RZ) for 15 minutes, and then the surface cutting powder was washed away with a high-pressure washer. After washing, it was dried by holding at 110 ° C. for 1 hour in a dryer (NDO-450SU manufactured by Tokyo Science Machinery Co., Ltd.).

(吸引基盤(SUS304)の製造)
SUS304に平面研削盤(岡本工作機械製PSG63)にてレジンダイヤモンド砥石を用いた研削加工を施し、厚みを20mmに研削加工を行った。加工後の平面度を20μmとした。平面度は三次元測定器((株)ミツトヨ製BRT707)により測定した。
(Manufacture of suction base (SUS304))
SUS304 was ground using a resin diamond grindstone with a surface grinder (PSG63 manufactured by Okamoto Machine Tool), and the thickness was ground to 20 mm. The flatness after processing was 20 μm. The flatness was measured with a three-dimensional measuring device (BRT707 manufactured by Mitutoyo Corporation).

研削加工後マシニングセンター((株)牧野フライス製作所製V33)にてφ15超硬エンドミルを用いた切削加工を施し、外形寸法をφ240mmに加工し、金属円盤を得た。   After grinding, machining was performed using a φ15 carbide end mill at a machining center (V33 manufactured by Makino Milling Machine Co., Ltd.), and the outer dimensions were machined to φ24.0 mm to obtain a metal disk.

同マシニングセンターにてφ15超硬エンドミルを用いた切削加工を施し、前記家製造した金属円盤の中央にφ210mm深さ5mmの座ぐり加工を施した。さらに、同マシニングセンターにてφ4超硬ドリルを用いて、基盤の上面から15mm下の外周から基盤の中心にかけてφ4mmの吸気孔を水平に開けた。   At the same machining center, cutting was performed using a φ15 carbide end mill, and a counterbore with a depth of φ210 mm and a depth of 5 mm was applied to the center of the metal disk manufactured in the house. Furthermore, using a φ4 carbide drill at the machining center, a φ4 mm air intake hole was horizontally opened from the outer periphery 15 mm below the base to the center of the base.

その後、同マシニングセンターにてφ5超硬エンドミルを用いた切削加工を施し、幅5mm深さ2mmの座ぐり加工を施して、通気溝を形成した。通気溝は、図2に示すように、3個の略等間隔に形成した同心円状の溝と、2つの直交する基盤の径方向に形成した溝からなる。従って、前記同心円状の溝と径方向の溝とは交差する箇所でつながっている。さらに座ぐり面中心部にφ5mmの穴を垂直に形成し、前記形成したφ4mmの通気口まで開けた。通気口入り口にM5深さ6mmのタップ加工を施した。これにより、図2に示す基盤を得た。   After that, cutting using a φ5 carbide end mill was performed at the machining center, and a counterbore with a width of 5 mm and a depth of 2 mm was formed to form a ventilation groove. As shown in FIG. 2, the ventilation groove is composed of three concentric grooves formed at approximately equal intervals and two grooves formed in the radial direction of the orthogonal bases. Accordingly, the concentric grooves and the radial grooves are connected at the intersections. Further, a φ5 mm hole was vertically formed in the center portion of the counterbore surface, and the formed φ4 mm vent was opened. M5 depth 6mm tap processing was given to the vent entrance. Thereby, the base shown in FIG. 2 was obtained.

(吸着治具の組み立て)
前述加工済み吸着体を上記基盤の座ぐり面にエポキシ系接着剤にて接着固定した。
(Assembly of adsorption jig)
The processed adsorbent was adhered and fixed to the counterbore surface of the base with an epoxy adhesive.

吸着板と金属枠との段差が無いように平面研削盤(岡本工作機械製PSG63)にてレジンダイヤモンド砥石を用いた研削加工を施した。加工後の平面度を5μmとした。平面度は三次元測定器((株)ミツトヨ製BRT707)により測定した。   Grinding using a resin diamond grindstone was performed with a surface grinding machine (PSG63 manufactured by Okamoto Machine Tool) so that there was no step between the suction plate and the metal frame. The flatness after processing was 5 μm. The flatness was measured with a three-dimensional measuring device (BRT707 manufactured by Mitutoyo Corporation).

研削加工後、高圧洗浄機で研削粉等を除去した。洗浄が終了した吸着基盤を乾燥機(東京理科機械(株)製NDO-450SU)にて、110℃、1時間保持し乾燥させた。   After grinding, the grinding powder was removed with a high pressure washer. The adsorption substrate after washing was dried at 110 ° C. for 1 hour using a dryer (NDO-450SU manufactured by Tokyo Science Machinery Co., Ltd.).

通気口入り口にメイルコネクター((株)チヨダ製M5×0.8)を取り付け、真空ポンプ((株)ULBAC製DOP-80S)とメイルコネクターを内径4mm外径6mmのウレタンチューブにて連結した。   A mail connector (M5 × 0.8 manufactured by Chiyoda Co., Ltd.) was attached to the inlet of the vent, and the vacuum pump (DOP-80S manufactured by ULBAC Co., Ltd.) and the mail connector were connected by a urethane tube having an inner diameter of 4 mm and an outer diameter of 6 mm.

(吸着圧計測)
吸着治具において、吸着体の気孔径が大きく、さらに被吸着物が吸着面に比べ小さい場合、被吸着物が載っていない開放された気孔を通して空気がリークし、十分な吸着力が得られない。一方、気孔径が適度に小さく均一に分布している吸着体においては、被吸着物の占める範囲が吸着面の一部であっても十分な吸着力を得ることが出来る。
(Adsorption pressure measurement)
In the adsorption jig, when the pore size of the adsorbent is large and the object to be adsorbed is smaller than the adsorption surface, air leaks through the open pores on which the object to be adsorbed is not placed, and sufficient adsorbing power cannot be obtained. . On the other hand, in an adsorbent having a pore size that is moderately small and uniformly distributed, a sufficient adsorbing force can be obtained even if the adsorbed object occupies a part of the adsorbing surface.

ここで、本発明での吸着体に用いる多孔質体に関して、その気孔径の大きさに対する部分吸着可能な吸着体としての使用可能性について論じるため、吸着圧計測を行った。   Here, with respect to the porous body used for the adsorbent in the present invention, adsorption pressure measurement was performed in order to discuss the possibility of use as an adsorbent capable of partial adsorption with respect to the pore size.

始めに、実施例1及び実施例2で製造した吸着体において、被吸着物の大きさに対する吸着圧の変化を計測した。次に、図2に示す吸着冶具用吸着体において、実施例2で用いた多孔質セラミックスと異なる2種類の多孔質体を多孔質セラミックを用い、上記の計測と同様、被吸着物の大きさに対する吸着圧計測を行なった。   First, in the adsorbent manufactured in Example 1 and Example 2, the change in adsorption pressure with respect to the size of the object to be adsorbed was measured. Next, in the adsorbent for the adsorption jig shown in FIG. 2, two types of porous bodies different from the porous ceramic used in Example 2 were used, and the size of the object to be adsorbed was measured in the same manner as in the above measurement. The adsorption pressure was measured.

表1に本計測に用いた多孔質セラミックスの平均気孔径及び気孔率を示す。ここで、多孔質1及び2は同一材質で、本発明での条件に合致する多孔質セラミックスである。実施例1において、吸着体として用いた多孔質1の直径は約210 mm(8 inch)であり厚さは18mmである。一方、実施例2、及び比較例1、2として用いた多孔質2〜4は直径約210 mm(8 inch)、 厚さ7mmである。   Table 1 shows the average pore diameter and porosity of the porous ceramic used in this measurement. Here, the porous materials 1 and 2 are the same material, and are porous ceramics that meet the conditions of the present invention. In Example 1, the diameter of the porous 1 used as the adsorbent is about 210 mm (8 inch) and the thickness is 18 mm. On the other hand, the porous materials 2 to 4 used as Example 2 and Comparative Examples 1 and 2 have a diameter of about 210 mm (8 inch) and a thickness of 7 mm.

Figure 0004850117
Figure 0004850117

測定は、被吸着物として大きさの異なるフィルムを吸着面に載せ、その時の真空度を配管10、または配管72部に取り付けた真空計にて計測する方法で行った。ここで、実施例1の吸着体においては吸着面裏側をアクリル板に固定した。そのため、この面からの空気のリークは生じない。   The measurement was performed by a method in which films having different sizes as the objects to be adsorbed were placed on the adsorption surface, and the degree of vacuum at that time was measured with a pipe 10 or a vacuum gauge attached to 72 parts of the pipe. Here, in the adsorption body of Example 1, the adsorption surface back side was fixed to the acrylic board. Therefore, no air leaks from this surface.

フィルムにかかる吸着力はフィルムを載せたときの真空度に比例すると考えることができる。図3に吸着面の面積に対するフィルムの面積の割合と、その時の真空度の関係を示す。   It can be considered that the adsorption force applied to the film is proportional to the degree of vacuum when the film is placed. FIG. 3 shows the relationship between the ratio of the film area to the area of the suction surface and the degree of vacuum at that time.

実施例1及び2の吸着体においては、被吸着物が吸着面に比べ十分小さいときでも真空計は高い真空度を示しており、両タイプ共に広い面積割合における部分吸着が可能な吸着体であることが示されている。   In the adsorbents of Examples 1 and 2, the vacuum gauge shows a high degree of vacuum even when the object to be adsorbed is sufficiently smaller than the adsorption surface, and both types are adsorbents capable of partial adsorption in a wide area ratio. It has been shown.

一方、多孔質体の平均気孔径が3.4μm(多孔質2)のものから21μm(多孔質3)、さらには60μm(比較例2)と大きくなるに従い、排気管72での真空度は低くなっている。これは、気孔径の大きいセラミックスを用いる吸着冶具では、部分的に被吸着物載せても、被吸着物の載っていない開放されている部分での気孔からのリークが大きく、そのため真空度が上がらず十分な吸着力が得られないことを意味している。   On the other hand, as the average pore diameter of the porous body increases from 3.4 μm (porous 2) to 21 μm (porous 3) and further to 60 μm (Comparative Example 2), the degree of vacuum in the exhaust pipe 72 decreases. ing. This is because, in an adsorption jig using ceramics having a large pore diameter, even if the object to be adsorbed is partially loaded, leakage from the pores in the open part where the object to be adsorbed is not large is large, and therefore the degree of vacuum is increased. This means that sufficient adsorption power cannot be obtained.

このように、吸着体として用いる多孔質セラミックスの気孔径が大きい場合、被吸着物が吸着面の大部分を覆わないと十分な吸着力が得られない。そのため部分吸着可能な吸着冶具用吸着体としては不適当である。   As described above, when the pore size of the porous ceramic used as the adsorbent is large, sufficient adsorbing power cannot be obtained unless the adsorbed material covers most of the adsorbing surface. Therefore, it is unsuitable as an adsorbent for an adsorption jig that can be partially adsorbed.

逆に気孔径が2μm未満と小さい場合は閉塞気味となり、この場合もまた十分な吸着力は得られないため、吸着体としてこれら多孔質体は不適当である。   On the other hand, when the pore diameter is as small as less than 2 μm, the porous body is unsuitable as an adsorbent because a sufficient adsorbing force cannot be obtained in this case.

以上のことより、本発明において吸着体として通気孔の平均気孔径が2〜5 μm、平均気孔率が30〜40 % であることを特徴とする快削性多孔質セラミックスを用いることで、形状・大きさにかかわらず被吸着物の吸着・保持を可能とする。   From the above, by using free-cutting porous ceramics characterized in that the average pore diameter of the pores is 2 to 5 μm and the average porosity is 30 to 40% as the adsorbent in the present invention.・ Adsorption and retention of objects to be adsorbed is possible regardless of size.

本発明の吸着体の一例を示す概略図で、(a)は平面図、(b)は側面断面図である。It is the schematic which shows an example of the adsorption body of this invention, (a) is a top view, (b) is side sectional drawing. 本発明の吸着体の他の例を示す概略図で、(a)は平面図、(b)は側面断面図である。It is the schematic which shows the other example of the adsorption body of this invention, (a) is a top view, (b) is side sectional drawing. 吸着体の吸着面積比と真空圧の関係を示すグラフである。It is a graph which shows the relationship between the adsorption area ratio of an adsorbent, and a vacuum pressure.

符号の説明Explanation of symbols

2 吸着体
4 通気孔
6 封止部材
8 吸気口
10 排気管
12 連結具
14 吸引ポンプ
16 被吸着物
18 表面
20 吸着体裏面
200 吸着治具
50 吸着体
52 基盤
54 突条
56 載置部分
58 通気溝
60 円形溝
62 径方向溝
64 吸気孔
68 側面
70 連結具
72 排気管
74 吸引ポンプ
76 被吸着物
DESCRIPTION OF SYMBOLS 2 Adsorbent body 4 Ventilation hole 6 Sealing member 8 Intake port 10 Exhaust pipe 12 Connector 14 Suction pump 16 Adsorbed object 18 Surface 20 Adsorbent back surface 200 Adsorption jig 50 Adsorbent body 52 Base 54 Projection 56 Mount part 58 Ventilation Groove 60 Circular groove 62 Radial groove 64 Intake hole 68 Side face 70 Connector 72 Exhaust pipe 74 Suction pump 76 Adsorbed object

Claims (3)

平均気孔径が2.54 μm、気孔率が30〜35%の快削性多孔質セラミックス平板からなり、前記平板の内部に前記平板の表裏面と平行に通気孔が配されていることを特徴とする真空吸着装置用吸着体。 An average pore diameter of 2.5 ~ 4 [mu] m, Ri porosity Tona 30-35% of free-cutting porous ceramic plates that you have arranged in parallel to the vent hole and the front and rear surfaces of the flat plate in the interior of the plate An adsorbent for a vacuum adsorption device. 吸着体内部に互いに連通する外部と隔離された複数の通気孔を有すると共に前記通気孔と吸着体の外表面に開孔している吸引孔とを連通してなる吸引孔を有する請求項に記載の真空吸着装置用吸着体。 2. The suction body according to claim 1 , further comprising: a plurality of ventilation holes isolated from the outside communicating with each other inside the adsorption body, and a suction hole formed by communicating the ventilation hole and a suction hole opened on the outer surface of the adsorption body. The adsorbent for a vacuum adsorption apparatus as described. 快削性多孔質セラミックスがワラストナイト系多孔質セラミックスである請求項1又は2に記載の真空吸着装置用吸着体。 The adsorbent for a vacuum adsorption device according to claim 1 or 2 , wherein the free-cutting porous ceramic is a wollastonite porous ceramic.
JP2007106728A 2007-04-16 2007-04-16 Adsorbent for vacuum adsorption device and vacuum adsorption device Active JP4850117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007106728A JP4850117B2 (en) 2007-04-16 2007-04-16 Adsorbent for vacuum adsorption device and vacuum adsorption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007106728A JP4850117B2 (en) 2007-04-16 2007-04-16 Adsorbent for vacuum adsorption device and vacuum adsorption device

Publications (2)

Publication Number Publication Date
JP2008270233A JP2008270233A (en) 2008-11-06
JP4850117B2 true JP4850117B2 (en) 2012-01-11

Family

ID=40049400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007106728A Active JP4850117B2 (en) 2007-04-16 2007-04-16 Adsorbent for vacuum adsorption device and vacuum adsorption device

Country Status (1)

Country Link
JP (1) JP4850117B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6815138B2 (en) * 2016-09-06 2021-01-20 株式会社ディスコ Suction retention system
CN106981559B (en) * 2017-05-18 2023-10-27 深圳新益昌科技股份有限公司 Vacuum suction plate device
CN108995232B (en) * 2018-07-25 2023-11-21 上海亨诺模塑科技股份有限公司 Vacuum adsorption riveting head device
WO2020024984A1 (en) * 2018-08-01 2020-02-06 北京北方华创微电子装备有限公司 Non-contact substrate operating apparatus and epitaxial reactor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254267A (en) * 2001-02-27 2002-09-10 Mitsubishi Gas Chem Co Inc Auxiliary plate for vacuum adsorption work
JP2005032959A (en) * 2003-07-11 2005-02-03 Nikon Corp Vacuum chuck, polishing device, exposure device, and method for manufacturing semiconductor device
JP2005279788A (en) * 2004-03-26 2005-10-13 Ibiden Co Ltd Vacuum chuck for grinding/polishing

Also Published As

Publication number Publication date
JP2008270233A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP4850117B2 (en) Adsorbent for vacuum adsorption device and vacuum adsorption device
JP5652832B2 (en) Chuck device and chuck method
JP5090353B2 (en) Apparatus used for chemical mechanical polishing and method for chemical mechanical polishing
JP4214147B2 (en) Vacuum chuck
JP6154173B2 (en) Vacuum suction device and suction plate
CN111546161A (en) Positioning jig and polishing equipment
JP2000232083A (en) Universal chucking mechanism for semiconductor wafer
KR101282839B1 (en) A porous chuck of improved vacuum suction power
JP5493919B2 (en) Chuck table device and semiconductor device manufacturing method using the same
JP2009253247A (en) Suction body for vacuum suction apparatus, and vacuum suction apparatus
CN102668059A (en) Vacuum chuck
KR102079740B1 (en) Vacuum adsorption jig for manufacturing quartz products for semiconductors
JPH09174364A (en) Universal chuck table for semiconductor wafer
JP2007180102A (en) Suction body and manufacturing method thereof
JP3947843B2 (en) Vacuum chuck
KR20090102568A (en) Ceramic ball panel type air vacuum tight
JP2005135940A (en) Universal chucking mechanism of semiconductor wafer and wafer mounting plate
JPH07302832A (en) Suction holding device, sealing tool for suction holding device and method of suction holding
KR101059434B1 (en) voccum chuck
JP2004209633A (en) Apparatus for securing work substrate and method for manufacturing the same
JP2008204995A (en) Method of polishing semiconductor wafer
KR100934692B1 (en) A porous chuck table
JP6148084B2 (en) Adsorption member
JP5316172B2 (en) Wafer suction pad and pre-aligner having the same
US6913516B1 (en) Dummy process and polishing-pad conditioning process for chemical mechanical polishing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Ref document number: 4850117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250