JP4849848B2 - Assembled battery - Google Patents

Assembled battery Download PDF

Info

Publication number
JP4849848B2
JP4849848B2 JP2005252748A JP2005252748A JP4849848B2 JP 4849848 B2 JP4849848 B2 JP 4849848B2 JP 2005252748 A JP2005252748 A JP 2005252748A JP 2005252748 A JP2005252748 A JP 2005252748A JP 4849848 B2 JP4849848 B2 JP 4849848B2
Authority
JP
Japan
Prior art keywords
secondary battery
heat
cooling air
thermal runaway
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005252748A
Other languages
Japanese (ja)
Other versions
JP2007066773A (en
Inventor
雅也 中野
秀世 森田
正一 遠矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005252748A priority Critical patent/JP4849848B2/en
Publication of JP2007066773A publication Critical patent/JP2007066773A/en
Application granted granted Critical
Publication of JP4849848B2 publication Critical patent/JP4849848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は、複数の二次電池を備える組電池であって、二次電池の熱暴走が他の二次電池の熱暴走を誘発しない組電池に関する。   The present invention relates to an assembled battery including a plurality of secondary batteries, in which a thermal runaway of a secondary battery does not induce a thermal runaway of another secondary battery.

二次電池は、内部ショートや過充電等、種々の原因で熱暴走を起こすことがある。熱暴走すると、電池の温度は急激に上昇して300℃〜400℃以上となることもある。とくに、多数の二次電池を内蔵している組電池は、複数の二次電池が熱暴走を起こすと熱暴走のエネルギーが極めて大きくなって、さらに危険な状態となる。このような弊害を防止するために、二次電池の熱暴走を阻止する技術が開発されている(特許文献1ないし3参照)。   The secondary battery may cause thermal runaway due to various causes such as internal short circuit or overcharge. When thermal runaway occurs, the temperature of the battery rises rapidly and may be 300 ° C. to 400 ° C. or higher. In particular, in a battery pack incorporating a large number of secondary batteries, when a plurality of secondary batteries cause a thermal runaway, the energy of the thermal runaway becomes extremely large, which makes the battery more dangerous. In order to prevent such an adverse effect, a technique for preventing thermal runaway of the secondary battery has been developed (see Patent Documents 1 to 3).

二次電池の熱暴走を阻止する技術として、二次電池自体に設けて熱暴走を防止する技術(特許文献1参照)と、二次電池の外部に設けて熱暴走を防止する技術(特許文献2及び3参照)とが開発されている。   As a technique for preventing thermal runaway of a secondary battery, a technique for preventing thermal runaway by providing it in the secondary battery itself (see Patent Document 1) and a technique for preventing thermal runaway by providing it outside the secondary battery (Patent Document) 2 and 3) have been developed.

特許文献1に記載されるように、二次電池自体に熱暴走を防止する機構を設けるものは、二次電池自体の構成を変更する必要があるので、すでに製造、販売されている二次電池を使用して組電池とすることができない。このため、特別な二次電池を製造する必要があるので実用的でない。   As described in Patent Document 1, since a secondary battery having a mechanism for preventing thermal runaway needs to change the configuration of the secondary battery itself, the secondary battery already manufactured and sold. Cannot be used as a battery pack. For this reason, since it is necessary to manufacture a special secondary battery, it is not practical.

特許文献2に記載される組電池は、電池の配列を変更する。すなわち、隣接する電池の安全弁を異なる側に配置している。この組電池は、ひとつの電池が熱暴走して安全弁から放出される気化した電解液蒸気に着火し難く、安全性を向上できる。ただ、この構造は、電解液蒸気の着火は防止できるが、電池を接近して配設する組電池において、熱暴走した電池の熱で隣の電池が熱暴走を起こすのを防止できない。   The assembled battery described in Patent Document 2 changes the arrangement of the batteries. That is, the safety valves of adjacent batteries are arranged on different sides. In this assembled battery, it is difficult to ignite the vaporized electrolyte vapor released from the safety valve due to a thermal runaway of one battery, and safety can be improved. However, this structure can prevent the ignition of the electrolyte vapor, but in the assembled battery in which the batteries are arranged close to each other, it cannot prevent the adjacent battery from causing the thermal runaway due to the heat of the thermal runaway battery.

特許文献3の二次電池は、内圧が上昇して外装ケースが膨れると、この膨れでスイッチがオンになって短絡電流を流して電池を放電させて熱暴走を防止する機構を設けている。この機構は、熱暴走の状態によっては効果的に熱暴走を防止できない。たとえば、満充電に近い二次電池が内部ショートして内部から発熱する状態となり、内圧が上昇してスイッチがオンになって短絡電流を流す状態になると、内部ショートによる電流と、外部の短絡電流の両方が流れて大きな放電電流が流れる状態となる。このように外部の短絡電流で、さらに放電電流が大きくなるので、二次電池は熱暴走を起こしやすい状態となる。したがって、種々の原因で発生する熱暴走を確実に防止するのが難しい。また、二次電池の外部に外装ケースの膨れで短絡電流を流す機構を設ける必要があるので、多数の二次電池を内蔵する組電池等に採用する場合、構造が複雑で外形が大きくなる欠点がある。   When the internal pressure rises and the outer case swells, the secondary battery of Patent Document 3 is provided with a mechanism that prevents the thermal runaway by turning on the switch and causing a short-circuit current to flow to discharge the battery. This mechanism cannot effectively prevent thermal runaway depending on the state of thermal runaway. For example, when a secondary battery near full charge is short-circuited internally and generates heat from the inside, the internal pressure rises and the switch turns on and a short-circuit current flows. Both flow, and a large discharge current flows. As described above, since the discharge current is further increased by the external short-circuit current, the secondary battery is likely to cause thermal runaway. Therefore, it is difficult to reliably prevent thermal runaway caused by various causes. In addition, since it is necessary to provide a mechanism that allows a short-circuit current to flow outside the secondary battery due to the swelling of the outer case, there is a drawback in that the structure is complicated and the outer shape becomes large when used in an assembled battery that incorporates a large number of secondary batteries. There is.

複数の二次電池を内蔵する組電池は、二次電池自体が熱暴走を起こし難くすることに加えて、仮にいずれかの二次電池が熱暴走を起こしても、熱暴走が他の二次電池の熱暴走を誘発しないことが大切である。
特開2004−303447号公報 特開2003−303581号公報 特開2004−319463号公報
In addition to making it difficult for the secondary battery itself to cause thermal runaway, an assembled battery containing multiple secondary batteries can cause thermal runaway if any secondary battery causes thermal runaway. It is important not to induce thermal runaway of the battery.
JP 2004-303447 A JP 2003-303581 A JP 2004-319463 A

本発明者等は、種々の実験を繰り返した結果、複数の二次電池を接近して配設する組電池においては、熱暴走で発生する輻射熱と熱伝導とをコントロールすることで、二次電池の熱暴走を起こし難くすると共に、仮にいずれかの二次電池が熱暴走を起こしても、この熱暴走が他の二次電池の熱暴走を誘発しない構造を開発した(特願2005−162032号)。   As a result of repeating various experiments, the present inventors, in an assembled battery in which a plurality of secondary batteries are arranged close to each other, can control the radiant heat and heat conduction generated by the thermal runaway, thereby providing a secondary battery. In addition, a structure has been developed in which, even if any secondary battery causes thermal runaway, this thermal runaway does not induce thermal runaway of other secondary batteries (Japanese Patent Application No. 2005-162032). ).

一方、他の二次電池による熱暴走の伝搬を防止する断熱構造は、放熱を困難にするという弊害があった。使用状態において発生した熱を適切に放熱して温度上昇を少なくする構造も、二次電池を保護し適切な動作を確保するために必要である。特に樹脂製の筒状ホルダでは、樹脂を介しての冷却となるため、放熱効率が悪かった。加えて、個々の二次電池を均一な状態に保つ均熱構造も重要である。複数の二次電池を備える組電池においては、個々の二次電池の特性にばらつきが生じると、適切な制御が困難となる。   On the other hand, the heat insulation structure that prevents the propagation of thermal runaway by other secondary batteries has a negative effect of making heat dissipation difficult. A structure that appropriately dissipates the heat generated in use and reduces the temperature rise is also necessary to protect the secondary battery and ensure proper operation. Particularly in the case of a resin cylindrical holder, the heat dissipation efficiency is poor because cooling is performed through the resin. In addition, a soaking structure that keeps the individual secondary batteries in a uniform state is also important. In a battery pack including a plurality of secondary batteries, appropriate control becomes difficult if the characteristics of the individual secondary batteries vary.

本発明は、さらにこのような観点からなされたものである。本発明の主な目的は、内蔵される二次電池の熱暴走が他の二次電池の熱暴走を誘発するのを効果的に防止できると共に、放熱効果を確保して電池温度の上昇を少なくできる組電池を提供することにある。   The present invention is further made from such a viewpoint. The main object of the present invention is to effectively prevent a thermal runaway of a built-in secondary battery from inducing a thermal runaway of another secondary battery, and to ensure a heat dissipation effect and to reduce a rise in battery temperature. It is to provide a battery pack that can be used.

上記課題を解決するために、本発明の組電池は、複数の二次電池1を平行な姿勢で隣接して外装ケース2に収納すると共に、二次電池1を冷却風で冷却する冷却風ダクト6を外装ケース2内に設けている。組電池は、隣接する二次電池1の間に、プラスチック製の熱暴走防止壁3を設けると共に、この熱暴走防止壁3を、二次電池1を挿通する筒状に成形している熱伝導筒4に一体的に成形して、熱暴走防止壁3を熱伝導筒4の一部としている。熱伝導筒4は、挿通している二次電池1の表面の一部を冷却風ダクト6に表出させる放熱領域5を有し、冷却風ダクト6に送風される冷却風でもって、放熱領域5に表出される二次電池1の一部を冷却している。これにより、熱伝導筒4で隣接する二次電池1間を断熱して熱暴走の伝搬を阻止する一方、放熱領域5を開口して発生した熱を効果的に放熱し、二次電池1の冷却を図って信頼性高く使用できる。   In order to solve the above problems, the assembled battery of the present invention is a cooling air duct that houses a plurality of secondary batteries 1 adjacent to each other in a parallel posture in an outer case 2 and cools the secondary battery 1 with cooling air. 6 is provided in the outer case 2. The assembled battery is provided with a plastic thermal runaway prevention wall 3 between adjacent secondary batteries 1, and the thermal runaway prevention wall 3 is formed into a cylindrical shape through which the secondary battery 1 is inserted. The thermal runaway prevention wall 3 is formed as a part of the thermal conduction cylinder 4 by being molded integrally with the cylinder 4. The heat conduction cylinder 4 has a heat radiation area 5 for exposing a part of the surface of the inserted secondary battery 1 to the cooling air duct 6, and the heat radiation area is provided with the cooling air blown to the cooling air duct 6. A part of the secondary battery 1 shown in FIG. Accordingly, the heat conduction cylinder 4 insulates the adjacent secondary batteries 1 to prevent the propagation of thermal runaway, while the heat generated by opening the heat radiating region 5 is effectively radiated. Cooling can be used with high reliability.

本発明の組電池は、熱伝導筒4に設けた放熱領域5の開口面積を、冷却風の送風方向に向かって次第に大きくすることができる。これにより、放熱領域5の開口面積を徐々に変化させて放熱量を調整し、均一な冷却を図ることができる。   The assembled battery of this invention can enlarge the opening area of the thermal radiation area | region 5 provided in the heat conductive cylinder 4 gradually toward the ventilation direction of cooling air. Thereby, the amount of heat radiation can be adjusted by gradually changing the opening area of the heat radiation region 5 to achieve uniform cooling.

本発明の組電池は、放熱領域5を、二次電池1の全表面積の1/2以下とすることができる。   In the assembled battery of the present invention, the heat dissipation region 5 can be set to ½ or less of the total surface area of the secondary battery 1.

本発明の組電池は、熱伝導筒4の表面に絶縁プレート14を配設して、絶縁プレート14と二次電池1と熱伝導筒4で囲まれる領域を冷却風ダクト6とすることができる。絶縁プレート14は、冷却風ダクト6の通路を大きくする溝状に成形することができる。これにより、冷却風ダクト6の断面積を大きくでき、冷却空気の圧力損失を抑制して冷却能力を高めることができる。さらに、絶縁プレート14は、冷却風ダクト6に送風される冷却風を通過させる供給ダクトを有することができる。さらにまた、絶縁プレート14は、回路基板12を定位置に配設する基板ホルダー11とすることができる。   In the assembled battery of the present invention, the insulating plate 14 is disposed on the surface of the heat conducting tube 4, and the region surrounded by the insulating plate 14, the secondary battery 1, and the heat conducting tube 4 can be used as the cooling air duct 6. . The insulating plate 14 can be formed in a groove shape that enlarges the passage of the cooling air duct 6. Thereby, the cross-sectional area of the cooling air duct 6 can be enlarged, the pressure loss of cooling air can be suppressed, and cooling capacity can be improved. Furthermore, the insulating plate 14 can have a supply duct that allows the cooling air blown to the cooling air duct 6 to pass therethrough. Furthermore, the insulating plate 14 can be a substrate holder 11 that places the circuit board 12 in place.

本発明の組電池は、二次電池1を上下2段に配置して、上段二次電池1の上面に上段冷却風ダクト6Aを設けて、下段二次電池1の下面に下段冷却風ダクト6Bを設けることができる。   In the assembled battery of the present invention, the secondary battery 1 is arranged in two upper and lower stages, an upper cooling air duct 6A is provided on the upper surface of the upper secondary battery 1, and a lower cooling air duct 6B is provided on the lower surface of the lower secondary battery 1. Can be provided.

本発明の組電池は、上段冷却風ダクト6Aと下段冷却風ダクト6Bとを連結ダクト9で連結して、冷却風の流入口15に連結することができる。この構造により、熱伝導筒4を複数段に積層した組電池においても、冷却空気の取り入れ口を一に集約して、冷却空気を上段と下段に分岐して冷却でき、冷却風ダクト6の構成を簡素化できる。   The assembled battery of the present invention can be connected to the cooling air inlet 15 by connecting the upper cooling air duct 6 </ b> A and the lower cooling air duct 6 </ b> B with the connecting duct 9. With this structure, even in an assembled battery in which the heat conducting cylinders 4 are stacked in a plurality of stages, the cooling air intakes can be integrated into one, and the cooling air can be branched and cooled into an upper stage and a lower stage. Can be simplified.

本発明の組電池は、上段冷却風ダクト6Aと下段冷却風ダクト6Bの一方を他方よりも流入口15に近く配置し、流入口15に近い冷却風ダクト6に開口する放熱領域5の面積を、流入口15に遠い冷却風ダクト6に開口する放熱領域5よりも小さくすることができる。この構造により、冷却風の流入口15よりも遠い、言い換えると冷却能力の劣る冷却ダクトに位置する熱伝導筒4の冷却領域5を広くして、上下の段での冷却能力の均一化を図ことができる。   In the battery pack of the present invention, one of the upper cooling air duct 6A and the lower cooling air duct 6B is disposed closer to the inlet 15 than the other, and the area of the heat radiation region 5 opening to the cooling air duct 6 near the inlet 15 is reduced. The heat radiation area 5 can be made smaller than the heat radiation area 5 opened in the cooling air duct 6 far from the inlet 15. With this structure, the cooling area 5 of the heat conducting cylinder 4 located far from the cooling air inlet 15, in other words, in the cooling duct having inferior cooling capacity, is widened, so that the cooling capacity can be made uniform in the upper and lower stages. be able to.

本発明の組電池は、熱伝導筒4に、内面と二次電池1との間に隙間を設ける断熱空隙17を一部に設けて、連結ダクト9の冷却風が断熱空隙17を介して二次電池1を冷却することができる。これにより、冷却風の流入側に近い側で意図的に断熱層を形成して二次電池1の冷却能力を抑制し、もって全体の均熱化を図ることができる。   In the assembled battery of the present invention, the heat conduction cylinder 4 is provided with a heat insulating gap 17 that provides a gap between the inner surface and the secondary battery 1, and the cooling air of the connecting duct 9 is supplied via the heat insulating gap 17. The secondary battery 1 can be cooled. Thereby, the heat insulation layer is intentionally formed on the side close to the inflow side of the cooling air to suppress the cooling capacity of the secondary battery 1, so that the whole temperature can be equalized.

本発明の組電池は、二次電池1を、両端部が分離された一対の熱伝導筒4に挿入して、一対の熱伝導筒4の間に放熱領域5を設けることができる。   In the assembled battery of the present invention, the secondary battery 1 can be inserted into a pair of heat conduction cylinders 4 separated at both ends, and a heat dissipation region 5 can be provided between the pair of heat conduction cylinders 4.

本発明の組電池は、二次電池1をリチウムイオン二次電池とすることができる。本発明の組電池は、発熱の大きいリチウムイオン二次電池を効果的に保護、放熱を図ることができる。   In the assembled battery of the present invention, the secondary battery 1 can be a lithium ion secondary battery. The assembled battery of the present invention can effectively protect and dissipate heat from a lithium ion secondary battery that generates a large amount of heat.

本発明の組電池は、熱伝導筒で隣接する二次電池間を断熱して熱暴走の伝搬を阻止する一方、二次電池の一部を冷却風ダクトに露出させるように放熱領域を設けているので、発生した熱を効果的に放熱して、電池の冷却を図って信頼性高く使用できる。また露出面積を変化させることで各二次電池の温度を均一に冷却することができる。   The assembled battery of the present invention is provided with a heat dissipation area so as to prevent the propagation of thermal runaway by insulating between adjacent secondary batteries with a heat conduction cylinder, while exposing a part of the secondary battery to the cooling air duct. Therefore, the generated heat can be effectively dissipated to cool the battery and can be used with high reliability. Moreover, the temperature of each secondary battery can be cooled uniformly by changing the exposed area.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための組電池を例示するものであって、本発明は組電池を以下のものに特定しない。また特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies an assembled battery for embodying the technical idea of the present invention, and the present invention does not specify the assembled battery as follows. Moreover, the member shown by the claim is not what specifies the member of embodiment. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.

図1に示す組電池は、複数の二次電池1を平行な姿勢で隣接して外装ケース2に収納している。この図の組電池は、8本の二次電池1を収納している。本発明の組電池は、外装ケースに収納する二次電池の個数を8個には特定しない。たとえば、ハイブリッドカーの電源に使用される組電池は、100個以上の二次電池を内蔵する。   In the assembled battery shown in FIG. 1, a plurality of secondary batteries 1 are accommodated in an exterior case 2 adjacent to each other in a parallel posture. The assembled battery in this figure houses eight secondary batteries 1. The assembled battery of the present invention does not specify the number of secondary batteries housed in the outer case as eight. For example, an assembled battery used for a power source of a hybrid car incorporates 100 or more secondary batteries.

組電池は、二次電池1を効率よく冷却することに加えて、内部ショート等で二次電池1の温度が急激に上昇して熱暴走するのを防止し、あるいは最悪の場合に、いずれかの二次電池1が熱暴走を起こしても、熱暴走した二次電池1の発熱で隣の二次電池1が熱暴走するのを防止するために独特の構成を備えている。このことを実現するために、組電池は、隣接する二次電池1間の熱移動を特定の状態に制御する構造としている。すなわち、組電池は、図2の概念図に示すように、発熱する発熱二次電池1Aの熱が輻射熱で隣の二次電池1Bに移動するのを熱暴走防止壁3で遮断し、さらに、この熱暴走防止壁3でもって、特定の伝熱状態にコントロールして、熱伝導によって隣の二次電池1Bに熱を移動させる。   In addition to efficiently cooling the secondary battery 1, the assembled battery prevents either the temperature of the secondary battery 1 from abruptly rising due to an internal short circuit or the like, or thermal runaway, or in the worst case. Even if the secondary battery 1 causes a thermal runaway, a unique configuration is provided to prevent the adjacent secondary battery 1 from being thermally runaway due to heat generated by the secondary battery 1 that has undergone thermal runaway. In order to achieve this, the assembled battery has a structure that controls heat transfer between adjacent secondary batteries 1 to a specific state. That is, as shown in the conceptual diagram of FIG. 2, the assembled battery blocks the heat of the exothermic secondary battery 1 </ b> A moving to the adjacent secondary battery 1 </ b> B by radiant heat by the thermal runaway prevention wall 3, With this thermal runaway prevention wall 3, the heat is transferred to the adjacent secondary battery 1 </ b> B by heat conduction by controlling to a specific heat transfer state.

発熱する二次電池からの熱伝導量は、多すぎても少なすぎても二次電池の熱暴走を防止できない。図3は、二次電池間の熱伝導量の多い組電池において、内部ショートして熱暴走する発熱二次電池と、その隣の二次電池の温度上昇特性を示すグラフである。この組電池は、隣接する二次電池の表面を直接に接触させて、熱暴走する発熱二次電池の熱を、輻射熱と熱伝導の両方で隣の二次電池に移動させる。この図は内部ショートで熱暴走する発熱二次電池の温度上昇を曲線Aで示し、その隣の二次電池の温度上昇を曲線Bで示している。この組電池は、熱暴走する発熱二次電池の温度が、30秒後に約300℃まで上昇し、隣の二次電池は約70秒後に熱暴走が誘発されて温度が急激に上昇し、100秒後には、熱暴走が誘発された二次電池の温度は500℃にも上昇する。この組電池は、いずれかの二次電池が熱暴走すると、隣の二次電池も熱暴走が誘発されるので、複数の二次電池を内蔵する組電池においては、ひとつの二次電池の熱暴走が全ての二次電池を熱暴走させる。   If the amount of heat conduction from the secondary battery that generates heat is too large or too small, thermal runaway of the secondary battery cannot be prevented. FIG. 3 is a graph showing the temperature rise characteristics of a heat generating secondary battery in which an internal short circuit causes a thermal runaway and a secondary battery adjacent thereto in an assembled battery having a large amount of heat conduction between secondary batteries. In this assembled battery, the surface of an adjacent secondary battery is brought into direct contact, and the heat of the heat-generating secondary battery that is thermally runaway is transferred to the adjacent secondary battery by both radiant heat and heat conduction. In this figure, a temperature rise of a heat generating secondary battery that is thermally runaway due to an internal short circuit is shown by a curve A, and a temperature rise of the adjacent secondary battery is shown by a curve B. In this assembled battery, the temperature of the exothermic secondary battery that causes thermal runaway rises to about 300 ° C. after 30 seconds, and the adjacent secondary battery induces thermal runaway after about 70 seconds, causing the temperature to rise rapidly. After a second, the temperature of the secondary battery in which the thermal runaway is induced rises to 500 ° C. In this assembled battery, if one of the secondary batteries is thermally runaway, the neighboring secondary battery is also triggered by thermal runaway. Therefore, in the assembled battery containing a plurality of secondary batteries, the heat of one secondary battery is Runaway causes all secondary batteries to run away.

さらに、図4は、二次電池間の熱伝導量の少ない組電池において、内部ショートして熱暴走する発熱二次電池と、その隣の二次電池の温度上昇特性を示すグラフである。この組電池は、隣接する二次電池を1mm離して、熱暴走する二次電池の熱を、熱伝導では移動させず、輻射熱のみで隣の二次電池に移動させる。この図は内部ショートで熱暴走する二次電池の温度上昇を曲線Aで示し、その隣の二次電池の温度上昇を曲線Bで示している。この組電池は、熱暴走する二次電池の熱移動が少ないので、30秒後の温度が約400℃と極めて高くなり、さらに、高温の二次電池の熱が輻射熱で隣の二次電池に移動して、隣の二次電池は約150秒後に熱暴走が誘発されて温度が急激に上昇し、200秒後には熱暴走が誘発されて二次電池の温度は500℃を越えるまで上昇する。この組電池は、いずれかの二次電池が熱暴走すると、隣の二次電池も熱暴走が誘発されるので、複数の二次電池を内蔵する組電池においては、ひとつの二次電池の熱暴走が全ての二次電池を熱暴走させる。   Further, FIG. 4 is a graph showing the temperature rise characteristics of a heat generating secondary battery in which an internal short circuit causes a thermal runaway and an adjacent secondary battery in an assembled battery with a small amount of heat conduction between the secondary batteries. In this assembled battery, adjacent secondary batteries are separated by 1 mm, and the heat of a secondary battery that is thermally runaway is not transferred by heat conduction, but is transferred to the adjacent secondary battery only by radiant heat. In this figure, the temperature rise of a secondary battery that is thermally runaway due to an internal short is indicated by a curve A, and the temperature rise of a secondary battery adjacent thereto is indicated by a curve B. In this assembled battery, since the heat transfer of the secondary battery that runs out of heat is small, the temperature after 30 seconds becomes extremely high at about 400 ° C. Furthermore, the heat of the high-temperature secondary battery is radiated heat to the adjacent secondary battery. The temperature of the adjacent secondary battery is rapidly increased after about 150 seconds, and the temperature rapidly increases. After 200 seconds, the temperature of the secondary battery is increased to over 500 ° C. . In this assembled battery, if one of the secondary batteries is thermally runaway, the neighboring secondary battery is also triggered by thermal runaway. Therefore, in the assembled battery containing a plurality of secondary batteries, the heat of one secondary battery is Runaway causes all secondary batteries to run away.

図5は、二次電池間の熱伝導を特定の状態に制御する組電池において、内部ショートして熱暴走する発熱二次電池と、その隣の二次電池の温度上昇特性を示すグラフである。この組電池は、二次電池の間に厚さ1mm、熱伝導率を0.2W/m・Kとする熱暴走防止壁を設けている。熱暴走防止壁を一体的に成形して設けている熱伝導筒は、上半分であって、二次電池全長の1/2の領域に放熱領域を開口している。二次電池の間に設けている熱暴走防止壁は、発熱二次電池の熱が輻射熱で隣の二次電池に移動するのを遮断し、熱伝導で隣の二次電池に特定の熱伝導量の熱を移動させる。熱伝導筒の一部に開口される放熱領域は、発熱二次電池の輻射熱を外部に照射する。この輻射熱は、発熱二次電池を冷却する。図5は、内部ショートで熱暴走する発熱二次電池の温度上昇を曲線Aで示し、その隣の二次電池の温度上昇を曲線Bで示している。この組電池は、熱暴走する発熱二次電池の熱が熱伝導で熱暴走防止壁に移動されるので、熱暴走する発熱二次電池の温度上昇が緩やかになって、温度が400℃まで上昇する時間が約80秒近くまで延長され、さらに、隣の二次電池1の熱暴走を確実に阻止できる優れた特徴が実現される。すなわち、いずれかの二次電池が熱暴走しても、隣の二次電池の熱暴走は誘発されない。したがって、いずれかの二次電池が熱暴走しても、その二次電池のみの熱暴走に終らせることができる。   FIG. 5 is a graph showing a temperature rise characteristic of a heat generating secondary battery in which an internal short circuit causes a thermal runaway and a secondary battery adjacent thereto in an assembled battery that controls heat conduction between the secondary batteries to a specific state. . In this assembled battery, a thermal runaway prevention wall having a thickness of 1 mm and a thermal conductivity of 0.2 W / m · K is provided between the secondary batteries. The heat conduction cylinder in which the thermal runaway prevention wall is integrally formed is provided in the upper half, and a heat dissipation area is opened in an area that is ½ of the total length of the secondary battery. The thermal runaway prevention wall provided between the secondary batteries blocks the heat of the exothermic secondary battery from being transferred to the adjacent secondary battery by radiant heat, and the specific heat conduction to the adjacent secondary battery by heat conduction. Move the amount of heat. The heat radiation area opened in a part of the heat conduction cylinder radiates the radiant heat of the heat generating secondary battery to the outside. This radiant heat cools the heat generating secondary battery. FIG. 5 shows the temperature rise of the exothermic secondary battery that is thermally runaway due to an internal short as a curve A, and the temperature rise of the adjacent secondary battery is shown as a curve B. In this assembled battery, the heat of the heat-generating secondary battery that runs out of heat is transferred to the thermal runaway prevention wall by heat conduction, so the temperature rise of the heat-generating secondary battery that runs out of heat becomes moderate and the temperature rises to 400 ° C The operation time is extended to about 80 seconds, and an excellent feature that can reliably prevent thermal runaway of the adjacent secondary battery 1 is realized. That is, even if one of the secondary batteries has a thermal runaway, the thermal runaway of the adjacent secondary battery is not induced. Therefore, even if any secondary battery runs out of heat, it is possible to end up with thermal runaway of only the secondary battery.

図5は、組電池の冷却風ダクトに強制的に送風して冷却しない状態で、発熱二次電池と隣の二次電池の温度を示している。この構造の組電池は、熱伝導筒に強制冷却することで、発熱二次電池と隣の二次電池の温度上昇をさらに少なくできる。また、図5の温度カーブは、熱伝導筒の上半分であって、全長の1/2に放熱領域を設けている組電池における、発熱二次電池と隣の二次電池の温度変化を示しているが、本発明の組電池は、隣接する二次電池の間に熱暴走防止壁を設けて、熱伝導筒にさらに大きな放熱領域を開口して、たとえば、二次電池の全表面積の1/2以上の放熱領域を開口して、隣の二次電池の熱暴走を防止できる。さらに、放熱領域の開口部分を、隣接する二次電池の最接近部分から離して設けることにより、二次電池全表面積の1/2以下に開口して、熱暴走を防止することもできる。とくに、本発明の組電池は、冷却風ダクトに強制送風して、放熱領域から冷却風ダクトに表出している二次電池表面を効果的に冷却できる。強制冷却する状態にあっては、放熱領域を大きくして、二次電池を効果的に冷却できる。このため、熱伝導筒に強制送風する状態においては、隣接する二次電池の間に熱暴走防止壁を設けて熱移動をコントロールするかぎり、放熱領域をさらに大きく開口して、二次電池の熱暴走を有効に防止できる。また、熱暴走防止壁は、必ずしも隣接する二次電池が最接近する部分の全体に設ける必要はなく、たとえば、隣接する二次電池が最接近する部分の50%以上、好ましくは60%以上、さらに好ましくは70%以上に設けられる。   FIG. 5 shows the temperatures of the heat generating secondary battery and the adjacent secondary battery in a state where the cooling air duct of the assembled battery is forced to blow and not cooled. The assembled battery having this structure can be further cooled to the heat conducting cylinder to further reduce the temperature rise of the heat generating secondary battery and the adjacent secondary battery. Moreover, the temperature curve of FIG. 5 shows the temperature change of the heat generating secondary battery and the adjacent secondary battery in the assembled battery in which the heat conduction cylinder is provided in the upper half of the heat conduction cylinder and the heat dissipation area is provided in half of the total length. However, in the assembled battery of the present invention, a thermal runaway prevention wall is provided between adjacent secondary batteries, and a larger heat radiating region is opened in the heat conduction cylinder. / 2 or more heat dissipation area can be opened to prevent thermal runaway of the adjacent secondary battery. Furthermore, by providing the opening part of the heat dissipation area away from the closest part of the adjacent secondary battery, it can be opened to ½ or less of the total surface area of the secondary battery to prevent thermal runaway. In particular, the assembled battery of the present invention can effectively cool the secondary battery surface exposed to the cooling air duct from the heat radiation area by forcibly blowing air to the cooling air duct. In the forced cooling state, the secondary battery can be effectively cooled by enlarging the heat dissipation area. For this reason, in the state where forced air is blown to the heat conducting cylinder, as long as a thermal runaway prevention wall is provided between adjacent secondary batteries to control heat transfer, the heat dissipation area is further opened to increase the heat of the secondary battery. Runaway can be effectively prevented. In addition, the thermal runaway prevention wall is not necessarily provided in the entire portion where the adjacent secondary battery is closest, for example, 50% or more, preferably 60% or more of the portion where the adjacent secondary battery is closest. More preferably, it is provided at 70% or more.

図6は、放熱領域を設けない熱伝導筒に二次電池を挿通している組電池であって、内部ショートして熱暴走する発熱二次電池と、その隣の二次電池の温度上昇特性を示すグラフである。この組電池は、二次電池の間に厚さ1mm、熱伝導率を0.2W/m・Kとする熱暴走防止壁を設けている。熱暴走防止壁を一体的に成形して設けている熱伝導筒には放熱領域を開口しない。この組電池は、二次電池の間に設けている熱暴走防止壁で、発熱二次電池の熱が輻射熱で隣の二次電池に移動するのを遮断して、熱伝導で隣の二次電池に特定の熱伝導量の熱を移動させる。この図は、内部ショートで熱暴走する発熱二次電池の温度上昇を曲線Aで示し、その隣の二次電池の温度上昇を曲線Bで示している。この組電池は、熱暴走する発熱二次電池の熱が輻射熱で隣の二次電池に伝達されず、熱暴走防止壁を介する熱伝導のみで隣の二次電池に移動される。このため、熱暴走する発熱二次電池の温度上昇は、図5に示す放熱領域を設けた組電池よりも緩やかになって、温度が400℃まで上昇する時間は100秒近くまで延長される。この組電池も、隣の二次電池の熱暴走を確実に阻止できる優れた特徴が実現される。したがって、この構造の組電池も、いずれかの二次電池が熱暴走しても、隣の二次電池の熱暴走は誘発されない。したがって、熱伝導筒に放熱領域を設けない組電池は、いずれかの二次電池が熱暴走しても、その二次電池のみの熱暴走に終らせることができる。このことから、放熱領域を小さくしても組電池は熱暴走することがない。   FIG. 6 shows an assembled battery in which a secondary battery is inserted in a heat conducting cylinder not provided with a heat dissipation region, and a temperature rise characteristic of a heat generating secondary battery that is short-circuited internally and runs out of heat, and a secondary battery adjacent thereto. It is a graph which shows. In this assembled battery, a thermal runaway prevention wall having a thickness of 1 mm and a thermal conductivity of 0.2 W / m · K is provided between the secondary batteries. A heat-dissipating region is not opened in the heat conduction cylinder in which the thermal runaway prevention wall is integrally formed. This assembled battery is a thermal runaway prevention wall provided between the secondary batteries, blocking the heat of the exothermic secondary battery from being transferred to the adjacent secondary battery by radiant heat, and the adjacent secondary battery by heat conduction. A specific amount of heat is transferred to the battery. In this figure, the temperature rise of the exothermic secondary battery that is thermally runaway due to an internal short is indicated by a curve A, and the temperature rise of the adjacent secondary battery is indicated by a curve B. In this assembled battery, the heat of the exothermic secondary battery that causes thermal runaway is not transferred to the adjacent secondary battery by radiant heat, but is transferred to the adjacent secondary battery only by heat conduction through the thermal runaway prevention wall. For this reason, the temperature rise of the exothermic secondary battery that is thermally runaway becomes more gradual than that of the assembled battery provided with the heat dissipation region shown in FIG. 5, and the time for the temperature to rise to 400 ° C. is extended to nearly 100 seconds. This assembled battery also realizes an excellent feature that can reliably prevent thermal runaway of the adjacent secondary battery. Therefore, in the assembled battery having this structure, even if any secondary battery is thermally runaway, the thermal runaway of the adjacent secondary battery is not induced. Therefore, the assembled battery in which no heat dissipation area is provided in the heat conducting cylinder can be terminated only by the secondary battery even if any of the secondary batteries is thermally runaway. For this reason, the assembled battery does not run out of heat even if the heat dissipation area is reduced.

熱暴走した発熱二次電池が隣の二次電池の熱暴走を誘発しないように、図1の組電池は、隣接する二次電池1の間に熱暴走防止壁3を設けている。熱暴走防止壁3は、プラスチック製の熱伝導筒4に一体的に成形されて、熱伝導筒4の一部を構成している。熱伝導筒4は、内面の形状を二次電池1の外形にほぼ等しい筒状として、二次電池1を挿入している。さらに、熱伝導筒4は、二次電池1の熱を熱伝導によって熱暴走防止壁3に移動できるように、熱伝導筒4の内面と二次電池1の外面とのクリアランスを0.5mm以下として、二次電池1の表面を熱暴走防止壁3の内面に面接触状態で接触させている。ただし、熱伝導筒は、部分的に二次電池の表面に接触しない非接触部分を設けて、二次電池と熱伝導筒との間に空気層による断熱空隙17を設けることができる。断熱空隙17は、二次電池が他の部分よりも過冷却される部分に設けられて、二次電池の温度を均一化する。   The assembled battery in FIG. 1 is provided with a thermal runaway prevention wall 3 between the adjacent secondary batteries 1 so that the exothermic secondary battery that has run out of heat does not induce thermal runaway of the adjacent secondary battery. The thermal runaway prevention wall 3 is formed integrally with a plastic heat conduction cylinder 4 and constitutes a part of the heat conduction cylinder 4. The heat conduction cylinder 4 is inserted into the secondary battery 1 with the inner surface having a cylindrical shape substantially equal to the outer shape of the secondary battery 1. Furthermore, the heat conduction tube 4 has a clearance of 0.5 mm or less between the inner surface of the heat conduction tube 4 and the outer surface of the secondary battery 1 so that the heat of the secondary battery 1 can be transferred to the thermal runaway prevention wall 3 by heat conduction. The surface of the secondary battery 1 is brought into contact with the inner surface of the thermal runaway prevention wall 3 in a surface contact state. However, the heat conduction cylinder can be provided with a non-contact portion that does not partially contact the surface of the secondary battery, and the heat insulating gap 17 by the air layer can be provided between the secondary battery and the heat conduction cylinder. The heat insulating gap 17 is provided in a portion where the secondary battery is subcooled more than other portions, and makes the temperature of the secondary battery uniform.

さらに、熱暴走防止壁3が熱伝導する熱量をコントロールするために、熱暴走防止壁3は、熱伝導率を0.05W/m・K以上であって、3W/m・K以下とするプラスチックで成形している。熱暴走防止壁3と熱伝導筒4を成形するプラスチックは、プラスチックの種類と充填材でコントロールできる。充填材に熱伝導に優れた粉末、たとえば金属粉末を充填して、熱伝導率を大きくできる。熱暴走防止壁の熱伝導率が0.05W/m・Kよりも小さいと、熱暴走防止壁の熱伝導量が少なくなって、熱暴走する発熱二次電池の温度上昇が急峻で最高温度も高くなる。このため、発熱二次電池が熱暴走する時間が短く、また熱暴走して高温になった発熱二次電池が隣の二次電池を加熱して熱暴走を誘発する。反対に、熱暴走防止壁の熱伝導率が3W/m・Kよりも大きいと、熱暴走した発熱二次電池から隣の二次電池に伝導される熱量が大きく、熱暴走した発熱二次電池が隣の二次電池を熱暴走させる。熱伝導率を0.05W/m・K以上であって、3W/m・K以下とする熱暴走防止壁3は、熱暴走して発熱する発熱二次電池1Aから伝導される伝導熱量が最適範囲となり、発熱二次電池1Aを熱伝導で放熱して温度上昇を制限し、さらに、隣の二次電池1Bへの伝導熱量も制限して、隣接する隣の二次電池1Bの熱暴走を有効に防止する。   Furthermore, in order to control the amount of heat conducted by the thermal runaway prevention wall 3, the thermal runaway prevention wall 3 is a plastic having a thermal conductivity of 0.05 W / m · K or more and 3 W / m · K or less. Molded with. The plastic that forms the thermal runaway prevention wall 3 and the heat conducting cylinder 4 can be controlled by the type of plastic and the filler. The filler can be filled with a powder excellent in heat conduction, such as metal powder, to increase the heat conductivity. If the thermal conductivity of the thermal runaway prevention wall is less than 0.05 W / m · K, the thermal conductivity of the thermal runaway prevention wall will be reduced, and the temperature rise of the exothermic rechargeable battery will be steep and the maximum temperature will also be Get higher. For this reason, the time during which the exothermic secondary battery runs out of heat is short, and the exothermic secondary battery that has become hot due to thermal runaway heats the adjacent secondary battery to induce thermal runaway. Conversely, if the thermal conductivity of the thermal runaway prevention wall is greater than 3 W / m · K, the amount of heat conducted from the thermal runaway secondary battery to the adjacent secondary battery is large, and the thermal runaway secondary battery Makes the next secondary battery run out of heat. The thermal runaway prevention wall 3 having a thermal conductivity of 0.05 W / m · K or more and 3 W / m · K or less is optimal in the amount of heat conducted from the heat generating secondary battery 1A that generates heat due to thermal runaway. The heat generation secondary battery 1A is dissipated by heat conduction to limit the temperature rise, and the amount of conduction heat to the adjacent secondary battery 1B is also limited, so that the adjacent secondary battery 1B can run out of heat. Effectively prevent.

さらに、熱暴走防止壁3は、熱伝導率に加えて、厚さを0.5mm以上であって3mm以下の限られた範囲とする必要がある。二次電池間の熱暴走防止壁が0.5mmよりも薄いと、熱暴走する発熱二次電池から隣の二次電池への熱伝導量が大きくなって、熱暴走した発熱二次電池が隣の二次電池を過熱して熱暴走させる。反対に熱暴走防止壁が3mmよりも厚いと、熱暴走する発熱二次電池から隣の二次電池への熱伝導量が少なすぎて、熱暴走する発熱二次電池の温度が異常に高くなり、加熱された発熱二次電池が隣の二次電池を加熱して熱暴走を誘発する。   Furthermore, in addition to the thermal conductivity, the thermal runaway prevention wall 3 needs to have a thickness within a limited range of 0.5 mm or more and 3 mm or less. If the thermal runaway prevention wall between the secondary batteries is thinner than 0.5mm, the heat conduction from the exothermic secondary battery that causes thermal runaway to the adjacent secondary battery increases, and the exothermic secondary battery that causes thermal runaway is adjacent. The rechargeable battery is overheated and run out of heat. On the other hand, if the thermal runaway prevention wall is thicker than 3 mm, the heat conduction from the heat-generating secondary battery that runs out of heat to the adjacent secondary battery is too small, and the temperature of the heat-running secondary battery that runs out of heat becomes abnormally high. The heated secondary battery heats the adjacent secondary battery to induce thermal runaway.

本発明の組電池は、発熱二次電池の熱移動を特定の状態にコントロールして、二次電池の熱暴走を制御する。二次電池は熱暴走で発熱して過熱されるが、二次電池はいつまでも発熱するのではない。二次電池の発熱量は、二次電池の容量で特定される。したがって、二次電池が発熱する状態で、熱の移動を特定の状態に制御して、熱暴走の誘発を防止する。熱暴走して発熱する二次電池は、放熱量を大きくして温度上昇を少なくできる。ただ、この状態は、放熱される熱が隣の二次電池を過熱して熱暴走を誘発する原因となる。反対に熱暴走する発熱二次電池の放熱量を少なくすると、放熱で隣の二次電池の熱暴走は誘発されないが、放熱されない発熱二次電池の温度が異常に上昇し、過熱された発熱二次電池が隣の二次電池の熱暴走を誘発する原因となる。ところが、熱暴走する発熱二次電池の放熱量を特定の状態にコントロールすると、熱暴走して温度が上昇する発熱二次電池の放熱で隣の二次電池が熱暴走されず、また、特定の放熱量によって熱暴走する発熱二次電池の温度上昇が制限されて最高温度が低くなる。このため、熱暴走する発熱二次電池が過熱されて隣の二次電池を熱暴走させることもない。熱暴走する発熱二次電池は、発生熱で時間とともに温度が上昇するが、放電量をコントロールして温度上昇を制限すると、一定時間経過すると発熱量が減少して温度は上昇しなくなる。したがって、熱暴走する発熱二次電池の放熱を特定の範囲にコントロールすることで、熱暴走する発熱二次電池が隣の二次電池を過熱する熱量を制限し、また最高温度も制限して、隣の二次電池の熱暴走を巧妙に阻止することができる。   The assembled battery of the present invention controls thermal runaway of the secondary battery by controlling the heat transfer of the exothermic secondary battery to a specific state. Secondary batteries generate heat due to thermal runaway and are overheated, but secondary batteries do not generate heat indefinitely. The calorific value of the secondary battery is specified by the capacity of the secondary battery. Therefore, in a state where the secondary battery generates heat, the heat transfer is controlled to a specific state to prevent thermal runaway. A secondary battery that generates heat due to thermal runaway can increase heat dissipation and reduce temperature rise. However, this state causes the heat dissipated to overheat the adjacent secondary battery and induce thermal runaway. On the other hand, if the heat dissipation of a heat-generating secondary battery that runs out of heat is reduced, heat runaway of the adjacent secondary battery is not induced by heat dissipation, but the temperature of the heat-generating secondary battery that does not release heat rises abnormally, causing overheating. The secondary battery causes thermal runaway of the adjacent secondary battery. However, if the heat dissipation of a heat-generating secondary battery that causes thermal runaway is controlled to a specific state, the adjacent secondary battery does not run out of heat due to heat dissipation from the heat-generating secondary battery that rises in temperature due to thermal runaway. The maximum temperature is lowered by limiting the temperature rise of the heat generating secondary battery that is thermally runaway depending on the amount of heat released. For this reason, the exothermic secondary battery that undergoes thermal runaway is not overheated, and the adjacent secondary battery does not run thermal runaway. Although the temperature of a heat generating secondary battery that runs out of heat increases with time due to generated heat, if the temperature rise is limited by controlling the amount of discharge, the amount of heat generation decreases and the temperature does not rise after a certain period of time. Therefore, by controlling the heat dissipation of the heat generating secondary battery that runs out of heat to a specific range, the heat generating secondary battery that runs out of heat limits the amount of heat that overheats the adjacent secondary battery, and also limits the maximum temperature, It can cleverly prevent thermal runaway of the adjacent secondary battery.

図1の組電池は、二次電池1の間に設けている熱暴走防止壁3が、発熱する発熱二次電池1Aの輻射熱を遮断する。熱暴走防止壁3は、隣接する二次電池1に接触して、発熱二次電池1Aの熱を隣の二次電池1Bに熱伝導させて、発熱二次電池1Aを放熱する。熱伝導筒4の一部に設けた放熱領域5は、発熱二次電池1Aの熱を輻射熱で放熱して冷却し、放熱領域5から放射される輻射熱の一部で隣の二次電池1Bを加熱する。発熱二次電池1Aは、熱暴走防止壁3による熱伝導と、放熱領域5による輻射熱で冷却して、異常な温度上昇を制限し、また、発熱二次電池1Aの隣の二次電池1Bは、熱伝導と輻射熱で発熱二次電池1Aからの熱移動を制限して、熱暴走が防止される。   In the assembled battery of FIG. 1, a thermal runaway prevention wall 3 provided between the secondary batteries 1 blocks the radiant heat of the heat generating secondary battery 1A that generates heat. The thermal runaway prevention wall 3 is in contact with the adjacent secondary battery 1 and conducts heat of the heat generating secondary battery 1A to the adjacent secondary battery 1B to dissipate the heat generating secondary battery 1A. The heat radiation area 5 provided in a part of the heat conduction cylinder 4 dissipates and cools the heat of the heat generating secondary battery 1A by radiant heat, and the adjacent secondary battery 1B is separated by a part of the radiant heat radiated from the heat radiation area 5. Heat. The exothermic secondary battery 1A is cooled by heat conduction by the thermal runaway prevention wall 3 and the radiant heat by the heat radiation area 5 to limit abnormal temperature rise, and the secondary battery 1B adjacent to the exothermic secondary battery 1A is The heat transfer from the heat generating secondary battery 1A is limited by heat conduction and radiant heat, and thermal runaway is prevented.

組電池の二次電池1は、リチウムイオン二次電池である。リチウムイオン二次電池は、非水系電解液を使用する。熱暴走してこの電解液が噴出されると、危険な状態となる。このため、リチウムイオン二次電池の組電池は、熱暴走をいかにして効果的に阻止できるかが大切であるから、本発明の組電池は、独特の構成で熱暴走を防止するので、リチウムイオン二次電池に適している。   The secondary battery 1 of the assembled battery is a lithium ion secondary battery. A lithium ion secondary battery uses a non-aqueous electrolyte. If this electrolyte is ejected due to thermal runaway, a dangerous state is reached. For this reason, since it is important for the battery pack of a lithium ion secondary battery to effectively prevent thermal runaway, the battery pack of the present invention prevents thermal runaway with a unique configuration. Suitable for ion secondary battery.

熱伝導筒4は、二次電池1を挿入する円筒状に成形される。熱伝導筒4は、二次電池1の表面の一部を冷却風ダクト6に表出させる放熱領域5を一部に開口している。図1の熱伝導筒4は、上段に配列される二次電池1を挿入する熱伝導筒4は上半分に、下段に配列される二次電池1を挿入する熱伝導筒4は下半分に放熱領域5を開口している。   The heat conducting cylinder 4 is formed into a cylindrical shape into which the secondary battery 1 is inserted. The heat conducting cylinder 4 has a part of the heat dissipation area 5 that exposes a part of the surface of the secondary battery 1 to the cooling air duct 6. In the heat conduction cylinder 4 of FIG. 1, the heat conduction cylinder 4 for inserting the secondary battery 1 arranged in the upper stage is in the upper half, and the heat conduction cylinder 4 for inserting the secondary battery 1 arranged in the lower stage is in the lower half. The heat radiation area 5 is opened.

図の組電池は、二次電池1を円筒型電池とする。さらに、図1の組電池は、図において上段と下段に各々4本の二次電池1を隣接して平行に配設している。隣接する二次電池1の間には熱暴走防止壁3を設けて、この熱暴走防止壁3を二次電池1を挿入する熱伝導筒4に一体的に成形している。   In the illustrated assembled battery, the secondary battery 1 is a cylindrical battery. Further, the assembled battery of FIG. 1 has four secondary batteries 1 arranged adjacently in parallel in the upper and lower stages in the drawing. A thermal runaway prevention wall 3 is provided between adjacent secondary batteries 1, and the thermal runaway prevention wall 3 is integrally formed with a heat conduction cylinder 4 into which the secondary battery 1 is inserted.

ところで、本明細書において、二次電池1の間の熱暴走防止壁3の厚さとは、円筒型電池においては、もっとも接近する部分の厚さを意味するものとする。この部分の熱移動がもっとも大きく、二次電池1の熱暴走に影響を与えるからである。   By the way, in this specification, the thickness of the thermal runaway prevention wall 3 between the secondary batteries 1 means the thickness of the closest part in a cylindrical battery. This is because the heat transfer in this portion is the largest and affects the thermal runaway of the secondary battery 1.

さらに、熱暴走防止壁3は、二次電池1の表面の一部を熱伝導筒4に表出させる放熱領域5を設けている。   Further, the thermal runaway prevention wall 3 is provided with a heat dissipation region 5 that exposes a part of the surface of the secondary battery 1 to the heat conducting cylinder 4.

図7ないし図13に示す組電池は、複数の二次電池1を平行な姿勢として、上下2段に互いに隣接して配列して電池組立10としている。この電池組立10は、外装ケース2に収納される。これ等の図の組電池は、外装ケース2に収納する二次電池1を冷却するための冷却風ダクト6を設けている。   The assembled battery shown in FIGS. 7 to 13 is a battery assembly 10 in which a plurality of secondary batteries 1 are arranged in parallel and adjacent to each other in two upper and lower stages. The battery assembly 10 is housed in the outer case 2. The assembled battery in these drawings is provided with a cooling air duct 6 for cooling the secondary battery 1 housed in the outer case 2.

これ等の図の組電池は、隣接する二次電池1の間には、プラスチック製の熱暴走防止壁3を設けている。熱暴走防止壁3は、二次電池1を挿通する筒状に成形しているプラスチック製の熱伝導筒4に一体的に成形されて、熱暴走防止壁3を熱伝導筒4の一部としている。   In the assembled battery shown in these figures, a plastic thermal runaway prevention wall 3 is provided between adjacent secondary batteries 1. The thermal runaway prevention wall 3 is integrally formed with a plastic heat conduction cylinder 4 which is molded into a cylindrical shape through which the secondary battery 1 is inserted, and the thermal runaway prevention wall 3 is used as a part of the heat conduction cylinder 4. Yes.

さらに、熱伝導筒4は、挿通している二次電池1の表面の一部を冷却風ダクト6に表出させる放熱領域5を開口して、冷却風ダクト6に送風される冷却風でもって、放熱領域5に表出される二次電池1の一部を冷却する。   Further, the heat conducting cylinder 4 is provided with a cooling air blown to the cooling air duct 6 by opening a heat radiation area 5 for exposing a part of the surface of the inserted secondary battery 1 to the cooling air duct 6. Then, a part of the secondary battery 1 exposed in the heat radiation area 5 is cooled.

電池組立10は、二次電池1を定位置に配置するインナーケース8と、インナーケース8で上段と下段に配置している二次電池1に冷却風を分岐して送風する連結ダクト9と、インナーケースに上面に固定している基板ホルダー11と、基板ホルダー11に収納している回路基板12とを備える。   The battery assembly 10 includes an inner case 8 in which the secondary battery 1 is disposed at a fixed position, a connection duct 9 that branches and blows cooling air to the secondary battery 1 that is disposed in the upper and lower stages in the inner case 8, A substrate holder 11 fixed to the upper surface of the inner case and a circuit board 12 accommodated in the substrate holder 11 are provided.

インナーケース8は、二次電池1の端部を挿入して定位置に配置する。図のインナーケース8は、熱伝導筒4を軸方向の中間で2分割して、一対のケースユニット8Aに分割している。このケースユニット8Aは、分割された熱伝導筒4の端部にエンドプレート7を連結してなる形状にプラスチックで成形している。このインナーケース8は、熱伝導筒4の分割端である開口部から二次電池1を挿入し、一対のケースユニット8Aを互いに連結して、複数の二次電池1をインナーケース8に収納している。   The inner case 8 is disposed at a fixed position by inserting the end of the secondary battery 1. The illustrated inner case 8 is divided into a pair of case units 8A by dividing the heat conducting cylinder 4 into two in the middle in the axial direction. The case unit 8A is molded of plastic into a shape formed by connecting an end plate 7 to the end of the divided heat conducting cylinder 4. In the inner case 8, the secondary battery 1 is inserted from an opening that is a divided end of the heat conducting cylinder 4, and a pair of case units 8 </ b> A are connected to each other so that a plurality of secondary batteries 1 are accommodated in the inner case 8. ing.

中間で分割される熱伝導筒4は、分割端側からエンドプレート7側に向かって次第に内径が小さくなるテーパー状に内面を成形している。この熱伝導筒4は、エンドプレート7側の端部の内面に突出する部分を二次電池1の表面に面接触させる。この熱伝導筒4は、多少は外径に誤差のある二次電池1を挿入して、その表面に面接触できる。この熱伝導筒4も、内面と二次電池1との間の最小のクリアランスを0.5mm以下とする。このように、熱伝導筒4を分割する構造は、プラスチックを成形する金型の設計を簡単にして、プラスチック成形を容易にできる特長がある。   The heat conduction cylinder 4 divided in the middle has an inner surface formed in a taper shape in which the inner diameter gradually decreases from the divided end side toward the end plate 7 side. In the heat conducting cylinder 4, a portion protruding from the inner surface of the end portion on the end plate 7 side is brought into surface contact with the surface of the secondary battery 1. The heat conducting cylinder 4 can be brought into surface contact with the surface by inserting the secondary battery 1 having a somewhat outside diameter error. This heat conducting cylinder 4 also has a minimum clearance of 0.5 mm or less between the inner surface and the secondary battery 1. As described above, the structure in which the heat conducting cylinder 4 is divided has a feature that simplifies the design of a mold for molding plastic and facilitates plastic molding.

図の組電池は、熱伝導筒4を軸方向の中間で2分割しているが、熱伝導筒は、3つ以上に分割することもできる。熱伝導筒を3つ以上に分割するインナーケースは、図示しないが、両端の端部ケースユニットと、中間の中間ケースユニットとに分割して、これらのケースユニットを互いに連結して、複数の二次電池を内部に収納する。   In the assembled battery shown in the figure, the heat conducting cylinder 4 is divided into two in the middle in the axial direction, but the heat conducting cylinder can also be divided into three or more. Although not shown, the inner case that divides the heat conducting cylinder into three or more parts is divided into end case units at both ends and an intermediate middle case unit, and these case units are connected to each other to form a plurality of two cases. The secondary battery is stored inside.

複数に分割されたケースユニット8Aは、プラスチックで一体的に成形されたボス13にネジ(図示せず)をねじ込んで互いに連結される。ただ、ケースユニットは、係止構造で連結し、あるいは接着して連結し、あるいはまた、これらを組み合わせて連結することもできる。   The plurality of case units 8A are connected to each other by screwing screws (not shown) into bosses 13 formed integrally with plastic. However, the case units can be connected by a locking structure, or can be connected by bonding, or they can be connected in combination.

さらに、組電池は、図11と図12に示すように、隣接する二次電池1の間に熱暴走防止壁3を設けている。熱暴走防止壁3は、熱伝導筒4に一体的に成形されて、熱伝導筒4の一部を構成している。熱伝導筒4は、内面の形状を二次電池1の外形に等しい形状に成形している。熱伝導筒4は、二次電池1の熱を熱伝導によって熱暴走防止壁3に移動できるように、熱伝導筒4の内面と二次電池1の外面とのクリアランスを0.5mm以下として、二次電池1の表面を熱暴走防止壁3の内面に面接触状態で接触させている。さらに、熱暴走防止壁3は、熱伝導率を0.05W/m・K以上であって、3W/m・K以下とするプラスチックで成形している。さらに、熱暴走防止壁3は、熱伝導率に加えて、厚さを0.5mm以上であって3mm以下の限られた範囲としている。二次電池1の間に設けている熱暴走防止壁3は、発熱する発熱二次電池の輻射熱を遮断して、発熱二次電池の発熱を隣の二次電池に熱伝導させて発熱二次電池を放熱し、発熱二次電池の熱暴走が隣の二次電池に伝達されるのを防止する。   Furthermore, as shown in FIG. 11 and FIG. 12, the assembled battery is provided with a thermal runaway prevention wall 3 between adjacent secondary batteries 1. The thermal runaway prevention wall 3 is integrally formed with the heat conduction cylinder 4 and constitutes a part of the heat conduction cylinder 4. The heat conduction cylinder 4 is formed so that the shape of the inner surface is equal to the outer shape of the secondary battery 1. The heat conduction tube 4 has a clearance of 0.5 mm or less between the inner surface of the heat conduction tube 4 and the outer surface of the secondary battery 1 so that the heat of the secondary battery 1 can be moved to the thermal runaway prevention wall 3 by heat conduction. The surface of the secondary battery 1 is brought into contact with the inner surface of the thermal runaway prevention wall 3 in a surface contact state. Furthermore, the thermal runaway prevention wall 3 is formed of a plastic having a thermal conductivity of 0.05 W / m · K or more and 3 W / m · K or less. In addition to the thermal conductivity, the thermal runaway prevention wall 3 has a thickness in a limited range of 0.5 mm or more and 3 mm or less. The thermal runaway prevention wall 3 provided between the secondary batteries 1 blocks the radiant heat of the heat generating secondary battery, and conducts the heat generated by the heat generating secondary battery to the adjacent secondary battery to generate the secondary heat. The heat is dissipated from the battery to prevent the thermal runaway of the heat generating secondary battery from being transmitted to the adjacent secondary battery.

図8ないし図13に示す組電池は、熱伝導筒4の一部に放熱領域5を設けている。図の組電池は、上段の二次電池1を挿入する上段の熱伝導筒4の上部を開口し、下段の二次電池1を挿入する下段の熱伝導筒4は下部を開口して、放熱領域5を設けている。さらに、図の組電池は、上段の熱伝導筒4の放熱領域5の開口面積を、下段の熱伝導筒4の放熱領域5の開口面積よりも小さくしている。この組電池は、上段と下段の二次電池1を温度差が少なくなるように冷却できる。それは、冷却風ダクト6に送風される冷却風の温度が高くなる下段の熱伝導筒4の放熱領域5を大きくして、二次電池1を広い面積で強制冷却するからである。   The assembled battery shown in FIGS. 8 to 13 is provided with a heat dissipation region 5 in a part of the heat conducting cylinder 4. The assembled battery shown in the figure has an upper part of the upper heat conduction cylinder 4 into which the upper secondary battery 1 is inserted, and a lower heat conduction cylinder 4 into which the lower secondary battery 1 is inserted. Region 5 is provided. Further, in the battery pack shown in the figure, the opening area of the heat radiation area 5 of the upper heat conduction cylinder 4 is made smaller than the opening area of the heat radiation area 5 of the lower heat conduction cylinder 4. The assembled battery can cool the upper and lower secondary batteries 1 so that the temperature difference is reduced. This is because the secondary battery 1 is forcibly cooled over a wide area by enlarging the heat radiation area 5 of the lower heat conduction cylinder 4 where the temperature of the cooling air blown to the cooling air duct 6 is increased.

図の組電池は、上方から流入される冷却風を、上段と下段の二次電池1に分岐して送風する。下段の二次電池1に送風される冷却風は、上段の二次電池1の一部を冷却しての温度が高くなる。温度が高い冷却風で冷却される下段の二次電池1は、放熱領域5の開口面積を大きくして、より効率よく冷却される。上段の二次電池1は冷たい冷却風で冷却されるので、放熱領域5を下段よりも小さくして、効率よく冷却する。   The assembled battery shown in the figure branches the cooling air flowing from above into the secondary battery 1 at the upper and lower stages and blows it. The cooling air blown to the lower secondary battery 1 increases the temperature after cooling a part of the upper secondary battery 1. The lower secondary battery 1 cooled by the high-temperature cooling air is cooled more efficiently by increasing the opening area of the heat radiation region 5. Since the upper secondary battery 1 is cooled by the cold cooling air, the heat radiation area 5 is made smaller than the lower stage to cool efficiently.

さらに、図の組電池は、熱伝導筒4に設けている放熱領域5の開口面積を、冷却風の送風方向に向かって次第に大きくしている。この組電池は、冷却風でもって二次電池1をより均一な温度に冷却できる。それは、冷却風の温度が二次電池1を冷却するにしたがって上昇するからである。温度の高くなった冷却風で冷却される二次電池1は、より効率よく冷却するために放熱領域5を大きくしている。   Further, in the battery pack shown in the figure, the opening area of the heat radiation region 5 provided in the heat conducting cylinder 4 is gradually increased toward the cooling air blowing direction. This assembled battery can cool the secondary battery 1 to a more uniform temperature with cooling air. This is because the temperature of the cooling air rises as the secondary battery 1 is cooled. The secondary battery 1 that is cooled by the cooling air having a higher temperature has a larger heat dissipation area 5 in order to cool more efficiently.

図の組電池は、放熱領域5を熱伝導筒4の上半分に、または下半分に設けて、二次電池1の長さ方向の全長を変更して、放熱領域5の開口面積を調整している。放熱領域の開口面積は、長さと幅の両方で調整することもできる。   In the illustrated battery pack, the heat radiation area 5 is provided in the upper half or the lower half of the heat conduction cylinder 4, and the total length in the length direction of the secondary battery 1 is changed to adjust the opening area of the heat radiation area 5. ing. The opening area of the heat dissipation region can be adjusted by both length and width.

組電池は、上段と下段の熱伝導筒4の中央部に沿って冷却風を送風する冷却風ダクト6を設けている。図の組電池は、上段の熱伝導筒4の中央に設ける上段冷却風ダクト6Aを、絶縁プレート14である基板ホルダー11と、放熱領域5に表出される二次電池1と、熱伝導筒4とで囲まれる領域としている。すなわち、熱伝導筒4に挿入して隣接して並べている二次電池1の上面に、回路基板12を定位置に配置するための絶縁プレート14である基板ホルダー11を配設して、上段冷却風ダクト6Aを設けている。両端部を熱伝導筒4に挿入している二次電池1は、放熱領域5から上段冷却風ダクト6Aに表出されて、ここに送風される冷却風で冷却される。   The assembled battery is provided with a cooling air duct 6 that blows cooling air along the central portions of the upper and lower heat conducting tubes 4. The assembled battery shown in the figure includes an upper cooling air duct 6A provided at the center of the upper heat conduction cylinder 4, a substrate holder 11 as an insulating plate 14, a secondary battery 1 exposed in the heat radiation area 5, and a heat conduction cylinder 4. The area surrounded by. That is, a substrate holder 11 that is an insulating plate 14 for disposing the circuit board 12 at a fixed position is disposed on the upper surface of the secondary battery 1 that is inserted into the heat conducting cylinder 4 and arranged adjacent to each other. A wind duct 6A is provided. The secondary battery 1 having both end portions inserted into the heat conducting cylinder 4 is exposed from the heat radiation area 5 to the upper cooling air duct 6A and cooled by the cooling air blown here.

この構造の組電池は、上段冷却風ダクト6Aを設けるために専用の部材を使用する必要がなく、簡単な構造にできる。さらに、基板ホルダー11である絶縁プレート14は、図13に示すように、冷却風ダクト6の通路を大きくする溝状に成形することができる。この構造は冷却風ダクト6の断面積を大きくして、送風する冷却風の圧力損失を少なくして、冷却風をスムーズに送風して二次電池1を効率よく冷却できる。   The assembled battery having this structure does not require the use of a dedicated member for providing the upper cooling air duct 6A, and can have a simple structure. Further, as shown in FIG. 13, the insulating plate 14 that is the substrate holder 11 can be formed into a groove shape that enlarges the passage of the cooling air duct 6. This structure increases the cross-sectional area of the cooling air duct 6, reduces the pressure loss of the cooling air to be blown, and smoothly blows the cooling air to efficiently cool the secondary battery 1.

下段冷却風ダクト6Bの断面構造は、図13に示されている。この構造の組電池は、二次電池1と、熱伝導筒4と、外装ケース2で囲まれる領域を下段冷却風ダクト6Bとしている。両端部を熱伝導筒4に挿入している二次電池1は、放熱領域5から下段冷却風ダクト6Bに表出されて、ここに送風される冷却風で冷却される。   The cross-sectional structure of the lower cooling air duct 6B is shown in FIG. In the assembled battery having this structure, a region surrounded by the secondary battery 1, the heat conducting cylinder 4, and the outer case 2 is defined as a lower cooling air duct 6B. The secondary battery 1 having both end portions inserted into the heat conducting cylinder 4 is exposed from the heat radiation area 5 to the lower cooling air duct 6B and cooled by the cooling air blown here.

上段冷却風ダクト6Aと下段冷却風ダクト6Bは、連結ダクト9で連結して、冷却風の流入口15に連結される。連結ダクト9は、冷却風の漏れを防止するために、両側に二次電池1の凹凸に沿う側壁を設けている。連結ダクト9は上端を開口して、この開口部を、絶縁プレート14である基板ホルダー11に設けた供給ダクト16に連結している。供給ダクト16から送風される冷却風は、連結ダクト9を通過して下段冷却風ダクト6Bに送風される。   The upper cooling air duct 6 </ b> A and the lower cooling air duct 6 </ b> B are connected by a connecting duct 9 and connected to a cooling air inlet 15. In order to prevent cooling air from leaking, the connecting duct 9 is provided with side walls along the unevenness of the secondary battery 1 on both sides. The connection duct 9 has an upper end opened, and this opening is connected to a supply duct 16 provided in the substrate holder 11 which is an insulating plate 14. The cooling air blown from the supply duct 16 passes through the connecting duct 9 and is blown to the lower cooling air duct 6B.

連結ダクト9を通過する冷却風は温度が低く、二次電池1を効果的に冷却する。図12は、冷却ダクト6に送風される冷却風が二次電池1の局部を他の部分よりも過冷却するのを防止するために、熱伝導筒4の内面と二次電池1との間に断熱空隙17を設けている。断熱空隙17は、連結ダクト9を通過する冷却風で冷却される部分に設けている。この組電池は、連結ダクト9に送風される冷却風のよる二次電池1の冷却が断熱空隙17で制限されて、この部分の過冷却が防止される。   The cooling air passing through the connecting duct 9 has a low temperature and effectively cools the secondary battery 1. FIG. 12 is a plan view showing an arrangement between the inner surface of the heat conducting tube 4 and the secondary battery 1 in order to prevent the cooling air blown to the cooling duct 6 from overcooling the local part of the secondary battery 1 more than other parts. Is provided with a heat insulating gap 17. The heat insulating gap 17 is provided in a portion cooled by cooling air passing through the connecting duct 9. In this assembled battery, cooling of the secondary battery 1 by the cooling air blown to the connecting duct 9 is limited by the heat insulating gap 17, and overcooling of this portion is prevented.

基板ホルダー11はプラスチックを成形している絶縁プレート14で、回路基板12を収納する周壁のある箱形に成形している。この基板ホルダー11は、インナーケース8の上面に固定されて、回路基板12を所定の位置に配置する。また、基板ホルダーは、周壁の内側に樹脂を充填して、回路基板をポッテングして保護することもできる。   The substrate holder 11 is an insulating plate 14 formed of plastic, and is formed into a box shape with a peripheral wall for housing the circuit board 12. The substrate holder 11 is fixed to the upper surface of the inner case 8 and places the circuit board 12 at a predetermined position. Further, the substrate holder can be protected by filling the inside of the peripheral wall with resin and potting the circuit board.

回路基板12は、二次電池1の充放電をコントロールする回路を実装する。さらに図の回路基板12は、出力端子19や接続端子を固定している。回路基板12は、リード18を介して二次電池1に接続される。回路基板12は、実装する電圧検出回路で各々の二次電池1の電池電圧を検出して、二次電池1の充放電を制御する。回路基板12は、内蔵する二次電池1の出力用の出力端子19や、外部機器との接続端子を装備しており、回路基板12の上側に固定している。   The circuit board 12 is mounted with a circuit that controls charging / discharging of the secondary battery 1. Further, the circuit board 12 shown in the figure fixes the output terminal 19 and the connection terminal. The circuit board 12 is connected to the secondary battery 1 via the leads 18. The circuit board 12 detects the battery voltage of each secondary battery 1 by a voltage detection circuit to be mounted, and controls charging / discharging of the secondary battery 1. The circuit board 12 is equipped with an output terminal 19 for output of the built-in secondary battery 1 and a connection terminal with an external device, and is fixed to the upper side of the circuit board 12.

本発明の一実施例にかかる組電池の概略構成図である。It is a schematic block diagram of the assembled battery concerning one Example of this invention. 本発明の一実施例にかかる組電池の熱移動を示す概念図である。It is a conceptual diagram which shows the heat transfer of the assembled battery concerning one Example of this invention. 二次電池間の熱伝導量の多い組電池における発熱二次電池と隣の二次電池の温度上昇特性を示すグラフである。It is a graph which shows the temperature rise characteristic of the exothermic secondary battery and the adjacent secondary battery in an assembled battery with much heat conduction between secondary batteries. 二次電池間の熱伝導量の少ない組電池における発熱二次電池と隣の二次電池の温度上昇特性を示すグラフである。It is a graph which shows the temperature rise characteristic of the exothermic secondary battery and the adjacent secondary battery in an assembled battery with little heat conduction between secondary batteries. 熱伝導筒に放熱領域を設ける組電池における発熱二次電池と隣の二次電池の温度上昇特性を示すグラフである。It is a graph which shows the temperature rise characteristic of the exothermic secondary battery in the assembled battery which provides a thermal radiation area | region in a heat conductive cylinder, and an adjacent secondary battery. 熱伝導筒に放熱領域を設けない組電池における発熱二次電池と隣の二次電池の温度上昇特性を示すグラフである。It is a graph which shows the temperature rise characteristic of the exothermic secondary battery in the assembled battery which does not provide a thermal radiation area | region in a heat conductive cylinder, and an adjacent secondary battery. 本発明の一実施例にかかる組電池の電池組立を示す斜視図である。It is a perspective view which shows the battery assembly of the assembled battery concerning one Example of this invention. 図7に示す電池組立のホルダーケースを取り除いた状態を示す斜視図である。It is a perspective view which shows the state which removed the holder case of the battery assembly shown in FIG. 本発明の一実施例にかかる組電池の下側から見た断面斜視図である。It is the cross-sectional perspective view seen from the lower side of the assembled battery concerning one Example of this invention. 図8に示す電池組立を上下反転した状態を示す斜視図である。It is a perspective view which shows the state which turned the battery assembly shown in FIG. 8 upside down. 本発明の一実施例にかかる組電池の縦断面図であって冷却風ダクトに送風する状態を示す図である。It is a longitudinal cross-sectional view of the assembled battery concerning one Example of this invention, Comprising: It is a figure which shows the state which ventilates to a cooling wind duct. 本発明の一実施例にかかる組電池の縦断面図であって二次電池の端部における断面を示す図である。It is a longitudinal cross-sectional view of the assembled battery concerning one Example of this invention, Comprising: It is a figure which shows the cross section in the edge part of a secondary battery. 本発明の一実施例にかかる組電池の横断面図である。It is a cross-sectional view of an assembled battery according to an example of the present invention.

符号の説明Explanation of symbols

1…二次電池 1A…発熱二次電池
1B…隣の二次電池
2…外装ケース
3…熱暴走防止壁
4…熱伝導筒
5…放熱領域
6…冷却風ダクト 6A…上段冷却風ダクト
6B…下段冷却風ダクト
7…エンドプレート
8…インナーケース 8A…ケースユニット
9…連結ダクト
10…電池組立
11…基板ホルダー
12…回路基板
13…ボス
14…絶縁プレート
15…流入口
16…供給ダクト
17…断熱空隙
18…リード
19…出力端子
1 ... secondary battery 1A ... exothermic secondary battery
DESCRIPTION OF SYMBOLS 1B ... Secondary battery 2 ... Exterior case 3 ... Thermal runaway prevention wall 4 ... Thermal conduction cylinder 5 ... Radiation area 6 ... Cooling air duct 6A ... Upper cooling air duct
6B ... Lower cooling air duct 7 ... End plate 8 ... Inner case 8A ... Case unit 9 ... Connection duct 10 ... Battery assembly 11 ... Board holder 12 ... Circuit board 13 ... Boss 14 ... Insulating plate 15 ... Inlet 16 ... Supply duct 17 ... Adiabatic gap 18 ... Lead 19 ... Output terminal

Claims (13)

複数の二次電池(1)を平行な姿勢で隣接して外装ケース(2)に収納すると共に、二次電池(1)を冷却風で冷却する冷却風ダクト(6)を外装ケース(2)内に設けている組電池であって、
隣接する二次電池(1)の間に、プラスチック製の熱暴走防止壁(3)を設けると共に、この熱暴走防止壁(3)は、二次電池(1)を挿通する筒状に成形している熱伝導筒(4)に一体的に成形されて、熱暴走防止壁(3)を熱伝導筒(4)の一部としており、
熱伝導筒(4)は、挿通している二次電池(1)の表面の一部を冷却風ダクト(6)に表出させる放熱領域(5)を有し、冷却風ダクト(6)に送風される冷却風でもって、放熱領域(5)に表出される二次電池(1)の一部を冷却するようにしてなる組電池。
A plurality of secondary batteries (1) are stored in parallel in a parallel posture in the outer case (2), and a cooling air duct (6) for cooling the secondary battery (1) with cooling air is provided in the outer case (2). An assembled battery provided inside,
A plastic thermal runaway prevention wall (3) is provided between adjacent secondary batteries (1), and this thermal runaway prevention wall (3) is formed into a cylindrical shape through which the secondary battery (1) is inserted. The heat conduction tube (4) is integrally formed with the thermal runaway prevention wall (3) as a part of the heat conduction tube (4).
The heat conduction cylinder (4) has a heat radiation area (5) for exposing a part of the surface of the inserted secondary battery (1) to the cooling air duct (6), and the cooling air duct (6) An assembled battery configured to cool a part of the secondary battery (1) exposed to the heat dissipation area (5) with the cooling air blown.
前記熱伝導筒(4)に設けた放熱領域(5)の開口面積を、冷却風の送風方向に向かって次第に大きくしている請求項1に記載される組電池。   The assembled battery according to claim 1, wherein an opening area of a heat radiation region (5) provided in the heat conduction cylinder (4) is gradually increased in a cooling air blowing direction. 放熱領域(5)が、二次電池(1)の全表面積の1/2以下である請求項1に記載される組電池。   The assembled battery according to claim 1, wherein the heat radiation area (5) is ½ or less of the total surface area of the secondary battery (1). 熱伝導筒(4)の表面に絶縁プレート(14)を配設しており、絶縁プレート(14)と二次電池(1)と熱伝導筒(4)で囲まれる領域を冷却風ダクト(6)としている請求項1に記載される組電池。   An insulating plate (14) is disposed on the surface of the heat conducting cylinder (4), and the area surrounded by the insulating plate (14), the secondary battery (1), and the heat conducting cylinder (4) is disposed in the cooling air duct (6 The assembled battery according to claim 1, wherein 絶縁プレート(14)が、冷却風ダクト(6)を通路を大きくする溝状に成形している請求項4に記載される組電池。   The assembled battery according to claim 4, wherein the insulating plate (14) forms the cooling air duct (6) into a groove shape that enlarges the passage. 絶縁プレート(14)が、冷却風ダクト(6)に送風される冷却風を通過させる供給ダクト(16)を有する請求項4に記載される組電池。   The assembled battery according to claim 4, wherein the insulating plate (14) has a supply duct (16) through which the cooling air blown to the cooling air duct (6) passes. 絶縁プレート(14)が、回路基板(12)を定位置に配設する基板ホルダー(11)である請求項4に記載される組電池。   The assembled battery according to claim 4, wherein the insulating plate (14) is a substrate holder (11) for disposing the circuit board (12) in a fixed position. 前記二次電池(1)を上下2段に配置して、上段二次電池(1)の上面に上段冷却風ダクト(6A)を設けて、下段二次電池(1)の下面に下段冷却風ダクト(6B)を設けている請求項1に記載される組電池。   The secondary battery (1) is arranged in two upper and lower stages, an upper cooling air duct (6A) is provided on the upper surface of the upper secondary battery (1), and lower cooling air is provided on the lower surface of the lower secondary battery (1). The assembled battery according to claim 1, wherein a duct (6B) is provided. 上段冷却風ダクト(6A)と下段冷却風ダクト(6B)とを連結ダクト(9)で連結して、冷却風の流入口(15)に連結している請求項8に記載される組電池。   The assembled battery according to claim 8, wherein the upper cooling air duct (6A) and the lower cooling air duct (6B) are connected by a connecting duct (9) and connected to the cooling air inlet (15). 上段冷却風ダクト(6A)と下段冷却風ダクト(6B)の一方が他方よりも流入口(16)に近く、流入口(16)に近い冷却風ダクト(6)に開口する放熱領域(5)の面積を、流入口(15)に遠い冷却風ダクト(6)に開口する放熱領域(5)よりも小さくしている請求項9に記載される組電池。   One of the upper cooling air duct (6A) and the lower cooling air duct (6B) is closer to the inlet (16) than the other, and the heat dissipation area (5) opens to the cooling air duct (6) closer to the inlet (16) The assembled battery according to claim 9, wherein the area is smaller than the heat dissipation area (5) opened in the cooling air duct (6) far from the inlet (15). 熱伝導筒(4)が、内面と二次電池(1)との間に隙間を設ける断熱空隙(17)を一部に設けて、連結ダクト(9)の冷却風が断熱空隙(17)を介して二次電池(1)を冷却するようにしてなる請求項9に記載される組電池。   The heat conduction cylinder (4) is provided with a heat insulating gap (17) that provides a gap between the inner surface and the secondary battery (1) in part, and the cooling air of the connecting duct (9) reduces the heat insulating gap (17). The assembled battery according to claim 9, wherein the secondary battery (1) is cooled via the battery. 二次電池(1)が両端部を分離された一対の熱伝導筒(4)に挿入して、一対の熱伝導筒(4)の間に放熱領域(5)を設けている請求項1に記載される組電池。   The secondary battery (1) is inserted into a pair of heat conduction cylinders (4) separated at both ends, and a heat dissipation area (5) is provided between the pair of heat conduction cylinders (4). The assembled battery described. 二次電池(1)がリチウムイオン二次電池である請求項1ないし請求項12のいずれかに記載される組電池。
The assembled battery according to any one of claims 1 to 12, wherein the secondary battery (1) is a lithium ion secondary battery.
JP2005252748A 2005-08-31 2005-08-31 Assembled battery Active JP4849848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005252748A JP4849848B2 (en) 2005-08-31 2005-08-31 Assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005252748A JP4849848B2 (en) 2005-08-31 2005-08-31 Assembled battery

Publications (2)

Publication Number Publication Date
JP2007066773A JP2007066773A (en) 2007-03-15
JP4849848B2 true JP4849848B2 (en) 2012-01-11

Family

ID=37928717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005252748A Active JP4849848B2 (en) 2005-08-31 2005-08-31 Assembled battery

Country Status (1)

Country Link
JP (1) JP4849848B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100844684B1 (en) * 2006-11-29 2008-07-07 현대자동차주식회사 Holder for battery module
JP5173227B2 (en) * 2007-03-30 2013-04-03 三洋電機株式会社 Pack battery
DE102009012176A1 (en) * 2009-02-27 2010-09-02 Andreas Stihl Ag & Co. Kg Battery pack with monitoring electronics integrated in the housing cover
JP5457057B2 (en) * 2009-03-21 2014-04-02 三洋電機株式会社 Battery pack
US7749647B1 (en) * 2009-07-17 2010-07-06 Tesla Motors, Inc. Method and apparatus for maintaining cell wall integrity during thermal runaway using a high yield strength outer sleeve
JP5496576B2 (en) * 2009-08-26 2014-05-21 三洋電機株式会社 Battery pack
DE102009040197A1 (en) * 2009-09-07 2011-03-10 Behr Gmbh & Co. Kg Modular battery construction
JP4952777B2 (en) * 2009-11-12 2012-06-13 トヨタ自動車株式会社 Power storage device
JP5618356B2 (en) * 2010-05-19 2014-11-05 Necエナジーデバイス株式会社 Battery unit and power supply
CN103038933B (en) 2010-07-30 2015-12-16 松下知识产权经营株式会社 Battery module
JP5221820B1 (en) * 2011-05-30 2013-06-26 パナソニック株式会社 Battery block and manufacturing method thereof
EP2738833B1 (en) 2011-07-29 2018-09-05 Panasonic Intellectual Property Management Co., Ltd. Battery retainment block and battery module
JP5899420B2 (en) * 2012-03-16 2016-04-06 パナソニックIpマネジメント株式会社 Battery module
KR101676937B1 (en) * 2012-09-04 2016-11-16 파나소닉 아이피 매니지먼트 가부시키가이샤 Battery block and manufacturing method therefor
US8920955B1 (en) 2012-12-13 2014-12-30 Atieva, Inc. Battery module with high thermal conductivity and assembling method thereof
JP6246164B2 (en) 2015-08-28 2017-12-13 一般財団法人電気安全環境研究所 Anti-bake test method for assembled batteries
KR101805546B1 (en) 2016-03-08 2017-12-07 삼성에스디아이 주식회사 Battery pack having connection tab with bent portion
JP7052302B2 (en) * 2017-11-09 2022-04-12 株式会社デンソー Battery pack
CN109841929B (en) * 2019-03-25 2021-11-02 先进储能材料国家工程研究中心有限责任公司 Cylindrical battery wind-guiding structural component
KR20220053269A (en) * 2020-10-22 2022-04-29 주식회사 엘지에너지솔루션 Battery pack and manufacturing method thereof
CN113161646B (en) * 2021-04-14 2022-10-11 中创新航科技股份有限公司 Battery pack
WO2023176298A1 (en) * 2022-03-18 2023-09-21 パナソニックエナジー株式会社 Battery pack
CN116359748B (en) * 2023-05-31 2023-08-01 苏州精控能源科技有限公司 Thermal runaway simulation test method and device for cylindrical lithium battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3824039B2 (en) * 1998-09-22 2006-09-20 宇部興産株式会社 battery pack
JP2002157984A (en) * 2000-11-21 2002-05-31 Shin Kobe Electric Mach Co Ltd Battery pack and battery module
JP3805664B2 (en) * 2001-11-01 2006-08-02 株式会社マキタ Battery pack
JP4417654B2 (en) * 2003-06-12 2010-02-17 東芝電池株式会社 Secondary battery charger

Also Published As

Publication number Publication date
JP2007066773A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP4849848B2 (en) Assembled battery
JP4958409B2 (en) Assembled battery
WO2019123903A1 (en) Power supply device, and separator for power supply device
KR102033212B1 (en) Battery thermal management with thermoelectrics
JP7379312B2 (en) wireless charging device
KR100658626B1 (en) Secondary battery module
CN109659643B (en) Battery cell module, secondary battery pack, and motor vehicle
WO2019150705A1 (en) Power source device and electric vehicle equipped with power source device
JP2005317455A (en) Battery pack
US20130316203A1 (en) Battery module
JP2013037919A (en) Battery temperature adjustment device
CN214227005U (en) Lithium battery for industrial vehicle
CN210272486U (en) Battery pack
JP2005353480A (en) Power source device for vehicle
KR101352659B1 (en) Laptop-computer battery pack having a heat-pipe
KR102346792B1 (en) Battery cell stacked structure including heat dissipation film
JP2013229125A (en) Battery module and vehicle
KR102252334B1 (en) Battery module having heat dissipation structure and battery pack including the same
KR102377870B1 (en) Battery module and battery pack including the same and vehicle
JP2004342878A (en) Cooling apparatus
KR101047942B1 (en) Battery pack for refrigerant circulation notebook computer
CN109994796B (en) Battery pack
CN218385565U (en) Battery pack and battery system
CN216758257U (en) Electric hand drill based on phase change material heat dissipation cooling
JP4107832B2 (en) Charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R151 Written notification of patent or utility model registration

Ref document number: 4849848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250