JP4417654B2 - Secondary battery charger - Google Patents

Secondary battery charger Download PDF

Info

Publication number
JP4417654B2
JP4417654B2 JP2003168179A JP2003168179A JP4417654B2 JP 4417654 B2 JP4417654 B2 JP 4417654B2 JP 2003168179 A JP2003168179 A JP 2003168179A JP 2003168179 A JP2003168179 A JP 2003168179A JP 4417654 B2 JP4417654 B2 JP 4417654B2
Authority
JP
Japan
Prior art keywords
heat
temperature
secondary battery
battery
secondary batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003168179A
Other languages
Japanese (ja)
Other versions
JP2005005162A (en
Inventor
靖 森
秀樹 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2003168179A priority Critical patent/JP4417654B2/en
Publication of JP2005005162A publication Critical patent/JP2005005162A/en
Application granted granted Critical
Publication of JP4417654B2 publication Critical patent/JP4417654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えばニッケルカドミウム電池や、ニッケル水素電池、リチウムイオン二次電池等の二次電池を充電する装置に係わり、特に電池ホルダに複数の二次電池を装着して並行に充電することが可能な二次電池の充電装置に関する。
【0002】
【従来の技術】
一般に、二次電池を充電する場合には、電池の内部抵抗や電極反応等による発熱が問題となることがある。例えば、ニッケル水素電池を1時間以内に急速充電する場合には、電池の発熱により電池の温度が高温になるため、充電効率の低下や電池特性の劣化を起こしやすい。
【0003】
そこで、従来では例えば、複数の二次電池セルを並べた状態で2枚の放熱板により上下から挟み込み、これにより各二次電池から発生する熱を上記放熱板により放散させる充電装置が提案されている。放熱板としては、例えばアルミニウム等の熱伝導の優れた金属を一体成形したものが用いられる。このような充電装置によれば、充電中に二次電池から発生された熱は各放熱板に伝わり、これらの放熱板から大気中に放散される。このため、二次電池モジュールの温度上昇を効果的に抑制することができる(例えば、特許文献1を参照。)。
【0004】
一方、最近二次電池を充電する際に複数の二次電池の温度を個別に検出し、この検出された温度をもとに充電モードの変更や満充電の検出を行う機能を備えた充電装置が提案されている。この種の装置であれば、二次電池の温度に応じて充電動作を常に最適な状態に制御することができ、また満充電を正確に検出することができる。
【0005】
【特許文献1】
特開2002−124225号公報。
【0006】
【発明が解決しようとする課題】
ところが、上記温度による充電モードの制御機能を備えた充電装置に、先に述べた一体成形された放熱板を設けると、以下のような問題を生じる。すなわち、残存容量が不均一の複数の二次電池を並行して充電しようとした場合に、早期に満充電になった二次電池から発生される熱が放熱板を介して他の二次電池に伝わり、この結果本来ならば温度が上昇していない他の二次電池において温度上昇が発生する。このように二次電池間の温度干渉があると、個々の二次電池の温度を正確に検出することが困難になり、上記した温度による充電モードの制御や温度による満充電の検出を正確に行えなくなる。
【0007】
この発明は上記事情に着目してなされたもので、その目的とするところは、並行充電される複数の二次電池の温度上昇を効果的に抑え、しかも個々の二次電池の温度を正確に検出できるようにして、この検出された温度に応じて二次電池ごとに並列充電モード又は間欠充電モードによる充電制御を可能にした二次電池の充電装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するためにこの発明は、電池ホルダに装着された複数の二次電池の温度をそれぞれ検出し、この検出された温度に応じて前記各二次電池ごとに並列充電モード又は間欠充電モードによる充電制御を行う充電装置にあって、上記電池ホルダに、上記複数の二次電池の各々に個別に当接する複数の放熱部材を設け、かつこれらの放熱部材を、当該放熱部材間を熱的に遮断した状態で保持部材により一体的に保持するように構成したものである。
【0009】
したがってこの発明によれば、各二次電池から発生された熱は、それぞれ二次電池に対し個別に設けられかつ相互に熱的に遮断された放熱部材に伝わり、これらの放熱部材からそのまま放熱される。このため、各二次電池の温度をそれぞれ独立して検出することが可能となり、これにより例えば残存容量が不均一の複数の二次電池を並行して充電しようとした場合にも、二次電池間の温度干渉の影響を受けることなく、二次電池ごとにそれぞれ温度に応じた正確な充電制御を行うことが可能となる。
【0010】
上記保持部材は、複数の放熱部材間を電気的に絶縁する性質を有する材料により構成するとよい。このように構成すると、仮に複数の二次電池の外装チューブが損傷して電池の外装缶むき出しになり、この外装缶が放熱部材と接触したとしても、放熱部材間は電気的に絶縁されているので二次電池間が短絡を起こす不具合は防止される。このため、短絡による異常な発熱等が起きる心配がなくなり、装置の信頼性を高めることができる。
【0011】
また、上記各放熱部材の各々の二次電池との当接面とは異なる面に、放熱のための凹凸部を設けるとさらに好適である。このようにすると上記凹凸部がいわゆるヒートシンクとして作用し、これにより各放熱部材の熱放散効率が高められて、電池の充電時間を短縮することが可能となる。
【0012】
さらに、上記各放熱部材間に空隙部を形成すると共に、送風手段を設ける。そして、この送風手段により上記各放熱部材の一方の面側から上記空隙部を通して放熱部材の他方の面に配置された二次電池に対し冷却風を送り込むようにするとよい。このように構成すると、各二次電池を効率良く強制冷却することが可能となり、これにより各二次電池の温度上昇をさらに抑制して充電効率を高めることができる。
【0013】
【発明の実施の形態】
図1は、この発明に係わる充電装置の一実施形態を示す斜視図であり、図中1は下側ケース、2は上側カバーを示している。
【0014】
下側ケース1には印刷配線板3が収容される。この印刷配線板3の一方の面(図示せず)には、充電装置の回路部分を構成する回路素子や集積回路が装着され、他方の面には4対の金属端子3a1〜3a4,3b1〜3b4と、温度検出素子41〜44がそれぞれ植設される。
【0015】
一方、上側カバー2は枠形に構成されており、枠内の空間部には電池ホルダ5が収容される。電池ホルダ5は、短冊状をなす4個の放熱板61〜64を相互に一定の間隔を隔てた状態で配列し、この状態で上記放熱板61〜64の両端部を保持部材7,8により固定保持したものである。上記放熱板61〜64はアルミニウム板からなり、その表面にはそれぞれ円弧状の凹部6a1〜6a4が形成してある。これらの凹部6a1〜6a4はその形状が二次電池91〜94の周面形状と一致するように定められており、二次電池91〜94の支持受部として機能する。
【0016】
保持部材7,8は断熱性及び絶縁性を有する素材、例えば強化プラスチック(ABS樹脂)からなる。保持部材7,8にはそれぞれ、仕切部7a,8aにより隔てられた4つの支持受部7b1〜7b4,8b1〜8b4が設けられており、これらの支持受部7b1〜7b4,8b1〜8b4において上記放熱板61〜64の両端部が支持される。また上記支持受部7b1〜7b4の上端部には、電極用孔部7c1〜7c4が設けられており、これらの電極用孔部7c1〜7c4に上記金属端子3a1〜3a4が挿通される。なお、金属端子3b1〜3b4は、保持部材8の背面側において屈曲形成された先端部が二次電池の電極に弾性接触するように配置される。
【0017】
図2(a)は、組み立て後の電池ホルダの構成を示す平面図であり、図2(b)は(a)のA−A矢視断面図である。組み立て後の状態において上記温度検出素子41〜44は、図2(b)に示すように上記各放熱板61〜64の裏面に当接する。
【0018】
温度検出素子41〜44は例えばサーミスタからなり、それぞれ上記放熱板61〜64の温度に対応する電圧値を出力する。なお、上記温度検出素子41〜44は、放熱板61〜64の裏面に対しシリコン等により固定するとよい。このようにすると、放熱板61〜64に対し温度検出素子41〜44を熱的に良好な状態に結合させることができる。
【0019】
このような構成であるから、充電対象の二次電池91〜94は、電池ホルダ5の金属端子3a1〜3a4と金属端子3b1〜3b4との間に装着される。その際、二次電池91〜94の底面湾曲部が各放熱板61〜64の凹部6a1〜6a4に当接するように配置される。
【0020】
電池ホルダ5に二次電池91〜94が装着されると、図示しない充電回路により上記二次電池91〜94に対する充電動作が開始される。充電動作は例えば、先ず充電電源に対し二次電池91〜94を直列接続し、直列充電モードにより充電を行う。そして、この直列充電モードによる充電期間中に、定期的に温度検出素子41〜44により各放熱板61〜64の温度を検出し、この検出された温度をしきい値と比較する。
【0021】
この比較の結果、検出温度がしきい値を超えると、次に充電モードを直列充電モードから例えば並列充電モード又は間欠充電モードに切り替え、二次電池91〜94に対し並列充電又はパルス充電を行う。並列充電は、充電電源に対し二次電池91〜94を並列接続することによりなされる。パルス充電は、充電電源に対する二次電池91〜94の接続を一定の周期で間欠的にオンオフすることによりなされる。
【0022】
上記並列充電又はパルス充電期間中に、温度検出素子41〜44により各放熱板61〜64の温度をそれぞれ検出する。そして、この検出された温度をもとに温度上昇率を算出し、この算出された温度上昇率をしきい値と比較する。この比較の結果、温度上昇率がしきい値を超えたことが検出されたときに、該当する二次電池が満充電になったと判断し、当該二次電池を充電電源から切り離す。そして、すべての二次電池61〜64が満充電になると充電動作を終了する。
【0023】
ところで、上記充電動作中に二次電池91〜94では熱が発生する。この熱はそれぞれ放熱板61〜64に伝達され、この放熱板61〜64から放散される。したがって、二次電池91〜94の温度上昇は抑えられる。
【0024】
また、上記放熱板61〜64は相互に空間的に離間して配置されており、しかもこれらの放熱板61〜64を一体的に保持する保持部材7,8は断熱性を有する樹脂により形成されている。このため、上記各二次電池91〜94及び放熱板61〜64は相互に熱的にほぼ独立した状態を保つ。この結果、各二次電池91〜94の温度はそれぞれ他の二次電池の発熱の影響を受けずに独立して変化するようになり、温度検出素子41〜44から出力される検出電圧値もそれぞれ二次電池91〜94の温度に対応したものとなる。したがって、各二次電池91〜94ごとにそれぞれ温度に応じた正確な充電制御を行うことが可能となる。
【0025】
図4は、本実施形態の構成をもとに試作した充電装置の温度変化特性の測定結果を示すものである。試作した装置は、放熱板としてアルミニウム板を使用すると共に保持部材としてABS樹脂を使用し、さらに温度検出素子としてサーミスタを使用している。そして、残存容量がそれぞれ50%及び0%の2個の単三型ニッケル水素蓄電池を上記放熱板に当接させた状態でセットし、上記各電池に対し1CmAの充電電流を供給して試験充電を行いながら、上記放熱板の裏面温度を上記サーミスタにより測定すると共に、比較のために電池表面に直接熱電対を装着して電池自体の表面温度を測定したものである。なお、電池電圧がピーク値からΔV低下したことを以て満充電と判定した。
【0026】
図4中のB1,B2はそれぞれ残存容量が50%及び0%の電池の電池電圧を示し、またC1,C2はそれぞれ上記各電池に対応する各放熱板の検出温度を、D1,D2は上記各電池の表面温度をそれぞれ示している。この温度変化特性から明らかなように、本実施形態の構成を採用した充電装置では、各放熱板の温度は対応する各電池の表面温度とほぼ一致する。したがって、サーミスタにより上記各放熱板の温度を検出し、この検出された温度に応じて充電制御を行うことにより、電池ごとに互いに独立して高精度の充電制御を行える。
【0027】
ちなみに、特許文献1に示される充電装置のように一枚板からなる放熱板を使用した装置において、上記図4と同一の条件で測定を行うと温度変化特性は図5に示すようになる。同図において、B1′,B2′はそれぞれ残存容量が50%及び0%の電池の電池電圧を示し、またC1′,C2′はそれぞれ上記各電池に対応する各放熱板の検出温度を、D1′,D2′は上記各電池の表面温度をそれぞれ示している。この温度変化特性から明らかなように、放熱板の温度は電池の表面温度と一致しない。このため、放熱板の検出温度をもとに各電池を充電制御すると、実際の電池の温度とは対応しない充電制御が行われてしまう。
【0028】
以上述べたようにこの実施形態によれば、放熱板61〜64を相互に空間的に離間して配置し、かつこれらの放熱板61〜64を断熱性及び絶縁性を有する保持部材7,8により一体的に固定保持するようにしている。したがって、各二次電池91〜94から発生された熱は、個別に対応する放熱板61〜64に伝わり、これらの放熱板61〜64から放熱される。このため、各二次電池91〜94の温度をそれぞれ独立して検出することが可能となり、これにより例えば残存容量が不均一の複数の二次電池を並行して充電しようとした場合にも、二次電池間の温度干渉の影響を受けることなく、二次電池ごとにそれぞれ温度に応じた正確な充電制御を行うことが可能となる。
【0029】
また、保持部材7,8は絶縁部材により形成されるため、たとえ二次電池91〜94の外装チューブが損傷して電池の外装缶むき出しになり、この外装缶が放熱板61〜64と接触したとしても、二次電池91〜94間で短絡を起こす不具合は防止される。このため、短絡による異常な発熱等が起きる心配がなくなり、充電装置の信頼性を高めることができる。
【0030】
なお、この発明は上記実施形態に限定されるものではない。例えば、図3に示すように各放熱板61〜64の裏面に凹凸部6b1〜6b4を一体成形又は接合により設けてもよい。このように構成すると、上記凹凸部6b1〜6b4がいわゆるヒートシンクとして作用し、これにより各放熱板61〜64の熱放散効率が高められ、二次電池91〜94の充電時間を短縮することが可能となる。
【0031】
また、前記実施形態のように各放熱板61〜64をその両端部で保持部材7,8により固定することにより各放熱板61〜64間に空隙を形成し、かつ図3に示すように放熱板61〜64の裏面側に送風機10を設ける。そして、この送風機10により放熱板61〜64の裏面を強制冷却すると共に、上記送風機10から上記放熱板61〜64間の空隙を通して二次電池91〜94に対し冷却風を送ることにより、二次電池91〜94を強制冷却するようにしてもよい。このように構成すると、二次電池91〜94の温度上昇をさらに抑制することができ、これにより充電時間をさらに短縮することができる。なお、上記送風機10を循環ポンプとし、ヒートシンク部に管を配して水を循環させる水冷方式を採用してもよい。
【0032】
さらに前記実施形態では、放熱部材を板状に形成してその表面に凹部6a1〜6a4を形成した場合について示したが、放熱部材を円筒又は半円筒状に形成し、この円筒又は半円筒内に電池を挿入するように構成してもよい。すなわち、放熱部材の断面形状は、電池の断面形状に対応する形成するとよい。その他、保持部材の材質や構成、放熱板の材質や構成、電池を装着するスロットの数、各二次電池に対する充電制御手順とその内容等についても、この発明の要旨を逸脱しない範囲で種々変形して実施できる。
【0033】
要するに、この発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
【0034】
【発明の効果】
以上詳述したようにこの発明によれば、電池ホルダに装着された複数の二次電池の温度をそれぞれ検出し、この検出された温度に応じて上記各二次電池ごとに並列充電モード又は間欠充電モードによる充電制御を行う充電装置にあって、上記電池ホルダに、上記複数の二次電池の各々に個別に当接する複数の放熱部材を設け、かつこれらの放熱部材を、当該放熱部材間を熱的に遮断した状態で保持部材により一体的に保持するように構成したことによって、並行充電される複数の二次電池の温度上昇を効果的に抑えることができ、しかも個々の二次電池の温度を正確に検出できるようにして、この検出された温度に応じて二次電池ごとに並列充電モード又は間欠充電モードによる充電制御を可能にした二次電池の充電装置を提供することができる。
【図面の簡単な説明】
【図1】 この発明に係わる充電装置の一実施形態を示す斜視図。
【図2】 図1に示した充電装置の電池ホルダ部分の構成を示す平面図と、当該平面図のA−A矢視断面図。
【図3】 この発明に係わる充電装置の他の実施形態を示す断面図。
【図4】 図1に示した充電装置の効果を説明するための温度変化特性を示す図。
【図5】 従来装置の温度変化特性を示す図。
【符号の説明】
1…下側ケース、2…上側カバー、3…印刷配線板、3a1〜3a4,3b1〜3b4…金属端子、41〜44…温度検出素子、5…電池ホルダ、61〜64…放熱板、6a1〜6a4…電池保持用の凹部、6b1〜6b4…凹凸部、7,8…保持部材、7a,8a…仕切部、7b1〜7b4,8b1〜8b4…支持受部、7c1〜7c4…電極用孔部、91〜94…二次電池、10…送風機。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a device for charging a secondary battery such as a nickel cadmium battery, a nickel metal hydride battery, or a lithium ion secondary battery, and in particular, a plurality of secondary batteries can be attached to a battery holder and charged in parallel. The present invention relates to a rechargeable battery charger.
[0002]
[Prior art]
Generally, when a secondary battery is charged, heat generation due to the internal resistance of the battery or electrode reaction may be a problem. For example, when a nickel-metal hydride battery is rapidly charged within one hour, the temperature of the battery becomes high due to the heat generated by the battery, which tends to cause a reduction in charging efficiency and battery characteristics.
[0003]
Therefore, conventionally, for example, a charging device has been proposed in which a plurality of secondary battery cells are arranged side by side with two heat radiating plates so that heat generated from each secondary battery is dissipated by the heat radiating plates. Yes. As the heat radiating plate, for example, an integrally molded metal having excellent heat conductivity such as aluminum is used. According to such a charging apparatus, the heat generated from the secondary battery during charging is transmitted to the heat radiating plates and is dissipated from the heat radiating plates to the atmosphere. For this reason, the temperature rise of a secondary battery module can be suppressed effectively (for example, refer to patent documents 1).
[0004]
On the other hand, when a secondary battery is recently charged, a charging device having a function of individually detecting the temperatures of a plurality of secondary batteries and changing the charging mode or detecting a full charge based on the detected temperatures. Has been proposed. With this type of device, the charging operation can always be controlled to an optimum state according to the temperature of the secondary battery, and full charge can be accurately detected.
[0005]
[Patent Document 1]
JP 2002-124225 A.
[0006]
[Problems to be solved by the invention]
However, if the above-described integrated heat sink is provided in a charging device having a charge mode control function based on the temperature, the following problems occur. That is, when charging a plurality of secondary batteries with non-uniform remaining capacity in parallel, the heat generated from the secondary batteries that are fully charged at an early stage is transferred to the other secondary batteries via the heat sink. As a result, the temperature rises in the other secondary batteries that are not originally heated. In this way, if there is temperature interference between secondary batteries, it becomes difficult to accurately detect the temperature of each secondary battery, and it is difficult to accurately control the charging mode based on the temperature and the detection of full charge based on the temperature. It becomes impossible to do.
[0007]
The present invention has been made paying attention to the above circumstances, and the object thereof is to effectively suppress the temperature rise of a plurality of secondary batteries that are charged in parallel, and to accurately control the temperature of each secondary battery. An object of the present invention is to provide a charging device for a secondary battery that can be detected and can be charged in a parallel charging mode or an intermittent charging mode for each secondary battery according to the detected temperature .
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention detects the temperature of each of a plurality of secondary batteries mounted on a battery holder, and performs parallel charging mode or intermittent charging for each of the secondary batteries according to the detected temperature. In the charging device that performs charging control according to a mode , the battery holder is provided with a plurality of heat dissipating members that individually contact each of the plurality of secondary batteries, and the heat dissipating members are heated between the heat dissipating members. It is configured to be held integrally by a holding member in a state of being interrupted.
[0009]
Therefore, according to the present invention, the heat generated from each secondary battery is transmitted to the heat dissipating members individually provided for the secondary batteries and thermally shut off from each other, and is directly dissipated from these heat dissipating members. The For this reason, it becomes possible to detect the temperature of each secondary battery independently, and for example, even when trying to charge a plurality of secondary batteries with non-uniform remaining capacity in parallel, the secondary batteries Accurate charging control according to the temperature can be performed for each secondary battery without being affected by the temperature interference.
[0010]
The holding member may be made of a material having a property of electrically insulating a plurality of heat dissipating members. If comprised in this way, even if the exterior tube of a some secondary battery will be damaged and the exterior can of a battery will be exposed, even if this exterior can contacts the heat dissipation member, between the heat dissipation members is electrically insulated. Therefore, the malfunction which causes a short circuit between secondary batteries is prevented. For this reason, there is no fear of abnormal heat generation due to a short circuit, and the reliability of the apparatus can be improved.
[0011]
Further, it is more preferable to provide an uneven portion for heat dissipation on a surface different from the contact surface of each of the heat dissipation members with the secondary battery . If it does in this way, the said uneven | corrugated | grooved part will act as what is called a heat sink, and this will raise the heat dissipation efficiency of each heat radiating member, and it will become possible to shorten the charge time of a battery.
[0012]
Further, a gap is formed between the heat radiating members and a blower is provided. And it is good to send a cooling wind with respect to the secondary battery arrange | positioned from the one surface side of each said heat radiating member to the other surface of a heat radiating member through the said space | gap part by this ventilation means. If comprised in this way, it will become possible to forcibly cool each secondary battery efficiently, and this can further suppress the temperature rise of each secondary battery, and can improve charging efficiency.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a perspective view showing an embodiment of a charging apparatus according to the present invention, in which 1 denotes a lower case and 2 denotes an upper cover.
[0014]
A printed wiring board 3 is accommodated in the lower case 1. On one surface (not shown) of the printed wiring board 3, circuit elements and integrated circuits constituting the circuit portion of the charging device are mounted, and on the other surface, four pairs of metal terminals 3a1-3a4, 3b1 3b4 and temperature detection elements 41 to 44 are respectively implanted.
[0015]
On the other hand, the upper cover 2 is configured in a frame shape, and the battery holder 5 is accommodated in a space portion in the frame. In the battery holder 5, four heat sinks 61 to 64 each having a strip shape are arranged at a predetermined interval from each other. In this state, both end portions of the heat sinks 61 to 64 are held by holding members 7 and 8. It is fixed and held. The heat radiating plates 61 to 64 are made of an aluminum plate, and arc-shaped concave portions 6a1 to 6a4 are formed on the surfaces thereof. These concave portions 6a1 to 6a4 are determined so that the shapes thereof coincide with the peripheral surface shapes of the secondary batteries 91 to 94, and function as support receiving portions for the secondary batteries 91 to 94.
[0016]
The holding members 7 and 8 are made of a heat insulating and insulating material, for example, reinforced plastic (ABS resin). The holding members 7 and 8 are respectively provided with four support receiving portions 7b1 to 7b4 and 8b1 to 8b4 separated by the partition portions 7a and 8a. In these support receiving portions 7b1 to 7b4 and 8b1 to 8b4, Both ends of the heat sinks 61 to 64 are supported. Moreover, the hole parts 7c1-7c4 for electrodes are provided in the upper end part of the said support receiving parts 7b1-7b4, The said metal terminals 3a1-3a4 are penetrated by these hole parts 7c1-7c4 for electrodes. In addition, the metal terminals 3b1 to 3b4 are arranged so that the tip part bent at the back side of the holding member 8 is in elastic contact with the electrode of the secondary battery.
[0017]
Fig.2 (a) is a top view which shows the structure of the battery holder after an assembly, and FIG.2 (b) is AA arrow sectional drawing of (a). In the assembled state, the temperature detecting elements 41 to 44 are in contact with the back surfaces of the heat radiating plates 61 to 64 as shown in FIG.
[0018]
The temperature detection elements 41 to 44 are, for example, thermistors, and output voltage values corresponding to the temperatures of the heat radiation plates 61 to 64, respectively. The temperature detection elements 41 to 44 are preferably fixed to the back surfaces of the heat radiation plates 61 to 64 with silicon or the like. If it does in this way, the temperature detection elements 41-44 can be couple | bonded with a heat favorable state with respect to the heat sinks 61-64.
[0019]
Since it is such a structure, the secondary batteries 91-94 to be charged are mounted between the metal terminals 3a1-3a4 and the metal terminals 3b1-3b4 of the battery holder 5. In that case, it arrange | positions so that the bottom curved part of the secondary batteries 91-94 may contact | abut to recessed part 6a1-6a4 of each heat sink 61-64.
[0020]
When the secondary batteries 91 to 94 are mounted on the battery holder 5, the charging operation for the secondary batteries 91 to 94 is started by a charging circuit (not shown). In the charging operation, for example, first, the secondary batteries 91 to 94 are connected in series to the charging power source, and charging is performed in the serial charging mode. Then, during the charging period in the series charging mode, the temperature detection elements 41 to 44 periodically detect the temperatures of the heat radiation plates 61 to 64, and compare the detected temperatures with threshold values.
[0021]
If the detected temperature exceeds the threshold value as a result of this comparison, the charging mode is then switched from the serial charging mode to, for example, the parallel charging mode or the intermittent charging mode, and the secondary batteries 91 to 94 are charged in parallel or pulsed. . The parallel charging is performed by connecting secondary batteries 91 to 94 in parallel to the charging power source. The pulse charging is performed by intermittently turning on and off the connection of the secondary batteries 91 to 94 to the charging power source at a constant cycle.
[0022]
During the parallel charging or pulse charging period, the temperature detection elements 41 to 44 detect the temperatures of the heat radiation plates 61 to 64, respectively. A temperature increase rate is calculated based on the detected temperature, and the calculated temperature increase rate is compared with a threshold value. As a result of this comparison, when it is detected that the rate of temperature increase exceeds the threshold value, it is determined that the corresponding secondary battery is fully charged, and the secondary battery is disconnected from the charging power source. Then, when all the secondary batteries 61 to 64 are fully charged, the charging operation is terminated.
[0023]
Meanwhile, heat is generated in the secondary batteries 91 to 94 during the charging operation. This heat is transmitted to the heat radiating plates 61 to 64, and is dissipated from the heat radiating plates 61 to 64. Therefore, the temperature rise of the secondary batteries 91-94 is suppressed.
[0024]
Further, the heat radiation plates 61 to 64 are arranged spatially separated from each other, and the holding members 7 and 8 that integrally hold the heat radiation plates 61 to 64 are formed of a heat-insulating resin. ing. For this reason, each said secondary battery 91-94 and the heat sinks 61-64 maintain the state which was thermally independent substantially mutually. As a result, the temperatures of the secondary batteries 91 to 94 change independently without being affected by the heat generation of the other secondary batteries, and the detected voltage values output from the temperature detecting elements 41 to 44 are also the same. These correspond to the temperatures of the secondary batteries 91 to 94, respectively. Therefore, accurate charge control corresponding to the temperature can be performed for each of the secondary batteries 91 to 94.
[0025]
FIG. 4 shows the measurement result of the temperature change characteristic of the charging device that was prototyped based on the configuration of the present embodiment. The prototype device uses an aluminum plate as a heat dissipation plate, uses an ABS resin as a holding member, and further uses a thermistor as a temperature detection element. Then, set two AA nickel metal hydride storage batteries with 50% and 0% remaining capacity in contact with the heat sink, and supply a charge current of 1 CmA to each of the batteries for test charging. In addition to measuring the backside temperature of the heat sink with the thermistor, the surface temperature of the battery itself was measured by attaching a thermocouple directly to the battery surface for comparison. In addition, it was determined that the battery voltage was fully charged when the battery voltage decreased by ΔV from the peak value.
[0026]
In FIG. 4, B1 and B2 indicate the battery voltages of the batteries having a remaining capacity of 50% and 0%, respectively, C1 and C2 indicate the detected temperatures of the respective heat sinks corresponding to the respective batteries, and D1 and D2 indicate the above voltages, respectively. The surface temperature of each battery is shown. As is apparent from this temperature change characteristic, in the charging device employing the configuration of the present embodiment, the temperature of each heat sink substantially matches the surface temperature of each corresponding battery. Therefore, by detecting the temperature of each heat radiating plate with a thermistor and performing charge control according to the detected temperature, highly accurate charge control can be performed independently for each battery.
[0027]
Incidentally, in a device using a heat sink made of a single plate, such as the charging device shown in Patent Document 1, if the measurement is performed under the same conditions as in FIG. 4, the temperature change characteristics are as shown in FIG. In the figure, B1 'and B2' indicate the battery voltages of the batteries having the remaining capacities of 50% and 0%, respectively, and C1 'and C2' indicate the detected temperatures of the respective heat sinks corresponding to the respective batteries, respectively. ', D2' indicates the surface temperature of each of the batteries. As is apparent from this temperature change characteristic, the temperature of the heat sink does not match the surface temperature of the battery. For this reason, if each battery is charge-controlled based on the detected temperature of the heat sink, charge control that does not correspond to the actual battery temperature is performed.
[0028]
As described above, according to this embodiment, the heat radiation plates 61 to 64 are arranged spatially separated from each other, and the heat radiation plates 61 to 64 are provided with the heat insulating and insulating holding members 7 and 8. Therefore, it is fixed and held together. Therefore, the heat generated from each of the secondary batteries 91 to 94 is transmitted to the corresponding heat radiation plates 61 to 64 and is radiated from these heat radiation plates 61 to 64. For this reason, it becomes possible to detect the temperature of each secondary battery 91-94 independently, respectively, for example, even when trying to charge a plurality of secondary batteries with non-uniform remaining capacity in parallel, Accurate charging control corresponding to the temperature can be performed for each secondary battery without being affected by temperature interference between the secondary batteries.
[0029]
Moreover, since the holding members 7 and 8 are formed of an insulating member, even if the outer tube of the secondary batteries 91 to 94 is damaged, the outer can of the battery is exposed, and the outer can contacts the heat sinks 61 to 64. However, the malfunction which causes a short circuit between the secondary batteries 91-94 is prevented. For this reason, there is no fear of abnormal heat generation due to a short circuit, and the reliability of the charging device can be improved.
[0030]
The present invention is not limited to the above embodiment. For example, as shown in FIG. 3, you may provide the uneven | corrugated | grooved part 6b1-6b4 in the back surface of each heat sink 61-64 by integral molding or joining. If comprised in this way, the said uneven | corrugated | grooved part 6b1-6b4 will act as what is called a heat sink, and thereby, the heat dissipation efficiency of each heat sink 61-64 can be improved, and the charge time of the secondary batteries 91-94 can be shortened. It becomes.
[0031]
Further, as in the above-described embodiment, the heat radiating plates 61 to 64 are fixed by the holding members 7 and 8 at both ends thereof to form a gap between the heat radiating plates 61 to 64, and as shown in FIG. The blower 10 is provided on the back side of the plates 61 to 64. Then, the blower 10 forcibly cools the back surfaces of the heat sinks 61 to 64 and sends cooling air from the blower 10 to the secondary batteries 91 to 94 through the gaps between the heat sinks 61 to 64, thereby providing a secondary. The batteries 91 to 94 may be forcibly cooled. If comprised in this way, the temperature rise of the secondary batteries 91-94 can further be suppressed, and, thereby, charge time can further be shortened. In addition, you may employ | adopt the water cooling system which uses the said air blower 10 as a circulation pump, arrange | positions a pipe | tube to a heat sink part, and circulates water.
[0032]
Furthermore, in the said embodiment, although shown about the case where the heat radiating member was formed in plate shape and the recessed part 6a1-6a4 was formed in the surface, the heat radiating member was formed in the cylinder or the semi-cylinder shape, and this cylinder or a semi-cylinder is formed in this cylinder or a semi-cylinder. You may comprise so that a battery may be inserted. That is, the cross-sectional shape of the heat radiating member may be formed corresponding to the cross-sectional shape of the battery. In addition, the material and configuration of the holding member, the material and configuration of the heat sink, the number of slots in which the battery is mounted, the charging control procedure for each secondary battery and its contents, etc., are variously modified without departing from the scope of the present invention. Can be implemented.
[0033]
In short, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.
[0034]
【The invention's effect】
As described above in detail, according to the present invention, the temperature of each of the plurality of secondary batteries mounted on the battery holder is detected, and the parallel charging mode or intermittent operation is performed for each of the secondary batteries according to the detected temperature. In the charging device that performs charging control in a charging mode, the battery holder is provided with a plurality of heat dissipating members that individually contact each of the plurality of secondary batteries, and the heat dissipating members are disposed between the heat dissipating members. By being configured to be integrally held by the holding member in a state where it is thermally shut off, it is possible to effectively suppress the temperature rise of a plurality of secondary batteries that are charged in parallel, and moreover, as the temperature can be accurately detected, to provide a charging device for a secondary battery that enables charging control by the parallel charging mode for each secondary battery in accordance with the detected temperature or intermittently charge mode That.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a charging apparatus according to the present invention.
2 is a plan view showing a configuration of a battery holder part of the charging device shown in FIG. 1, and a cross-sectional view taken along the line AA of the plan view. FIG.
FIG. 3 is a cross-sectional view showing another embodiment of the charging apparatus according to the present invention.
4 is a graph showing temperature change characteristics for explaining the effect of the charging device shown in FIG. 1; FIG.
FIG. 5 is a graph showing temperature change characteristics of a conventional device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Lower case, 2 ... Upper cover, 3 ... Printed wiring board, 3a1-3a4, 3b1-3b4 ... Metal terminal, 41-44 ... Temperature detection element, 5 ... Battery holder, 61-64 ... Heat sink, 6a1 6a4: Recess for holding battery, 6b1-6b4 ... Uneven portion, 7, 8 ... Holding member, 7a, 8a ... Partition, 7b1-7b4, 8b1-8b4 ... Support receiving portion, 7c1-7c4 ... Hole for electrode, 91-94 ... secondary battery, 10 ... blower.

Claims (4)

電池ホルダに装着された複数の二次電池の温度をそれぞれ検出し、この検出された温度に応じて前記各二次電池ごとに並列充電モード又は間欠充電モードにより充電制御を行う充電装置であって、
前記電池ホルダに設けられ、前記複数の二次電池の各々に個別に当接する複数の放熱部材と、
前記複数の放熱部材を、当該放熱部材間を熱的に遮断した状態で一体的に保持する保持部材と
を具備することを特徴とする二次電池の充電装置。
A charging device that detects the temperature of each of a plurality of secondary batteries mounted on a battery holder, and performs charge control for each of the secondary batteries according to the detected temperature in a parallel charge mode or an intermittent charge mode. ,
A plurality of heat dissipating members provided on the battery holder and individually in contact with each of the plurality of secondary batteries;
A charging device for a secondary battery, comprising: a holding member that integrally holds the plurality of heat dissipating members in a state where the heat dissipating members are thermally blocked.
前記保持部材は、前記複数の放熱部材間を電気的に絶縁する性質を有することを特徴とする請求項1記載の二次電池の充電装置。  The secondary battery charging device according to claim 1, wherein the holding member has a property of electrically insulating the plurality of heat dissipating members. 前記複数の放熱部材の各々は、前記二次電池との当接面とは異なる面に放熱のための凹凸部を備えることを特徴とする請求項1又は2記載の二次電池の充電装置。3. The secondary battery charging device according to claim 1, wherein each of the plurality of heat dissipating members includes an uneven portion for heat dissipation on a surface different from a contact surface with the secondary battery. 前記複数の放熱部材間に設けられる空隙部と、
前記放熱部材の一方の面側から、他方の面に配置される前記二次電池に対し、前記空隙部を通して冷却風を送り込む送風手段と
を、さらに具備することを特徴とする請求項1乃至3のいずれかに記載の二次電池の充電装置。
A gap provided between the plurality of heat dissipating members;
4. A blower means for sending cooling air through the gap to the secondary battery disposed on the other surface from one surface side of the heat radiating member. The secondary battery charging device according to any one of the above.
JP2003168179A 2003-06-12 2003-06-12 Secondary battery charger Expired - Fee Related JP4417654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168179A JP4417654B2 (en) 2003-06-12 2003-06-12 Secondary battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168179A JP4417654B2 (en) 2003-06-12 2003-06-12 Secondary battery charger

Publications (2)

Publication Number Publication Date
JP2005005162A JP2005005162A (en) 2005-01-06
JP4417654B2 true JP4417654B2 (en) 2010-02-17

Family

ID=34093766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168179A Expired - Fee Related JP4417654B2 (en) 2003-06-12 2003-06-12 Secondary battery charger

Country Status (1)

Country Link
JP (1) JP4417654B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101256078B1 (en) * 2010-06-10 2013-04-18 로베르트 보쉬 게엠베하 Charging appratus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849848B2 (en) * 2005-08-31 2012-01-11 三洋電機株式会社 Assembled battery
JP4967382B2 (en) * 2006-03-08 2012-07-04 日産自動車株式会社 Assembled battery
JP5738660B2 (en) * 2011-04-18 2015-06-24 エスペック株式会社 Secondary battery charge / discharge evaluation system
KR101438706B1 (en) 2011-09-01 2014-09-05 정윤이 Battery pack for large energy storage system and method to charge the same
WO2013032167A2 (en) * 2011-09-01 2013-03-07 Jung Eun-Ey Battery pack and method for charging same
JP5691981B2 (en) * 2011-10-04 2015-04-01 トヨタ自動車株式会社 Charge control device for series-parallel battery system
DE102012205396A1 (en) 2012-04-03 2013-10-10 Robert Bosch Gmbh Method for the resistive cell compensation of battery cells of a battery, a battery controlled according to the method and a motor vehicle
KR102256481B1 (en) * 2017-03-30 2021-05-27 주식회사 엘지에너지솔루션 Charging and discharging device for battery cell and inspection system for battery cell comprising the same
CN111987257B (en) * 2020-08-28 2022-06-17 深圳市博科新能源有限公司 Overcharge-prevention lithium ion battery pack and preparation process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101256078B1 (en) * 2010-06-10 2013-04-18 로베르트 보쉬 게엠베하 Charging appratus

Also Published As

Publication number Publication date
JP2005005162A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
JP4331500B2 (en) measuring device
JP5178154B2 (en) Battery power system comprising an assembled battery unit and a plurality of assembled battery units
JP4833420B2 (en) Battery pack
US8278606B2 (en) Pocketable body warmer
JP3979981B2 (en) Charger
US20050074666A1 (en) Heat control device for battery
US20060210868A1 (en) Secondary battery module
TWI530980B (en) Switching board and battery module and battery pack comprising the same
US20100297483A1 (en) Electric storage device and vehicle
US20150023392A1 (en) Battery pack
US11171373B2 (en) Battery module including Peltier element and compensation element between temperature regulating element and battery cell
JP4417654B2 (en) Secondary battery charger
JP3696070B2 (en) Equipment with elastic contacts
US20210408620A1 (en) Heat dissipating structure
KR20200065192A (en) Battery Pack Having Heat Dissipating Member
CN111727527B (en) Battery module, battery pack including the same, and vehicle including the battery pack
US6956354B2 (en) Battery charger
US11799152B2 (en) Evaluation of cell-level heat generation in battery electric system using direct-to-air heat pump
KR101985836B1 (en) Battery pack
JP3643742B2 (en) Pack battery
KR102401539B1 (en) Apparatus and method for cell balancing
JP2022534732A (en) Battery module system with external short-circuit device and cooling device
EP4273997A1 (en) A battery stack with a thermal power dissipation system
US20240162556A1 (en) High-Voltage Accumulator Module Having a Multiplicity of Battery Cells
US20220140454A1 (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees