JP4840416B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4840416B2
JP4840416B2 JP2008189078A JP2008189078A JP4840416B2 JP 4840416 B2 JP4840416 B2 JP 4840416B2 JP 2008189078 A JP2008189078 A JP 2008189078A JP 2008189078 A JP2008189078 A JP 2008189078A JP 4840416 B2 JP4840416 B2 JP 4840416B2
Authority
JP
Japan
Prior art keywords
electronic component
heat
alloy
metal body
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008189078A
Other languages
Japanese (ja)
Other versions
JP2008306202A (en
Inventor
英士 徳平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008189078A priority Critical patent/JP4840416B2/en
Publication of JP2008306202A publication Critical patent/JP2008306202A/en
Application granted granted Critical
Publication of JP4840416B2 publication Critical patent/JP4840416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は電子部品と放熱部材および、それらを使用した半導体装置の製造方法に係り、特に電子部品と放熱部材とを連結する熱伝導体に関する。   The present invention relates to an electronic component, a heat radiating member, and a method of manufacturing a semiconductor device using them, and more particularly to a heat conductor that connects the electronic component and the heat radiating member.

近年、情報機器装置は高機能、高性能を要求されている。そのために機器装置に使用される電子部品は高機能化、高速化になっている。   In recent years, information equipment has been required to have high functionality and high performance. For this reason, electronic components used in equipment are becoming more functional and faster.

一方、この電子部品は発熱量が増加し、この熱が誤動作を招き、性能を低下させている。従って、この熱を効率良く放熱し冷却する必要がある。   On the other hand, the amount of heat generated by this electronic component increases, and this heat causes a malfunction and deteriorates the performance. Therefore, it is necessary to efficiently dissipate and cool this heat.

一般的な電子部品の冷却技術としては電子部品とヒートシンクとを圧着し、電子部品が発生した熱をヒートシンクに伝導し、ヒートシンクから空気中に放熱するものが有る。しかしこの冷却技術は電子部品とヒートシンクとの熱伝導の密着の度合いが極めて少ない。   As a general electronic component cooling technique, there is a technique in which an electronic component and a heat sink are pressure-bonded, heat generated by the electronic component is conducted to the heat sink, and the heat is radiated from the heat sink to the air. However, this cooling technique has a very low degree of heat conduction between the electronic component and the heat sink.

これを改善した技術として例えば、特開2002−30217号公報が有る。この公報に記載された冷却技術は、熱を伝導するフィラーを混入した熱伝導性樹脂を介して電子部品とヒートシンクとを圧着させることで電子部品とヒートシンクとの熱伝導の密着の度合いを増加させて、放熱効果を向上させるものである。   For example, Japanese Patent Application Laid-Open No. 2002-30217 discloses an improved technique. The cooling technique described in this publication increases the degree of adhesion of heat conduction between the electronic component and the heat sink by press-bonding the electronic component and the heat sink via a heat conductive resin mixed with a heat conductive filler. Thus, the heat dissipation effect is improved.

その他の冷却技術としては特開昭63−102345号公報が有る。この公報に記載された冷却技術は熱伝導性合金を介して電子部品と放熱体とを接合し、そして電子部品とヒートシンクとの熱伝導の密着の度合いを増加させることで熱伝導率を向上させるものである。この熱伝導性合金は金属のインジュウムと液状金属のガリウムとの半凝固状態の金属である。   Another cooling technique is disclosed in Japanese Patent Laid-Open No. 63-102345. The cooling technique described in this publication improves the thermal conductivity by joining the electronic component and the heat sink via a thermally conductive alloy, and increasing the degree of thermal conduction adhesion between the electronic component and the heat sink. Is. This heat conductive alloy is a semi-solid metal of indium metal and gallium liquid metal.

更に特願2002−140316号公報が有る。この公報に記載された冷却技術は金属のインジュウムと液状金属との熱伝導性合金を介して電子部品と放熱体とを接合し熱伝導率を向上させるものである。この熱伝導性合金は液体であり、この液体金属が流出するのを防止する突堤を設けている。   Further, there is Japanese Patent Application No. 2002-140316. The cooling technique described in this publication improves the thermal conductivity by joining an electronic component and a radiator through a thermally conductive alloy of metallic indium and liquid metal. This heat conductive alloy is liquid, and a jetty is provided to prevent the liquid metal from flowing out.

しかし、上述した特開2002−30217号公報に記載された技術は熱伝導性樹脂を介して電子部品と放熱体であるヒートシンクとを圧着するものである。このため熱伝導率が低いという問題を有する。また特開昭63−102345号公報に記載された技術は半凝固状態の金属を介して電子部品とヒートシンクとを密着させ、電子部品とヒートシンクとを接続する。従って半凝固状態の金属が流出、散乱し周囲の回路基板、電子部品の短絡を招くことになる。そして特願2002−140316号公報に記載された技術は液体金属が流出するのを防止する突堤を設けたため、この突堤の存在が部品点数、部品コスト、製造工数を増加する。   However, the technique described in Japanese Patent Application Laid-Open No. 2002-30217 described above is to press-bond an electronic component and a heat sink as a heat radiating member through a heat conductive resin. For this reason, there is a problem that the thermal conductivity is low. In the technique described in Japanese Patent Laid-Open No. 63-102345, an electronic component and a heat sink are brought into close contact with each other through a semi-solidified metal, and the electronic component and the heat sink are connected. Accordingly, the semi-solidified metal flows out and scatters, causing a short circuit of the surrounding circuit board and electronic components. And since the technique described in Japanese Patent Application No. 2002-140316 provided the jetty which prevents a liquid metal from flowing out, presence of this jetty increases a number of parts, a part cost, and a manufacturing man-hour.

本発明の目的は、放熱体と熱伝導性部材との熱伝導の密着の度合いを増加させ、電子部品と放熱体との熱伝導率を向上させる。結果として電子部品の放熱効果を向上させる。更に周囲の回路基板、電子部品等の短絡障害を防止して、そして、部品点数、部品コスト、製造工数の増加を抑制することのできる新しい電子部品装置を提供するものである。   An object of the present invention is to increase the degree of adhesion of heat conduction between the heat radiating body and the heat conductive member, and to improve the heat conductivity between the electronic component and the heat radiating body. As a result, the heat dissipation effect of the electronic component is improved. Further, it is an object of the present invention to provide a new electronic component device that can prevent short circuit failures of surrounding circuit boards, electronic components, and the like, and can suppress an increase in the number of components, component costs, and manufacturing man-hours.

本発明の製造方法は、電子部品の伝熱面と放熱部材の伝熱面とを連結する半導体装置の製造方法において、前記電子部品の伝熱面に元素記号Inから成る金属体を形成する工程、前記放熱部材の伝熱面に元素記号Inから成る金属体を形成する工程、Ga、Ga−In合金、Ga−In−Sn合金、Ga−In−Zn合金、Ga−Sn合金、Ga−Zn合金の少なくとも1つから成る液状金属を前記金属体の間に充填し、前記伝熱面を接合する事により、前記液状金属と前記金属体とを固溶体にする接合工程、を有する。  The manufacturing method of the present invention is a method of manufacturing a semiconductor device in which a heat transfer surface of an electronic component and a heat transfer surface of a heat dissipation member are connected, and a step of forming a metal body made of the element symbol In on the heat transfer surface of the electronic component. Forming a metal body made of the element symbol In on the heat transfer surface of the heat radiating member, Ga, Ga-In alloy, Ga-In-Sn alloy, Ga-In-Zn alloy, Ga-Sn alloy, Ga-Zn A joining step of filling the liquid metal composed of at least one of the alloys between the metal bodies and joining the heat transfer surfaces to form the liquid metal and the metal body into a solid solution;

本発明の電子部品は、伝熱面に元素記号Inから成る金属体を形成した放熱部材と、Ga、Ga−In合金、Ga−In−Sn合金、Ga−In−Zn合金、Ga−Sn合金、Ga−Zn合金の少なくとも1つから成る液状金属を介して、接合することで前記液状金属と前記金属体とを固溶体にして連結する電子部品であって、前記放熱部材の伝熱面と連結される、前記電子部品の伝熱面に元素記号Inから成る金属体を形成する。  The electronic component of the present invention includes a heat radiating member in which a metal body made of the element symbol In is formed on a heat transfer surface, and a Ga, Ga—In alloy, Ga—In—Sn alloy, Ga—In—Zn alloy, and Ga—Sn alloy. An electronic component that connects the liquid metal and the metal body in a solid solution by bonding via a liquid metal composed of at least one of a Ga-Zn alloy, and is connected to the heat transfer surface of the heat radiating member A metal body made of the element symbol In is formed on the heat transfer surface of the electronic component.

本発明の放熱部材は、伝熱面に元素記号Inから成る金属体を形成した電子部品と、Ga、Ga−In合金、Ga−In−Sn合金、Ga−In−Zn合金、Ga−Sn合金、Ga−Zn合金の少なくとも1つから成る液状金属を介して、接合することで前記液状金属と前記金属体とを固溶体にして連結する放熱部材であって、前記電子部品の伝熱面と連結される、前記放熱部材の伝熱面に元素記号Inから成る金属体を形成する。  The heat radiating member of the present invention includes an electronic component in which a metal body made of the element symbol In is formed on a heat transfer surface, and a Ga, Ga—In alloy, Ga—In—Sn alloy, Ga—In—Zn alloy, and Ga—Sn alloy. A heat dissipating member that joins the liquid metal and the metal body in a solid solution by joining via a liquid metal composed of at least one of a Ga-Zn alloy, and is connected to the heat transfer surface of the electronic component A metal body made of the element symbol In is formed on the heat transfer surface of the heat radiating member.

本発明の半導体装置は、伝熱面に元素記号Inから成る金属体を形成した電子部品と、伝熱面に元素記号Inから成る金属体を形成した放熱部材と、Ga、Ga−In合金、Ga−In−Sn合金、Ga−In−Zn合金、Ga−Sn合金、Ga−Zn合金の少なくとも1つから成る液状金属を前記金属体の間に充填し、前記伝熱面を接合する事により、前記液状金属と前記金属体とを固溶体にして連結する。  The semiconductor device of the present invention includes an electronic component in which a metal body made of the element symbol In is formed on the heat transfer surface, a heat radiating member in which a metal body made of the element symbol In is formed on the heat transfer surface, Ga, Ga-In alloy, A liquid metal composed of at least one of a Ga—In—Sn alloy, a Ga—In—Zn alloy, a Ga—Sn alloy, and a Ga—Zn alloy is filled between the metal bodies, and the heat transfer surfaces are joined. The liquid metal and the metal body are connected as a solid solution.

電子部品の放熱効果を向上させることができる。   The heat dissipation effect of the electronic component can be improved.

本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は本発明に係る電子部品装置の構造を説明する図である。   FIG. 1 is a view for explaining the structure of an electronic component device according to the present invention.

1は電子部品装置、2は半導体部品などの電子部品、3はアルミなどの熱伝導率の良好な金属よりなる放熱体、4は熱伝導体、41は凹状の金属体、411は凹状金属体の突起状堤防部、412は凹状金属体の底部、42は平板状の金属体、43は液状金属である。   1 is an electronic component device, 2 is an electronic component such as a semiconductor component, 3 is a heat radiator made of a metal having good thermal conductivity such as aluminum, 4 is a heat conductor, 41 is a concave metal body, and 411 is a concave metal body. 412 is a bottom of the concave metal body, 42 is a flat metal body, and 43 is a liquid metal.

この電子部品装置1は、熱伝導体4を介して電子部品2と放熱体3とが連結されている。そして熱伝導体4は凹状金属体41と平板状の金属体42と液状金属43とから構成されている。この凹状金属体41は底部412と周縁部位に突起状堤防部411を一体構成に備えている。この周縁部位の突起状堤防部411と底部412とは鍍金処理にて一体形成されている。   In this electronic component device 1, an electronic component 2 and a heat radiating body 3 are connected via a heat conductor 4. The heat conductor 4 includes a concave metal body 41, a flat metal body 42, and a liquid metal 43. The concave metal body 41 is provided with a bottom 412 and a projecting bank portion 411 at a peripheral portion in an integrated configuration. The protruding bank portion 411 and the bottom portion 412 at the peripheral portion are integrally formed by a plating process.

具体的には熱伝導体4の凹状金属体41は鍍金にて電子部品2の上部に形成されている。熱伝導体4の平板状の金属体42は鍍金にて放熱体3の下部に形成されている。そして液状金属43は凹状金属体41の突起状堤防部411に囲まれた底部412に充填されて
いる。液状金属43としては熱伝導率の高い例えばGa系合金を使用できる。そして凹状金属体41、平板状の金属体42としては例えば、前述の液状金属43と金属体41、42とが互いに固溶体化が可能であり、固溶体化した時にも熱伝導率の低下しない金属が良く元素記号のIn又はこの合金から選出される。
Specifically, the concave metal body 41 of the heat conductor 4 is formed on the electronic component 2 by plating. The flat metal body 42 of the heat conductor 4 is formed below the heat radiating body 3 by plating. The liquid metal 43 is filled in the bottom portion 412 surrounded by the protruding bank portion 411 of the concave metal body 41. As the liquid metal 43, for example, a Ga-based alloy having a high thermal conductivity can be used. As the concave metal body 41 and the flat metal body 42, for example, the above-mentioned liquid metal 43 and the metal bodies 41 and 42 can be made into a solid solution with each other. It is often selected from the element symbol In or this alloy.

この電子部品装置1は回路基板に実装されて稼働する。この電子部品装置1は稼働時に発熱する。この熱は熱伝導体4を伝熱し放熱体3から放熱される。従って電子部品は冷却され適温に保たれ安定して稼働する。   The electronic component device 1 is mounted on a circuit board and operates. The electronic component device 1 generates heat during operation. This heat is transferred through the heat conductor 4 and radiated from the heat radiating body 3. Therefore, the electronic components are cooled and kept at an appropriate temperature and operate stably.

図2の電子部品装置を製造する鍍金装置の概略図を参照して説明する。この鍍金装置は浴槽内に鍍金液を満たしアノード極に鍍金物、例えばInを設けて、カソード極に被鍍金物を設けることができる。そしてアノード極とカソード極との間に所定値の電流を印加できる。   A description will be given with reference to a schematic view of a plating apparatus for manufacturing the electronic component device of FIG. In this plating apparatus, a plating solution can be filled in the bathtub, and a plating object, for example, In can be provided on the anode electrode, and a plating object can be provided on the cathode electrode. A predetermined current can be applied between the anode and the cathode.

図3を参照して電子部品の製造方法を説明する。
(1)まず電子部品2を用意する。そしてこの電子部品2の鍍金処理領域以外をマスクする。例えばレジスト樹脂を塗布する。その後に電子部品2を鍍金装置のハンガーに取り付ける。そして鍍金装置の浴槽内に載置する。
(2)次に酸浸漬処理する。処理条件は具体的に酸液が濃度約10%の硫酸であり、液温が室温、例えば15度Cに保たれている。そして約30秒間、鍍金浴槽内でストローク約75mm程度の振幅で緩やかに揺動させる。そして、鍍金処理領域の油膜、汚れを無くした後に水洗して酸液を洗い流す。
(3)続いてNi鍍金処理する。鍍金条件は、例えばワット浴が約pH4.5、電流密度が4A/平方dm 液温が約50度Cである。そして攪拌とストローク約75mm程度の振幅で緩やかに揺動させるながら下地鍍金する。その後に水洗して鍍金液を洗い流す。
(4)次に酸浸漬処理する。処理条件は具体的に、酸液が濃度約10%のダインシルバー(大和化成株製の製品名−ACC)であり、液温は室温に保たれている。そして約30秒間鍍金浴槽内でストローク約75mm程度の振幅で緩やかに揺動させる。そして、鍍金処理領域の油膜、汚れを無くす。この後に水洗して酸液を洗い流す。
(5)次にストライクIn鍍金処理する。鍍金処理条件は例えば鍍金液がDAININ−PL30(大和化成株製 主剤メタンスルホン酸インジウム)、電流密度が約7.5A/平方dm 液温が約50度Cである。そして攪拌とストローク約75mm程度の振幅で緩やかに揺動させながらストライク鍍金する。
(6)その後にIn鍍金処理する。鍍金処理条件は例えば鍍金液がDAININ−PL30(大和化成株製 主剤メタンスルホン酸インジウム)、電流密度が約0.5A/平方dm 液温が約50度Cで攪拌とストローク約75mm程度の振幅で緩やかに揺動させながら鍍金する。このIn鍍金の厚みは約0.1mmである。従って電子部品2のレジスト樹脂を塗布された領域以外に鍍金が平板状に設けられた。
(7)次に、該鍍金の平板上にレジスト樹脂を塗布する。レジスト樹脂を塗布する領域は電子部品の周縁部位の突起状堤防部を除く領域である。このレジスト樹脂は新日鉄化学株製のPDF100を使用する。ラミネート条件は温度が約80度C、真空度が約0.3MPaである。
(8)その後にIn鍍金処理する。処理条件は例えば鍍金液がDAININ−PL30(大和化成株製 主剤メタンスルホン酸インジウム)であり、電流密度が約0.5A/平方dm 液温が約50度Cである。そしてエアー攪拌とストローク約75mm程度の振幅で緩やかに揺動させるながら鍍金する。このIn鍍金の厚みは約0.02mmである。従って電子部品2に熱伝導体4の凹状の金属体41を形成できた。形状は底部の厚みが約0.1mm、凹状金属体41の突起状堤防部411の内部高さ約0.02mm、幅約5mmである。
A method for manufacturing an electronic component will be described with reference to FIG.
(1) First, the electronic component 2 is prepared. Then, the area other than the plating area of the electronic component 2 is masked. For example, a resist resin is applied. Thereafter, the electronic component 2 is attached to the hanger of the plating apparatus. And it mounts in the bathtub of a plating apparatus.
(2) Next, an acid immersion treatment is performed. Specifically, the treatment condition is that the acid solution is sulfuric acid having a concentration of about 10%, and the solution temperature is kept at room temperature, for example, 15 degrees C. Then, it is gently rocked with an amplitude of about 75 mm stroke in the plating bath for about 30 seconds. Then, after removing the oil film and dirt in the plating treatment area, the acid solution is washed away with water.
(3) Subsequently, Ni plating is performed. The plating conditions are, for example, a Watt bath of about pH 4.5, a current density of 4 A / square dm, and a liquid temperature of about 50 degrees C. Then, the substrate is plated while gently rocking with an amplitude of about 75 mm with stirring and stroke. Then rinse with water to wash away the plating solution.
(4) Next, an acid immersion treatment is performed. The treatment condition is specifically dyne silver (product name-ACC, manufactured by Daiwa Kasei Co., Ltd.) having an acid solution concentration of about 10%, and the solution temperature is kept at room temperature. Then, it is gently rocked with an amplitude of about 75 mm in the plating bath for about 30 seconds. Then, the oil film and dirt in the plating area are eliminated. After this, it is washed with water to wash away the acid solution.
(5) Next, strike in plating is performed. The plating treatment conditions are, for example, that the plating solution is DAININ-PL30 (main agent indium methanesulfonate manufactured by Daiwa Kasei Co., Ltd.), the current density is about 7.5 A / square dm, and the liquid temperature is about 50 degrees C. Then, the strike plating is performed while gently rocking with an amplitude of about 75 mm with stirring and stroke.
(6) After that, In plating is performed. For example, the plating solution is DAININ-PL30 (main ingredient indium methanesulfonate manufactured by Daiwa Kasei Co., Ltd.), the current density is about 0.5 A / square dm, the liquid temperature is about 50 degrees C, and the amplitude is about 75 mm with stirring and stroke of about 75 mm. Plating while rocking gently. The thickness of this In plating is about 0.1 mm. Therefore, the plating is provided in a flat plate shape other than the region where the resist resin of the electronic component 2 is applied.
(7) Next, a resist resin is applied on the plate of the plating. The region where the resist resin is applied is a region excluding the protruding levee portion at the peripheral portion of the electronic component. As this resist resin, PDF100 manufactured by Nippon Steel Chemical Co., Ltd. is used. Lamination conditions are a temperature of about 80 ° C. and a degree of vacuum of about 0.3 MPa.
(8) Thereafter, In plating is performed. For example, the plating solution is DAININ-PL30 (main agent indium methanesulfonate manufactured by Daiwa Kasei Co., Ltd.), the current density is about 0.5 A / square dm, and the liquid temperature is about 50 degrees C. Then, it is plated while gently rocking with air stirring and an amplitude of about 75 mm stroke. The thickness of this In plating is about 0.02 mm. Therefore, the concave metal body 41 of the heat conductor 4 could be formed on the electronic component 2. The shape is such that the bottom portion has a thickness of about 0.1 mm, the inner height of the protruding bank portion 411 of the concave metal body 41 is about 0.02 mm, and the width is about 5 mm.

このように鍍金処理にて電子部品2は凹状金属体41を形成されるために熱伝導の密着の度合いが良い。且つこの凹状金属体41の周縁部位の突起状堤防部411と底部412とは鍍金処理にて一体に形成される。このために別部品を用意することなく部品点数の削減と、製造工数の増加を抑制できる。
(9)その後に上記製造工程で使用されたレジスト樹脂を剥離する。剥離液を使用すると容易に行なうことができる。
(10)次に放熱体3に平板状の金属体42が形成される。
Thus, since the electronic component 2 is formed with the concave metal body 41 by the plating process, the degree of adhesion of heat conduction is good. In addition, the protruding bank portion 411 and the bottom portion 412 at the peripheral portion of the concave metal body 41 are integrally formed by a plating process. For this reason, reduction of the number of parts and increase in the number of manufacturing steps can be suppressed without preparing separate parts.
(9) The resist resin used in the manufacturing process is then peeled off. This can be done easily by using a stripping solution.
(10) Next, a flat metal body 42 is formed on the radiator 3.

図4を参照して放熱体の製造方法を説明する。製造方法は上述した鍍金技術を使用して平板状の金属体42を形成する。上述したように放熱体3は鍍金処理されて放熱体3の底部に平板状の金属体42を形成される。この鍍金処理のために放熱体3と金属体42との熱伝導の密着の度合いが良い。
(11)次に電子部品2に形成された突起状堤防部に囲まれた部位に液状金属43、具体的には液状のガリウム、元素記号のGaを充填する。充填方法はディスペンサー装置にて行なう。
(12)該電子部品2と上述した放熱体3とを合体する。従って、金属体41、42と液状金属43との双方が凝固して固溶体になる。固溶体化は常温で数十時間放置すれば良い。このために電子部品に熱ストレスを与えることがない。液状金属43は固溶体になるまでの間は液状であるが、突起状堤防部411に囲まれているために周囲に漏洩することがない。固溶体になると金属体41、42と液状金属43とが固着されて電子部品装置1となる。
With reference to FIG. 4, the manufacturing method of a heat radiator is demonstrated. A manufacturing method forms the flat metal body 42 using the plating technique mentioned above. As described above, the heat radiating body 3 is plated, and a flat metal body 42 is formed at the bottom of the heat radiating body 3. Due to this plating process, the degree of adhesion of heat conduction between the radiator 3 and the metal body 42 is good.
(11) Next, the liquid metal 43, specifically liquid gallium, and the element symbol Ga are filled in a portion surrounded by the projecting levee formed in the electronic component 2. The filling method is performed by a dispenser device.
(12) The electronic component 2 and the heat radiator 3 described above are combined. Therefore, both the metal bodies 41 and 42 and the liquid metal 43 are solidified to form a solid solution. Solid solution may be left at room temperature for several tens of hours. For this reason, thermal stress is not applied to the electronic component. The liquid metal 43 is in a liquid state until it becomes a solid solution, but is not leaked to the surroundings because it is surrounded by the protruding levee 411. If it becomes a solid solution, the metal bodies 41 and 42 and the liquid metal 43 will adhere, and it will become the electronic component apparatus 1. FIG.

その他の実施例
上記の実施例では液状金属にGaを使用した例を説明した。しかし、その他の液状金属として75.5%Ga−24.5%In、62%Ga−25%In−13%Sn、67%Ga−29%In−4%Zn、92%Ga−8%Sn、95%Ga−5%Zn合金を使用しても同様な効果が得られる。
Other Examples In the above-described examples, the example in which Ga is used for the liquid metal has been described. However, other liquid metals are 75.5% Ga-24.5% In, 62% Ga-25% In-13% Sn, 67% Ga-29% In-4% Zn, 92% Ga-8% Sn. The same effect can be obtained by using a 95% Ga-5% Zn alloy.

上記実施例では電子部品2側に凹状金属体41を、放熱体3側に平板状の金属体42を形成した。しかし電子部品装置は回路基板に色々な状態で搭載される。この搭載の状態により、電子部品2側に平板状の金属体42を、放熱体3側に凹状金属体41を形成しても良い。   In the above embodiment, the concave metal body 41 is formed on the electronic component 2 side, and the flat metal body 42 is formed on the radiator 3 side. However, electronic component devices are mounted on circuit boards in various states. Depending on this mounting state, a flat metal body 42 may be formed on the electronic component 2 side, and a concave metal body 41 may be formed on the heat radiating body 3 side.

以上説明したとおり、本発明のような電子部品装置は、電子部品と熱伝導性部材との熱伝導の密着の度合いを増加させ、且つ放熱体と熱伝導性部材との熱伝導の密着の度合いを増加させる。結果として電子部品の放熱効果を向上させることができる。更に周囲の回路基板、電子部品等の短絡障害を防止して、更に部品点数および、製造工数の増加を抑制できる。   As described above, the electronic component device according to the present invention increases the degree of heat conduction adhesion between the electronic component and the heat conductive member, and the degree of heat conduction adhesion between the radiator and the heat conductive member. Increase. As a result, the heat dissipation effect of the electronic component can be improved. Furthermore, it is possible to prevent short circuit failures of surrounding circuit boards, electronic components, etc., and further suppress the increase in the number of components and the number of manufacturing steps.

本発明に係る電子部品装置の説明図である。It is explanatory drawing of the electronic component apparatus which concerns on this invention. 本実施例に係る電子部品装置を製造する鍍金装置の概略図である。It is the schematic of the plating apparatus which manufactures the electronic component apparatus which concerns on a present Example. 本実施例に係る電子部品の概略図である。It is the schematic of the electronic component which concerns on a present Example. 本実施例に係る放熱体の概略図である。It is the schematic of the heat radiator which concerns on a present Example.

Claims (2)

電子部品の伝熱面と放熱部材の伝熱面とを連結する半導体装置の製造方法において、
前記電子部品の伝熱面に元素記号Inから成る金属体を形成する工程、
前記放熱部材の伝熱面に元素記号Inから成る金属体を形成する工程、
Ga、Ga−In合金、Ga−In−Sn合金、Ga−In−Zn合金、Ga−Sn合金、Ga−Zn合金の少なくとも1つから成る液状金属を前記金属体の間に充填し、前記伝熱面を接合する事により、前記液状金属と前記金属体とを固溶体にする接合工程、
を有する半導体装置の製造方法。
In the semiconductor device manufacturing method for connecting the heat transfer surface of the electronic component and the heat transfer surface of the heat dissipation member,
Forming a metal body made of the element symbol In on the heat transfer surface of the electronic component;
Forming a metal body made of the element symbol In on the heat transfer surface of the heat radiating member;
A liquid metal composed of at least one of Ga, Ga-In alloy, Ga-In-Sn alloy, Ga-In-Zn alloy, Ga-Sn alloy, and Ga-Zn alloy is filled between the metal bodies, and the transmission is performed. A joining step of solidifying the liquid metal and the metal body by joining the hot surfaces;
A method for manufacturing a semiconductor device comprising:
前記電子部品の伝熱面に形成された前記金属体は、凹部を有し、The metal body formed on the heat transfer surface of the electronic component has a recess,
前記接合工程は、前記液状金属を前記凹部に充填するThe joining step fills the recess with the liquid metal.
ことを特徴とする請求項1に記載の半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 1.
JP2008189078A 2008-07-22 2008-07-22 Manufacturing method of semiconductor device Expired - Fee Related JP4840416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008189078A JP4840416B2 (en) 2008-07-22 2008-07-22 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008189078A JP4840416B2 (en) 2008-07-22 2008-07-22 Manufacturing method of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004568498A Division JP4241623B2 (en) 2003-02-24 2003-02-24 Semiconductor device and manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2008306202A JP2008306202A (en) 2008-12-18
JP4840416B2 true JP4840416B2 (en) 2011-12-21

Family

ID=40234577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008189078A Expired - Fee Related JP4840416B2 (en) 2008-07-22 2008-07-22 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4840416B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8358000B2 (en) * 2009-03-13 2013-01-22 General Electric Company Double side cooled power module with power overlay
CN107343378A (en) * 2017-08-11 2017-11-10 昆明品启科技有限公司 The heat dissipating method that a kind of liquid metal is combined with silicone grease
US10777483B1 (en) 2020-02-28 2020-09-15 Arieca Inc. Method, apparatus, and assembly for thermally connecting layers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183141A (en) * 1988-01-18 1989-07-20 Fujitsu Ltd Joint structure of cooling device
JPH081620B2 (en) * 1989-08-30 1996-01-10 日本電気株式会社 Remote control device
JP3656260B2 (en) * 1994-10-25 2005-06-08 セイコーエプソン株式会社 Small cryogenic device
US6339120B1 (en) * 2000-04-05 2002-01-15 The Bergquist Company Method of preparing thermally conductive compounds by liquid metal bridged particle clusters

Also Published As

Publication number Publication date
JP2008306202A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP4241623B2 (en) Semiconductor device and manufacturing method of semiconductor device
US7671466B2 (en) Semiconductor package having heat dissipating device with cooling fluid
TWI582276B (en) Method for preparing low cost substrates
CN102024772B (en) Heat-dissipating substrate and fabricating method thereof
JP4840416B2 (en) Manufacturing method of semiconductor device
JP2023033371A (en) Substrate for power module and power module
TW200908823A (en) Circuit assembly including a metal core substrate and process for preparing the same
US7445965B2 (en) Method of manufacturing radiating plate and semiconductor apparatus using the same
JP2012004527A (en) Heat-radiating substrate and method of manufacturing the same
KR100710019B1 (en) Electronic component device using the electronic component and radiating member, and method of manufacturing the same
JP4386763B2 (en) Semiconductor device
JP2009043881A (en) Heat dissipation wiring board and manufacturing method thereof
CN101937901A (en) Wire substrate as well as manufacturing method and packaging structure thereof
JP6788826B2 (en) Heat dissipation structure, semiconductor device, and manufacturing method of heat dissipation structure
CN112088429A (en) Vapor chamber and method for manufacturing same
JP7170501B2 (en) Substrates for power modules and power modules
CN105191512A (en) Printed circuit board and method of manufacturing same
TW201831064A (en) Method of forming a solderable solder deposit on a contact pad
TWI807337B (en) Substrate with conductive pads and conductive layers, and semiconductor device
JP2011082269A (en) Light emitting diode substrate and method of manufacturing the same
KR20090102187A (en) Structure and manufacture method for lead frame of multi-row type
JP2008135510A (en) Flexible printed wiring board, flexible printed circuit board, and method for manufacturing them
TWI378581B (en)
JP4396770B2 (en) Printed wiring board
TW201112460A (en) Heat dissipation substrate for LED and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees