JP4840276B2 - Element cooling structure - Google Patents

Element cooling structure Download PDF

Info

Publication number
JP4840276B2
JP4840276B2 JP2007190039A JP2007190039A JP4840276B2 JP 4840276 B2 JP4840276 B2 JP 4840276B2 JP 2007190039 A JP2007190039 A JP 2007190039A JP 2007190039 A JP2007190039 A JP 2007190039A JP 4840276 B2 JP4840276 B2 JP 4840276B2
Authority
JP
Japan
Prior art keywords
insulating fluid
radiating plate
heat radiating
cooling structure
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007190039A
Other languages
Japanese (ja)
Other versions
JP2009027040A (en
Inventor
直一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007190039A priority Critical patent/JP4840276B2/en
Publication of JP2009027040A publication Critical patent/JP2009027040A/en
Application granted granted Critical
Publication of JP4840276B2 publication Critical patent/JP4840276B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、半導体パワー素子のような、熱を発する素子を適切に冷却するための素子冷却構造に関する。   The present invention relates to an element cooling structure for appropriately cooling an element that generates heat, such as a semiconductor power element.

従来から、この種の素子冷却構造は知られている(例えば、特許文献1参照)。特許文献1では、IGBT等の能動素子の上面を、絶縁性を有する遠赤外線放射材からなる膜で覆うことで、能動素子の上面からの放熱性を高めている。
特開2003−51572号公報
Conventionally, this kind of element cooling structure is known (for example, refer patent document 1). In patent document 1, the heat dissipation from the upper surface of an active element is improved by covering the upper surface of active elements, such as IGBT, with the film | membrane which consists of a far-infrared radiation material which has insulation.
JP 2003-51572 A

ところで、上記の特許文献1において従来技術として紹介されているように、能動素子の上面側に、樹脂やゲル等のような絶縁性流動物質を充填し、当該絶縁性流動物質を介して放熱を行う構成も知られている。しかしながら、樹脂やゲルのような絶縁性流動物質は熱伝導率が低いため、単に能動素子の上面側に充填するだけでは、十分な放熱性を得られないという問題がある。   By the way, as introduced in the above Patent Document 1 as the prior art, the upper surface side of the active element is filled with an insulating fluid material such as resin or gel, and heat is radiated through the insulating fluid material. Configurations to perform are also known. However, an insulating fluid such as a resin or gel has a low thermal conductivity, so that there is a problem that sufficient heat dissipation cannot be obtained simply by filling the upper surface of the active element.

そこで、本発明は、絶縁性流動物質を介して効率的に素子の放熱を行うことが可能な素子冷却構造の提供を目的とする。   Therefore, an object of the present invention is to provide an element cooling structure capable of efficiently radiating elements through an insulating fluid substance.

上記目的を達成するため、第1の発明に係る素子冷却構造は、熱を発する素子が第1面側に設けられ、水平面に対して傾斜をもって配置された基板と、
該基板の第1面に接触する空間に充填された絶縁性流動物質と、
前記素子の位置よりも上方に配置され、前記絶縁性流動物質を冷却する冷却手段と、
前記素子における前記絶縁性流動物質と接触する面に設けられ、下方から上方に向けて傾斜して延在する複数のフィンとを備えることを特徴とする。
In order to achieve the above object, an element cooling structure according to a first aspect of the present invention is a substrate in which an element that generates heat is provided on the first surface side, and is disposed with an inclination with respect to a horizontal plane;
An insulating fluid material filled in a space in contact with the first surface of the substrate;
A cooling means disposed above the position of the element to cool the insulating fluid material;
The device includes a plurality of fins that are provided on a surface of the element that comes into contact with the insulative fluid substance, and that extend obliquely from below to above.

第2の発明は、第1の発明に係る素子冷却構造において、前記絶縁性流動物質が充填される空間は密閉されていることを特徴とする。   According to a second invention, in the element cooling structure according to the first invention, the space filled with the insulating fluid substance is sealed.

第3の発明は、第2の発明に係る素子冷却構造において、前記基板の前記第1面の裏側の第2面側に配置され、前記素子の位置よりも上方で前記絶縁性流動物質に接触する第1放熱板を更に備え、
前記冷却手段は、前記第1放熱板の上縁で前記第1放熱板に接続する第2放熱板であって、前記絶縁性流動物質に接触する第2放熱板を含み、
前記第1放熱板及び第2放熱板は、前記絶縁性流動物質を密閉する壁の一部を構成し、前記第1放熱板及び第2放熱板のそれぞれの前記絶縁性流動物質に接触する面の裏側に、冷媒の流通経路を更に備えることを特徴とする。
According to a third aspect of the present invention, in the element cooling structure according to the second aspect of the present invention, the element cooling structure is disposed on the second surface side behind the first surface of the substrate, and contacts the insulating fluid material above the position of the element. Further comprising a first heat sink
The cooling means includes a second heat radiating plate connected to the first heat radiating plate at an upper edge of the first heat radiating plate, the second heat radiating plate being in contact with the insulating fluid substance,
The first heat radiating plate and the second heat radiating plate constitute a part of a wall that seals the insulating fluid material, and surfaces of the first heat radiating plate and the second heat radiating plate that are in contact with the insulating fluid material. The refrigerant | coolant distribution path is further provided in the back side of this.

本発明によれば、絶縁性流動物質を介して効率的に素子の放熱を行うことが可能な素子冷却構造が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the element cooling structure which can perform the thermal radiation of an element efficiently via an insulating fluid substance is obtained.

以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明による素子冷却構造1の一実施例の主要断面を示す図である。本実施例の素子冷却構造1は、基板10を含む。基板10は、熱伝導性の良い絶縁基板で構成されてよい。基板10上には、例えば図2に示すような、パワー素子12を含む電子回路が形成されている。尚、図2に示す回路構成は、例えばハイブリッド自動車に搭載されてよいインテリジェントパワーモジュール(IPM)の電力変換器インバーター用回路であり、パワー素子12としてIGBT(Insulated Gate Bipolar Transistor)が用いられ、還流用のダイオードを備える。尚、基板10上に形成される回路は、当然ながら他の形態の回路であってもよく、パワー素子12は、例えばパワーMOSFETのような、IGBT以外の任意の半導体パワー素子であってよい。   FIG. 1 is a diagram showing a main section of an embodiment of an element cooling structure 1 according to the present invention. The element cooling structure 1 of this embodiment includes a substrate 10. The substrate 10 may be composed of an insulating substrate with good thermal conductivity. On the substrate 10, for example, an electronic circuit including a power element 12 as shown in FIG. 2 is formed. The circuit configuration shown in FIG. 2 is an intelligent power module (IPM) power converter inverter circuit that may be mounted on, for example, a hybrid vehicle. An IGBT (Insulated Gate Bipolar Transistor) is used as the power element 12, A diode is provided. Of course, the circuit formed on the substrate 10 may be another type of circuit, and the power element 12 may be any semiconductor power element other than the IGBT, such as a power MOSFET.

パワー素子12の上面(図の左側の面)は、例えば上部電極で構成される。上部電極は、例えば銅で形成される。パワー素子12の上面上には、図1に示すように、複数の冷却フィン14が設けられる。冷却フィン14は、好ましくは、図1に示すように、上方に向けて斜め方向に延在する。即ち、冷却フィン14は、上方に反った形状(等断面形状)を有する。冷却フィン14の奥行き方向の長さ(図の紙面垂直方向の長さ)は、パワー素子12の上面の同寸法と同様であってもよいし、また、複数の冷却フィン14が奥行き方向に列をなして形成されてもよい。冷却フィン14は、例えば上部電極と同一の材料(例えば銅)で形成されてもよい。冷却フィン14の製造方法としては、マイクロソリッド工法が用いられてもよい。この方法によれば、フィンピッチを最小0.1mmまで小さくすることが可能であり、長い微細フィンの加工が可能である。   The upper surface (the left surface in the figure) of the power element 12 is composed of, for example, an upper electrode. The upper electrode is made of, for example, copper. As shown in FIG. 1, a plurality of cooling fins 14 are provided on the upper surface of the power element 12. As shown in FIG. 1, the cooling fins 14 preferably extend obliquely upward. That is, the cooling fin 14 has a shape warped upward (equal cross-sectional shape). The length in the depth direction of the cooling fins 14 (the length in the direction perpendicular to the paper surface of the drawing) may be the same as the same dimension of the upper surface of the power element 12, and the plurality of cooling fins 14 are arranged in the depth direction. May be formed. The cooling fin 14 may be formed of the same material (for example, copper) as the upper electrode, for example. As a manufacturing method of the cooling fin 14, a micro solid construction method may be used. According to this method, the fin pitch can be reduced to a minimum of 0.1 mm, and long fine fins can be processed.

基板10の背面(図の右側の面)には、放熱板20(以下、「背面放熱板20」という)が設けられる。即ち、背面放熱板20は、基板10を背面から支持する。背面放熱板20は、熱伝導性の良い材料からなり、フィン20aを有してよい。フィン20aは、図1に示すように、背面放熱板20の背面側(図の右側)に形成される。フィン20aは、背面放熱板20に対して垂直に延在してもよいし、背面放熱板20に対して斜め上方に延在してもよい。   A heat radiating plate 20 (hereinafter referred to as “back radiating plate 20”) is provided on the back surface of the substrate 10 (the right side surface in the drawing). That is, the backside heat sink 20 supports the substrate 10 from the backside. The rear heat sink 20 is made of a material having good thermal conductivity and may have fins 20a. As shown in FIG. 1, the fin 20 a is formed on the back side (the right side in the figure) of the back surface heat sink 20. The fins 20 a may extend perpendicularly to the rear heat sink 20 or may extend obliquely upward with respect to the rear heat sink 20.

背面放熱板20の上方の側面(上縁)には、放熱板22(以下、「上方放熱板22」という)が設けられる。上方放熱板22は、図1に示すように、基板10上のパワー素子12を上方から覆うように設けられる。上方放熱板22は、背面放熱板20に対して略直角をなして配置される。上方放熱板22は、熱伝導性の良い材料からなり、フィン22aを有してよい。フィン22aは、図1に示すように、上方放熱板22の背面側(図の上側)に形成される。   A heat radiating plate 22 (hereinafter referred to as “upper heat radiating plate 22”) is provided on the upper side surface (upper edge) of the rear heat radiating plate 20. As shown in FIG. 1, the upper radiator plate 22 is provided so as to cover the power element 12 on the substrate 10 from above. The upper heat sink 22 is disposed at a substantially right angle to the rear heat sink 20. The upper heat radiating plate 22 is made of a material having good thermal conductivity and may have fins 22a. As shown in FIG. 1, the fins 22 a are formed on the back side (upper side in the drawing) of the upper heat radiating plate 22.

冷却水50が循環する流路52は、背面放熱板20及び上方放熱板22に隣接して設けられる。流路52は、例えば図1に示すように、L字型の断面を有し、背面放熱板20及び上方放熱板22の背面側を冷却水50が流通するように構成されている。尚、図示の例では、冷却水50は、対流効果を促進し且つ重力を効果的に用いる観点から、上から下に循環されているが、ポンプ等を用いて逆に循環させることも可能である。また、冷却水50に代えて、他の冷媒(流体)が用いられてもよい。   The flow path 52 through which the cooling water 50 circulates is provided adjacent to the rear heat sink 20 and the upper heat sink 22. For example, as shown in FIG. 1, the flow path 52 has an L-shaped cross section, and is configured such that the cooling water 50 flows through the back side of the rear radiator plate 20 and the upper radiator plate 22. In the illustrated example, the cooling water 50 is circulated from the top to the bottom from the viewpoint of promoting the convection effect and effectively using the gravity. However, the cooling water 50 can be circulated reversely using a pump or the like. is there. Further, instead of the cooling water 50, another refrigerant (fluid) may be used.

カバー部材40は、背面放熱板20と上方放熱板22と協動して、パワー素子12及び基板10を密閉する空間を形成する。従って、図1には示されていないが、カバー部材40は、上方放熱板22に対向する位置、及び、図の手前側及び奥側にも存在し、背面放熱板20と上方放熱板22と協動して、略直方体の密閉空間を形成している。この密閉空間内には、絶縁性流動物質30が充填される。   The cover member 40 cooperates with the rear radiator plate 20 and the upper radiator plate 22 to form a space for sealing the power element 12 and the substrate 10. Accordingly, although not shown in FIG. 1, the cover member 40 exists at a position facing the upper heat radiating plate 22 and also on the front side and the rear side in the drawing, and the rear heat radiating plate 20 and the upper heat radiating plate 22 In cooperation, a substantially rectangular parallelepiped sealed space is formed. This sealed space is filled with an insulating fluid substance 30.

絶縁性流動物質30は、熱伝導性が良好で且つ電気的に絶縁性のある流動性物質であり、流動性のある樹脂や、シリコンゲルやシリコンオイルで構成される。尚、絶縁性を要するのは、パワー素子12上面に絶縁性・耐圧性を確保するためである。絶縁性流動物質30は、例えば100P(ポアズ)以下程度の粘度を有し、環境温度(−40℃〜150℃)に依存しない。絶縁性流動物質30は、図1に示すように、パワー素子12が収容される密閉空間内に充填される。絶縁性流動物質30は、冷却フィン14、背面放熱板20及び上方放熱板22と協動して、パワー素子12の発する熱を外部に伝達する役割を果たす。   The insulating fluid substance 30 is a fluid substance having good thermal conductivity and electrical insulation, and is composed of a fluid resin, silicon gel, or silicon oil. The reason why insulation is required is to ensure insulation and pressure resistance on the upper surface of the power element 12. The insulating fluid substance 30 has a viscosity of, for example, about 100 P (poise) or less and does not depend on the environmental temperature (−40 ° C. to 150 ° C.). As shown in FIG. 1, the insulating fluid substance 30 is filled in a sealed space in which the power element 12 is accommodated. The insulating fluid material 30 cooperates with the cooling fins 14, the rear radiator plate 20, and the upper radiator plate 22 to transmit heat generated by the power element 12 to the outside.

素子冷却構造1は、図1に示すように、縦置きされる。即ち、素子冷却構造1は、基板10及び背面放熱板20の基本面が水平面に対して略直角になるような向きで、例えば車両の適切な位置に搭載される。これにより、後述の対流作用が促進される。尚、素子冷却構造1は、必ずしも鉛直方向に平行に縦置きされる必要はなく、水平面に対して基板10及び背面放熱板20の基本面がゼロ度よりも有意に大きい角度をなしていればよい。   The element cooling structure 1 is placed vertically as shown in FIG. In other words, the element cooling structure 1 is mounted in an appropriate position of the vehicle, for example, in such an orientation that the basic surfaces of the substrate 10 and the rear radiator 20 are substantially perpendicular to the horizontal plane. Thereby, the below-mentioned convection action is promoted. In addition, the element cooling structure 1 does not necessarily need to be placed vertically in parallel with the vertical direction, as long as the basic surfaces of the substrate 10 and the rear heat sink 20 are significantly larger than zero degrees with respect to the horizontal plane. Good.

次に、図1の参照を続けつつ、上述の素子冷却構造1の冷却原理について説明する。尚、図1において、絶縁性流動物質30に関連して図示される白抜きの矢印(A1,A2及びA3)は、高温の絶縁性流動物質30の移動方向(パワー素子12の発する熱の移動方向)を示し、黒塗りの矢印は、低温の絶縁性流動物質30の移動方向を示す。   Next, the cooling principle of the element cooling structure 1 described above will be described with continuing reference to FIG. In FIG. 1, the white arrows (A1, A2, and A3) illustrated in relation to the insulating fluid substance 30 indicate the moving direction of the high temperature insulator fluid substance 30 (the movement of heat generated by the power element 12). Direction), and a black arrow indicates a moving direction of the low-temperature insulating fluid substance 30.

広く知られているようにパワー素子12は、動作時に熱を発する。パワー素子12の上面側の熱は、次のようにして外部に放出される。即ち、パワー素子12上面付近の絶縁性流動物質30は、パワー素子12の発する熱で熱され、先ず、図の矢印A1に示すように、上方へと移動する。この上方への移動は、上向きに反る冷却フィン14により促進される。この際、上方へ移動する高温の絶縁性流動物質30は、上方放熱板22付近から下方に移動する冷却された絶縁性流動物質30との間での対流作用により、冷却される。尚、上方放熱板22付近から下方に移動する冷却された絶縁性流動物質30の流れは、黒の下向きの矢印で図示されている。また、パワー素子12付近から上方に移動する比較的高温の絶縁性流動物質30は、基板10の上縁を越えると、図の矢印A2に示すように、背面放熱板20と接して冷却され、また、図の矢印A3に示すように、上方放熱板22と接して冷却される。   As is widely known, the power element 12 generates heat during operation. The heat on the upper surface side of the power element 12 is released to the outside as follows. That is, the insulating fluid substance 30 near the upper surface of the power element 12 is heated by the heat generated by the power element 12, and first moves upward as indicated by an arrow A1 in the figure. This upward movement is facilitated by the cooling fins 14 that warp upward. At this time, the high-temperature insulating fluid substance 30 moving upward is cooled by the convection action with the cooled insulating fluid substance 30 moving downward from the vicinity of the upper radiator plate 22. In addition, the flow of the cooled insulating fluid 30 that moves downward from the vicinity of the upper radiator plate 22 is illustrated by a black downward arrow. In addition, the relatively high temperature insulating fluid substance 30 moving upward from the vicinity of the power element 12 is cooled in contact with the rear radiator plate 20 as shown by an arrow A2 in the figure when it exceeds the upper edge of the substrate 10. Moreover, as shown by the arrow A3 in the figure, the upper heat sink 22 is contacted and cooled.

パワー素子12の下面側(図の右側)の熱は、通常通り、基板10及び背面放熱板20を介して外部(冷却水50)に放出される。   The heat on the lower surface side (right side in the figure) of the power element 12 is released to the outside (cooling water 50) through the substrate 10 and the rear radiator plate 20 as usual.

以上説明した本実施例による素子冷却構造1によれば、とりわけ、以下のような優れた効果が奏される。   According to the element cooling structure 1 according to the present embodiment described above, the following excellent effects can be obtained.

本実施例によれば、上述の如く、縦置き型の素子冷却構造1で生ずる対流を利用してパワー素子12の熱を効果的に外部に放出することができる。即ち、高温の絶縁性流動物質30が上方に移動し、低温の絶縁性流動物質30が下方に移動する際に生ずる対流を効果的に利用して、パワー素子12の熱を効果的に外部に放出することができる。これにより、パワーモジュールの冷却性能が向上する。   According to the present embodiment, as described above, the heat of the power element 12 can be effectively released to the outside by using the convection generated in the vertical element cooling structure 1. That is, the heat of the power element 12 is effectively transferred to the outside by effectively utilizing the convection generated when the high temperature insulating fluid 30 moves upward and the low temperature insulating fluid 30 moves downward. Can be released. Thereby, the cooling performance of the power module is improved.

特に、本実施例によれば、上向きに反る冷却フィン14により、パワー素子12の上面付近で対流が促進されるので、パワー素子12の熱を効果的に外部に放出することができ、冷却性能が向上する。   In particular, according to the present embodiment, convection is promoted near the upper surface of the power element 12 by the cooling fins 14 that warp upward, so that the heat of the power element 12 can be effectively released to the outside, and cooling is performed. Performance is improved.

また、本実施例では、上述の如く、上部側から新鮮な冷却水50を導入し、また、パワー素子12よりも上方側でのみ背面放熱板20と絶縁性流動物質30とが接触するので、密閉空間内の絶縁性流動物質30は、上部側が下部側よりも有意に効率的に冷却される。これにより、冷却された絶縁性流動物質30の下方向の移動及びひいては上述の対流が効果的に促進され、冷却性能が向上する。   Further, in this embodiment, as described above, fresh cooling water 50 is introduced from the upper side, and the rear radiator 20 and the insulating fluid substance 30 are in contact only on the upper side of the power element 12. The insulating fluid substance 30 in the sealed space is cooled more efficiently on the upper side than on the lower side. As a result, the downward movement of the cooled insulating fluid substance 30 and the above-described convection are effectively promoted, and the cooling performance is improved.

また、上述の如く冷却性能が向上するので、パワー素子12及びパワーモジュールを効率的に小型化することができる。また、パワーモジュールの信頼性が向上する。   Further, since the cooling performance is improved as described above, the power element 12 and the power module can be efficiently downsized. In addition, the reliability of the power module is improved.

また、絶縁性流動物質30は、上述の如く密閉されるので、パワー素子12の腐食の問題が生じない。また、例えば図3に示す比較例のようにパワー素子の上面側と下面側の双方に冷却水を循環させる構成に比べて、絶縁性流動物質30の循環に必要なスペース及び部品を節約することができ、また、大幅な変更無しに既存のパワーモジュール構造に適用することができる。また、図3に示す例のように、絶縁性流動物質30を冷却水50のように循環させる場合には、絶縁性流動物質30の圧がパワー素子12上面におけるワイヤーボンディングの配線に悪影響を及ぼす虞があるが、本実施例によれば、かかる不都合が防止される。   Further, since the insulating fluid substance 30 is sealed as described above, the problem of corrosion of the power element 12 does not occur. Further, for example, as compared with a configuration in which the cooling water is circulated on both the upper surface side and the lower surface side of the power element as in the comparative example shown in FIG. And can be applied to existing power module structures without significant changes. 3, when the insulating fluid 30 is circulated like the cooling water 50, the pressure of the insulating fluid 30 adversely affects the wire bonding wiring on the upper surface of the power element 12. Although there is a possibility, according to the present embodiment, such inconvenience is prevented.

また、上述の如く、パワー素子12の上面に上部電極を配置する場合には、過渡熱特性が向上する。   Further, as described above, when the upper electrode is disposed on the upper surface of the power element 12, the transient thermal characteristics are improved.

以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.

例えば、上述の実施例では、基板10と背面放熱板20を別部材で構成しているが、背面放熱板20の機能を基板10により実現し、背面放熱板20を廃止してもよい。   For example, in the above-described embodiment, the substrate 10 and the rear heat sink 20 are configured as separate members, but the function of the rear heat sink 20 may be realized by the substrate 10 and the rear heat sink 20 may be eliminated.

本発明による素子冷却構造1の一実施例の主要断面を示す図である。It is a figure which shows the main cross section of one Example of the element cooling structure 1 by this invention. 本実施例の素子冷却構造1に関連するパワーモジュールの回路構成の一例を示す図である。It is a figure which shows an example of the circuit structure of the power module relevant to the element cooling structure 1 of a present Example. パワー素子の両面に冷却水を循環させる比較例を概略的に示す図である。It is a figure which shows roughly the comparative example which circulates cooling water on both surfaces of a power element.

符号の説明Explanation of symbols

1 素子冷却構造
10 基板
12 パワー素子
14 冷却フィン
20 背面放熱板
20a フィン
22 上方放熱板
22a フィン
30 絶縁性流動物質
40 カバー部材
50 冷却水
52 流路
DESCRIPTION OF SYMBOLS 1 Element cooling structure 10 Board | substrate 12 Power element 14 Cooling fin 20 Back surface heat sink 20a Fin 22 Upper heat sink 22a Fin 30 Insulating fluid substance 40 Cover member 50 Cooling water 52 Flow path

Claims (3)

熱を発する素子が第1面側に設けられ、水平面に対して傾斜をもって配置された基板と、
該基板の第1面に接触する空間に充填された絶縁性流動物質と、
前記素子の位置よりも上方に配置され、前記絶縁性流動物質を冷却する冷却手段と、
前記素子における前記絶縁性流動物質と接触する面に設けられ、下方から上方に向けて傾斜して延在する複数のフィンとを備えることを特徴とする、素子冷却構造。
An element that generates heat is provided on the first surface side, and a substrate disposed with an inclination with respect to a horizontal plane;
An insulating fluid material filled in a space in contact with the first surface of the substrate;
A cooling means disposed above the position of the element to cool the insulating fluid material;
An element cooling structure, comprising: a plurality of fins provided on a surface of the element in contact with the insulating fluid substance and extending obliquely from below to above.
前記絶縁性流動物質が充填される空間は密閉されている、請求項1に記載の素子冷却構造。   The element cooling structure according to claim 1, wherein a space filled with the insulating fluid substance is sealed. 前記基板の前記第1面の裏側の第2面側に配置され、前記素子の位置よりも上方で前記絶縁性流動物質に接触する第1放熱板を更に備え、
前記冷却手段は、前記第1放熱板の上縁で前記第1放熱板に接続する第2放熱板であって、前記絶縁性流動物質に接触する第2放熱板を含み、
前記第1放熱板及び第2放熱板は、前記絶縁性流動物質を密閉する壁の一部を構成し、前記第1放熱板及び第2放熱板のそれぞれの前記絶縁性流動物質に接触する面の裏側に、冷媒の流通経路を更に備える、請求項2に記載の素子冷却構造。
A first heat dissipating plate disposed on the second surface side of the first surface of the substrate and in contact with the insulating fluid material above the position of the element;
The cooling means includes a second heat radiating plate connected to the first heat radiating plate at an upper edge of the first heat radiating plate, the second heat radiating plate being in contact with the insulating fluid substance,
The first heat radiating plate and the second heat radiating plate constitute a part of a wall that seals the insulating fluid material, and surfaces of the first heat radiating plate and the second heat radiating plate that are in contact with the insulating fluid material. The element cooling structure according to claim 2, further comprising a refrigerant flow path on a back side of the element.
JP2007190039A 2007-07-20 2007-07-20 Element cooling structure Expired - Fee Related JP4840276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007190039A JP4840276B2 (en) 2007-07-20 2007-07-20 Element cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007190039A JP4840276B2 (en) 2007-07-20 2007-07-20 Element cooling structure

Publications (2)

Publication Number Publication Date
JP2009027040A JP2009027040A (en) 2009-02-05
JP4840276B2 true JP4840276B2 (en) 2011-12-21

Family

ID=40398549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007190039A Expired - Fee Related JP4840276B2 (en) 2007-07-20 2007-07-20 Element cooling structure

Country Status (1)

Country Link
JP (1) JP4840276B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010130993A2 (en) * 2009-05-12 2010-11-18 Iceotope Limited Cooled electronic system
US8369090B2 (en) 2009-05-12 2013-02-05 Iceotope Limited Cooled electronic system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100901B2 (en) * 1987-08-19 1994-12-12 富士通株式会社 Color mixing processor
JP4039339B2 (en) * 2003-08-07 2008-01-30 トヨタ自動車株式会社 Immersion type double-sided heat dissipation power module

Also Published As

Publication number Publication date
JP2009027040A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
US9460981B2 (en) Semiconductor module
KR102048478B1 (en) Power module of double-faced cooling and method for manufacturing thereof
JP7187992B2 (en) Semiconductor modules and vehicles
JP2009111154A (en) Power semiconductor module
US20170133308A1 (en) Semiconductor device and production method thereof
US9299637B2 (en) Semiconductor module
JP5851599B2 (en) Power module
CN110660762A (en) Heat transfer structure, power electronic module, method for manufacturing power electronic module, and cooling element
JP2012079950A (en) Semiconductor cooling device
JP2012248700A (en) Semiconductor device
JP2019062066A (en) Semiconductor device
JP5891616B2 (en) Semiconductor device
JP4840276B2 (en) Element cooling structure
JP2007019130A (en) Heat dissipator
WO2013065462A1 (en) Semiconductor device and manufacturing method therefor
JP2013016606A (en) Cooling structure of power module
JP2013026296A (en) Power module
JP2015185835A (en) Semiconductor device and manufacturing method of the same
JP6555177B2 (en) Semiconductor module
WO2014045758A1 (en) Power semiconductor module
JP4649950B2 (en) Semiconductor device with cooler
JP5321526B2 (en) Semiconductor module cooling device
US10950522B2 (en) Electronic device
JP2004200333A (en) Packaging structure of water cooling power semiconductor module
JP2009164156A (en) Power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees