JP4817408B2 - Method for producing anode electrode of dye-sensitized solar cell and anode electrode of dye-sensitized solar cell - Google Patents

Method for producing anode electrode of dye-sensitized solar cell and anode electrode of dye-sensitized solar cell Download PDF

Info

Publication number
JP4817408B2
JP4817408B2 JP2005170185A JP2005170185A JP4817408B2 JP 4817408 B2 JP4817408 B2 JP 4817408B2 JP 2005170185 A JP2005170185 A JP 2005170185A JP 2005170185 A JP2005170185 A JP 2005170185A JP 4817408 B2 JP4817408 B2 JP 4817408B2
Authority
JP
Japan
Prior art keywords
thin film
carbon
dye
solar cell
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005170185A
Other languages
Japanese (ja)
Other versions
JP2006344531A (en
Inventor
正裕 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005170185A priority Critical patent/JP4817408B2/en
Publication of JP2006344531A publication Critical patent/JP2006344531A/en
Application granted granted Critical
Publication of JP4817408B2 publication Critical patent/JP4817408B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は色素増感型太陽電池のアノード電極の製造方法および色素増感型太陽電池のアノード電極に関し、より詳細にはアノード電極の表面の半導体微粒子である酸化チタンをナノ多孔質薄膜に形成することで変換効率を向上させた色素増感型太陽電池のアノード電極の製造方法および色素増感型太陽電池のアノード電極に関する。   The present invention relates to a method for producing an anode electrode for a dye-sensitized solar cell and an anode electrode for a dye-sensitized solar cell, and more specifically, titanium oxide which is a semiconductor fine particle on the surface of the anode electrode is formed on a nanoporous thin film. The present invention relates to a method for producing an anode electrode of a dye-sensitized solar cell, which has improved conversion efficiency, and an anode electrode of the dye-sensitized solar cell.

近年、シリコンなどのpn接合を用いた太陽電池システムが一般の市場への普及の段階にあるが、その導入コストが高額であることが普及拡大の障害となっている。またシリコン型太陽電池は、その製造段階で多量の電力を消費することから太陽電池システムの導入による環境負荷軽減といった目的にも背反し、さらにその耐用年数を向かえた後には、シリコンにドープした元素による汚染など廃棄物としての問題点を抱えている。そのため低コストで提供することができ、また、製造時や廃棄時においても環境に与える影響が小さい太陽電池として特許文献1に記載されるような色素増感型太陽電池が現在注目されている。   In recent years, solar cell systems using pn junctions such as silicon are in the stage of popularization in the general market, but the high introduction cost is an obstacle to the spread. In addition, silicon-type solar cells consume a large amount of power at the manufacturing stage, which is contrary to the purpose of reducing the environmental burden by introducing a solar cell system, and after the end of its useful life, silicon-doped elements It has problems as waste, such as contamination by Therefore, a dye-sensitized solar cell as described in Patent Document 1 is currently attracting attention as a solar cell that can be provided at a low cost and has a small influence on the environment at the time of manufacture and disposal.

光合成型太陽電池とも呼ばれる色素増感型太陽電池の構造を説明するために、セルの断面構造を図7に模式的に示した。図において、101は硝子基板、102は硝子基板の下面に設けられた透明な材料による電極で、例えばフッ素(F)をドープした酸化スズ(SnO)が用いられる。103は光吸収粒子層で、表面に色素を吸着した粒径がほぼ50nm以下の二酸化チタン(TiO:以下単に「酸化チタン」と呼ぶ。)よりなる半導体微粒子100を電極102に堆積させたものである。この光吸収粒子層103は10μm以下の薄い膜状に形成される。104は電解液で、光吸収粒子層103を含み、或いは電解液104が光吸収粒子層103に浸潤するように設けられているものである。105は対向電極である。
このように色素増感型太陽電池は、半導体膜を微粒子化しその表面に光を吸収する色素を吸着させることにより、変換効率を向上させるようになっている。
In order to explain the structure of a dye-sensitized solar cell, also called a photosynthetic solar cell, the cross-sectional structure of the cell is schematically shown in FIG. In the figure, 101 is a glass substrate, 102 is an electrode made of a transparent material provided on the lower surface of the glass substrate, and for example, tin oxide (SnO 2 ) doped with fluorine (F) is used. 103 is a light-absorbing particle layer in which semiconductor fine particles 100 made of titanium dioxide (TiO 2 : hereinafter simply referred to as “titanium oxide”) having a particle size of approximately 50 nm or less with a dye adsorbed on the surface are deposited on the electrode 102. It is. The light absorbing particle layer 103 is formed in a thin film shape of 10 μm or less. Reference numeral 104 denotes an electrolytic solution that includes the light absorbing particle layer 103 or is provided so that the electrolytic solution 104 infiltrates the light absorbing particle layer 103. Reference numeral 105 denotes a counter electrode.
Thus, the dye-sensitized solar cell is designed to improve the conversion efficiency by making the semiconductor film fine particles and adsorbing the dye that absorbs light on the surface thereof.

以前より特許文献1に示したような色素増感型太陽電池は、環境に与える負荷が小さく、非常に低コストで製作できることが知られていたが、入射光量に対する電池出力の比で表される変換効率が低いためにその実用化は困難とされていた。ところが近年の研究により、色素増感型太陽電池の酸化チタン(半導体膜)を微粒子化し、その表面に光を吸収する色素を吸着させることにより、シリコンを中心としたpn接合を用いた太陽電池に接近した変換効率が得られるような報告もされており、外国を中心に実用化も視野に入れた研究開発がされるようになっている。   The dye-sensitized solar cell as shown in Patent Document 1 has been known to have a low environmental load and can be manufactured at a very low cost, but is expressed by the ratio of the battery output to the amount of incident light. Because of the low conversion efficiency, its practical use was considered difficult. However, in recent years, a titanium oxide (semiconductor film) of a dye-sensitized solar cell is finely divided, and a dye that absorbs light is adsorbed on the surface of the solar cell using a pn junction centering on silicon. There are reports that close conversion efficiency can be obtained, and research and development is being conducted with a view to practical application mainly in foreign countries.

このように色素増感型太陽電池では、アノード電極にコーティングする酸化チタンの状態を微粒子化又は多孔質化することが重要となる。酸化チタンを微粒子化又は多孔質化させると、二酸化チタンの比表面積を大きくすることでより多くの色素を吸着させることが可能になり、電池の発電量をあげることができる。
特開平10−255863号公報
As described above, in the dye-sensitized solar cell, it is important to make the state of titanium oxide coated on the anode electrode fine or porous. When titanium oxide is made fine or porous, more dye can be adsorbed by increasing the specific surface area of titanium dioxide, and the power generation amount of the battery can be increased.
JP-A-10-255863

しかしながら図7に示したような色素増感型太陽電池では、アノード電極にコーティングする酸化チタンの比表面積が充分ではなく、増感色素の吸着表面積をできるだけ大きくするとともに、入射光路をできるだけ長くして変換効率を充分に高めることが困難であった。そのため高日射時や低日射時に、シリコンを中心としたpn接合を用いた太陽電池と比して特に変換効率が低いといった問題があった。   However, in the dye-sensitized solar cell as shown in FIG. 7, the specific surface area of titanium oxide coated on the anode electrode is not sufficient, the adsorption surface area of the sensitizing dye is made as large as possible, and the incident optical path is made as long as possible. It was difficult to sufficiently increase the conversion efficiency. For this reason, there has been a problem that the conversion efficiency is particularly low when compared with a solar cell using a pn junction centering on silicon during high or low solar radiation.

この変換効率の低さは、色素自身の吸収が非常に小さいことによる長波長領域の光の透過に原因がある。これを改善するためには、増感色素を吸着させた酸化チタン(半導体微粒子)による光吸収粒子層を厚くする手法もあるが、光吸収粒子層は、その構造上の理由から直列抵抗が高く、厚膜化することにより高日射時の変換効率の低下をさらに大きくするという問題があった。また逆に、直列抵抗を改善するために、光吸収粒子層を薄膜化した場合は、長波長領域の光の透過をさらに増加させることになり、いずれの場合も変換効率を高めることが困難であった。   This low conversion efficiency is caused by the transmission of light in the long wavelength region due to the very small absorption of the dye itself. To improve this, there is a method to thicken the light-absorbing particle layer with titanium oxide (semiconductor fine particles) adsorbed with a sensitizing dye, but the light-absorbing particle layer has a high series resistance due to its structural reasons. However, there is a problem that the reduction in conversion efficiency during high solar radiation is further increased by increasing the film thickness. Conversely, if the light-absorbing particle layer is thinned to improve the series resistance, it will further increase the transmission of light in the long wavelength region, and in either case it is difficult to increase the conversion efficiency. there were.

本発明は上述した二律背反の変換効率の低下を解決するためになされたもので、アノード電極の表面の半導体微粒子である酸化チタンをナノ多孔質薄膜に形成することで変換効率を向上させた色素増感型太陽電池のアノード電極およびその製造方法を提供することを目的とする。 The present invention has been made to solve the above-mentioned decrease in the conversion efficiency, which is a trade-off between the above, and is a dye sensitizer that improves conversion efficiency by forming titanium oxide, which is a semiconductor fine particle on the surface of the anode electrode, in a nanoporous thin film. An object of the present invention is to provide an anode electrode for a sensitive solar cell and a method for producing the same.

上記目的を達成するため請求項1に記載の色素増感型太陽電池のアノード電極の製造方法は、透明基板の上に透明導電膜と、チタン、酸化チタン、チタン合金又はチタン合金酸化物からなる金属薄膜と、を順次形成し、該金属薄膜の表面に炭化水素を主成分とするガスの燃焼炎を直接当てて金属薄膜の表面温度が600℃以上となるように加熱処理するか、又は、炭化水素を主成分とするガスの燃焼ガス雰囲気中又は炭化水素を主成分とするガス雰囲気中で金属薄膜の表面をその表面温度が600℃以上となるように加熱処理することによって、該金属薄膜内部に炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン又は炭素ドープチタン合金酸化物からなる微細柱が林立する層を形成し、次いで該微細柱が林立する層を表面層に沿う方向で切断して前記透明導電膜上に炭素ドープ酸化チタン又は炭素ドープチタン合金酸化物からなる微細柱が林立するごとき形態を有するナノ多孔質薄膜を露出させ、該ナノ多孔質薄膜に増感色素を担持する、ことを特徴とする。   In order to achieve the above object, a method for producing an anode electrode of a dye-sensitized solar cell according to claim 1 comprises a transparent conductive film and titanium, titanium oxide, a titanium alloy or a titanium alloy oxide on a transparent substrate. A metal thin film is sequentially formed, and a heat treatment is performed so that the surface temperature of the metal thin film becomes 600 ° C. or higher by directly applying a combustion flame of a gas containing hydrocarbon as a main component to the surface of the metal thin film, or By heat-treating the surface of the metal thin film in a combustion gas atmosphere of a gas containing hydrocarbon as a main component or in a gas atmosphere containing a hydrocarbon as a main component so that the surface temperature becomes 600 ° C. or higher, the metal thin film A layer in which fine columns made of carbon-doped titanium oxide or carbon-doped titanium alloy oxide doped with carbon in a Ti—C bond state is formed inside, and then the layer in which the fine columns stand is used as a surface layer. The nanoporous thin film having a form in which fine columns made of carbon-doped titanium oxide or a carbon-doped titanium alloy oxide stand on the transparent conductive film by cutting in the direction opposite to the transparent conductive film is sensitized to the nanoporous thin film It is characterized by carrying a dye.

本発明者は色素増感型太陽電池の変換効率向上のための精力的研究を行った結果、チタン、酸化チタン、チタン合金又はチタン合金酸化物の金属薄膜の表面に任意の炭化水素を主成分とするガスの燃焼炎を直接当てて特定の条件下で加熱処理するか、又はチタン、酸化チタン、チタン合金又はチタン合金酸化物の金属薄膜の表面を特定の条件下のガス雰囲気中で加熱処理することによって、該金属薄膜の内部に炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン又は炭素ドープチタン合金酸化物からなる微細柱が林立する層が形成されること、および、この炭素ドープ酸化チタン等からなる微細柱が林立する層を表面層に沿う方向で切断することで、微細柱が林立するごとき形態を有するナノ多孔質薄膜を露出させることが可能なことを発見し、このナノ多孔質薄膜に増感色素を担持することで、色素増感型太陽電池の変換効率の向上を達成した。
すなわちこのような微細柱が林立するごとき形態を有するナノ多孔質薄膜は、比表面積が大きく光の吸収効率が高く、また、微細柱を成長させてナノ多孔質薄膜(光吸収粒子層)を厚くして入射光路をできるだけ長くした場合にも、微細柱のナノワイヤアレイによる導電パスが確保されているため直列抵抗を低く抑えることができ、これによりpn接合を用いた太陽電池と比して遜色のない変換効率を達成することができる。
なお本製造方法によれば、炭素ドープ酸化チタン又は炭素ドープチタン合金酸化物からなる微細柱が透明導電膜上の酸化チタン等の金属薄膜から直接成長するためその結合力が強く、アノード電極の耐久性が向上することとなる。
さらに本製造方法では、酸化チタンを透明導電膜上に堆積するためのバインダを使用していないため、日射によるバインダの劣化がなく、色素増感型太陽電池の長寿命化を図ることができるといった副次的効果もある。
As a result of intensive research for improving the conversion efficiency of the dye-sensitized solar cell, the present inventor has an arbitrary hydrocarbon as a main component on the surface of the metal thin film of titanium, titanium oxide, titanium alloy or titanium alloy oxide. Heat treatment under specific conditions by directly applying a combustion flame of the gas to be, or heat treatment of a metal thin film surface of titanium, titanium oxide, titanium alloy or titanium alloy oxide in a gas atmosphere under specific conditions By doing so, a layer in which fine pillars made of carbon-doped titanium oxide or carbon-doped titanium alloy oxide in which carbon is doped in a Ti-C bond state is formed inside the metal thin film, and this It is possible to expose a nanoporous thin film that has the shape of a fine pillar standing by cutting the layer where the fine pillar made of carbon-doped titanium oxide stands in the direction along the surface layer. I discovered that, this nanoporous thin film sensitizing dyes by carrying were achieve improved conversion efficiency of the dye-sensitized solar cell.
In other words, the nanoporous thin film having such a shape that a fine column stands is high in specific surface area and high in light absorption efficiency, and the nanoporous thin film (light absorbing particle layer) is thickened by growing the fine column. Thus, even when the incident optical path is made as long as possible, the series resistance can be kept low because the conductive path is ensured by the nanowire array of fine pillars, which is inferior to that of a solar cell using a pn junction. No conversion efficiency can be achieved.
In addition, according to this manufacturing method, since the fine column made of carbon-doped titanium oxide or carbon-doped titanium alloy oxide grows directly from a metal thin film such as titanium oxide on the transparent conductive film, its bonding force is strong and durability of the anode electrode Will be improved.
Furthermore, in this manufacturing method, since a binder for depositing titanium oxide on the transparent conductive film is not used, there is no deterioration of the binder due to solar radiation, and the life of the dye-sensitized solar cell can be extended. There are also side effects.

ここで前記炭化水素が、請求項2に記載のように、アセチレンである、ことを特徴とする。   Here, the hydrocarbon is acetylene as described in claim 2.

本発明の製造方法においては炭素ドープ酸化チタン又は炭素ドープチタン合金酸化物からなる微細柱が林立する層を形成するために、炭化水素を主成分とするガスの燃焼炎、炭化水素を主成分とするガスの燃焼ガス雰囲気又は炭化水素を主成分とするガス雰囲気を用いることが必須であり、特にアセチレンなどの還元炎を利用することが望ましい。炭化水素含有量が少ない燃料を用いる場合には、炭素ドープされた微細柱の成長が不十分となることがあるためである。   In the production method of the present invention, in order to form a layer in which fine columns made of carbon-doped titanium oxide or carbon-doped titanium alloy oxide stand, a gas combustion flame mainly containing hydrocarbons, and hydrocarbons as main components. It is essential to use a combustion gas atmosphere of the gas to be used or a gas atmosphere mainly composed of hydrocarbon, and it is particularly desirable to use a reducing flame such as acetylene. This is because when a fuel with a low hydrocarbon content is used, the growth of carbon-doped fine columns may be insufficient.

前記微細柱が林立する層を表面層に沿う方向で切断する方法は、請求項3に記載のように、前記金属薄膜の表面に形成した炭素ドープ酸化チタン又は炭素ドープチタン合金酸化物からなる微細柱が林立する層の表面と裏面との間に温度差を設けることにより、熱応力によって切断する方法である、ことが好ましい。   The method of cutting the layer in which the fine pillar stands is in a direction along the surface layer, as described in claim 3, the method comprises finely forming carbon-doped titanium oxide or carbon-doped titanium alloy oxide formed on the surface of the metal thin film. A method of cutting by thermal stress by providing a temperature difference between the front surface and the back surface of the layer where the pillar stands is preferable.

微細柱が林立している層を表面層に沿う方向で切断する方法としては、研磨等によって表面層を除去してやる方法もあるが、微細柱が林立している層の表面と裏面との間に温度差を設けることで熱応力によって切断してやれば、研磨等による方法よりも容易に表面層を除去できる。またかかる方法によれば、除去した表面層側の炭素ドープ酸化チタン等を、種々の用途への適用が容易になる。   As a method of cutting the layer in which the fine columns are erected in the direction along the surface layer, there is a method of removing the surface layer by polishing or the like, but between the surface and the back surface of the layer in which the fine columns are erected If cutting is performed by thermal stress by providing a temperature difference, the surface layer can be removed more easily than by a method such as polishing. Further, according to such a method, it becomes easy to apply the carbon-doped titanium oxide or the like on the removed surface layer side to various uses.

また請求項4に記載のように、前記加熱処理を600〜1500℃で180秒以上1800秒以下実施するか、又は1500℃を超える温度で30秒以上600秒以下実施する、ことも好ましい。   In addition, as described in claim 4, it is also preferable that the heat treatment is performed at 600 to 1500 ° C. for 180 seconds to 1800 seconds or at a temperature exceeding 1500 ° C. for 30 seconds to 600 seconds.

本発明のように、加熱時間や加熱温度を調節することで、酸化チタンの炭素ドープ量を最適化し、また透明導電膜上に林立する微細柱の柱長も自由にコントロールすることができる。なおかかる記載は各温度での加熱時間を上記加熱時間よりも長くすることを排除するものではないが、実用上上記加熱時間以上に加熱処理を行ったとしても、効率的に炭素ドープ酸化チタン等の微細柱の成長をさせることができない。   As in the present invention, by adjusting the heating time and the heating temperature, the carbon doping amount of titanium oxide can be optimized, and the column lengths of the fine columns standing on the transparent conductive film can be freely controlled. Although this description does not exclude that the heating time at each temperature is longer than the above heating time, even if the heat treatment is carried out more than the above heating time in practice, the carbon-doped titanium oxide or the like is efficiently produced. The growth of fine pillars cannot be made.

また請求項5に記載の色素増感型太陽電池のアノード電極は、透明基板の上に透明導電膜及び金属酸化物膜を順次形成し、この金属酸化物膜の表面に増感色素を担持した色素増感型太陽電池のアノード電極であって、前記金属酸化物膜の表面を、炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン又は炭素ドープチタン合金酸化物からなる微細柱が林立するごとき形態を有するナノ多孔質薄膜とした、ことを特徴とする。   In the anode electrode of the dye-sensitized solar cell according to claim 5, a transparent conductive film and a metal oxide film are sequentially formed on a transparent substrate, and a sensitizing dye is supported on the surface of the metal oxide film. An anode electrode of a dye-sensitized solar cell, the surface of the metal oxide film having fine columns made of carbon-doped titanium oxide or carbon-doped titanium alloy oxide doped with carbon in a Ti-C bond state It is characterized by the nanoporous thin film having a form that stands like a forest.

本発明の色素増感型太陽電池のアノード電極は、請求項1乃至4に記載の製造方法によって製造されるものであり、金属薄膜を炭素ドープ酸化チタン等からなるナノ多孔質薄膜とし、好ましくはこのナノ多孔質薄膜を微細柱が林立するごとき形態の層とし、増感色素の吸着表面積を増大させるとともに入射光路を長くすることで、変換効率を高めることができる。   The anode electrode of the dye-sensitized solar cell of the present invention is manufactured by the manufacturing method according to claims 1 to 4, and the metal thin film is a nanoporous thin film made of carbon-doped titanium oxide or the like, preferably The nanoporous thin film is formed into a layer in the form of a fine column, and the conversion surface efficiency can be increased by increasing the adsorption surface area of the sensitizing dye and lengthening the incident optical path.

さらに請求項6に記載の本発明のように、前記ナノ多孔質薄膜を形成する炭素ドープ酸化チタン又は炭素ドープチタン合金酸化物からなる各微細柱は、0.2μm〜20μmの長さを有する、ことが好ましい。 Furthermore, like this invention of Claim 6 , each micro pillar which consists of carbon dope titanium oxide or carbon dope titanium alloy oxide which forms the said nanoporous thin film has a length of 0.2 micrometer-20 micrometers, It is preferable.

微細柱の長さを0.2μm〜20μm、より好ましくは0.2μm〜0.7μm程度とすることでナノ多孔質薄膜の直列抵抗をできるだけ低く抑えつつ、短波長から長波長の領域の光を吸収して変換効率の向上を達成することができる。   By setting the length of the fine column to 0.2 μm to 20 μm, more preferably about 0.2 μm to 0.7 μm, the series resistance of the nanoporous thin film is kept as low as possible, and light in the short wavelength to long wavelength region is emitted. Absorption can improve conversion efficiency.

ここで請求項7に記載のように、前記チタン合金酸化物は、Ti−6Al−4V、Ti−6Al−6V−2Sn、Ti−6Al−2Sn−4Zr−6Mo、Ti−10V−2Fe−3Al、Ti−7Al−4Mo、Ti−5Al−2.5Sn、Ti−6Al−5Zr−0.5Mo−0.2Si、Ti−5.5Al−3.5Sn−3Zr−0.3Mo−1Nb−0.3Si、Ti−8Al−1Mo− 1V、Ti−6Al−2Sn−4Zr−2Mo、Ti−5Al−2Sn−2Zr−4Mo−4Cr、Ti−11.5Mo−6Zr−4.5Sn、Ti−15V−3Cr−3Al−3Sn、Ti−15Mo−5Zr−3Al、Ti−15Mo−5Zr、又はTi−13V−11Cr−3Al、の酸化物である。 Here, as described in claim 7 , the titanium alloy oxide includes Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-2Sn-4Zr-6Mo, Ti-10V-2Fe-3Al, Ti-7Al-4Mo, Ti-5Al-2.5Sn, Ti-6Al-5Zr-0.5Mo-0.2Si, Ti-5.5Al-3.5Sn-3Zr-0.3Mo-1Nb-0.3Si, Ti-8Al-1Mo-1V, Ti-6Al-2Sn-4Zr-2Mo, Ti-5Al-2Sn-2Zr-4Mo-4Cr, Ti-11.5Mo-6Zr-4.5Sn, Ti-15V-3Cr-3Al- It is an oxide of 3Sn, Ti-15Mo-5Zr-3Al, Ti-15Mo-5Zr, or Ti-13V-11Cr-3Al.

本発明の色素増感型太陽電池のアノード電極は、透明基板の上に透明導電膜と、チタン、チタン合金、チタン合金酸化物又は酸化チタンからなる金属薄膜と、を順次形成し、この金属薄膜の表面を、炭化水素を主成分とするガスの燃焼炎等を用いて高温で加熱処理し、金属薄膜内部に形成された炭素ドープ酸化チタン等からなる微細柱が林立する層を表面層に沿う方向で切断して炭素ドープ酸化チタン等からなる微細柱が林立するごとき形態を有するナノ多孔質薄膜を露出させ、該ナノ多孔質薄膜に増感色素を担持する、ことにより製造することができる。ここで透明基板および透明導電膜には電気伝導性ガラスを用いることも好ましい。   The anode electrode of the dye-sensitized solar cell of the present invention is formed by sequentially forming a transparent conductive film and a metal thin film made of titanium, titanium alloy, titanium alloy oxide, or titanium oxide on a transparent substrate. The surface of the metal is heat-treated at a high temperature using a combustion flame of a gas containing hydrocarbon as a main component, and a layer in which fine columns made of carbon-doped titanium oxide or the like formed inside the metal thin film stand along the surface layer. It can be manufactured by exposing a nanoporous thin film having a shape such that fine columns made of carbon-doped titanium oxide or the like are formed by cutting in the direction and carrying a sensitizing dye on the nanoporous thin film. Here, it is also preferable to use electrically conductive glass for the transparent substrate and the transparent conductive film.

透明導電膜上へのチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる金属薄膜の形成は、微細な酸化チタン等の粉末のペーストを用いるドクターブレイド法、チタンアルコキシドを用いるゾルゲル法、コロイド法、スプレイ熱分解法、静電スプレイ法などを用いて行われる。
酸化チタン等の粉末は、加熱処理の容易性、製造の容易性を考慮して15nm〜100nm程度のものを用いることが好ましい。
Formation of a metal thin film made of titanium, titanium alloy, titanium alloy oxide or titanium oxide on a transparent conductive film is performed by a doctor blade method using a powder paste such as fine titanium oxide, a sol-gel method using a titanium alkoxide, or a colloid method. , Spray pyrolysis method, electrostatic spray method and the like.
As the powder of titanium oxide or the like, it is preferable to use a powder of about 15 nm to 100 nm in consideration of the ease of heat treatment and the ease of production.

上記のチタン合金として公知の種々のチタン合金を用いることができ、特に制限されることはない。例えば、Ti−6Al−4V、Ti−6Al−6V−2Sn、Ti−6Al−2Sn−4Zr−6Mo、Ti−10V−2Fe−3Al、Ti−7Al−4Mo、Ti−5Al−2.5Sn、Ti−6Al−5Zr−0.5Mo−0.2Si、Ti−5.5Al−3.5Sn−3Zr−0.3Mo−1Nb−0.3Si、Ti−8Al−1Mo−1V、Ti−6Al−2Sn−4Zr−2Mo、Ti−5Al−2Sn−2Zr−4Mo−4Cr、Ti−11.5Mo−6Zr−4.5Sn、Ti−15V−3Cr−3Al−3Sn、Ti−15Mo−5Zr−3Al、Ti−15Mo−5Zr、Ti−13V−11Cr−3Al等を用いることができる。   Various known titanium alloys can be used as the titanium alloy, and are not particularly limited. For example, Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-2Sn-4Zr-6Mo, Ti-10V-2Fe-3Al, Ti-7Al-4Mo, Ti-5Al-2.5Sn, Ti- 6Al-5Zr-0.5Mo-0.2Si, Ti-5.5Al-3.5Sn-3Zr-0.3Mo-1Nb-0.3Si, Ti-8Al-1Mo-1V, Ti-6Al-2Sn-4Zr- 2Mo, Ti-5Al-2Sn-2Zr-4Mo-4Cr, Ti-11.5Mo-6Zr-4.5Sn, Ti-15V-3Cr-3Al-3Sn, Ti-15Mo-5Zr-3Al, Ti-15Mo-5Zr, Ti-13V-11Cr-3Al or the like can be used.

なお本願発明者は、透明導電膜の上に形成する、チタン、チタン合金、チタン合金酸化物又は酸化チタンからなる金属薄膜の代わりに、Nb、ZnO、SnO又はZnO−SnO複合材料からなる金属薄膜を透明導電膜の上に形成し、これに炭素をドープすることで、入射光路を長くして変換効率を高めたナノ多孔質薄膜を用いた色素増感型太陽電池のアノード電極およびその製造方法の研究も行っており、かかる金属薄膜によっても一定の成果をあげている。 The inventor of the present application uses Nb 2 O 3 , ZnO, SnO 2 or ZnO—SnO 2 composite instead of a metal thin film made of titanium, titanium alloy, titanium alloy oxide or titanium oxide formed on the transparent conductive film. The anode of a dye-sensitized solar cell using a nanoporous thin film with a long incident optical path and high conversion efficiency by forming a metal thin film of material on a transparent conductive film and doping it with carbon We are also conducting research on electrodes and their manufacturing methods, and certain results have been achieved with such metal thin films.

本発明のアノード電極の製造においては、炭化水素、特にアセチレンを主成分とするガスの燃焼炎を用いることができ、特に還元炎を利用することが望ましい。炭化水素含有量が少ない燃料を用いる場合には、炭素のドープ量が不十分であったりする。本発明においてはこの炭化水素を主成分とするガスとは炭化水素を少なくとも50容量%含有するガスを意味し、例えば、アセチレンを少なくとも50容量%含有し、適宜、空気、水素、酸素等を混合したガスを意味する。本発明の色素増感型太陽電池の製造においては、炭化水素を主成分とするガスがアセチレンを50容量%以上含有することが好ましく、炭化水素がアセチレン100%であることが最も好ましい。不飽和炭化水素、特に三重結合を有するアセチレンを用いた場合には、その燃焼の過程で、特に還元炎部分で、不飽和結合部分が分解して中間的なラジカル物質が形成され、このラジカル物質は活性が強いので炭素ドープが生じ易いと考えられるためである。   In the production of the anode electrode of the present invention, it is possible to use a combustion flame of a gas mainly composed of hydrocarbon, particularly acetylene, and it is particularly desirable to use a reducing flame. When a fuel with a low hydrocarbon content is used, the carbon doping amount may be insufficient. In the present invention, the gas containing hydrocarbon as a main component means a gas containing at least 50% by volume of hydrocarbon, for example, containing at least 50% by volume of acetylene and appropriately mixing air, hydrogen, oxygen and the like. Means gas. In the production of the dye-sensitized solar cell of the present invention, the gas containing hydrocarbon as a main component preferably contains 50% by volume or more of acetylene, and the hydrocarbon is most preferably 100% acetylene. When unsaturated hydrocarbons, especially acetylene having a triple bond, are used, in the process of combustion, especially in the reducing flame part, the unsaturated bond part decomposes to form an intermediate radical substance. This is because carbon doping is likely to occur because of its strong activity.

なお本発明のアノード電極の製造において、加熱処理する金属薄膜がチタン又はチタン合金である場合には、該チタン又はチタン合金を酸化する酸素が必要であり、その分だけ空気又は酸素を含んでいる必要がある。   In the production of the anode electrode of the present invention, when the metal thin film to be heat-treated is titanium or a titanium alloy, oxygen that oxidizes the titanium or titanium alloy is necessary, and air or oxygen is included correspondingly. There is a need.

本発明においては、チタン、チタン合金、チタン合金酸化物又は酸化チタンからなる金属薄膜の表面を、炭化水素を主成分とするガスの燃焼炎を用いて高温で加熱処理するが、この場合に、金属薄膜の表面に炭化水素を主成分とするガスの燃焼炎を直接当てて高温で加熱処理しても、そのような金属薄膜の表面を炭化水素を主成分とするガスの燃焼ガス雰囲気中で高温で加熱処理してもよく、この加熱処理は例えば炉内で実施することができる。
燃焼炎を直接当てて高温で加熱処理する場合には、上記のような燃料ガスを炉内で燃焼させ、その燃焼炎を該金属薄膜の表面に当てればよい。燃焼ガス雰囲気中で高温で加熱処理する場合には、上記のような燃料ガスを炉内で燃焼させ、その高温の燃焼ガス雰囲気を利用する。
In the present invention, the surface of the metal thin film made of titanium, titanium alloy, titanium alloy oxide or titanium oxide is heat-treated at a high temperature using a combustion flame of a gas containing hydrocarbon as a main component. Even if the surface of the metal thin film is directly exposed to a combustion flame of a gas containing hydrocarbon as a main component and heat-treated at a high temperature, the surface of such a metal thin film is exposed to a gas containing a hydrocarbon as a main component in a combustion gas atmosphere. Heat treatment may be performed at a high temperature, and this heat treatment can be performed in a furnace, for example.
When heat treatment is performed at a high temperature by directly applying a combustion flame, the above-described fuel gas may be burned in a furnace and the combustion flame may be applied to the surface of the metal thin film. When heat treatment is performed in a combustion gas atmosphere at a high temperature, the above fuel gas is burned in a furnace and the high-temperature combustion gas atmosphere is used.

加熱処理については、金属薄膜の表面温度が600〜1500℃、好ましくは1000〜1200℃となり、金属薄膜の表面層として炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層が形成されるように加熱処理する必要がある。金属薄膜の表面温度が600℃未満で終わる加熱処理の場合には、得られる炭素ドープ酸化チタン層を有する金属薄膜の耐久性が不十分となる可能性がある。一方、金属薄膜の表面温度が1500℃を超える加熱処理の場合には、加熱処理後の冷却時にその金属薄膜表面部から極薄膜の剥離が生じてしまうため、耐久性は低下することとなる。
しかしながら金属薄膜の表面温度が600〜1500℃となる加熱処理の場合や1500℃を超える温度となる加熱処理の場合に、意図的に加熱時間を長く(600〜1500℃では180秒以上、1500℃を超える温度では30秒以上)することで加熱処理後の冷却時に極薄膜の剥離を生じさせ、これにより切断工程を経ずに、炭素ドープ酸化チタン等からなる微細柱が林立するごとき形態を有するナノ多孔質薄膜を露出させることも可能である。
As for the heat treatment, the surface temperature of the metal thin film is 600 to 1500 ° C., preferably 1000 to 1200 ° C., and a carbon-doped titanium oxide layer doped with carbon in a Ti—C bond state is formed as the surface layer of the metal thin film. Heat treatment is required. In the case of heat treatment where the surface temperature of the metal thin film ends at less than 600 ° C., the durability of the metal thin film having the carbon-doped titanium oxide layer obtained may be insufficient. On the other hand, in the case of a heat treatment in which the surface temperature of the metal thin film exceeds 1500 ° C., the ultrathin film is peeled off from the surface of the metal thin film during cooling after the heat treatment, resulting in a decrease in durability.
However, in the case of heat treatment in which the surface temperature of the metal thin film is 600 to 1500 ° C. or in the case of heat treatment in which the temperature exceeds 1500 ° C., the heating time is intentionally increased (at 600 to 1500 ° C., 180 seconds or more, 1500 ° C. For a period of 30 seconds or more at a temperature exceeding 30 ° C.), causing peeling of the ultrathin film during cooling after the heat treatment, thereby having a form in which fine pillars made of carbon-doped titanium oxide or the like stand without going through a cutting step It is also possible to expose the nanoporous thin film.

本発明の色素増感型太陽電池のアノード電極の製造方法においては、加熱温度及び加熱処理時間を調整することにより炭素を0.3〜15at%、好ましくは1〜10at%含有する炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層を比較的容易に得ることができる。炭素のドープ量が少ない場合には炭素ドープ酸化チタン層は透明であり、炭素のドープ量が増えるに従って炭素ドープ酸化チタン層は半透明、不透明となる。従って、透明基板の上の透明導電膜の上に、透明な炭素ドープ酸化チタン層を形成することにより、耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れたアノード電極を得ることができる。なお吸収波長帯の観点からは、炭素ドープ酸化チタン層が半透明、不透明となる場合となることは特に問題ないと考えられるが、バンドギャップを広げる場合には、炭素ドープ酸化チタン層を酸素雰囲気でアニールして、炭素ドープ量を減少させることも好ましい。ただしこの場合には、アノード電極の耐久性が低下することとなる。   In the manufacturing method of the anode electrode of the dye-sensitized solar cell of the present invention, the carbon containing 0.3 to 15 at%, preferably 1 to 10 at% of carbon is Ti— by adjusting the heating temperature and the heat treatment time. A carbon-doped titanium oxide layer doped in a C-bonded state can be obtained relatively easily. When the carbon doping amount is small, the carbon-doped titanium oxide layer is transparent, and as the carbon doping amount increases, the carbon-doped titanium oxide layer becomes translucent and opaque. Therefore, durability (high hardness, scratch resistance, abrasion resistance, chemical resistance, heat resistance) is achieved by forming a transparent carbon-doped titanium oxide layer on the transparent conductive film on the transparent substrate. An excellent anode electrode can be obtained. From the standpoint of the absorption wavelength band, it is considered that there is no particular problem that the carbon-doped titanium oxide layer becomes translucent and opaque. However, when the band gap is widened, the carbon-doped titanium oxide layer is placed in an oxygen atmosphere. It is also preferable to reduce the amount of carbon doping by annealing. However, in this case, the durability of the anode electrode is lowered.

本実施例では、金属薄膜の表面を、例えば不飽和炭化水素、特にアセチレンの燃焼炎で金属薄膜の表面温度が600℃以上となるように加熱処理して、表面層内部に酸化チタン又はチタン合金酸化物からなる微細柱が林立する層(中間体)を形成する。
このような条件下で加熱処理することにより、微細柱が林立している層の高さが0.2μm〜20μm程度であり、その上の薄膜の厚さが0.1μm〜10μm程度であり、微細柱の平均太さが0.1μm〜0.3μm程度である中間体が形成される。その後に、例えば熱応力、剪断応力、引張応力を与えて、微細柱が林立している層を表面層に沿う方向で切断することにより微細柱が林立している層の上面の薄膜を除去し、金属薄膜上に酸化チタン又はチタン合金酸化物からなる微細柱が林立するごとき形態を有するナノ多孔質薄膜を露出させる。次いでこのナノ多孔質薄膜に増感色素を担持することによってアノード電極が製造される。
なお熱応力等により切断されて除去された炭素ドープ酸化チタンの表面層は、これを微細粉末にしてバインダを用いて酸化チタンを透明導電膜上に堆積してやることで、これもまた色素増感型太陽電池のアノード電極の製造などに利用してやることができる。
In this embodiment, the surface of the metal thin film is heat-treated so that the surface temperature of the metal thin film becomes 600 ° C. or higher by using, for example, an unsaturated hydrocarbon, particularly acetylene combustion flame, and titanium oxide or a titanium alloy is formed inside the surface layer. A layer (intermediate) in which fine columns made of oxide stand is formed.
By performing heat treatment under such conditions, the height of the layer in which the fine pillars are erected is about 0.2 μm to 20 μm, and the thickness of the thin film thereon is about 0.1 μm to 10 μm, An intermediate having an average thickness of the fine pillars of about 0.1 μm to 0.3 μm is formed. After that, for example, applying thermal stress, shear stress, or tensile stress, the thin film on the upper surface of the layer with the fine pillars is removed by cutting the layer with the fine pillars in the direction along the surface layer. Then, the nanoporous thin film having a form in which fine columns made of titanium oxide or titanium alloy oxide are grown on the metal thin film is exposed. Subsequently, an anode electrode is manufactured by carrying a sensitizing dye on the nanoporous thin film.
The surface layer of carbon-doped titanium oxide that has been removed by cutting due to thermal stress, etc. is made into fine powder, and titanium oxide is deposited on the transparent conductive film using a binder, which is also dye-sensitized. It can be used for manufacturing an anode electrode of a solar cell.

ここ熱応力を与えて微細柱が林立している層を表面層に沿う方向で切断する場合には、例えば、金属薄膜の表面及び裏面の何れか一方を冷却するか、又は一方を加熱することにより金属薄膜の表面と裏面との間に温度差を設けることでその切断を行う。この冷却方法として例えば上記の熱い中間体の表面又は裏面の何れかを冷却用物体、例えばステンレスブロックと接触させるか、冷気(常温の空気)を上記の熱い中間体の表面又は裏面の何れかに吹き付ける。なお上記の熱い中間体を放冷しても熱応力が生じるが、その程度は低いため切断は困難である。
剪断応力を与えて微細柱が林立している層を表面層に沿う方向で切断する場合には、例えば、上記の中間体の表面及び裏面に摩擦力により相対的に逆方向の力を与える。
また、引張応力を与えて微細柱が林立している層を表面層に沿う方向で切断する場合には、例えば、真空吸着盤等を用いて上記の中間体の表面及び裏面をそれらの面の垂直方向で逆方向に引っ張ってやる。
When cutting the layer in which the fine pillars stand by applying thermal stress in the direction along the surface layer, for example, either one of the front and back surfaces of the metal thin film is cooled or one is heated. The cutting is performed by providing a temperature difference between the front surface and the back surface of the metal thin film. As this cooling method, for example, either the surface or the back surface of the hot intermediate is brought into contact with a cooling object, such as a stainless steel block, or cold air (room temperature air) is applied to either the surface or the back surface of the hot intermediate. Spray. Even if the hot intermediate is allowed to cool, thermal stress is generated, but its degree is low and cutting is difficult.
When shearing stress is applied to cut a layer in which fine columns are erected in a direction along the surface layer, for example, a relatively reverse force is applied to the surface and the back surface of the intermediate body by a frictional force.
In addition, when applying a tensile stress to cut a layer in which fine columns are erected in a direction along the surface layer, for example, using a vacuum suction disk or the like, the surface and the back surface of the above intermediate are Pull in the opposite direction in the vertical direction.

上記のようにして得られた金属薄膜上の少なくとも一部に炭素ドープ酸化チタン又は炭素ドープチタン合金酸化物からなる微細柱が林立するごとき形態を有する露出したナノ多孔質薄膜においては、微細柱が林立している層を表面層に沿う方向で切断した微細柱の高さ位置によって微細柱が林立している層(ナノ多孔質薄膜)の高さが変化するが、微細柱が林立しているごとき形態を有するナノ多孔質薄膜の層の高さは一般的には0.2μm〜20μm程度であり、微細柱の平均太さが0.1μm〜0.3μm程度である。   In the exposed nanoporous thin film having a form such that a fine column made of carbon-doped titanium oxide or carbon-doped titanium alloy oxide stands on at least a part of the metal thin film obtained as described above, the fine column is The height of the layer (nanoporous thin film) where the fine column stands is changed depending on the height position of the fine column obtained by cutting the standing layer along the surface layer, but the fine column stands. The height of the layer of the nanoporous thin film having such a shape is generally about 0.2 μm to 20 μm, and the average thickness of the fine columns is about 0.1 μm to 0.3 μm.

このナノ多孔質薄膜は増感色素と接触する比表面積が大きく、光の吸収を大きくすることができ、光の変換効率を向上させることができる。なお特に長波長領域の変換効率を改善するためにナノ多孔質薄膜の膜厚を厚くしたとしても、ナノワイヤアレイによる導電パスが確保されているため直列抵抗を低く抑えることができる。これにより本発明のアノード電極を用いた色素増感型太陽電池では、pn接合を用いた太陽電池と比して遜色のない変換効率を達成することができるとともに、その耐久性も向上することとなる。   The nanoporous thin film has a large specific surface area in contact with the sensitizing dye, can increase light absorption, and can improve light conversion efficiency. In particular, even if the nanoporous thin film is increased in thickness in order to improve the conversion efficiency in the long wavelength region, the series resistance can be kept low because the conductive path is ensured by the nanowire array. Thereby, in the dye-sensitized solar cell using the anode electrode of the present invention, it is possible to achieve conversion efficiency comparable to that of a solar cell using a pn junction and to improve the durability thereof. Become.

本発明の色素増感型太陽電池を構成する酸化チタン又はチタン合金酸化物からなる微細柱が林立している層の各々の微細柱の形状については、角柱状、円柱状、角錐状、円錐状、逆角錐状若しくは逆円錐状等で、基板の表面とは直角方向又は傾斜した方向に真っ直ぐ伸びているもの、湾曲又は屈曲しながら伸びているもの、枝状に分岐して伸びているもの、それらの複合体状のもの等がある。また、その全体形状としては、霜柱状、起毛カーペット状、珊瑚状、列柱状、積木で組み立てられた柱状等の種々の表現で示すことができる。   Regarding the shape of each fine column of the layer in which the fine columns made of titanium oxide or titanium alloy oxide constituting the dye-sensitized solar cell of the present invention are erected, prismatic shape, cylindrical shape, pyramid shape, conical shape , An inverted pyramid shape or an inverted cone shape, etc., extending straight in a direction perpendicular to or inclined from the surface of the substrate, extending while being bent or bent, extending branched and branched, There are composites of these. Moreover, as the whole shape, it can show by various expressions, such as a frost column shape, a raising carpet shape, a basket shape, a row column shape, and the column shape assembled with blocks.

以下に、実施例及び比較例に基づいて本発明をさらに詳細に説明する。
[実施例1〜3]
透明基板の上に形成した透明導電膜の表面に酸化チタンの金属薄膜をスパッタリングによりさらに形成し、アセチレンの燃焼炎を用い、この金属薄膜の表面を、加熱時間を600秒、加熱処理温度をそれぞれ1250℃(実施例1)、1200℃(実施例2)、1100℃(実施例3)に調整することにより炭素ドープ量及び炭素ドープ酸化チタン層の厚さが異なる炭素ドープ酸化チタン層を有する中間体を形成した。
その後、その燃焼炎を当てた表面を、厚さ30mmのステンレスブロックの平らな面と接触させて冷却することで、金属薄膜の表面にほぼ透明の酸化チタンからなる微細柱が林立するごとき形態のナノ多孔質薄膜が露出した部材を得た。即ち、加熱処理で表面層内部に形成された酸化チタンからなる微細柱が林立する層が、その後の冷却で表面層に沿う方向で切断された。
Hereinafter, the present invention will be described in more detail based on examples and comparative examples.
[Examples 1 to 3]
A metal thin film of titanium oxide is further formed on the surface of the transparent conductive film formed on the transparent substrate by sputtering, and an acetylene combustion flame is used. The surface of this metal thin film is heated for 600 seconds, and the heat treatment temperature is set respectively. The intermediate | middle which has a carbon dope titanium oxide layer from which carbon doping amount and the thickness of a carbon dope titanium oxide layer differ by adjusting to 1250 degreeC (Example 1), 1200 degreeC (Example 2), and 1100 degreeC (Example 3) Formed body.
After that, the surface to which the flame is applied is brought into contact with a flat surface of a stainless steel block having a thickness of 30 mm to cool, so that a fine column made of substantially transparent titanium oxide stands on the surface of the metal thin film. A member in which the nanoporous thin film was exposed was obtained. That is, the layer in which fine columns made of titanium oxide formed inside the surface layer by heat treatment were cut in the direction along the surface layer by subsequent cooling.

このようにして得た金属薄膜の表面にほぼ透明の酸化チタンからなる微細柱が林立するごとき形態のナノ多孔質薄膜が露出している部材について、顕微鏡写真に基づいて測定したその微細柱が林立しているナノ多孔質薄膜の層の高さは下記[表1]に示す通りであった。なおこのナノ多孔質薄膜(微細柱)をアノード電極に応用する場合には、ナノ多孔質薄膜の膜厚(微細柱の柱長)を研磨等により最適化することも勿論可能である。
With respect to a member in which a nanoporous thin film having a shape such as a microscopic column made of substantially transparent titanium oxide is exposed on the surface of the metal thin film thus obtained, the microcolumn measured based on a micrograph is The height of the nanoporous thin film layer was as shown in [Table 1] below. When this nanoporous thin film (fine column) is applied to the anode electrode, it is of course possible to optimize the film thickness (column length of the fine column) of the nanoporous thin film by polishing or the like.

図1は、このようにして得たナノ多孔質薄膜が露出している中間体の顕微鏡写真であり、酸化チタンの金属薄膜1の表面上にほぼ透明の酸化チタンからなる微細柱が林立しているナノ多孔質薄膜の層2が露出しており、微細柱が林立している層の上面の薄膜3がその層2上の一部に残っている状態を示している。
なお、本発明の製造法では酸化チタンの金属薄膜は露出しないが、図1の顕微鏡写真は微細柱が林立しているナノ多孔質薄膜の層2の一部を除去した状態を示している。
図2および図3は酸化チタンからなる微細柱が林立しているナノ多孔質薄膜の層2の状態を示す顕微鏡写真であり、図4は微細柱が林立しているナノ多孔質薄膜の層2を除去した後の酸化チタンの金属薄膜表面1の表面状態示す顕微鏡写真である。
FIG. 1 is a photomicrograph of an intermediate in which the nanoporous thin film thus obtained is exposed. On the surface of the titanium oxide metal thin film 1, fine columns made of substantially transparent titanium oxide stand. This shows a state in which the layer 2 of the nanoporous thin film is exposed, and the thin film 3 on the upper surface of the layer where the fine pillars are erected remains on a part of the layer 2.
In addition, although the metal thin film of titanium oxide is not exposed in the manufacturing method of the present invention, the micrograph in FIG. 1 shows a state in which a part of the layer 2 of the nanoporous thin film in which the fine columns are erected is removed.
2 and 3 are photomicrographs showing the state of the nanoporous thin film layer 2 in which the fine columns made of titanium oxide stand, and FIG. 4 shows the nanoporous thin film layer 2 in which the fine pillars stand. It is the microscope picture which shows the surface state of the metal thin film surface 1 of the titanium oxide after removing [beta].

[比較例1]
市販されている酸化チタンゾル(石原産業製STS−01)を透明基板の上に形成した透明導電膜の表面にスピンコートした後、加熱して密着性を高めた酸化チタン皮膜を有する試験片を形成した。
[比較例2]
SUS板上に酸化チタンがスプレーコートされている市販品を比較例2の酸化チタン皮膜を有する試験片とした。
[Comparative Example 1]
A commercially available titanium oxide sol (STS-01 manufactured by Ishihara Sangyo Co., Ltd.) is spin-coated on the surface of a transparent conductive film formed on a transparent substrate, and then heated to form a test piece having a titanium oxide film with improved adhesion. did.
[Comparative Example 2]
A commercial product in which titanium oxide was spray-coated on a SUS plate was used as a test piece having the titanium oxide film of Comparative Example 2.

[試験例1](波長応答性)
実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタンからなる微細柱が林立するごとき形態を有するナノ多孔質薄膜及び比較例1、2の酸化チタン皮膜の波長応答性をOriel社のモノクロメーターを用いて測定した。具体的には、それぞれの層、皮膜に対し、0.05M硫酸ナトリウム水溶液中で対極との間に電圧を0.3V印加し、光電流密度を測定した。
その結果を図5に示す。図5には、得られた光電流密度jpを照射波長に対して示してある。実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層の波長吸収端は、490nmに及んでおり、炭素ドープ量の増大に伴って光電流密度が増大することが認められた。なお、ここには示していないが、炭素ドープ量が10at%を越えると電流密度が減少する傾向になり、さらに15at%を越えるとその傾向は顕著になることがわかった。よって、炭素ドープ量が1〜10at%程度に最適値があることが認められた。一方、比較例1、2の酸化チタン皮膜では、光電流密度が著しく小さく、且つ波長吸収端も410nm程度であることが認められた。
[Test Example 1] (Wavelength response)
Wavelength response of nanoporous thin film having a form such that fine columns made of carbon-doped titanium oxide doped with carbon of Examples 1 to 3 in a Ti-C bond state and titanium oxide films of Comparative Examples 1 and 2 The properties were measured using an Oriel monochromator. Specifically, a voltage of 0.3 V was applied to each layer and film between the counter electrode in a 0.05 M aqueous sodium sulfate solution, and the photocurrent density was measured.
The result is shown in FIG. FIG. 5 shows the obtained photocurrent density jp with respect to the irradiation wavelength. The wavelength absorption edge of the carbon-doped titanium oxide layer in which the carbons of Examples 1 to 3 are doped in a Ti—C bond state extends to 490 nm, and the photocurrent density increases as the carbon doping amount increases. Was recognized. Although not shown here, it has been found that when the carbon doping amount exceeds 10 at%, the current density tends to decrease, and when the carbon doping amount exceeds 15 at%, the tendency becomes remarkable. Therefore, it was recognized that the carbon doping amount has an optimum value of about 1 to 10 at%. On the other hand, in the titanium oxide films of Comparative Examples 1 and 2, it was confirmed that the photocurrent density was extremely small and the wavelength absorption edge was about 410 nm.

[試験例2](光エネルギー変換効率)
実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタンからなる微細柱が林立するごとき形態を有するナノ多孔質薄膜及び比較例1、2の酸化チタン皮膜について、式
η=jp(Ews−Eapp)/I
で定義される光エネルギー変換効率ηを求めた。ここで、Ewsは水の理論分解電圧(=1.23V)、Eappは印加電圧(=0.3V)、Iは照射光強度である。この結果を図6に示す。図6では光エネルギー変換効率ηを照射光波長に対して示してある。
図から明らかなように、実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層の光エネルギー変換効率は著しく高く、波長450nm付近での変換効率が比較例1、2の酸化チタン皮膜の紫外線領域(200〜380nm)での変換効率より優れていることが認められた。
[Test Example 2] (Light energy conversion efficiency)
About the nanoporous thin film and the titanium oxide film of Comparative Examples 1 and 2 having a form such that fine columns made of carbon-doped titanium oxide doped with carbon in Examples 1 to 3 in a Ti-C bond state stand. η = jp (Ews−Eapp) / I
The light energy conversion efficiency η defined by Here, Ews is the theoretical decomposition voltage of water (= 1.23 V), Eapp is the applied voltage (= 0.3 V), and I is the irradiation light intensity. The result is shown in FIG. FIG. 6 shows the light energy conversion efficiency η with respect to the irradiation light wavelength.
As is apparent from the figure, the light energy conversion efficiency of the carbon-doped titanium oxide layer in which the carbons of Examples 1 to 3 are doped in a Ti—C bond state is extremely high, and the conversion efficiency in the vicinity of a wavelength of 450 nm is Comparative Example 1. 2 was found to be superior to the conversion efficiency in the ultraviolet region (200 to 380 nm) of the titanium oxide film.

ナノ多孔質薄膜が露出している中間体の顕微鏡写真である。It is a microscope picture of the intermediate body in which the nanoporous thin film is exposed. 微細柱が林立しているナノ多孔質薄膜の層の状態を示す顕微鏡写真である。It is a microscope picture which shows the state of the layer of the nanoporous thin film where the fine pillar stands. 微細柱が林立しているナノ多孔質薄膜の層の状態を示す顕微鏡写真である。It is a microscope picture which shows the state of the layer of the nanoporous thin film where the fine pillar stands. ナノ多孔質薄膜の層を除去した後の金属薄膜表面の表面状態示す顕微鏡写真である。It is a microscope picture which shows the surface state of the metal thin film surface after removing the layer of a nanoporous thin film. 光電流密度の波長応答性を示す図である。It is a figure which shows the wavelength responsiveness of a photocurrent density. 光エネルギー変換効率の試験結果を示す図である。It is a figure which shows the test result of light energy conversion efficiency. 従来の色素増感型太陽電池のセルの断面構造を模式的に示した図である。It is the figure which showed typically the cross-section of the cell of the conventional dye-sensitized solar cell.

符号の説明Explanation of symbols

1 金属薄膜
2 ナノ多孔質薄膜の層
3 薄膜
1 Metal thin film 2 Nanoporous thin film layer 3 Thin film

Claims (7)

透明基板の上に透明導電膜と、チタン、酸化チタン、チタン合金又はチタン合金酸化物からなる金属薄膜と、を順次形成し、
該金属薄膜の表面に炭化水素を主成分とするガスの燃焼炎を直接当てて金属薄膜の表面温度が600℃以上となるように加熱処理するか、又は、炭化水素を主成分とするガスの燃焼ガス雰囲気中又は炭化水素を主成分とするガス雰囲気中で金属薄膜の表面をその表面温度が600℃以上となるように加熱処理することによって、該金属薄膜内部に炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン又は炭素ドープチタン合金酸化物からなる微細柱が林立する層を形成し、
次いで該微細柱が林立する層を表面層に沿う方向で切断して前記透明導電膜上に炭素ドープ酸化チタン又は炭素ドープチタン合金酸化物からなる微細柱が林立するごとき形態を有するナノ多孔質薄膜を露出させ、
該ナノ多孔質薄膜に増感色素を担持する、ことを特徴とする色素増感型太陽電池のアノード電極の製造方法。
A transparent conductive film and a metal thin film made of titanium, titanium oxide, titanium alloy or titanium alloy oxide are sequentially formed on the transparent substrate,
The surface of the metal thin film is directly subjected to a combustion flame of a gas containing hydrocarbon as a main component and heat-treated so that the surface temperature of the metal thin film becomes 600 ° C. or higher. By heat-treating the surface of the metal thin film in a combustion gas atmosphere or a gas atmosphere containing hydrocarbon as a main component so that the surface temperature is 600 ° C. or higher, carbon is Ti—C bonded inside the metal thin film. Forming a layer in which fine pillars made of carbon-doped titanium oxide or carbon-doped titanium alloy oxide doped in a state stand,
Next, the nanoporous thin film having a form in which the fine column made of carbon-doped titanium oxide or carbon-doped titanium alloy oxide is formed on the transparent conductive film by cutting the layer in which the fine column stands in a direction along the surface layer To expose
A method for producing an anode electrode of a dye-sensitized solar cell, wherein a sensitizing dye is supported on the nanoporous thin film.
前記炭化水素がアセチレンである、ことを特徴とする請求項1に記載の色素増感型太陽電池のアノード電極の製造方法。   The method for producing an anode electrode of a dye-sensitized solar cell according to claim 1, wherein the hydrocarbon is acetylene. 前記微細柱が林立する層を表面層に沿う方向で切断する方法は、前記金属薄膜の表面に形成した炭素ドープ酸化チタン又は炭素ドープチタン合金酸化物からなる微細柱が林立する層の表面と裏面との間に温度差を設けることにより、熱応力によって切断する方法である、ことを特徴とする請求項1又は2に記載の色素増感型太陽電池のアノード電極の製造方法。   The method of cutting the layer in which the fine pillar stands is cut in a direction along the surface layer is the surface and the back surface of the layer in which the fine pillar made of carbon-doped titanium oxide or carbon-doped titanium alloy oxide is formed on the surface of the metal thin film. The method for producing an anode electrode of a dye-sensitized solar cell according to claim 1, wherein the method is a method of cutting by thermal stress by providing a temperature difference therebetween. 前記加熱処理を600〜1500℃で180秒以上1800秒以下実施するか、又は1500℃を超える温度で30秒以上600秒以下実施する、ことを特徴とする請求項1又は2に記載の色素増感型太陽電池のアノード電極の製造方法。   3. The dye enhancement according to claim 1, wherein the heat treatment is performed at 600 to 1500 ° C. for 180 seconds to 1800 seconds, or at a temperature exceeding 1500 ° C. for 30 seconds to 600 seconds. A method for producing an anode electrode of a sensitive solar cell. 透明基板の上に透明導電膜及び金属酸化物膜を順次形成し、この金属酸化物膜の表面に増感色素を担持した色素増感型太陽電池のアノード電極であって、
前記金属酸化物膜の表面を、炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン又は炭素ドープチタン合金酸化物からなる微細柱が林立するごとき形態を有するナノ多孔質薄膜とし、該ナノ多孔質薄膜に増感色素を担持した、ことを特徴とする色素増感型太陽電池のアノード電極。
A transparent conductive film and a metal oxide film are sequentially formed on a transparent substrate, and the anode electrode of a dye-sensitized solar cell having a sensitizing dye supported on the surface of the metal oxide film,
The surface of the metal oxide film is a nanoporous thin film having a form in which fine columns made of carbon-doped titanium oxide or carbon-doped titanium alloy oxide in which carbon is doped in a Ti-C bond state stands, An anode electrode of a dye-sensitized solar cell, characterized in that a sensitizing dye is supported on a nanoporous thin film.
前記ナノ多孔質薄膜を形成する炭素ドープ酸化チタン又は炭素ドープチタン合金酸化物からなる各微細柱は、0.2μm〜20μmの長さを有する、ことを特徴とする請求項5に記載の色素増感型太陽電池のアノード電極。 6. The dye enhancement according to claim 5 , wherein each of the fine columns made of carbon-doped titanium oxide or carbon-doped titanium alloy oxide forming the nanoporous thin film has a length of 0.2 μm to 20 μm. Anode electrode of sensitive solar cell. 前記チタン合金酸化物は、Ti−6Al−4V、Ti−6Al−6V−2Sn、Ti−6Al−2Sn−4Zr−6Mo、Ti−10V−2Fe−3Al、Ti−7Al−4Mo、Ti−5Al−2.5Sn、Ti−6Al−5Zr−0.5Mo−0.2Si、Ti−5.5Al−3.5Sn−3Zr−0.3Mo−1Nb−0.3Si、Ti−8Al−1Mo−1V、Ti−6Al−2Sn−4Zr−2Mo、Ti−5Al−2Sn−2Zr−4Mo−4Cr、Ti−11.5Mo−6Zr−4.5Sn、Ti−15V−3Cr−3Al−3Sn、Ti−15Mo−5Zr−3Al、Ti−15Mo−5Zr、又はTi−13V−11Cr−3Al、の酸化物である、ことを特徴とする請求項5又は6に記載の色素増感型太陽電池のアノード電極。 The titanium alloy oxide is Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-2Sn-4Zr-6Mo, Ti-10V-2Fe-3Al, Ti-7Al-4Mo, Ti-5Al-2. .5Sn, Ti-6Al-5Zr-0.5Mo-0.2Si, Ti-5.5Al-3.5Sn-3Zr-0.3Mo-1Nb-0.3Si, Ti-8Al-1Mo-1V, Ti-6Al -2Sn-4Zr-2Mo, Ti-5Al-2Sn-2Zr-4Mo-4Cr, Ti-11.5Mo-6Zr-4.5Sn, Ti-15V-3Cr-3Al-3Sn, Ti-15Mo-5Zr-3Al, Ti It is an oxide of -15Mo-5Zr or Ti-13V-11Cr-3Al, The anode electrode of the dye-sensitized solar cell of Claim 5 or 6 characterized by the above-mentioned.
JP2005170185A 2005-06-09 2005-06-09 Method for producing anode electrode of dye-sensitized solar cell and anode electrode of dye-sensitized solar cell Expired - Fee Related JP4817408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005170185A JP4817408B2 (en) 2005-06-09 2005-06-09 Method for producing anode electrode of dye-sensitized solar cell and anode electrode of dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005170185A JP4817408B2 (en) 2005-06-09 2005-06-09 Method for producing anode electrode of dye-sensitized solar cell and anode electrode of dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2006344531A JP2006344531A (en) 2006-12-21
JP4817408B2 true JP4817408B2 (en) 2011-11-16

Family

ID=37641328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005170185A Expired - Fee Related JP4817408B2 (en) 2005-06-09 2005-06-09 Method for producing anode electrode of dye-sensitized solar cell and anode electrode of dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4817408B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635103A (en) * 2019-08-29 2019-12-31 天津工业大学 Flexible nano porous metal oxide cathode for secondary battery and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161133A (en) * 2009-01-07 2010-07-22 Konica Minolta Holdings Inc Organic photoelectric conversion element and manufacturing method therefor
WO2013128797A1 (en) * 2012-02-29 2013-09-06 新日鉄住金化学株式会社 Method for manufacturing current collector for dye‐sensitized solar cell comprising porous metal sheet, current collector for dye‐sensitized solar cell comprising porous metal sheet and dye‐sensitized solar cell
JP6160069B2 (en) * 2012-11-30 2017-07-12 コニカミノルタ株式会社 Method for producing dye-sensitized photoelectric conversion element
CN114883433A (en) * 2022-04-07 2022-08-09 华南理工大学 InGaN visible light detector and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170557A (en) * 2000-12-01 2002-06-14 Toyota Central Res & Dev Lab Inc Electrode
JP2005026051A (en) * 2003-07-01 2005-01-27 Toshiba Ceramics Co Ltd Photoelectric conversion element and manufacturing method of the same as well as solar cell using the same
JP2005063957A (en) * 2003-07-29 2005-03-10 Kyocera Corp Photoelectric conversion device and photovoltaic generator device using it
JP4379865B2 (en) * 2003-09-19 2009-12-09 独立行政法人産業技術総合研究所 Photoelectrode, method for producing the same, and solar cell using the same
JP4601285B2 (en) * 2003-11-07 2010-12-22 大日本印刷株式会社 Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635103A (en) * 2019-08-29 2019-12-31 天津工业大学 Flexible nano porous metal oxide cathode for secondary battery and preparation method thereof

Also Published As

Publication number Publication date
JP2006344531A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
US20200071186A1 (en) Linear Porous Titanium Dioxide Material And Preparation And Use Thereof
Mor et al. p-Type Cu− Ti− O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation
CN105226112B (en) A kind of preparation method of efficient crystal silicon solar batteries
JP4817408B2 (en) Method for producing anode electrode of dye-sensitized solar cell and anode electrode of dye-sensitized solar cell
WO2001048833A1 (en) Solar cell and solar cell unit
CN105088312A (en) Method for preparing titania nanotube allay films
CN101419867B (en) Nano composite electrode preparation for dye sensitization solar cell
CN110611030A (en) Perovskite solar cell with array structure electron transport layer and preparation method thereof
KR20140119314A (en) Electrode for photoelectrochemical cell, method of manufacturing the same and photoelectrochemical cell including the same
CN104124286B (en) A kind of utilization growth noble metals certainly etc. are from primitive nanostructured
Choi et al. Fabrication of Au nanoparticle-decorated TiO2 nanotube arrays for stable photoelectrochemical water splitting by two-step anodization
US7919400B2 (en) Methods for doping nanostructured materials and nanostructured thin films
KR101749067B1 (en) Hetero-junction metastrucutred thin film and method for manufacturing the same
CN107841763B (en) A kind of optoelectronic pole and preparation method thereof based on the regulation of surface hydrogen-oxygen shell
Vennila et al. Biosynthesis of ZrO nanoparticles and its natural dye sensitized solar cell studies
Wang et al. Asymmetric photoelectric property of transparent TiO2 nanotube films loaded with Au nanoparticles
WO2024051019A1 (en) Preparation method for quantum dot sensitized composite photo-anode, and quantum dot sensitized composite photo-anode and use therof
CN102544375A (en) Wide-spectral-response flexible photo-anode of solar cell and manufacturing method of wide-spectral-response flexible photo-anode
TWI473312B (en) A large area flexible dye-sensitized solar cell and the electrochemical fabricating method thereof
KR102099644B1 (en) Photoanode with Tungsten oxide film and preparing method of the same
Abd et al. Synthesis of MWCNTs from methanol/butanol mixture by catalytic chemical vapor deposition and application to synthesized dye sensitizer solar cell
KR101328636B1 (en) Synthesis of Composite Nanowires and Method for fabricating Dye Sensitized Solar Cells using the same
CN106676571B (en) A kind of photoinduction oxygen reduction reaction electro catalytic electrode and preparation method thereof
Basheer et al. Electrochemical Disposition of Titanium Dioxide Photocatalyst on Micropores Silicon Wafer for Water Treatment Application
KR102172623B1 (en) Manufacturing method of photoelectrode for photoelectrochemical water splitting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees