JP2002170557A - Electrode - Google Patents

Electrode

Info

Publication number
JP2002170557A
JP2002170557A JP2000367398A JP2000367398A JP2002170557A JP 2002170557 A JP2002170557 A JP 2002170557A JP 2000367398 A JP2000367398 A JP 2000367398A JP 2000367398 A JP2000367398 A JP 2000367398A JP 2002170557 A JP2002170557 A JP 2002170557A
Authority
JP
Japan
Prior art keywords
electrode
columnar
film
substrate
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000367398A
Other languages
Japanese (ja)
Inventor
Motofumi Suzuki
基史 鈴木
Yasunori Taga
康訓 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000367398A priority Critical patent/JP2002170557A/en
Publication of JP2002170557A publication Critical patent/JP2002170557A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance efficiency and response of a device based on a conventional electrochemical reaction by using an idiosyncratic columnar structure used as an electrode and obtained by a dynamic oblique deposition. SOLUTION: The electrode comprises a columnar element film provided on a base, formed by deposition of a deposited material such as titanium oxide, etc., which comes in the direction of the predetermined tilt angle from a normal of the base, and capable of giving and receiving charge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電極に関する。特
に、本発明は、表面で電荷が授受される電極に関する。
[0001] The present invention relates to an electrode. In particular, the present invention relates to electrodes whose surfaces receive and transfer charges.

【0002】[0002]

【従来の技術】光触媒、太陽電池など広義の電気化学的
なメカニズムに基づくデバイスにおける電極の作製法
は、従来、焼結、ゾル・ゲル法、PVD法、CVD法など様々
な方法が報告されている。
2. Description of the Related Art Various methods for producing electrodes for devices based on a broadly defined electrochemical mechanism, such as photocatalysts and solar cells, have been reported in the past, including sintering, sol-gel methods, PVD methods, and CVD methods. I have.

【0003】焼結は、光触媒や、湿式太陽電池の電極作
製法として広く用いられている方法である。通常、直径
1μm以下の粉末を懸濁液にして基板に塗布し、これを高
温で熱処理することによって焼き固めて電極を得る。焼
結では、空孔率の大きな電極を得ることができる。
[0003] Sintering is a method widely used as a method for producing a photocatalyst or an electrode of a wet solar cell. Usually diameter
A powder having a particle size of 1 μm or less is applied as a suspension to a substrate, and is heat-treated at a high temperature to be baked to obtain an electrode. In sintering, an electrode having a large porosity can be obtained.

【0004】ゾル・ゲル法は、溶媒中の金属アルコキシ
ド化合物の加水分解反応と脱水縮合反応を原理として酸
化物合成を行う方法である。ゾル・ゲル法では、数100
℃以上の熱処理を要する。ゾル・ゲル法により、たいて
いは空孔率の大きな膜が得られる。
The sol-gel method is a method of synthesizing an oxide based on the principle of hydrolysis and dehydration condensation of a metal alkoxide compound in a solvent. In the sol-gel method, several hundred
Requires a heat treatment of at least ° C. The sol-gel method usually results in films with high porosity.

【0005】PVD法は、真空蒸着法やスパッタリングに
より飛来した物質を基板上に堆積させる方法である。CV
D法は、反応系分子などを何らかの方法で分解して活性
種を作り、それらを基板上に反応・堆積させる方法であ
る。PVD法、CVD法ともに、高密度で平坦な薄膜が得られ
る。
[0005] The PVD method is a method in which a substance flying by a vacuum evaporation method or sputtering is deposited on a substrate. CV
Method D is a method in which reactive species are decomposed by some method to form active species, and these are reacted and deposited on a substrate. In both the PVD and CVD methods, high-density and flat thin films can be obtained.

【0006】また、J.Vac.Sci.Technol.,A13(6),2991,
(1995)には、柱状構造薄膜の作製法が開示されている。
柱状構造薄膜は、基板を基板と垂直な中心軸の回りに回
転させながら、中心軸とある角度をなす方向から飛来す
る蒸着物質が基板上に堆積することにより得られる(以
下ではこの蒸着方法を動的斜め蒸着とよぶ)。
Further, J. Vac. Sci. Technol., A13 (6), 2991
(1995) discloses a method for producing a columnar structure thin film.
The columnar structure thin film is obtained by rotating a substrate around a central axis perpendicular to the substrate and depositing a vapor deposition material coming from a direction forming an angle with the central axis on the substrate (hereinafter, this vapor deposition method is referred to as a vapor deposition method). Dynamic oblique deposition).

【0007】[0007]

【発明が解決しようとする課題】光触媒、太陽電池など
広義の電気化学的なメカニズムに基づくデバイスにおけ
る電極では、電極表面における電荷のやりとりや反応に
よって、エネルギーの取り出し、信号の取り出し、材料
生成などを行っている。従って、このような電荷のやり
とりや反応が行われる場所である、表面の占める割合が
大きい電極を用いる方が、デバイスの性能がよくなるこ
とは必定である。
In an electrode of a device based on an electrochemical mechanism in a broad sense such as a photocatalyst and a solar cell, energy exchange, signal extraction, material generation, and the like are performed by transferring and reacting electric charges on the electrode surface. Is going. Therefore, it is indispensable that the performance of the device is improved by using an electrode having a large surface occupancy, which is a place where such charge exchange and reaction are performed.

【0008】そのため、光触媒や太陽電池などでは、焼
結やゾル・ゲル法等を用いて作製された、空孔率の大き
い膜を電極として用いることが多い。
For this reason, in a photocatalyst, a solar cell, or the like, a film having a high porosity, which is produced by sintering or a sol-gel method, is often used as an electrode.

【0009】しかしながら、これらの方法で作製した膜
では、空孔は複雑に入り組んだネットワーク状に形成さ
れており、デバイスの動作に必要な溶液やガスが内部に
しみ込むために時間を要する。また、電極表面で生成さ
れた物質が、空孔内に留まりやすく、効率よく取り出す
ことが困難である。このような、材料や生成物の移動度
の低さが、デバイスの効率や応答性の向上の大きな妨げ
になっていると考えられる。また、焼結やゾル・ゲル法
では、基本的に加熱処理が必要で、プラスチック等の基
板上に電極を形成できないという制限がある。さらにゾ
ル・ゲル法では、目標とする材料を得るために、適当な
金属アルコキシドを合成する必要があり、自ずから作製
できる材料に限りがある。
However, in the films produced by these methods, the pores are formed in a complicated and intricate network, and it takes time for the solution or gas necessary for the operation of the device to penetrate inside. Further, the substance generated on the electrode surface tends to stay in the pores, and it is difficult to efficiently extract the substance. It is considered that such low mobility of the materials and products greatly hinders improvement in efficiency and responsiveness of the device. Further, the sintering or the sol-gel method has a limitation that heat treatment is basically required, and an electrode cannot be formed on a substrate such as plastic. Furthermore, in the sol-gel method, it is necessary to synthesize an appropriate metal alkoxide in order to obtain a target material, and there are limitations on materials that can be produced by themselves.

【0010】上記従来技術の中で、PVD法、CVD法による
一般的な薄膜形成法では、低温での成膜が可能で、材料
に対する制限は小さいが、できる膜が高密度で平坦であ
るため、表面積が小さく、化学反応の総量を多くするこ
とが困難である。
[0010] Among the above prior arts, the general thin film forming method by the PVD method and the CVD method can form a film at a low temperature and has a small restriction on the material, but the resulting film is dense and flat. The surface area is small and it is difficult to increase the total amount of chemical reactions.

【0011】本発明は、動的斜め蒸着で得られる特異な
柱状構造を電極に用いることによって、従来の電気化学
的な反応に基づくデバイスの効率、応答性を飛躍的に向
上させる方法を提供する。
The present invention provides a method for dramatically improving the efficiency and responsiveness of a device based on a conventional electrochemical reaction by using a unique columnar structure obtained by dynamic oblique deposition for an electrode. .

【0012】[0012]

【課題を解決するための手段】本発明の電極は、基板上
に設けられ、基板の法線方向から所定の角度傾斜した方
向から飛来した蒸着物質の堆積により生じた柱状体膜を
備える。
The electrode of the present invention has a columnar film provided on a substrate and formed by deposition of a vapor deposition material flying from a direction inclined at a predetermined angle from a normal direction of the substrate.

【0013】本発明の電極は、柱状体膜において、柱状
体膜を取り巻く環境と電荷が授受されてもよい。また、
本発明の電極は、柱状体膜において、柱状体膜を取り巻
く環境と電荷が授受されることによって、化学物質が分
解されてもよい。また、本発明の電極は、柱状体膜を取
り巻く環境と電荷が授受されることによって、有用な物
質が生成、又は分離されてもよい。
[0013] In the electrode of the present invention, an environment surrounding the columnar film and electric charges may be transferred between the columnar films. Also,
In the electrode of the present invention, a chemical substance may be decomposed in the columnar membrane by transferring an environment and charges surrounding the columnar membrane. Further, in the electrode of the present invention, a useful substance may be generated or separated by transfer of an electric charge and an environment surrounding the columnar membrane.

【0014】[柱状体膜]本発明の電極に用いられる柱状
体膜は、電子ビーム加熱真空蒸着などを用いて、基板上
に形成される。基板は、導電性基板、または表面に導電
性薄膜を形成された絶縁性基板である。真空蒸着におい
て、基板は、基板と垂直な回転軸を中心として、所定の
回転速度で回転する。蒸着源からは導電性を有する蒸着
物質が供給される。蒸着源から蒸着物質が飛来する方向
は、回転軸に対して所定の角度傾斜している。基板を所
定の回転速度で回転させながら、蒸着源から蒸着物質を
飛来させて基板上に堆積させると、回転速度、蒸着時真
空度などの蒸着条件によって、上述した螺旋柱、多角螺
旋柱、楕円柱、およびジグザグ柱などの柱状体膜が基板
上に形成される(以下、このような蒸着を動的斜め蒸着
とよぶ)。図1〜図4に電極に用いられる柱状体膜の模
式図を示す。柱状体のサイズの典型例は、直径が300nm
以下、長さが数100nm〜数μmである。柱状体の材料は少
なくとも1種類の導電性材料を含む。導電性材料は、た
とえば、半導体(TiO、TiONなど)、金属(Pt、Au、A
gなど)、炭素の同位体(アモルファスカーボン、グラ
ファイト、黒鉛、ダイアモンド、ダイアモンド状炭素、
フラーレン、カーボンナノチューブ)などである。
[Pillar Film] The pillar film used for the electrode of the present invention is formed on a substrate by using electron beam heating vacuum evaporation or the like. The substrate is a conductive substrate or an insulating substrate having a conductive thin film formed on the surface. In vacuum evaporation, a substrate rotates at a predetermined rotation speed around a rotation axis perpendicular to the substrate. A deposition material having conductivity is supplied from the deposition source. The direction in which the deposition material comes from the deposition source is inclined at a predetermined angle with respect to the rotation axis. While rotating the substrate at a predetermined rotation speed, the evaporation material is scattered from the evaporation source and deposited on the substrate, the rotation speed, the evaporation conditions such as the degree of vacuum during evaporation, the above-described spiral pillar, polygonal spiral pillar, elliptical Columns and columnar films such as zigzag columns are formed on the substrate (hereinafter, such deposition is referred to as dynamic oblique deposition). FIGS. 1 to 4 show schematic diagrams of a columnar film used for an electrode. A typical example of the size of the column is 300 nm in diameter
Hereinafter, the length is several hundred nm to several μm. The material of the column includes at least one kind of conductive material. The conductive material is, for example, a semiconductor (TiO 2 , TION, etc.), a metal (Pt, Au, A
g), carbon isotopes (amorphous carbon, graphite, graphite, diamond, diamond-like carbon,
Fullerene, carbon nanotube).

【0015】[本発明の作用][Operation of the present invention]

【0016】電極となる柱状体の表面積が大きいため、
電気化学反応等の表面反応において、反応に寄与する電
極の有効面積が、通常の薄膜の100倍以上大きくな
る。特に、螺旋やジグザグの柱状構造を電極に用いるこ
とで、表面積を単純な円柱電極を用いた場合に比べてさ
らに大きくすることができる。
Since the surface area of the columnar body serving as an electrode is large,
In a surface reaction such as an electrochemical reaction, the effective area of an electrode contributing to the reaction becomes 100 times or more larger than that of a normal thin film. In particular, by using a spiral or zigzag columnar structure for the electrode, the surface area can be further increased as compared with the case where a simple cylindrical electrode is used.

【0017】単純に粉末を固めた電極と違い、空孔が一
方向に配向しているため、化学反応の原料および生成物
の移動度が大きく、反応が高速に進む。
Unlike an electrode in which powder is simply solidified, the holes are oriented in one direction, so that the mobilities of raw materials and products of the chemical reaction are large and the reaction proceeds at high speed.

【0018】本発明の電極は、動的斜め蒸着によって形
成される特異な柱状構造を利用している。即ち、蒸着可
能な材料であれば、いかなる材料でも柱状構造を作製可
能であるし、また、蒸着が低温プロセスであるから、耐
熱性に乏しい基板であっても問題なく電極形成が可能で
ある。
The electrode of the present invention utilizes a unique columnar structure formed by dynamic oblique deposition. That is, any material can be used to form the columnar structure as long as the material can be deposited, and since the deposition is a low-temperature process, electrodes can be formed without any problem even on a substrate having poor heat resistance.

【0019】薄膜型の電極であるので、非常に薄い。ま
た、個々の柱の径を光の波長よりも小さくすることが可
能なので、透明性の高い電極を形成することが可能であ
る。また、斜め蒸着膜に特有な、光学異方性、磁気異方
性、電気伝導異方性など付加的な機能を電極に持たせさ
らなる機能性向上が可能である。
Since it is a thin film type electrode, it is very thin. Further, since the diameter of each column can be made smaller than the wavelength of light, it is possible to form an electrode with high transparency. Further, the electrode can be provided with additional functions such as optical anisotropy, magnetic anisotropy, and electric conduction anisotropy, which are unique to the obliquely deposited film, to further improve the functionality.

【0020】[0020]

【発明の実施の形態】まず、電極に用いられる柱状体膜
を作製する方法に関して詳細に述べる。柱状体膜は、真
空蒸着法により作製される。作製条件をコントロールす
ることにより、ジグザグ構造膜(ジグザグの柱を持つ
膜)、螺旋構造膜(螺旋形態の柱を持つ膜)、楕円構造
膜(楕円(円柱を含む)の柱を持つ膜)など多彩な形態
の柱状体膜を作製することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a method for manufacturing a columnar film used for an electrode will be described in detail. The columnar film is produced by a vacuum deposition method. By controlling the fabrication conditions, zigzag structure films (films with zigzag columns), spiral structure films (films with spiral columns), elliptical structure films (films with elliptical (including cylindrical) columns), etc. Various types of columnar films can be manufactured.

【0021】[ジグザグ構造膜の作製法]図5に、ジグザ
グ構造膜を作製する方法を説明するための図を示す。基
板10は、基板10と垂直な中心軸20の回りに回転可
能である。蒸着源30から飛来する蒸着物質の入射方向
は、中心軸20に対して蒸着角αだけ傾斜している。基
板10上に適当な膜厚だけ蒸着が行われるごとに、基板
10の面内方位が180°ずつ反転させられる。これによ
って、蒸着物質が、基板10上にジグザグに成長した柱
が作製される。図6に、蒸着角αを82℃にして作製した
ジグザグ構造膜のSEM像を示す。図6のSEM写真か
ら、方向が途中で変わるジグザグの柱をもつ膜が形成さ
れていることが確認できる。
[Method of Manufacturing Zigzag Structure Film] FIG. 5 is a view for explaining a method of manufacturing a zigzag structure film. The substrate 10 is rotatable around a central axis 20 perpendicular to the substrate 10. The incident direction of the deposition material flying from the deposition source 30 is inclined with respect to the central axis 20 by the deposition angle α. Each time vapor deposition of an appropriate thickness is performed on the substrate 10, the in-plane orientation of the substrate 10 is reversed by 180 °. As a result, columns in which the deposition material has grown on the substrate 10 in a zigzag manner are formed. FIG. 6 shows an SEM image of a zigzag structure film manufactured at a deposition angle α of 82 ° C. From the SEM photograph of FIG. 6, it can be confirmed that a film having zigzag columns whose direction changes halfway is formed.

【0022】[螺旋構造膜の作製法]図7に、螺旋構造膜
を作製する方法を説明するための図を示す。基板10お
よび蒸着源30の構成は、ジグザグ構造膜の作製法で説
明した構成と同様である。螺旋構造膜の作製法において
は、中心軸20に対して斜めの方向から蒸着物質を飛来
させながら、基板10をゆっくり回転させる。螺旋構造
をできるだけ精密に制御するために、以下の二通りの方
法の何れかで基板10の面内回転を制御できるようにし
た。
[Method of Manufacturing Spiral Structure Film] FIG. 7 is a view for explaining a method of manufacturing a spiral structure film. The configurations of the substrate 10 and the evaporation source 30 are the same as the configurations described in the method of manufacturing the zigzag structure film. In the method of manufacturing the spiral structure film, the substrate 10 is slowly rotated while the deposition material is flying from a direction oblique to the central axis 20. In order to control the spiral structure as precisely as possible, the in-plane rotation of the substrate 10 can be controlled by one of the following two methods.

【0023】第1の方法は、蒸着速度を安定に制御でき
る材料を蒸着する場合に適した方法である。この場合、
面内回転速度ωを、膜厚計でモニタした蒸着速度に比例
した値に設定し、面内方位を連続的に回転させる。たと
えば、蒸着速度をr(Å/s)、所望の螺旋のピッチをp
(Å)とすると、ω=2π/p(s-1)である。実際には、r
を逐次モニタし、その値を用いてωを更新しながら基板
を回転させる。
The first method is a method suitable for depositing a material capable of stably controlling the deposition rate. in this case,
The in-plane rotation speed ω is set to a value proportional to the deposition rate monitored by the film thickness meter, and the in-plane orientation is continuously rotated. For example, the deposition rate is r (Å / s), and the desired spiral pitch is p
Assuming (と), ω = 2π / p (s −1 ). In fact, r
Are sequentially monitored, and the substrate is rotated while updating ω using the value.

【0024】第2の方法は、蒸着速度が不安定で、蒸着
速度が短時間に大きく変化してしまう材料を蒸着する場
合に適した方法である。この場合、rで回転を制御する
と、ステッピングモータの脱調をきす恐れがある。そこ
で、ジグザグ構造作製法を拡張し、蒸着速度ではなく膜
厚の出力を用いて一定の膜厚ごとにあらかじめ設定した
角度だけ離散的に面内を回転させ、多角形螺旋構造を作
製できるようにした。この方法は、膜厚計の蒸着速度の
値が不正確になる1(Å/s)以下で螺旋構造を作製する場
合にも有効である。
The second method is a method suitable for depositing a material whose deposition rate is unstable and whose deposition rate changes greatly in a short time. In this case, if the rotation is controlled by r, the stepping motor may lose synchronism. Therefore, we extended the zigzag structure manufacturing method to discretely rotate the plane by a preset angle for each fixed film thickness using the output of the film thickness instead of the deposition rate so that a polygonal spiral structure can be manufactured. did. This method is also effective when producing a helical structure at 1 (Å / s) or less at which the value of the deposition rate of the film thickness meter becomes inaccurate.

【0025】図8は、基板の面内回転速度と成膜速度の
比を変えた場合の構造の変化を示す。柱状体膜は、全て
α=82℃で成膜した。基板をゆっくり回すと、図8
(A)に示すように、径の大きな螺旋が形成される。螺
旋を形成するコラムは基板から表面に向かって途中で途
切れることなく渦を巻いており、あたかもコイルのよう
な形が見て取れる。螺旋のピッチがコラムの径と同程度
になるように基板回転速度を速めると、図8(B)に示
すように、ネジのような螺旋構造に変化する。さらに回
転速度を速くすると、図8(C)のように螺旋構造は見
えなくなり、コラムは滑らかな円柱形になる。
FIG. 8 shows a change in the structure when the ratio between the in-plane rotation speed of the substrate and the film formation speed is changed. The columnar films were all formed at α = 82 ° C. Fig. 8
As shown in (A), a spiral having a large diameter is formed. The column forming the spiral spirals continuously from the substrate to the surface without interruption, and the shape can be seen as if it were a coil. When the substrate rotation speed is increased so that the pitch of the spiral is substantially equal to the diameter of the column, the spiral structure changes to a screw-like spiral structure as shown in FIG. When the rotation speed is further increased, the spiral structure becomes invisible as shown in FIG. 8C, and the column becomes a smooth cylindrical shape.

【0026】以下に、本発明の実施の形態(以下、実施
形態という)について図面を用いて説明する。
An embodiment of the present invention (hereinafter, referred to as an embodiment) will be described below with reference to the drawings.

【0027】実施形態1 本発明の実施形態1として、柱状体膜を用いた湿式太陽
電池について以下に述べる。
Embodiment 1 As Embodiment 1 of the present invention, a wet solar cell using a columnar film will be described below.

【0028】[構成]本実施形態に係る太陽電池の電極の
構成を図9に示す。基板40a上に、透明電極42aが
形成されている。基板40aとしてガラス基板が用いら
れる。透明電極42aとしてはITOでもよいが、酸化錫
にフッ素をドープした膜FTOが好ましい。透明電極42
a上には、柱状体膜44が形成されている。柱状体膜4
4は、場合によっては、柱状体膜44基部に色素を含浸
させた構造を有する。柱状体膜44の材料としては、酸
化チタンが好適である。また、色素の代表的な材料は、
ルテニウム錯体である、[RuL(NCS),L=4,4'-dicarbo
xy-2,2'bipyridine]や、[Ru(dcbpy)(NCS)]HO(d
cbpy=2,2'-bipyridyl-4,4'-dicalboxylic acid)等が用
いられる。
[Configuration] FIG. 9 shows the configuration of the electrode of the solar cell according to this embodiment. The transparent electrode 42a is formed on the substrate 40a. A glass substrate is used as the substrate 40a. Although ITO may be used as the transparent electrode 42a, a film FTO in which tin oxide is doped with fluorine is preferable. Transparent electrode 42
A columnar body film 44 is formed on a. Columnar film 4
4 has a structure in which a pigment is impregnated in the base of the columnar film 44 in some cases. As a material of the columnar film 44, titanium oxide is preferable. Also, a typical material of the dye is
Ruthenium complex, [RuL 2 (NCS) 2 , L = 4,4'-dicarbo
xy-2,2'bipyridine] and, [Ru (dcbpy) 2 ( NCS) 2] 2 H 2 O (d
cbpy = 2,2′-bipyridyl-4,4′-dicalboxylic acid) or the like is used.

【0029】上記の柱状体膜44を形成した基板40a
と対向するかたちで、別の基板40bが配置される。基
板40bには、ガラス基板が用いられる。基板40b上
には、透明電極42bが設けられている。図9のように
2つの基板40aと基板40bとを対向させて配置し、
そのすき間に電解質溶液を注入することで、太陽電池と
なる。注入する電解質としては、ヨウ素の溶液が代表的
である。溶媒としては、水よりも有機溶媒の方が好適と
されている。
The substrate 40a on which the columnar film 44 is formed
Another substrate 40b is arranged so as to face. A glass substrate is used as the substrate 40b. The transparent electrode 42b is provided on the substrate 40b. As shown in FIG. 9, two substrates 40a and 40b are arranged to face each other,
A solar cell is obtained by injecting the electrolyte solution into the gap. As an electrolyte to be injected, a solution of iodine is typical. As a solvent, an organic solvent is more preferable than water.

【0030】[作製手順と評価]透明電極としてFTOを用
いたガラス基板を用意し、有機洗浄した後に真空槽に取
り付けた後、1×10−6Torrまで排気した。基板の下方
約50cmの位置に配置した電子ビーム蒸着源に、酸化チタ
ンの粉末を入れておき、これに電子ビームを照射して加
熱した。同時に真空槽に酸素ガスを導入し、真空度が1
×10−5Torrになるように調節した。表1に示すような
電極作製条件で、螺旋型柱状電極、円柱型柱状電極、お
よび比較として通常の高密度膜と粉末を焼き固めた電極
を用意した。膜厚は全て3.0μmとした。これらを500℃
で1時間熱処理し、TiOを結晶化した後、濃度5×10
−4Mの[RuL(NCS),L=4,4'-dicarboxy-2,2'bipyridi
ne]のエタノール溶液に浸し、80℃の乾燥機に入れて1
日放置した。その後溶液から取り出し、乾燥空気を吹き
付けて、電極を乾燥した。対向電極としてFTO付ガラス
を用意し、スペーサとして50μmのカプトン箔を用い、
前記電極と張り合わせてセルを形成した。
[Preparation Procedure and Evaluation] A glass substrate using FTO as a transparent electrode was prepared, washed with an organic material, attached to a vacuum chamber, and evacuated to 1 × 10 −6 Torr. Titanium oxide powder was placed in an electron beam evaporation source placed at a position about 50 cm below the substrate, and heated by irradiation with an electron beam. At the same time, oxygen gas is introduced into the vacuum chamber,
It was adjusted so as to be × 10 −5 Torr. Under the electrode preparation conditions shown in Table 1, a spiral columnar electrode, a cylindrical columnar electrode, and, as a comparison, an ordinary high-density film and an electrode obtained by sintering powder were prepared. The film thicknesses were all 3.0 μm. 500 ° C
For 1 hour to crystallize the TiO 2 ,
-4 M [RuL 2 (NCS) 2 , L = 4,4'-dicarboxy-2,2'bipyridi
ne] in an ethanol solution of
Left for days. Thereafter, the electrode was taken out of the solution and blown with dry air to dry the electrode. Prepare glass with FTO as the counter electrode, use Kapton foil of 50 μm as a spacer,
A cell was formed by adhering to the electrode.

【0031】太陽電池測定の評価は、両電極間のすき間
に、0.5M LiI/0.05M I と0.5M 4-tert-butyl-pyridin
eのエタノール溶液を注入して行った。
[0031] Evaluation of solar cell measurement, the gap between the electrodes, 0.5M LiI / 0.05MI 2 and 0.5M 4-tert-butyl-pyridin
This was performed by injecting an ethanol solution of e.

【0032】表1に作製した太陽電池についてそれぞれ
性能を示した。電極を螺旋及び円柱型にすることによっ
て、薄くても高効率の電池が作製できることがわかっ
た。
Table 1 shows the performance of the solar cells produced. It has been found that by making the electrodes spiral and cylindrical, a highly efficient battery can be manufactured even though it is thin.

【0033】[0033]

【表1】 [Table 1]

【0034】実施形態2 次に、本発明の実施形態2として、柱状体膜を用いた全
薄膜型太陽電池について以下に述べる。
Embodiment 2 Next, as Embodiment 2 of the present invention, an all-thin-film type solar cell using a columnar film will be described below.

【0035】[構成]実施形態に係る太陽電池の電極の構
成を図10に示す。基板50上に透明電極52aが形成
されている。さらに、透明電極52a上に柱状体膜54
が形成されている。基板50、透明電極52a、および
柱状体54の材料に関しては、実施形態1と同様であ
る。柱状体膜54の上には、柱状体膜54と異なる材料
で異なる形態の層が形成されている。すなわち、柱状体
膜54上に柱状絶縁層56、および透明電極52bが形
成されている。注入する電解質としては、ヨウ素の溶液
が代表的である。溶媒としては、水よりも有機溶媒の方
が好適とされている。
[Configuration] FIG. 10 shows the configuration of the electrode of the solar cell according to the embodiment. A transparent electrode 52a is formed on a substrate 50. Further, the columnar film 54 is formed on the transparent electrode 52a.
Are formed. The materials of the substrate 50, the transparent electrode 52a, and the columnar body 54 are the same as in the first embodiment. On the columnar film 54, a layer of a different form is formed with a material different from that of the columnar film 54. That is, the columnar insulating layer 56 and the transparent electrode 52b are formed on the columnar film 54. As an electrolyte to be injected, a solution of iodine is typical. As a solvent, an organic solvent is more preferable than water.

【0036】[作製手順と評価]透明電極としてFTOを用
いたガラス基板を用意し、有機洗浄した後に真空槽に取
り付けた後、1×10−6Torrまで排気した。基板の下方
約50cmの位置に配置した電子ビーム蒸着源に、酸化チタ
ンの粉末を入れておき、これに電子ビームを照射して加
熱した。同時に真空槽に酸素ガスを導入し、真空度が1
×10−5Torrになるように調節した。蒸着角を75℃以上
で、螺旋型柱状電極、円柱型柱状電極またはジグザグ電
極のいずれかを作製した。これを高温で熱処理し、TiO
を結晶化した後、濃度5×10−4Mの[RuL(NCS),L=
4,4'-dicarboxy-2,2'bipyridine]のエタノール溶液に浸
し、80℃の乾燥機に入れて1日放置した。その後溶液か
ら取り出し、乾燥空気を吹き付けて、電極を乾燥した。
再び真空槽に試料を入れ、1×10−6Torrまで排気した
後、電子ビーム蒸着によって、柱状絶縁槽を形成した。
蒸着角は75℃以上であることが好適である。柱状絶縁槽
を形成した上にスパタリングによって透明電極を形成し
た。材料はITO又はFTOが好適である。成膜時に、蒸着角
を柱状絶縁層成膜したときの値から徐々に垂直方向に変
化させることによって、表面が平坦、高密度、かつ均一
な透明電極を形成することができた。上記試料を、0.5M
LiI/0.05M I と0.5M 4-tert-butyl-pyridineのエタ
ノール溶液に浸し、電解質溶液が、試料内部に十分浸透
するのを待って引き上げ、周辺部を封止して、全薄膜型
太陽電池を作製した。全薄膜型でありながら、電解質を
注入可能なのは、電極及び絶縁層の密度が低く、空孔が
配向しているからである。これによって、従来に比べて
格段に薄く、大きな電流を取り出すことのできる太陽電
池が実現した。
[Preparation Procedure and Evaluation] A glass substrate using FTO as a transparent electrode was prepared, washed with an organic material, attached to a vacuum chamber, and evacuated to 1 × 10 −6 Torr. Titanium oxide powder was placed in an electron beam evaporation source placed at a position about 50 cm below the substrate, and heated by irradiation with an electron beam. At the same time, oxygen gas is introduced into the vacuum chamber,
It was adjusted so as to be × 10 −5 Torr. At a deposition angle of 75 ° C. or more, any of a spiral columnar electrode, a columnar columnar electrode, or a zigzag electrode was prepared. This is heat-treated at high temperature,
After crystallization of 2 , [RuL 2 (NCS) 2 , L = 5 × 10 −4 M
It was immersed in an ethanol solution of [4,4'-dicarboxy-2,2'bipyridine], placed in a dryer at 80 ° C, and left for 1 day. Thereafter, the electrode was taken out of the solution and blown with dry air to dry the electrode.
The sample was put into the vacuum chamber again, evacuated to 1 × 10 −6 Torr, and a columnar insulating tank was formed by electron beam evaporation.
The deposition angle is preferably at least 75 ° C. After forming the columnar insulating tank, a transparent electrode was formed by sputtering. The material is preferably ITO or FTO. By gradually changing the deposition angle in the vertical direction from the value obtained when the columnar insulating layer was formed during the film formation, a transparent electrode having a flat, high-density, and uniform surface could be formed. 0.5M
LiI / 0.05MI 2 and immersed in ethanol solution of 0.5M 4-tert-butyl-pyridine , electrolyte solution, pulled up waiting to sufficiently penetrate inside the sample, to seal the peripheral portion, the total thin-film solar cell Was prepared. The reason that the electrolyte can be injected in spite of the all-thin film type is that the density of the electrode and the insulating layer is low and the holes are oriented. As a result, a solar cell that is much thinner than the conventional one and can extract a large current has been realized.

【0037】実施形態3 次に、本発明の実施形態3として、柱状体膜を用いたフ
ォトクロミックデバイスについて以下に述べる。
Embodiment 3 Next, as Embodiment 3 of the present invention, a photochromic device using a columnar film will be described below.

【0038】[構成]本実施形態に係るフォトクロミック
デバイスの電極の構成を図11に示す。基板60a上に
透明電極62aが形成されている。さらに、透明電極6
2a上に柱状体膜64が形成されている。基板60a、
透明電極62a、および柱状体64の材料に関しては、
実施形態1と同様である。なお、フォトクロミックデバ
イスの場合、太陽電池と異なり、光の透過率が高いこと
が重要であるため、用いられる材料は透過性を有するこ
とが望ましい。
[Configuration] FIG. 11 shows the configuration of the electrodes of the photochromic device according to the present embodiment. A transparent electrode 62a is formed on a substrate 60a. Further, the transparent electrode 6
A columnar film 64 is formed on 2a. Substrate 60a,
Regarding the material of the transparent electrode 62a and the columnar body 64,
This is the same as in the first embodiment. In the case of a photochromic device, unlike a solar cell, it is important that the light transmittance is high. Therefore, it is desirable that the material used has transparency.

【0039】対向電極として、基板60b上に透明電極
62bが形成され、さらに、透明電極62bの上に色変
化層66が形成されたものが用いられる。色変化層66
は、酸化還元反応によって色が変化するもので何でもよ
いが、特にWOやInNが適している。色変化層66は、
色が変化する以外に電極としても機能しており、色変化
層自体を柱状電極とすればさらに性能向上が期待でき
る。
As the counter electrode, an electrode in which a transparent electrode 62b is formed on a substrate 60b and a color changing layer 66 is formed on the transparent electrode 62b is used. Color change layer 66
May be anything whose color changes by an oxidation-reduction reaction, but WO 3 and InN are particularly suitable. The color change layer 66
In addition to functioning as a color changing electrode, it functions as an electrode. If the color changing layer itself is a columnar electrode, further improvement in performance can be expected.

【0040】基板60aおよび基板60bを、図11に
示すように、適当な間隔をあけて対向させ、電極間のす
き間に電解質を注入しセルを完成させる。電解質の材料
としては、色変化層66に酸化還元反応を引き起こす成
分を含んだものであれば何でもよい。具体的にはLiI、N
aI等のアルカリ金属塩の溶液が適している。
As shown in FIG. 11, the substrate 60a and the substrate 60b are opposed to each other at an appropriate interval, and an electrolyte is injected into a gap between the electrodes to complete the cell. As the material of the electrolyte, any material may be used as long as it contains a component that causes a redox reaction in the color change layer 66. Specifically, LiI, N
Solutions of alkali metal salts such as aI are suitable.

【0041】透明電極62aと透明電極62bとを、ス
イッチ68を介して結線する。スイッチ68を閉にして
光を照射すると着色、光照射をやめると消光する。ま
た、着色後スイッチ68を開にすると、光を照射せずと
も着色状態を維持する。同様に、着色状態でスイッチ6
8を開にしておくと、光を照射しても着色しない。
The transparent electrode 62a and the transparent electrode 62b are connected via a switch 68. When the switch 68 is closed and the light is irradiated, the light is colored. When the light irradiation is stopped, the light is extinguished. When the switch 68 is opened after coloring, the colored state is maintained without irradiating light. Similarly, switch 6 in the colored state
When 8 is left open, it does not color even when irradiated with light.

【0042】[作製手順と評価]透明電極としてFTOを用
いたガラス基板を用意し、有機洗浄した後に真空槽に取
り付けた後、1×10−6Torrまで排気した。基板の下方
約50cmの位置に配置した電子ビーム蒸着源に、酸化チタ
ンの粉末を入れておき、これに電子ビームを照射して加
熱する。同時に真空槽に酸素ガスを導入し、真空度が1
×10−5Torrになるように調節した。表2に示すような
電極作製条件で、螺旋型柱状電極、円柱型柱状電極、及
び比較として通常の高密度膜と粉末を焼き固めた電極を
用意した。膜厚は全て、1μmとした。これらを500℃で1
時間熱処理し、TiOを結晶化した後、濃度3×10−4M
の[Na[(NC)Ru(dcb)(CN)-Ru(dcb)(NC)Ru(bpy)C
N],(dcbH)=2,2'bipyridal-4,4',bpy=2,2'bipyridal]
のエタノール溶液に浸し、80℃の乾燥機に入れて1日放
置した。その後溶液から取り出し、乾燥空気を吹き付け
て、電極を乾燥した。対向電極としてFTO付ガラス基板
を用意し、有機洗浄した後に真空槽に取り付けた後、1
×10−6Torrまで排気した。その後、真空槽に酸素ガス
を導入し、真空度が1×10−4Torrになるように調節
し、WO粉末を蒸発源に用いたRFイオンプレーティング
によってWOを成膜した。膜厚は500nmとした。スペー
サとして50μmのカプトン箔を用い、両電極と張り合わ
せてセルを形成した。
[Preparation Procedure and Evaluation] A glass substrate using FTO as a transparent electrode was prepared, washed with an organic material, attached to a vacuum chamber, and evacuated to 1 × 10 −6 Torr. Titanium oxide powder is placed in an electron beam evaporation source located at a position about 50 cm below the substrate, and heated by irradiating it with an electron beam. At the same time, oxygen gas is introduced into the vacuum chamber,
It was adjusted so as to be × 10 −5 Torr. Under the electrode preparation conditions shown in Table 2, a helical columnar electrode, a cylindrical columnar electrode, and, as a comparison, an ordinary high-density film and an electrode obtained by sintering powder were prepared. All film thicknesses were 1 μm. These at 500 ° C
Heat treatment for 3 hours to crystallize TiO 2 , concentration 3 × 10 -4 M
[Na 2 [(NC) Ru (dcb) 2 (CN) -Ru (dcb) 2 (NC) Ru (bpy) 2 C
N], (dcbH 2) = 2,2'bipyridal-4,4 ', bpy = 2,2'bipyridal]
, And placed in a dryer at 80 ° C for 1 day. Thereafter, the electrode was taken out of the solution and blown with dry air to dry the electrode. Prepare a glass substrate with FTO as the counter electrode, wash it organically, attach it to the vacuum chamber,
Evacuated to × 10 −6 Torr. Thereafter, oxygen gas was introduced into the vacuum chamber, the degree of vacuum was adjusted to 1 × 10 −4 Torr, and WO 3 was deposited by RF ion plating using WO 3 powder as an evaporation source. The film thickness was 500 nm. Using a 50 μm Kapton foil as a spacer, the cell was formed by bonding to both electrodes.

【0043】フォトクロミック特性の評価は、両電極間
のすき間に、0.5M LiIのエタノール溶液を注入して行っ
た。
The evaluation of the photochromic properties was performed by injecting a 0.5 M LiI ethanol solution into the gap between the two electrodes.

【0044】表2に作製したフォトクロミックデバイス
の性能を示した。電極を螺旋及び円柱型にすることによ
って、応答性を早くできることがわかった(応答速度は
消色状態から透過率10%以下に着色するまでの時間であ
る)。
Table 2 shows the performance of the produced photochromic device. It was found that the response could be made faster by making the electrodes spiral and cylindrical (response speed is the time from the decolored state to the time of coloring to a transmittance of 10% or less).

【0045】[0045]

【表2】 [Table 2]

【0046】実施形態4 次に、本発明の実施形態4として、柱状体膜を用いたエ
レクトロクロミックデバイスについて以下に述べる。本
実施形態では、柱状体膜が電極として機能するととも
に、色変化する。
Embodiment 4 Next, as Embodiment 4 of the present invention, an electrochromic device using a columnar film will be described below. In this embodiment, the columnar film functions as an electrode and changes color.

【0047】[構成]本実施形態に係るエレクトロクロミ
ックデバイスの電極の構成を図12に示す。基板70a
上に透明電極72aが形成されている。さらに、透明電
極72a上に柱状体膜74が形成されている。基板70
a、透明電極72a、および柱状体74の材料に関して
は、実施形態1と同様である。ただし、本実施形態にお
いては、柱状体膜74の材料として、色が変化する材料
が用いられる。具体的な材料としては、WOやInNが好
ましい。
[Configuration] FIG. 12 shows the configuration of the electrodes of the electrochromic device according to the present embodiment. Substrate 70a
The transparent electrode 72a is formed thereon. Further, a columnar film 74 is formed on the transparent electrode 72a. Substrate 70
The materials of a, the transparent electrode 72a, and the columnar body 74 are the same as in the first embodiment. However, in the present embodiment, a material that changes color is used as the material of the columnar body film 74. As a specific material, WO 3 or InN is preferable.

【0048】上記の柱状体膜74を形成した基板70a
と対向するかたちで、別の基板70bが配置される。基
板70bには、ガラス基板が用いられる。基板70b上
には、透明電極72bが設けられている。透明電極72
aと透明電極72bとは、直流電圧を印加できるように
結線される。
The substrate 70a on which the columnar film 74 is formed
Another substrate 70b is arranged so as to face. A glass substrate is used as the substrate 70b. A transparent electrode 72b is provided on the substrate 70b. Transparent electrode 72
a and the transparent electrode 72b are connected so that a DC voltage can be applied.

【0049】[作製手順と評価]透明電極としてFTOを用
いたガラス基板を用意し、有機洗浄した後に真空槽に取
り付けた後、1×10−6Torrまで排気した。基板の下方
約50cmの位置に配置した電子ビーム蒸着源に、インジウ
ム金属を入れておき、これに電子ビームを照射して加熱
した。同時に真空槽に酸素ガスを導入し、真空度が1×1
0−5Torrになるように調節した。さらに、蒸発源近傍
に高周波を投入し、RFイオンプレーティングによって、
InN膜を作製した。表3に示すような電極作製条件で、
螺旋型柱状電極、円柱型柱状電極、及び比較として通常
の高密度膜を用意した。膜厚は全て、1.0μmとした。対
向電極としてFTO付ガラス基板を用意し、スペーサとし
て50μmのカプトン箔を用い、両電極と張り合わせてセ
ルを形成した。
[Preparation Procedure and Evaluation] A glass substrate using FTO as a transparent electrode was prepared, washed with an organic material, attached to a vacuum chamber, and evacuated to 1 × 10 −6 Torr. Indium metal was placed in an electron beam evaporation source placed at a position about 50 cm below the substrate, and heated by irradiating it with an electron beam. At the same time, oxygen gas is introduced into the vacuum chamber, and the degree of vacuum is 1 × 1
0 was adjusted to -5 Torr. In addition, high frequency is applied near the evaporation source, and by RF ion plating,
An InN film was prepared. Under the electrode preparation conditions shown in Table 3,
A helical columnar electrode, a cylindrical columnar electrode, and a normal high-density film as a comparison were prepared. All film thicknesses were 1.0 μm. A glass substrate with FTO was prepared as a counter electrode, a 50 μm Kapton foil was used as a spacer, and a cell was formed by laminating with both electrodes.

【0050】エレクトロクロミック特性を評価は、両電
極間のすき間に、0.5M NaSOの水溶液を注入し、2つ
の透明電極に直流電圧を印加して行った。
The electrochromic properties were evaluated by injecting an aqueous solution of 0.5 M Na 2 SO 4 into a gap between the two electrodes and applying a DC voltage to the two transparent electrodes.

【0051】表3に作製したエレクトロクロミックデバ
イスの性能を示した。電極を螺旋及び円柱型にすること
によって、応答性を早くできることがわかった(応答速
度は消色状態から透過率25%以下に着色するまでの時間
である)。
Table 3 shows the performance of the manufactured electrochromic device. It was found that the response could be made faster by making the electrodes spiral and cylindrical (response speed is the time from the decolored state to the time of coloring to a transmittance of 25% or less).

【0052】[0052]

【表3】 [Table 3]

【0053】実施形態5 次に、本発明の実施形態5として、柱状体膜を用いた化
学センサについて以下に述べる。本実施形態において
は、柱状電膜での化学反応によって、電極自身の電気抵
抗が変化したり、起電力が生じることを利用して、柱状
体膜を化学センサに用いる。電極の表面積が大きく、空
孔が配向しているので、通常のPVD膜や、微粒子焼結体
の膜を電極として用いた場合に比べて高感度かつ高速な
センサが作製可能になる。ここでは、一例として柱状体
膜を用いたCOガスセンサの構成を示す。
Embodiment 5 Next, as Embodiment 5 of the present invention, a chemical sensor using a columnar film will be described below. In the present embodiment, the columnar membrane is used for a chemical sensor by utilizing the fact that the electric resistance of the electrode itself changes or an electromotive force is generated by a chemical reaction in the columnar electromembrane. Since the surface area of the electrode is large and the pores are oriented, it is possible to produce a sensor with higher sensitivity and higher speed than when a normal PVD film or a film of fine particle sintered body is used as the electrode. Here, the configuration of a CO gas sensor using a columnar film is shown as an example.

【0054】[構成]イットリウムで安定化したジルコニ
ア基板80上に、たとえばPtを用いた柱状膜82a,8
2bが形成されている。柱状電極82b上には炭酸ガス
が到達しないように酸化触媒膜84が成膜される。この
とき酸化触媒膜84は必ずしも柱状構造をもつ必要はな
い。柱状電極82aと柱状電極82bとの間には、COガ
ス雰囲気ではガスの量に応じた起電力が生じ、COガスを
検出することができる。柱状電極を用いることによっ
て、電極表面と基板との間での酸素原子、酸素イオンの
やりとりが高速に行われるため、センサの感度が飛躍的
に向上する。
[Construction] On the zirconia substrate 80 stabilized with yttrium, columnar films 82a and 82 using, for example, Pt are used.
2b is formed. An oxidation catalyst film 84 is formed on the columnar electrode 82b so that carbon dioxide does not reach. At this time, the oxidation catalyst film 84 does not necessarily need to have a columnar structure. In the CO gas atmosphere, an electromotive force corresponding to the amount of gas is generated between the columnar electrode 82a and the columnar electrode 82b, and the CO gas can be detected. By using the columnar electrode, the exchange of oxygen atoms and oxygen ions between the electrode surface and the substrate is performed at high speed, so that the sensitivity of the sensor is dramatically improved.

【0055】実施形態6 次に、本発明の実施形態6として、柱状体膜を用いた光
触媒について以下に述べる。光触媒は、光触媒表面又は
内部で光を吸収し、電子・正孔対が生成され、それらが
光触媒表面に拡散し、表面に吸着した物質を酸化還元す
る。このようなメカニズムから考えて、光触媒は、電池
を内包した一種の電極と見なすことができる。本実施形
態のように、柱状体膜を光触媒に用いることにより、柱
状体膜に接触した化学物質を分解することができる。本
実施形態の化学物質として有用なものは、いわゆる有害
物質である。有害物質としては、たとえば、ダイオキシ
ン、ローダミンなどの発ガン物質、ビスフェノール、ホ
ルムアルデヒドなどの環境ホルモン、ビスフェノール、
アンモニアなどの悪臭物質、No、Soなどの無機有害
物質などがある。
Embodiment 6 Next, as Embodiment 6 of the present invention, a photocatalyst using a columnar film will be described below. The photocatalyst absorbs light on or in the photocatalyst to generate electron-hole pairs, which diffuse to the photocatalyst surface and redox a substance adsorbed on the surface. Considering such a mechanism, the photocatalyst can be regarded as a kind of electrode containing a battery. By using the columnar film as the photocatalyst as in the present embodiment, the chemical substance in contact with the columnar film can be decomposed. Those useful as the chemical substance of the present embodiment are so-called harmful substances. Examples of harmful substances include carcinogens such as dioxin and rhodamine, environmental hormones such as bisphenol and formaldehyde, bisphenol,
Malodorous substances such as ammonia, No x, and the like inorganic harmful substances such So. x.

【0056】[構成]本実施形態に係る光触媒の電極の構
成を図14に示す。基板90上に、柱状体膜92が形成
されている。柱状体膜92の材料は、光を吸収して酸化
還元能力を発揮するものなら何でもよい。具体的にはTi
O、TiON、ZnOなどが、光触媒機能を有する材料と
してよく知られている。また、柱状電極の光触媒機能を
手助けするものとして、Pt等の金属微粒子を電極表面に
付与してもよい。さらに、TiOとTiONのように、
動作する波長域の異なる材料を積層することによって全
体の活性を高めることができるのは、柱状体膜を用いな
ければ不可能である。
[Configuration] FIG. 14 shows the configuration of the electrode of the photocatalyst according to the present embodiment. On the substrate 90, a columnar film 92 is formed. The material of the columnar film 92 may be any material as long as it absorbs light and exhibits a redox ability. Specifically, Ti
O 2, TiO x N Y, ZnO , etc., it is well known as a material having a photocatalytic function. Further, metal particles such as Pt may be provided on the surface of the electrode to assist the photocatalytic function of the columnar electrode. Furthermore, like TiO 2 and TiO x NY ,
It is impossible to increase the overall activity by laminating materials having different operating wavelength ranges without using a columnar film.

【0057】[作製手順と評価]ガラス基板を用意し、有
機洗浄した後に真空槽に取り付けた後、1×10−6Torr
まで排気した。基板の下方約50cmの位置に配置した電子
ビーム蒸着源に、酸化チタンの粉末を入れておき、これ
に電子ビームを照射して加熱した。同時に真空槽に酸素
ガスを導入し、真空度が1×10−5Torrになるように調
節した。蒸着面、面内回転条件を変えて、螺旋型柱状電
極、円柱型柱状電極、ジグザグ柱電極、及び比較として
通常の高密度膜の電極を用意した。膜厚は全て、1.0μm
とした。4種類の電極をそれぞれ大気中500℃で1時間熱
処理したものと、120℃、90%RHで3時間水熱処理した試
料を作製した。なお、本件の柱状電極のうち、特に蒸着
角75℃以上で作製したものについては、上記の熱処理や
水熱処理によって、形状が大きく変化することはない。
[Preparation Procedure and Evaluation] A glass substrate was prepared, washed with an organic material, attached to a vacuum chamber, and then 1 × 10 −6 Torr.
Exhausted. Titanium oxide powder was placed in an electron beam evaporation source placed at a position about 50 cm below the substrate, and heated by irradiation with an electron beam. At the same time, oxygen gas was introduced into the vacuum chamber to adjust the degree of vacuum to 1 × 10 −5 Torr. The helical columnar electrode, the columnar columnar electrode, the zigzag columnar electrode, and the electrode of a normal high-density film as a comparison were prepared by changing the deposition surface and the in-plane rotation conditions. All film thicknesses are 1.0 μm
And Four types of electrodes were heat-treated at 500 ° C. for 1 hour in the atmosphere, and samples were subjected to hydrothermal treatment at 120 ° C. and 90% RH for 3 hours. Note that, among the columnar electrodes of the present invention, those formed especially at a deposition angle of 75 ° C. or more do not significantly change in shape due to the above heat treatment or hydrothermal treatment.

【0058】光触媒性能の評価は、試料を8mm×27mmに
切り出し、3mlのメチレンブルーの水溶液(6×10−5M)
に浸し、これに10Wのブラックライトを照射し、水溶液
の脱色特性から評価した。図15に、メチレンブルーの
脱色から求めた触媒活性度と蒸着角との関係を示す。値
が大きい方が光触媒としては高性能である。
For evaluation of photocatalytic performance, a sample was cut into 8 mm × 27 mm and 3 ml of an aqueous solution of methylene blue (6 × 10 −5 M).
, And irradiated with 10 W of black light, and evaluated from the decolorization characteristics of the aqueous solution. FIG. 15 shows the relationship between the catalyst activity obtained from the decolorization of methylene blue and the deposition angle. The higher the value, the higher the performance of the photocatalyst.

【0059】蒸着角60°以上で作製した螺旋注状電極、
円柱状電極、ジグザグ柱電極の試料は何れも大きな触媒
活性を示した。蒸着角45°以下では膜の密度が大きく、
良好な触媒特性は得られなかった。
Spiral casting electrode manufactured at a deposition angle of 60 ° or more,
The samples of the columnar electrode and the zigzag column electrode showed large catalytic activity. At a deposition angle of 45 ° or less, the density of the film is large,
Good catalytic properties were not obtained.

【0060】螺旋柱状電極及び円柱状電極では、120℃
の低温での水熱処理でもかなり大きな触媒性能が得られ
ており、プラスチック基板等への成膜も可能である。
For a spiral columnar electrode and a columnar electrode, 120 ° C.
Even at a low temperature of the hydrothermal treatment, a considerably large catalytic performance is obtained, and a film can be formed on a plastic substrate or the like.

【0061】実施形態7 次に、本発明の実施形態7として、柱状体膜を用いた電
気化学反応用電極について以下に述べる。柱状体膜は、
従来の電気化学反応用の電極としても、その大表面積を
生かした使い方ができる。
Embodiment 7 Next, as Embodiment 7 of the present invention, an electrode for electrochemical reaction using a columnar film will be described below. The columnar membrane is
It can also be used as a conventional electrode for electrochemical reactions, taking advantage of its large surface area.

【0062】[構成]図16に、実施形態7に係る電気化
学反応用電極の構成を示す。絶縁性の基板100上には
電極102が形成されている。電極102上には、さら
に、柱状体104が形成されている。基板100が、導
電性を有する場合には、電極102は必ずしも必要では
ない。このように、柱状体膜104を形成した基板10
0を2枚用意する。柱状体膜104の材料は、目的の電
気化学反応に適した材料で形成することが好ましく、必
ずしも2枚の柱状体膜104を同じ材料で形成する必要
はない。
[Structure] FIG. 16 shows the structure of an electrode for electrochemical reaction according to the seventh embodiment. An electrode 102 is formed on an insulating substrate 100. A columnar body 104 is further formed on the electrode 102. When the substrate 100 has conductivity, the electrode 102 is not necessarily required. Thus, the substrate 10 on which the columnar body film 104 is formed
Prepare two 0s. The material of the columnar film 104 is preferably formed of a material suitable for a desired electrochemical reaction, and the two columnar films 104 do not necessarily need to be formed of the same material.

【0063】2枚の基板100を反応液に浸し、基板1
00間に適当な電圧を加えることによって、電気化学反
応が進む。柱状体膜104が大表面積を有し、空孔が配
向しているため、電気化学反応が効率よく進行する。
The two substrates 100 are immersed in the reaction solution,
By applying an appropriate voltage during 00, the electrochemical reaction proceeds. Since the columnar film 104 has a large surface area and the pores are oriented, the electrochemical reaction proceeds efficiently.

【0064】応用先としては、たとえば水の電気分解に
用いれば、陰極側に酸性イオン水、陽極側にアルカリイ
オン水ができ、美容、健康に用いることができる。反応
が早く進行するので、低コストでイオン水を作ることが
できる。
As an application destination, for example, when used for electrolysis of water, acidic ionized water is formed on the cathode side and alkaline ionized water is formed on the anode side, and can be used for beauty and health. Since the reaction proceeds quickly, ion water can be produced at low cost.

【0065】[0065]

【発明の効果】電極をとりまく環境との電荷の授受によ
って動作するデバイスの高速化、高効率化が図られる。
電極をとりまく環境との電荷の授受による有害物質の分
解の高速化、高効率化が図られる。電極をとりまく環境
との電荷の授受による有用な物質の生成・分離の高速
化、高効率化が図られる。電極材料、基板材料の広範な
組み合わせが可能となる。酸化物などを用いた電極で
は、可視光の透過性に優れる。また、旋光性、複屈折性
などに付加的な機能も付与することが可能である。
According to the present invention, the speed and efficiency of a device that operates by transferring electric charges to and from the environment surrounding the electrodes can be improved.
Higher speed and higher efficiency of decomposition of harmful substances by transfer of electric charge with the environment surrounding the electrodes are achieved. The generation and separation of useful substances is accelerated and the efficiency is increased by transfer of electric charge with the environment surrounding the electrodes. A wide variety of combinations of electrode materials and substrate materials are possible. An electrode using an oxide or the like has excellent visible light transmittance. Further, additional functions such as optical rotation and birefringence can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 柱状体膜(螺旋構造膜)を用いた電極の模式
図を示す。
FIG. 1 is a schematic view of an electrode using a columnar film (spiral structure film).

【図2】 柱状体膜(多角螺旋構造膜)を用いた電極の
模式図を示す。
FIG. 2 is a schematic view of an electrode using a columnar film (polygonal spiral structure film).

【図3】 柱状体膜(楕円柱膜)を用いた電極の模式図
を示す。
FIG. 3 is a schematic view of an electrode using a columnar film (elliptical columnar film).

【図4】 柱状体膜(ジグザグ構造膜)を用いた電極の
模式図を示す。
FIG. 4 is a schematic view of an electrode using a columnar film (zigzag structure film).

【図5】 ジグザグ構造膜を作製する方法を説明するた
めの図である。
FIG. 5 is a diagram for explaining a method of manufacturing a zigzag structure film.

【図6】 蒸着角αを82℃にして作製したジグザグ構造
膜のSEM像を示す図である。
FIG. 6 is a view showing an SEM image of a zigzag structure film manufactured at a deposition angle α of 82 ° C.

【図7】 螺旋構造膜を作製する方法を説明するための
図である。
FIG. 7 is a diagram for explaining a method of manufacturing a spiral structure film.

【図8】 基板の面内回転速度と成膜速度の比を変えた
場合の構造の変化を示す図である。
FIG. 8 is a diagram showing a change in the structure when the ratio between the in-plane rotation speed of the substrate and the film formation speed is changed.

【図9】 実施形態1に係る太陽電池の電極の構成を示
す図である。
FIG. 9 is a diagram showing a configuration of an electrode of the solar cell according to the first embodiment.

【図10】 実施形態2に係る太陽電池の電極の構成を
示す図である。
FIG. 10 is a diagram showing a configuration of an electrode of a solar cell according to Embodiment 2.

【図11】 実施形態3に係るフォトクロミックデバイ
スの電極の構成を示す図である。
FIG. 11 is a diagram showing a configuration of an electrode of the photochromic device according to the third embodiment.

【図12】 実施形態4に係るエレクトロクロミックデ
バイスの電極の構成を示す図である。
FIG. 12 is a diagram showing a configuration of an electrode of the electrochromic device according to the fourth embodiment.

【図13】 実施形態5に係る化学センサの電極の構成
を示す図である。
FIG. 13 is a view showing a configuration of an electrode of the chemical sensor according to the fifth embodiment.

【図14】 実施形態6に係る光触媒の電極の構成を示
す図である。
FIG. 14 is a diagram showing a configuration of an electrode of a photocatalyst according to a sixth embodiment.

【図15】 実施形態6に係る光触媒の触媒活性度と蒸
着角との関係を示す図である。
FIG. 15 is a diagram showing the relationship between the catalytic activity and the deposition angle of the photocatalyst according to the sixth embodiment.

【図16】 実施形態7に係る電気化学反応用電極の構
成を示す図である。
FIG. 16 is a diagram showing a configuration of an electrode for electrochemical reaction according to a seventh embodiment.

【符号の説明】[Explanation of symbols]

10 基板、20 中心軸、30 蒸着源、40a,4
0b 基板、42a,42b 透明電極、44 柱状体
膜。
10 substrate, 20 central axis, 30 evaporation source, 40a, 4
0b Substrate, 42a, 42b Transparent electrode, 44 Columnar film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 27/30 H01M 14/00 P 5H050 H01M 14/00 H01L 31/04 Z Fターム(参考) 2K001 BA20 BB01 BB16 BB28 BB41 4K029 AA09 AA24 BA17 BA18 BA43 BA48 BA49 BB02 CA01 DB05 DB10 4M104 BB36 BB37 DD34 GG05 5F051 AA11 AA14 BA16 FA02 FA04 FA19 5H032 AA06 AA07 AS16 BB05 CC14 EE00 HH00 5H050 AA00 BA00 CA02 CA14 CA17 CB02 CB07 CB11 FA00 FA09 FA13 FA18 FA19 GA24 GA27 HA12 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 27/30 H01M 14/00 P 5H050 H01M 14/00 H01L 31/04 Z F-term (Reference) 2K001 BA20 BB01 BB16 BB28 BB41 4K029 AA09 AA24 BA17 BA18 BA43 BA48 BA49 BB02 CA01 DB05 DB10 4M104 BB36 BB37 DD34 GG05 5F051 AA11 AA14 BA16 FA02 FA04 FA19 5H032 AA06 AA07 AS16 BB05 CC14 EE00 HH00 CAB CA FAB CA FAA CA FAB CA FAA CA FAA CA FAA CA AFA GA27 HA12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に設けられ、前記基板の法線方向
から所定の角度傾斜した方向から飛来した蒸着物質の堆
積により生じた柱状体膜を備えることを特徴とする電
極。
1. An electrode, comprising: a columnar film provided on a substrate and formed by deposition of a deposition material flying from a direction inclined at a predetermined angle from a normal direction of the substrate.
【請求項2】 前記柱状体膜において、前記柱状体膜を
取り巻く環境と電荷が授受されることを特徴とする請求
項1に記載の電極。
2. The electrode according to claim 1, wherein an electric charge and an environment surrounding the columnar film are transferred to and from the columnar film.
【請求項3】 前記柱状体膜において、前記柱状体膜を
取り巻く環境と電荷が授受されることによって、化学物
質が分解されることを特徴とする請求項1に記載の電
極。
3. The electrode according to claim 1, wherein a chemical substance is decomposed in the columnar film by transferring an environment and charges surrounding the columnar film.
【請求項4】 前記柱状体膜において、前記柱状体膜を
取り巻く環境と電荷が授受されることによって、有用な
物質が生成、又は分離されることを特徴とする請求項1
に記載の電極。
4. A useful substance is generated or separated in the columnar membrane by transferring an environment and charges surrounding the columnar membrane.
The electrode according to 1.
JP2000367398A 2000-12-01 2000-12-01 Electrode Pending JP2002170557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000367398A JP2002170557A (en) 2000-12-01 2000-12-01 Electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000367398A JP2002170557A (en) 2000-12-01 2000-12-01 Electrode

Publications (1)

Publication Number Publication Date
JP2002170557A true JP2002170557A (en) 2002-06-14

Family

ID=18837828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000367398A Pending JP2002170557A (en) 2000-12-01 2000-12-01 Electrode

Country Status (1)

Country Link
JP (1) JP2002170557A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064493A (en) * 2003-07-31 2005-03-10 Kyocera Corp Photoelectric converter and photovoltaic device using the same
JP2005339883A (en) * 2004-05-25 2005-12-08 Electric Power Dev Co Ltd Projection type oxide film structure
JP2006165014A (en) * 2004-12-02 2006-06-22 Toppan Printing Co Ltd Method of forming metal oxide film and method of manufacturing dye-sensitized solar cell
WO2006087815A1 (en) * 2005-02-21 2006-08-24 Fujitsu Limited Electrodeposition display and method for fabricating the same
JP2006286526A (en) * 2005-04-04 2006-10-19 Teijin Dupont Films Japan Ltd Electrode for dye-sensitized solar cell and its manufacturing method
JP2006344531A (en) * 2005-06-09 2006-12-21 Central Res Inst Of Electric Power Ind Method of manufacturing anode electrode for dye-sensitized solar cell, and anode electrode for dye-sensitized solar cell
JP2007087854A (en) * 2005-09-26 2007-04-05 Toppan Printing Co Ltd Dye-sensitized solar cell
JP2007109500A (en) * 2005-10-13 2007-04-26 Toppan Printing Co Ltd Dye-sensitized solar cell
KR100827912B1 (en) 2006-01-19 2008-05-07 마쯔시다덴기산교 가부시키가이샤 Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
WO2008072430A1 (en) * 2006-12-13 2008-06-19 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same and nonaqueous electrolyte secondary battery employing it
JP2008198462A (en) * 2007-02-13 2008-08-28 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
WO2009031375A1 (en) * 2007-09-07 2009-03-12 University Of Tsukuba Electrochemical sensor device and electrochemical measuring method using the same
KR100927660B1 (en) 2007-10-16 2009-11-20 한국전자통신연구원 Dye-Sensitized Solar Cells and Manufacturing Method Thereof
US7700235B2 (en) 2004-11-25 2010-04-20 Sony Corporation Battery and method of manufacturing the same
WO2011008539A2 (en) * 2009-06-29 2011-01-20 Applied Materials, Inc. Passivation film for solid electrolyte interface of three dimensional copper containing electrode in energy storage device
US8080334B2 (en) 2005-08-02 2011-12-20 Panasonic Corporation Lithium secondary battery
US8206569B2 (en) 2009-02-04 2012-06-26 Applied Materials, Inc. Porous three dimensional copper, tin, copper-tin, copper-tin-cobalt, and copper-tin-cobalt-titanium electrodes for batteries and ultra capacitors
US8303672B2 (en) 2005-11-07 2012-11-06 Panasonic Corporation Electrode for lithium secondary battery, lithium secondary battery and method for producing the same
KR101280498B1 (en) * 2011-04-27 2013-07-05 한국과학기술연구원 Metal-oxide semiconductor gas sensor with nanostructure and manufacturing method thereof
JP2013545102A (en) * 2010-11-15 2013-12-19 アメリカ合衆国 Perforated contact electrodes on vertical nanowire arrays
KR101344738B1 (en) * 2011-12-12 2013-12-26 한국과학기술연구원 High sensitive transparent gas sensor and method for manufacturing the same
WO2013191309A1 (en) * 2012-06-18 2013-12-27 포항공과대학교 산학협력단 Metal oxide semiconductor gas sensor having nanostructure and method for manufacturing same
KR101465089B1 (en) * 2013-05-30 2014-11-27 포항공과대학교 산학협력단 Dye sensitized solar cells comprising three dimensional nanostructures and manufacturing method thereof
US9285332B2 (en) 2011-12-12 2016-03-15 Korea Institute Of Science And Technology Low power consumption type gas sensor and method for manufacturing the same
JP2016527559A (en) * 2013-07-25 2016-09-08 三井化学株式会社 Electrochromic membrane and related manufacturing method
US10955707B2 (en) 2012-12-28 2021-03-23 E-Vision Smart Optics, Inc. Double-layer electrode for electro-optic liquid crystal lens

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064493A (en) * 2003-07-31 2005-03-10 Kyocera Corp Photoelectric converter and photovoltaic device using the same
JP2005339883A (en) * 2004-05-25 2005-12-08 Electric Power Dev Co Ltd Projection type oxide film structure
US7700235B2 (en) 2004-11-25 2010-04-20 Sony Corporation Battery and method of manufacturing the same
JP2006165014A (en) * 2004-12-02 2006-06-22 Toppan Printing Co Ltd Method of forming metal oxide film and method of manufacturing dye-sensitized solar cell
WO2006087815A1 (en) * 2005-02-21 2006-08-24 Fujitsu Limited Electrodeposition display and method for fabricating the same
JP2006286526A (en) * 2005-04-04 2006-10-19 Teijin Dupont Films Japan Ltd Electrode for dye-sensitized solar cell and its manufacturing method
JP2006344531A (en) * 2005-06-09 2006-12-21 Central Res Inst Of Electric Power Ind Method of manufacturing anode electrode for dye-sensitized solar cell, and anode electrode for dye-sensitized solar cell
US8888870B2 (en) 2005-08-02 2014-11-18 Panasonic Corporation Lithium secondary battery
US8080334B2 (en) 2005-08-02 2011-12-20 Panasonic Corporation Lithium secondary battery
JP2007087854A (en) * 2005-09-26 2007-04-05 Toppan Printing Co Ltd Dye-sensitized solar cell
JP2007109500A (en) * 2005-10-13 2007-04-26 Toppan Printing Co Ltd Dye-sensitized solar cell
US8318359B2 (en) 2005-11-07 2012-11-27 Panasonic Corporation Electrode for lithium secondary battery, lithium secondary battery and method for producing the same
US8303672B2 (en) 2005-11-07 2012-11-06 Panasonic Corporation Electrode for lithium secondary battery, lithium secondary battery and method for producing the same
KR100827912B1 (en) 2006-01-19 2008-05-07 마쯔시다덴기산교 가부시키가이샤 Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
US7794878B2 (en) 2006-01-19 2010-09-14 Panasonic Corporation Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
JP2008171798A (en) * 2006-12-13 2008-07-24 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and its manufacturing method, and nonaqueous electrolyte secondary battery using the same
US7947396B2 (en) 2006-12-13 2011-05-24 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery, method of manufacturing the same, and non-aqueous electrolyte secondary battery using the same
KR101037032B1 (en) 2006-12-13 2011-05-25 파나소닉 주식회사 Negative electrode for non-aqueous electrolyte secondary battery, method of manufacturing the same, and non-aqueous electrolyte secondary battery using the same
WO2008072430A1 (en) * 2006-12-13 2008-06-19 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same and nonaqueous electrolyte secondary battery employing it
JP2008198462A (en) * 2007-02-13 2008-08-28 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
US8303800B2 (en) 2007-09-07 2012-11-06 University Of Tsukuba Electrochemical sensor device and electrochemical measuring method using the same
WO2009031375A1 (en) * 2007-09-07 2009-03-12 University Of Tsukuba Electrochemical sensor device and electrochemical measuring method using the same
KR100927660B1 (en) 2007-10-16 2009-11-20 한국전자통신연구원 Dye-Sensitized Solar Cells and Manufacturing Method Thereof
US8809104B2 (en) 2007-10-16 2014-08-19 Electronics And Telecommunications Research Institute Dye-sensitized solar cell and method of fabricating the same
US8206569B2 (en) 2009-02-04 2012-06-26 Applied Materials, Inc. Porous three dimensional copper, tin, copper-tin, copper-tin-cobalt, and copper-tin-cobalt-titanium electrodes for batteries and ultra capacitors
US9567683B2 (en) 2009-02-04 2017-02-14 Applied Materials, Inc. Porous three dimensional copper, tin, copper-tin, copper-tin-cobalt, and copper-tin-cobalt-titanium electrodes for batteries and ultra capacitors
WO2011008539A2 (en) * 2009-06-29 2011-01-20 Applied Materials, Inc. Passivation film for solid electrolyte interface of three dimensional copper containing electrode in energy storage device
WO2011008539A3 (en) * 2009-06-29 2011-06-30 Applied Materials, Inc. Passivation film for solid electrolyte interface of three dimensional copper containing electrode in energy storage device
JP2013545102A (en) * 2010-11-15 2013-12-19 アメリカ合衆国 Perforated contact electrodes on vertical nanowire arrays
KR101280498B1 (en) * 2011-04-27 2013-07-05 한국과학기술연구원 Metal-oxide semiconductor gas sensor with nanostructure and manufacturing method thereof
US9285332B2 (en) 2011-12-12 2016-03-15 Korea Institute Of Science And Technology Low power consumption type gas sensor and method for manufacturing the same
KR101344738B1 (en) * 2011-12-12 2013-12-26 한국과학기술연구원 High sensitive transparent gas sensor and method for manufacturing the same
US8785924B2 (en) 2011-12-12 2014-07-22 Korea Institute Of Science And Technology High-sensitivity transparent gas sensor and method for manufacturing the same
WO2013191309A1 (en) * 2012-06-18 2013-12-27 포항공과대학교 산학협력단 Metal oxide semiconductor gas sensor having nanostructure and method for manufacturing same
US9689785B2 (en) 2012-06-18 2017-06-27 Postech Academy-Industry Foundation Metal oxide semiconductor gas sensor having nanostructure and method for manufacturing same
US10955707B2 (en) 2012-12-28 2021-03-23 E-Vision Smart Optics, Inc. Double-layer electrode for electro-optic liquid crystal lens
US11513416B2 (en) 2012-12-28 2022-11-29 E-Vision Smart Optics, Inc. Double-layer electrode for electro-optic liquid crystal lens
KR101465089B1 (en) * 2013-05-30 2014-11-27 포항공과대학교 산학협력단 Dye sensitized solar cells comprising three dimensional nanostructures and manufacturing method thereof
JP2016527559A (en) * 2013-07-25 2016-09-08 三井化学株式会社 Electrochromic membrane and related manufacturing method
JP2020042272A (en) * 2013-07-25 2020-03-19 イー−ビジョン,エルエルシー Electrochromic films and related manufacturing methods thereof
US11473186B2 (en) 2013-07-25 2022-10-18 E-Vision, Llc Electrochromic films and related methods thereof
JP7221181B2 (en) 2013-07-25 2023-02-13 イー-ビジョン,エルエルシー Electrochromic film and related method of making the same

Similar Documents

Publication Publication Date Title
JP2002170557A (en) Electrode
Yu et al. High-performance TiO2 photoanode with an efficient electron transport network for dye-sensitized solar cells
Kim et al. Characteristics of low-temperature annealed TiO2 films deposited by precipitation from hydrolyzed TiCl4 solutions
Guo et al. Unprecedented electrochromic stability of a-WO3–x thin films achieved by using a hybrid-cationic electrolyte
Huang et al. Preparation of nanoporous titania films by surface sol− gel process accompanied by low-temperature oxygen plasma treatment
JP3692472B2 (en) Low temperature synthesis of conductive titanium oxide porous thick film
WO2006013830A1 (en) Photoelectrode, dye sensitizing solar cell using the same, and dye sensitizing solar cell module
Ahila et al. Controllable synthesis of α and β-Bi2O3 through anodization of thermally evaporated bismuth and its characterization
JP3506080B2 (en) Semiconductor electrode and method of manufacturing the same
Berrigan et al. Protein‐Enabled Layer‐by‐Layer Syntheses of Aligned, Porous‐Wall, High‐Aspect‐Ratio TiO2 Nanotube Arrays
Najafabadi et al. Performance enhancement of dye-sensitized solar cells by plasma treatment of BaSnO3 photoanode
KR20090080205A (en) Syntesis of titanium dioxide by aging and peptization methods for photo-electrode of dye-sensitized solar cells
JP2003308893A (en) Method of forming metal oxide semiconductor film, organic pigment sensitizing metal oxide semiconductor electrode and solar battery having the same
JP2002231326A (en) Photoelectric conversion element and manufacturing method therefor
Decroly et al. Nanostructured TiO2 layers for photovoltaic and gas sensing applications
JP2000319018A (en) Porous titanium oxide thin film md photoelectric convertor using the film
JP2012038541A (en) Plasmon resonance type photoelectric conversion element manufacturing method, and plasmon resonance type photoelectric conversion element
JP2003123858A (en) Organic dye sensitized metal oxide semiconductor electrode, and solar battery having the semiconductor electrode
JPS61290355A (en) Electrochemical gas sensor
US7731934B2 (en) Titanium oxide with a rutile structure
US20130340825A1 (en) Dye-Sensitized Solar Cell with Ordered Tin Oxide Composite Nanostructure Electrodes
JP4904698B2 (en) Method for producing negative electrode in dye-sensitized solar cell
JP4725701B2 (en) Method for forming porous thin film
JP2003142169A (en) Semiconductor electrode of organic dye sensitized metal oxide and solar cell having the semiconductor electrode
JP4380214B2 (en) Method for producing dye-sensitized solar cell