JP4811690B2 - Carbon nanotube film forming method and film forming apparatus - Google Patents

Carbon nanotube film forming method and film forming apparatus Download PDF

Info

Publication number
JP4811690B2
JP4811690B2 JP2009522589A JP2009522589A JP4811690B2 JP 4811690 B2 JP4811690 B2 JP 4811690B2 JP 2009522589 A JP2009522589 A JP 2009522589A JP 2009522589 A JP2009522589 A JP 2009522589A JP 4811690 B2 JP4811690 B2 JP 4811690B2
Authority
JP
Japan
Prior art keywords
substrate
carbon nanotubes
carbon
film forming
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009522589A
Other languages
Japanese (ja)
Other versions
JPWO2009008291A1 (en
Inventor
毅 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009522589A priority Critical patent/JP4811690B2/en
Publication of JPWO2009008291A1 publication Critical patent/JPWO2009008291A1/en
Application granted granted Critical
Publication of JP4811690B2 publication Critical patent/JP4811690B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/164Preparation involving continuous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Description

本発明は、単層カーボンナノチューブを含むカーボンナノチューブの成膜方法、成膜装置及びカーボンナノチューブ膜に関し、更に詳しくは、流動気相CVD法により原料源から形成されたカーボンナノチューブを大量、安価に且つ200度以下の低温で製造する方法、成膜装置及び膜に関する。   The present invention relates to a carbon nanotube film forming method including single-walled carbon nanotubes, a film forming apparatus, and a carbon nanotube film, and more particularly, a large amount of carbon nanotubes formed from a raw material source by a fluidized gas phase CVD method at low cost and The present invention relates to a method of manufacturing at a low temperature of 200 ° C. or less, a film forming apparatus, and a film.

ナノチューブは化学結合のネットワークにより形成されるチューブ状分子でありグラファイト型炭素がチューブ状ネットワークを形成しているカーボンナノチューブ(CNT)が代表的である。CNTは1991年に初めて作製されたときには多層壁を持つもの(MWCNT)であったが、1993年に単層壁のもの(SWCNT)が作製された。その後、炭素原子の一部又は全部がホウ素(B)や窒素(N)に置き換わったBNCナノチューブやBNナノチューブ等についても発見が報告されている。
CNTは、長さが数十nmから数十μm程度であるのに対し、直径が0.4〜5nm(SWCNT)或いは2〜100nm(MWCNT)と、非常に微細かつ細長い形状を有するのが特徴である。またSWCNTは、その立体構造の違いにより導体(金属)又は半導体のいずれかになることが明らかとなっている。特に、半導体となる構造のカーボンナノチューブでは、その禁制帯(エネルギーバンドギャップ)の大きさがチューブの直径に反比例し、構造制御によって1eV程度から連続的に可変であることが示された。これはシリコン等の他の半導体では得ることのできない特徴であり、種々の特性を付与することの可能な自由度の高い半導体素子の設計の可能性を秘めている。
CNTを合成するための方法として大別すると、アーク放電法(特許文献1参照)、レーザー蒸発法(非特許文献1参照)、化学蒸着法(CVD法)(特許文献2参照)の3種類の手法が知られている。
A nanotube is a tube-like molecule formed by a network of chemical bonds, and a carbon nanotube (CNT) in which graphite-type carbon forms a tube-like network is typical. When CNT was first made in 1991, it had a multi-walled wall (MWCNT), but in 1993, a single-walled wall (SWCNT) was made. Thereafter, discovery has also been reported on BNC nanotubes, BN nanotubes, and the like in which some or all of the carbon atoms are replaced with boron (B) or nitrogen (N).
CNTs have a very fine and elongated shape with a diameter of 0.4 to 5 nm (SWCNT) or 2 to 100 nm (MWCNT), while the length is several tens to several tens of μm. . In addition, it has been clarified that SWCNT can be either a conductor (metal) or a semiconductor due to the difference in three-dimensional structure. In particular, it was shown that carbon nanotubes with a semiconductor structure have a forbidden band (energy band gap) that is inversely proportional to the tube diameter and can be continuously varied from about 1 eV by structural control. This is a characteristic that cannot be obtained by other semiconductors such as silicon, and has the possibility of designing a semiconductor element having a high degree of freedom capable of imparting various characteristics.
The methods for synthesizing CNTs are roughly classified into three types: arc discharge method (see Patent Document 1), laser evaporation method (see Non-Patent Document 1), and chemical vapor deposition method (CVD method) (see Patent Document 2). Techniques are known.

これらの中でCVD法は、大量・安価に合成するための有効な方法であり、CVD法にも大別すると、基板や担体に担持した触媒から成長させて製造する基板CVD法と、触媒の前駆体若しくは粒径のきわめて小さい触媒を含む含炭素原料をスプレー等で霧状にして高温の電気炉に導入することによってカーボンナノチューブを合成する、所謂、流動気相CVD法(特許文献2参照)がある。これらのうち、殊に流動気相CVD法は、基板や担体を用いないことやスケールアップが容易であることなどコストの面で利点が多く、最も大量合成に適した方法の1つとされている。   Among these, the CVD method is an effective method for synthesizing a large amount and at a low cost. When the CVD method is roughly divided, the substrate CVD method, which is produced by growing from a catalyst supported on a substrate or a carrier, A so-called fluidized gas phase CVD method in which carbon nanotubes are synthesized by spraying a carbon-containing raw material containing a precursor or a catalyst having a very small particle diameter into a high temperature electric furnace by spraying or the like (see Patent Document 2) There is. Among these, the fluidized gas phase CVD method has many advantages in terms of cost, such as not using a substrate and a carrier, and being easy to scale up, and is regarded as one of the most suitable methods for mass synthesis. .

CNTはナノテクノロジーの有力な素材として、広範な分野で応用の可能性が検討されている。用途としてはトランジスターや顕微鏡用プローブなどのようにCNTの単線を使用する方法と、多数のCNTをまとめてバルクとして使用する方法とに分けられる。
バルクとして使用する方法の中でもCNTを薄膜にして使用する方法は、透明導電性薄膜(非特許文献3)やバイオセンサー(非特許文献4)として実用化が有望視されている。
CNT is a promising material for nanotechnology, and its potential for application in a wide range of fields is being investigated. Applications can be divided into a method using a single CNT wire such as a transistor and a microscope probe, and a method using a large number of CNTs as a bulk.
Among the methods used as bulk, a method using CNTs as a thin film is expected to be put to practical use as a transparent conductive thin film (Non-Patent Document 3) or a biosensor (Non-Patent Document 4).

上記のように工業材料として有用なCNT薄膜を成膜する技術としては、単層カーボンナノチューブを溶媒等に分散し、分散液を塗布することによって成膜する発明が知られている(特許文献3)。CNTを分散させる方法としては、CNTをドデシルスルホン酸ナトリウムなどの界面活性剤を含有する水溶液に入れる方法(例えば特許文献4参照)がある。
また、単層カーボンナノチューブを製膜するそのほかの技術としては、比較的耐熱性のある基板(シリコン、石英、サファイア等)上に触媒となる金属微粒子を配置し、基板CVD法によって基板上に単層カーボンナノチューブを成長させて薄膜を形成するという方法も知られている(非特許文献5)。
As a technique for forming a CNT thin film useful as an industrial material as described above, an invention is known in which single-walled carbon nanotubes are dispersed in a solvent or the like and the film is formed by applying a dispersion (Patent Document 3). ). As a method of dispersing CNTs, there is a method of putting CNTs in an aqueous solution containing a surfactant such as sodium dodecyl sulfonate (see, for example, Patent Document 4).
As another technique for forming a single-walled carbon nanotube, metal fine particles serving as a catalyst are placed on a relatively heat-resistant substrate (silicon, quartz, sapphire, etc.), and the substrate CVD method is used to form a single-wall carbon nanotube on the substrate. A method of growing a single-walled carbon nanotube to form a thin film is also known (Non-Patent Document 5).

特開平7−197325号公報JP-A-7-197325 特開2001−80913号公報JP 2001-80913 A 特開2006−176362号公報JP 2006-176362 A 特開平6−228824号公報(第5〜6頁)JP-A-6-228824 (pages 5-6) 「Science」誌,vol.273,1996年発行),p483“Science”, vol. 273, 1996), p483 「Journal of Physical Chemistry B」誌,vol.106,2002(2002年2月16日発行),p2429“Journal of Physical Chemistry B”, vol. 106, 2002 (issued February 16, 2002), p2429 「Journal of Materials Chemistry」誌,vol.16,2006(2006年6月30日発行),p3533“Journal of Materials Chemistry”, vol. 16, 2006 (issued on June 30, 2006), p3533 「Analytical and Bioanalytical Chemistry」誌,vol.384,2006(2005年8月30日発行),p322“Analytical and Bioanalytical Chemistry”, vol. 384, 2006 (issued August 30, 2005), p322 「Journal of Physical Chemistry B」誌,vol.109,2005(2005年1月22日発行),p2632“Journal of Physical Chemistry B”, vol. 109, 2005 (issued January 22, 2005), p2632

上記した特許文献4に記載のカーボンナノチューブを溶媒等に分散し、分散液を塗布することによって成膜する発明では、分散が難しいため、再現性のある成膜技術を確立することが困難であるという問題があった。CNTを均一に分散させる特許文献1に記載の方法を用いてもCNT表面に非導電性の有機物が付着するので導電性が損なわれるという問題がある。
また、電子デバイス用途においてはドライプロセスが好ましい場合が多いため、ドライプロセスによる成膜技術が望まれている。
一方、ドライプロセスであっても非特許文献5に記載の手法では、単層カーボンナノチューブの生成反応温度が一般的に500℃以上であることから、使用できる基板が耐熱性の高いものに限られ、ポリマー材質や熱に弱い無機材質の基板に適用することができないという問題があった。
In the invention of forming a film by dispersing the carbon nanotubes described in Patent Document 4 in a solvent and applying a dispersion, it is difficult to establish a reproducible film forming technique because dispersion is difficult. There was a problem. Even when the method described in Patent Document 1 in which CNTs are uniformly dispersed is used, there is a problem in that conductivity is impaired because non-conductive organic substances adhere to the CNT surface.
In addition, since a dry process is often preferable for electronic device applications, a film forming technique using a dry process is desired.
On the other hand, even in a dry process, the method described in Non-Patent Document 5 has a single-walled carbon nanotube production reaction temperature of generally 500 ° C. or higher, so that the substrate that can be used is limited to one having high heat resistance. There is a problem that it cannot be applied to a substrate made of a polymer material or an inorganic material that is weak against heat.

本発明は、工業材料として有用な、単層カーボンナノチューブの膜を効率的、且つ大量・安価に低温で製造する方法及び装置を提供することを目的とする。   An object of the present invention is to provide a method and an apparatus for producing a single-walled carbon nanotube film that is useful as an industrial material efficiently, in large quantities and at low cost at a low temperature.

本発明者らは、前記課題を解決すべく鋭意検討した結果、流動気相CVD法により合成されたる単層ナノチューブを直接基板に付着させることにより、単層ナノチューブの膜が得られるという知見を得、本発明に到達した。
すなわち、この出願によれば、以下の発明が提供される。
〈1〉流動気相CVD法により原料源からカーボンナノチューブを合成し、合成されたカーボンナノチューブを反応管に連結するチャンバー内において直接基板に付着させて基板上に成膜させることを特徴とするカーボンナノチューブ成膜方法。
〈2〉流動気相CVD法により原料源からカーボンナノチューブを合成する反応管に連結して、カーボンナノチューブを基板に付着させる付着手段を設けることを特徴とするカーボンナノチューブ成膜装置。
〈3〉流動気相CVD法により原料源からカーボンナノチューブを合成し、合成されたカーボンナノチューブを反応管に連結するチャンバー内において直接基板に付着させて基板上に成膜されて成ることを特徴とするカーボンナノチューブ膜。
As a result of intensive studies to solve the above problems, the present inventors have obtained the knowledge that a single-walled nanotube film can be obtained by directly attaching a single-walled nanotube synthesized by a fluidized gas phase CVD method to a substrate. The present invention has been reached.
That is, according to this application, the following invention is provided.
<1> Carbon characterized in that carbon nanotubes are synthesized from a raw material source by a fluidized gas phase CVD method, and the synthesized carbon nanotubes are directly deposited on a substrate in a chamber connected to a reaction tube to form a film on the substrate. Nanotube film forming method.
<2> A carbon nanotube film forming apparatus characterized in that it is connected to a reaction tube for synthesizing carbon nanotubes from a raw material source by a fluidized gas phase CVD method, and an attachment means for attaching the carbon nanotubes to a substrate is provided.
<3> It is characterized in that carbon nanotubes are synthesized from a raw material source by a fluidized gas phase CVD method, and the synthesized carbon nanotubes are directly deposited on a substrate in a chamber connected to a reaction tube and deposited on the substrate. Carbon nanotube film.

本発明のカーボンナノチューブ成膜方法及び装置によれば、カーボンナノチューブの膜を効率的、且つ大量・安価に製造することができる。
また、本発明のカーボンナノチューブ成膜方法及び装置によれば、分散プロセスが不要であるため、再現性のある成膜技術を得ることができる。
さらに、本発明のカーボンナノチューブ成膜方法及び装置は、ドライプロセスであるため、電子デバイス等の用途に特に適している。
また、本発明のカーボンナノチューブ成膜方法及び装置によって得られるカーボンナノチューブ膜は、均一なカーボンナノチューブが堆積して得られるため、半導体的、力学的、光学的特性が均質なものであり、エレクトロニクス分野等で多大な工業的貢献をもたらすものである。
According to the carbon nanotube film forming method and apparatus of the present invention, a carbon nanotube film can be efficiently manufactured in large quantities and at low cost.
In addition, according to the carbon nanotube film forming method and apparatus of the present invention, since a dispersion process is unnecessary, a reproducible film forming technique can be obtained.
Furthermore, since the carbon nanotube film forming method and apparatus of the present invention is a dry process, it is particularly suitable for applications such as electronic devices.
In addition, since the carbon nanotube film obtained by the carbon nanotube film forming method and apparatus of the present invention is obtained by depositing uniform carbon nanotubes, it has uniform semiconductor, mechanical and optical characteristics, and is in the electronics field. Etc., which will bring about a great industrial contribution.

本発明の実施の形態に係る単層カーボンナノチューブ膜の製造装置の全体を説明するための正面図である。It is a front view for demonstrating the whole manufacturing apparatus of the single wall carbon nanotube film | membrane which concerns on embodiment of this invention. 基板ホルダーに装着される基板およびペルティエ素子の装着例を説明した正面断面図である。It is front sectional drawing explaining the example of mounting | wearing of the board | substrate with which a board | substrate holder is mounted | worn, and a Peltier element. ソーダガラス基板上に作製したカーボンナノチューブ薄膜の写真である。It is a photograph of the carbon nanotube thin film produced on the soda glass substrate. 作製された膜の撥水性を評価するために水の接触角測定の結果を示す写真であって、図3(a)は薄膜上に滴下した場合を、図3(b)は石英基板に滴下した場合を示している。FIGS. 3A and 3B are photographs showing the results of water contact angle measurement in order to evaluate the water repellency of the produced film. FIG. 3A shows a case where the film is dropped on a thin film, and FIG. Shows the case.

符号の説明Explanation of symbols

1 電気炉
2 ムライト製反応管
3 スプレーノズル
4 マイクロフィーダー
5 第2炭素源
6 キャリアガス源
7 第2炭素源流量計
8 第1キャリアガス流量計
9 第2キャリアガス流量計
10 ガス混合器
11 単層カーボンナノチューブ
12 室
13 ケーシング
14 連通管
15 バルブ
16 基板ホルダー
17 基板
18 外側連通部
19 ポート
20 捕集器
21 ペルティエ素子
22 凹部
23 直流電源
24 リード線
DESCRIPTION OF SYMBOLS 1 Electric furnace 2 Mullite reaction tube 3 Spray nozzle 4 Micro feeder 5 Second carbon source 6 Carrier gas source 7 Second carbon source flow meter 8 First carrier gas flow meter 9 Second carrier gas flow meter 10 Gas mixer 11 Single Single-walled carbon nanotube 12 Chamber 13 Casing 14 Communication tube 15 Valve 16 Substrate holder 17 Substrate 18 Outer communication portion 19 Port 20 Collector 21 Peltier element 22 Recess 23 DC power supply 24 Lead wire

本発明でいう、「流動気相CVD法」とは、「触媒(その前駆体を含む)及び反応促進剤を含む原料をスプレー等で霧状にして高温の加熱炉(電気炉等)に導入することによって単層ナノチューブを流動する気相中で合成する方法」と定義される。   The “fluid vapor phase CVD method” as used in the present invention is “a raw material containing a catalyst (including its precursor) and a reaction accelerator is sprayed into a high temperature heating furnace (such as an electric furnace). Is defined as “a method for synthesizing single-walled nanotubes in a flowing gas phase”.

以下、カーボンナノチューブの流動気相CVD法による合成の一例として改良直噴熱分解合成法と呼ばれる単層カーボンナノチューブの流動気相CVD合成を例にとって説明するが、本発明は流動気相CVD法であれば特に制限されず用いることができる。
改良直噴熱分解合成法により炭素源から単層カーボンナノチューブを合成するには、含炭素源を少なくとも2種類用意し、第1炭素源として常温で液体の炭化水素を、第2炭素源として常温で気体の炭化水素を用いる。
また、炭素源とは、一般に「炭素原子を含む有機化合物」を意味する。
Hereinafter, as an example of the synthesis of carbon nanotubes by the fluidized gas phase CVD method, an explanation will be given by taking an example of the fluidized gas phase CVD synthesis of single-walled carbon nanotubes called the improved direct-injection pyrolysis synthesis method. If there is no particular limitation, it can be used.
To synthesize single-walled carbon nanotubes from a carbon source by an improved direct-injection pyrolysis synthesis method, at least two types of carbon-containing sources are prepared, hydrocarbons that are liquid at room temperature as the first carbon source, and room temperature as the second carbon source. And gaseous hydrocarbons.
The carbon source generally means “an organic compound containing a carbon atom”.

第1炭素源となる炭化水素は、常温で液体の炭化水素であり、芳香族、脂肪族のいずれも用いることができるが、好ましくは飽和脂肪族炭化水素が用いられる。この炭化水素には、非環式および環式のいずれもが含まれる。
常温で液体の非環式飽和脂肪族炭化水素としては、一般式CnH2n+2で表されるアルカン系化合物を挙げられる。このようなアルカン系化合物としては、たとえば、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカンが例示される。好ましく使用される第1炭素源は、n−デカンである。
環式飽和脂肪族炭化水素としては、単環系飽和脂肪族炭化水素、ビシクロ環系飽和脂肪族炭化水素、縮合環系飽和脂肪族炭化水素等が挙げられ、本発明に使用される第1炭素源は常温で液体の条件を満たすことが必要である。このような環式飽和脂肪族炭化水素としては、たとえば、シクロヘキサン、デカリン(シスデカリン、トランスデカリンおよびこれらの混合物を含む)、テトラデカヒドロフェナントレンが例示される。好ましく使用される第1炭素源は、デカリンである。
The hydrocarbon serving as the first carbon source is a hydrocarbon that is liquid at normal temperature, and either aromatic or aliphatic can be used, but saturated aliphatic hydrocarbons are preferably used. This hydrocarbon includes both acyclic and cyclic.
Examples of the acyclic saturated aliphatic hydrocarbon that is liquid at room temperature include alkane compounds represented by the general formula C n H 2n + 2 . Examples of such alkane compounds include hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, and heptadecane. The primary carbon source that is preferably used is n-decane.
Examples of the cyclic saturated aliphatic hydrocarbon include monocyclic saturated aliphatic hydrocarbons, bicyclocyclic saturated aliphatic hydrocarbons, condensed cyclic saturated aliphatic hydrocarbons, etc., and the first carbon used in the present invention. The source must meet liquid conditions at room temperature. Examples of such cyclic saturated aliphatic hydrocarbons include cyclohexane, decalin (including cisdecalin, transdecalin and mixtures thereof), and tetradecahydrophenanthrene. The primary carbon source that is preferably used is decalin.

第2炭素源となる炭化水素は常温で気体の炭化水素であり、好ましくは不飽和脂肪族炭化水素である。常温で気体の炭化水素としては、第1炭素源で用いる炭化水素よりもより低い温度で熱分解するものを用いることが好ましい。
このような不飽和脂肪族炭化水素としては、二重結合を有するエチレン、プロピレン、三重結合を有するアセチレンなどが挙げられる。好ましく使用される第2炭素源は、エチレン又はアセチレン更に好ましくはエチレンである。
The hydrocarbon as the second carbon source is a gaseous hydrocarbon at normal temperature, preferably an unsaturated aliphatic hydrocarbon. It is preferable to use a hydrocarbon that is thermally decomposed at a lower temperature than the hydrocarbon used in the first carbon source as the hydrocarbon at room temperature.
Examples of such unsaturated aliphatic hydrocarbons include ethylene having a double bond, propylene, and acetylene having a triple bond. The secondary carbon source preferably used is ethylene or acetylene, more preferably ethylene.

炭素源として、上記第1炭素源と第2炭素源は適宜組み合わせればよいが、第1炭素源と第2炭素源の分解温度と反応制御性の点からみて、デカリンを第1炭素源とした場合には、第2炭素源としてこれより熱分解温度が低い、エチレン、アセチレン等を用いることが好ましい。
また、第1炭素源と第2炭素源の使用割合は、目標とする単層カーボンナノチューブの直径によって定められるが、室温における第1炭素源と第2炭素源の体積の比(第2炭素源の体積)/(第1炭素源の体積)で表すと、1〜1.0×10好ましくは15〜6.3×10更に好ましくは、1.0×10〜1.0×10である。
その割合が1.0×10を超えると、単層カーボンナノチューブが生成しにくい条件となり、その割合が1より小さくなると第2炭素源の流量制御および均一に反応させることが困難となる。
As the carbon source, the first carbon source and the second carbon source may be appropriately combined. From the viewpoint of the decomposition temperature and reaction controllability of the first carbon source and the second carbon source, decalin is used as the first carbon source. In this case, it is preferable to use ethylene, acetylene or the like having a lower thermal decomposition temperature as the second carbon source.
Further, the usage ratio of the first carbon source and the second carbon source is determined by the target diameter of the single-walled carbon nanotube, but the ratio of the volume of the first carbon source and the second carbon source at room temperature (second carbon source). ) / (Volume of the first carbon source), 1 to 1.0 × 10 5, preferably 15 to 6.3 × 10 4 , more preferably 1.0 × 10 2 to 1.0 × 10. 4 .
If the ratio exceeds 1.0 × 10 5 , it is difficult to produce single-walled carbon nanotubes. If the ratio is less than 1, it is difficult to control the flow rate of the second carbon source and to react uniformly.

また、第1炭素源と第2炭素源を反応器への導入方法は、副反応制御の点からみて、第1炭素源が導入される前に第2炭素源を導入してはならず、好ましくは第1炭素源と第2炭素源を同時に反応器に導入するのがよい。
この場合の流量は、特に制限はなく、反応器の容量および形状、キャリアガスの流量等に応じて適宜選ばれる。
また、第1炭素源および第2炭素源は反応を迅速、且つ、均一に行わせるために、キャリアガスと共に反応器に導入するのが好ましい。
キャリアガスとしては、従来公知の水素、または水素を含む不活性ガスが好ましく使用される。
キャリアガスと第1炭素源の使用割合は、第1炭素源とキャリアガスの室温における体積の比(第1炭素源の体積)/(キャリアガスの体積)が5.0×10−8〜1.0×10−4、好ましくは1.0×10−7〜1.0×10−5である。
In addition, the method of introducing the first carbon source and the second carbon source into the reactor should not introduce the second carbon source before the first carbon source is introduced from the viewpoint of side reaction control. Preferably, the first carbon source and the second carbon source are introduced into the reactor at the same time.
The flow rate in this case is not particularly limited, and is appropriately selected according to the capacity and shape of the reactor, the flow rate of the carrier gas, and the like.
The first carbon source and the second carbon source are preferably introduced into the reactor together with the carrier gas in order to perform the reaction quickly and uniformly.
As the carrier gas, conventionally known hydrogen or an inert gas containing hydrogen is preferably used.
The use ratio of the carrier gas and the first carbon source is such that the ratio of the volume of the first carbon source and the carrier gas at room temperature (volume of the first carbon source) / (volume of the carrier gas) is 5.0 × 10 −8 to 1 0.0 × 10 −4 , preferably 1.0 × 10 −7 to 1.0 × 10 −5 .

単層カーボンナノチューブを合成するには、たとえば、触媒と、反応促進剤と、前記第1炭素源と、第2炭素源および好ましくはキャリアガスのそれぞれをあるいはこれらを混合して得られる原料混合物を反応器内における800〜1200°Cの温度に維持された反応領域に供給すればよい。   In order to synthesize single-walled carbon nanotubes, for example, a catalyst, a reaction accelerator, the first carbon source, the second carbon source, and preferably a carrier gas, or a raw material mixture obtained by mixing them is used. What is necessary is just to supply to the reaction area | region maintained at the temperature of 800-1200 degreeC in a reactor.

使用する触媒は金属の種類やその形態の違いに特に制限されるものではないが、遷移金属化合物又は遷移金属超微粒子が好ましく用いられる。
前記遷移金属化合物は、反応器内で分解することにより、触媒としての遷移金属微粒子を生成することができ、反応器内における800〜1200°Cの温度に維持された反応領域に、気体若しくは金属クラスタの状態で供給されるのが好ましい。
The catalyst to be used is not particularly limited by the type of metal or the difference in form thereof, but a transition metal compound or transition metal ultrafine particles are preferably used.
The transition metal compound is capable of generating transition metal fine particles as a catalyst by being decomposed in the reactor, and in the reaction region maintained at a temperature of 800 to 1200 ° C. in the reactor, gas or metal It is preferably supplied in a cluster state.

前記遷移金属原子としては、鉄、コバルト、ニッケル、スカンジウム、チタン、バナジウム、クロム、マンガン等を挙げることができ、中でもより好ましいのは鉄、コバルト、ニッケルである。
前記遷移金属化合物としては、例えば、有機遷移金属化合物、無機遷移金属化合物等を挙げることができる。前記有機遷移金属化合物としては、フェロセン、コバルトセン、ニッケロセン、鉄カルボニル、アセチルアセトナート鉄、オレイン酸鉄等を挙げることができ、より好ましくはフェロセンである。前記無機遷移金属化合物としては塩化鉄等を挙げることができる。
Examples of the transition metal atom include iron, cobalt, nickel, scandium, titanium, vanadium, chromium, manganese, and the like, among which iron, cobalt, and nickel are more preferable.
Examples of the transition metal compound include organic transition metal compounds and inorganic transition metal compounds. Examples of the organic transition metal compound include ferrocene, cobaltocene, nickelocene, iron carbonyl, iron acetylacetonate, and iron oleate, and ferrocene is more preferable. Examples of the inorganic transition metal compound include iron chloride.

反応促進剤としては、硫黄化合物が好ましく用いられる。この硫黄化合物は、硫黄原子を含有し、触媒としての遷移金属と相互作用して、単層カーボンナノチューブの生成を促進させることができる。
前記硫黄化合物としては、有機硫黄化合物、無機硫黄化合物を挙げることができる。前記有機硫黄化合物としては、例えば、チアナフテン、ベンゾチオフェン、チオフェン等の含硫黄複素環式化合物を挙げることができ、より好ましくはチオフェンである。前記無機硫黄化合物としては、例えば、硫化水素等を挙げることができる。
A sulfur compound is preferably used as the reaction accelerator. This sulfur compound contains a sulfur atom and can interact with a transition metal as a catalyst to promote the production of single-walled carbon nanotubes.
Examples of the sulfur compound include organic sulfur compounds and inorganic sulfur compounds. Examples of the organic sulfur compound include sulfur-containing heterocyclic compounds such as thianaphthene, benzothiophene, and thiophene, and thiophene is more preferable. Examples of the inorganic sulfur compound include hydrogen sulfide.

上記の合成方法によれば、直径が、好ましくは1.0〜2.0nmの範囲内にある単層カーボンナノチューブが得られる。   According to the synthesis method described above, single-walled carbon nanotubes having a diameter of preferably 1.0 to 2.0 nm are obtained.

単層カーボンナノチューブを合成する反応管に連結して、単層カーボンナノチューブを基板に付着させる手段としては、反応管出口の内部に連通するチャンバーを有するケーシングと、該ケーシング内と外部をON−OFFバルブ(ゲートバルブ)を介して連通可能な連通管と、外部から連通管を介してケーシング内に挿脱自在な基板ホルダーと、基板ホルダーに装着可能な基板とから構成される。   As a means for connecting the single-walled carbon nanotubes to the reaction tube for synthesizing the single-walled carbon nanotubes and attaching the single-walled carbon nanotubes to the substrate, a casing having a chamber communicating with the inside of the reaction tube outlet, and the inside and outside of the casing are turned on and off. A communication pipe that can be communicated via a valve (gate valve), a substrate holder that can be inserted into and removed from the casing via the communication pipe from the outside, and a substrate that can be attached to the substrate holder.

前記基板としては、例えば、シリコンウエハー、ガラス、サファイア、アルミナ焼結体等の無機材料、ポリイミド、ポリエステル、ポリエチレン、ポリフェニレンスルフィド、ポリパラキシレン、ポリカーボネート、ポリ塩化ビニル等の有機材料が使用可能である。これらのうち有機材料の基板は耐熱性が低いが、前記基板ホルダーの温度をこれらの材質の融点以下になるように設置することで基板として用いることが可能である。ここで基板洗浄以外の基板表面を改善する処理は特に行なわなくとも本発明によってカーボンナノチューブを付着することができるが、例えばシリコンウエハー、ガラス基板等の酸化シリコン系基板の場合、シランカップリング剤に代表されるような表面改質剤で処理することによってカーボンナノチューブとの相溶性を上げる効果があることが知られており、本発明においてももちろんそのような表面処理を施した基板を用いることによって、より効果的に成膜を行うことが可能である。   As the substrate, for example, inorganic materials such as silicon wafer, glass, sapphire, and alumina sintered body, and organic materials such as polyimide, polyester, polyethylene, polyphenylene sulfide, polyparaxylene, polycarbonate, and polyvinyl chloride can be used. . Of these, the organic material substrate has low heat resistance, but it can be used as a substrate by setting the temperature of the substrate holder to be equal to or lower than the melting point of these materials. Here, carbon nanotubes can be attached according to the present invention without any particular treatment to improve the surface of the substrate other than cleaning the substrate. For example, in the case of a silicon oxide-based substrate such as a silicon wafer or a glass substrate, a silane coupling agent is used. It is known that there is an effect of increasing the compatibility with carbon nanotubes by treating with a surface modifier as represented, and of course in the present invention, by using a substrate that has been subjected to such a surface treatment. Thus, film formation can be performed more effectively.

以下、本発明の実施例を図面に基づいて具体的に説明する。なお、以下の実施例は、本願発明の理解を容易にするためのものであり、これらの実施例に制限されるものではない。すなわち、本願発明の技術思想に基づく変形、実施態様、他の例は、本願発明に含まれるものである。   Embodiments of the present invention will be specifically described below with reference to the drawings. In addition, the following examples are for facilitating the understanding of the present invention, and are not limited to these examples. That is, modifications, embodiments, and other examples based on the technical idea of the present invention are included in the present invention.

図1は、本発明の実施の形態に係る単層カーボンナノチューブ膜の製造装置の全体を説明するための正面図であって、要部については断面で示している。
本製造装置において、単層カーボンナノチューブ11を合成する部分は、電気炉1、ムライト製反応管2、スプレーノズル3、マイクロフィーダー4、第2炭素源5、キャリアガス源6、第2炭素源流量計7、第1キャリアガス流量計8、第2キャリアガス流量計9、ガス混合器10、で構成されている。
マイクロフィーダー4には、第1炭素源となるデカリン:有機遷移金属化合物であるフェロセン:有機硫黄化合物であるチオフェンの混合比が、重量比で100:4:2の原料液を貯留し、他方第2炭素源5としてエチレンを使用し、第2炭素源流量計7、ガス混合器10を経て、流量制御される。
FIG. 1 is a front view for explaining an entire apparatus for producing a single-walled carbon nanotube film according to an embodiment of the present invention, and shows a main part in a cross section.
In this production apparatus, the portion for synthesizing the single-walled carbon nanotubes 11 is an electric furnace 1, a mullite reaction tube 2, a spray nozzle 3, a micro feeder 4, a second carbon source 5, a carrier gas source 6, and a second carbon source flow rate. It comprises a total of 7, a first carrier gas flow meter 8, a second carrier gas flow meter 9, and a gas mixer 10.
The microfeeder 4 stores a raw material solution in which the mixing ratio of decalin that is a first carbon source: ferrocene that is an organic transition metal compound: thiophene that is an organic sulfur compound is 100: 4: 2 by weight, 2 Ethylene is used as the carbon source 5, and the flow rate is controlled via the second carbon source flow meter 7 and the gas mixer 10.

また、本製造装置において、単層カーボンナノチューブを合成する反応管2に連結して単層カーボンナノチューブ11を基板に付着させる付着手段は、反応管2の出口の内部に連通する室12を有するケーシング13と、該ケーシング13内と外部を連通可能な左右一対の連通管14と、各々の連通管14の通路を開閉するバルブ15と、外部から連通管14を介してケーシング13内に挿脱自在な基板ホルダー16と、基板ホルダー16に装着可能な基板17およびペルティエ素子21とから構成される。基板17には石英またはソーダガラス基板を用いている。   In the present manufacturing apparatus, the attachment means for attaching the single-walled carbon nanotube 11 to the substrate by connecting to the reaction tube 2 for synthesizing the single-walled carbon nanotube is a casing having a chamber 12 communicating with the inside of the outlet of the reaction tube 2. 13, a pair of left and right communication pipes 14 capable of communicating between the inside of the casing 13 and the outside, a valve 15 for opening and closing the passage of each of the communication pipes 14, and being detachable into the casing 13 from the outside via the communication pipe 14. A substrate holder 16, a substrate 17 that can be mounted on the substrate holder 16, and a Peltier element 21. The substrate 17 is a quartz or soda glass substrate.

図2は、基板ホルダー16に装着される基板17およびペルティエ素子21の装着例を説明したものである。
図2(a)に示した例は、基板17を支持する基板ホルダー16の凹部22に、基板17の裏面と接するようにしてペルティエ素子21を設けたものである。ペルティエ素子21の吸熱面が基板17の裏面に直接接することにより基板17を冷却している。
図2(b)に示した例は、基板17を支持する基板ホルダー16の裏面に接するようにしてペルティエ素子21を設けたものである。ペルティエ素子21の吸熱面が基板ホルダー16裏面に接して基板17を冷却している。
ペルティエ素子21は、図1に示す直流電源23にリード線24を介して接続されている。
FIG. 2 illustrates a mounting example of the substrate 17 and the Peltier element 21 mounted on the substrate holder 16.
In the example shown in FIG. 2A, the Peltier element 21 is provided in the recess 22 of the substrate holder 16 that supports the substrate 17 so as to be in contact with the back surface of the substrate 17. The substrate 17 is cooled by the heat absorption surface of the Peltier element 21 being in direct contact with the back surface of the substrate 17.
In the example shown in FIG. 2B, the Peltier element 21 is provided so as to be in contact with the back surface of the substrate holder 16 that supports the substrate 17. The endothermic surface of the Peltier element 21 contacts the back surface of the substrate holder 16 to cool the substrate 17.
The Peltier element 21 is connected to the DC power source 23 shown in FIG.

基板ホルダー16および連通管14は、縦型の気相流動法合成の場合には合成装置下部にスペースが無いことが多いため、反応管2から下向きに流れる単層カーボンナノチューブ11を含む気流に対して基板が垂直に配置されるように反応管2の長手方向に対して垂直に移動できる要にするのが好ましいが、スペースがあれば長手方向に対して平行に移動できるように配置しても好ましくもちいられる。連通管14の外側連通部18は、基板ホルダー16がケーシング13の室12から引き抜かれた際、基板17が外部から観察可能なように透明な部材で形成されており、また、基板17を取出し可能なように取出口が形成されている。また、外側連通部18には、ガスを置換するためのポート19が2カ所設けられており、本実施例ではアルゴンによってガス置換した後実験を行った。   Since the substrate holder 16 and the communication tube 14 often have no space in the lower part of the synthesizer in the case of the vertical gas phase flow method synthesis, the substrate holder 16 and the communication tube 14 against the air flow including the single-walled carbon nanotubes 11 flowing downward from the reaction tube 2. It is preferable that the substrate can be moved vertically with respect to the longitudinal direction of the reaction tube 2 so that the substrate is arranged vertically. Preferably used. The outer communication portion 18 of the communication pipe 14 is formed of a transparent member so that the substrate 17 can be observed from the outside when the substrate holder 16 is pulled out from the chamber 12 of the casing 13. An outlet is formed as possible. In addition, the outer communication portion 18 is provided with two ports 19 for replacing gas. In this embodiment, the experiment was performed after replacing gas with argon.

基板17をケーシング13内の室12に挿入する際、連通管14の通路を開とし、基板17を室12から取出した後は連通管14の通路を閉とするバルブ15としては、公知のゲートバルブが用いられる。   When the substrate 17 is inserted into the chamber 12 in the casing 13, a known gate 15 is used as the valve 15 that opens the passage of the communication pipe 14 and closes the passage of the communication pipe 14 after the substrate 17 is removed from the chamber 12. A valve is used.

ケーシング13の下流側には、基板17で成膜に供されなかった単層カーボンナノチューブ11を捕集する捕集器20が連結されている。   A collector 20 that collects the single-walled carbon nanotubes 11 that have not been subjected to film formation on the substrate 17 is connected to the downstream side of the casing 13.

次に、本製造装置において、合成された単層カーボンナノチューブ11から膜が形成される状態について説明する。
反応管2内でカーボンナノチューブ11が形成され、チャンバー12内に送られてきたら、あらかじめバルブ15と基板ホルダー16で囲まれた空間の空気をアルゴンガスで置換した後、バルブ15を開いて基板17を反応管2の長手方向と平行になるようにしてチャンバー12内に挿入する。カーボンナノチューブ11は反応管2の中でエアロゾル状に気流に拡散しており、気流が層流に近い状態では気流方向にカーボンナノチューブ11が気流によって配向していると考えられるため、反応管2内部の層流の領域に基板17を配置することによって気流の方向に配向したカーボンナノチューブ11の薄膜が堆積される。また、温度が下がるにつれて気流は乱流となるためそのような領域に基板17を配置すれば配向性のないランダムな薄膜が堆積される。この場合には基板17を気流方向に対していかなる向きに配置しても堆積する膜は同様であり、特に平行に配置する必要はなくどの向きでも好ましくカーボンナノチューブ11を基板17に付着することができる。カーボンナノチューブ11が基板17に付着する所以となる力は基板17とカーボンナノチューブ11との間に働くファンデルワールス力などの分子間力であると考えられる。すなわち、基板17表面のわずかなラフネスや、あるいは基板17の帯電状態によって引き起こされる静電相互作用によって基板17の表面にカーボンナノチューブ11が堆積される。
Next, a state in which a film is formed from the synthesized single-walled carbon nanotubes 11 in the manufacturing apparatus will be described.
After the carbon nanotubes 11 are formed in the reaction tube 2 and sent into the chamber 12, the air in the space surrounded by the valve 15 and the substrate holder 16 is replaced with argon gas in advance, and then the valve 15 is opened and the substrate 17 is opened. Is inserted into the chamber 12 so as to be parallel to the longitudinal direction of the reaction tube 2. The carbon nanotubes 11 are diffused in an air flow in the reaction tube 2 in the form of an aerosol, and when the air flow is close to a laminar flow, it is considered that the carbon nanotubes 11 are oriented by the air flow in the air flow direction. By disposing the substrate 17 in the laminar flow region, a thin film of carbon nanotubes 11 oriented in the direction of the airflow is deposited. Further, since the air flow becomes turbulent as the temperature decreases, a random thin film having no orientation is deposited if the substrate 17 is disposed in such a region. In this case, the deposited film is the same regardless of the orientation of the substrate 17 with respect to the air flow direction, and it is not necessary to arrange the substrate 17 in parallel. The carbon nanotubes 11 are preferably attached to the substrate 17 in any orientation. it can. It is considered that the force that causes the carbon nanotubes 11 to adhere to the substrate 17 is an intermolecular force such as van der Waals force that acts between the substrate 17 and the carbon nanotubes 11. That is, the carbon nanotubes 11 are deposited on the surface of the substrate 17 by a slight roughness on the surface of the substrate 17 or electrostatic interaction caused by the charged state of the substrate 17.

ソーダガラス基板上に作製したカーボンナノチューブ薄膜の写真を図3に示す。カーボンナノチューブ付着操作時の基板の位置を上流側に設置するか、下流側に設置するかで、薄膜の厚さを変えることができ、上流側ほど成膜速度は高くなる(写真左から順に)。また、付着操作の時間やカーボンナノチューブの生成量によっても成膜速度を変えることができる。   A photograph of a carbon nanotube thin film produced on a soda glass substrate is shown in FIG. The thickness of the thin film can be changed depending on whether the substrate is placed on the upstream side or on the downstream side during the carbon nanotube attachment operation, and the deposition rate increases toward the upstream side (in order from left to right). . In addition, the deposition rate can be changed depending on the time of the adhesion operation and the amount of carbon nanotubes produced.

作製された膜を評価するために共鳴ラマンスペクトル(日本分光社製、NRS−2100、アルゴンレーザー514.5nm励起光使用)を測定した。148.5cm−1付近にラジアルブリージングモードと呼ばれる単層カーボンナノチューブに特徴的な振動モードを観測したことから薄膜が単層カーボンナノチューブで構成されていることが示された。
同様に膜を評価するため、光吸収スペクトルの測定(島津製作所製、UV3150)を実施した。光吸収スペクトルにおいて半導体的単層カーボンナノチューブの第1電子励起(バンドギャップ)S1、第2電子励起S2、金属的単層カーボンナノチューブの第1電子遷移M1の3種類のピークがそれぞれ2300nm、1250nm、800nmに観測された。
同様に膜を評価するため、550nmでの透過率測定(島津製作所製、UV3150)と表面抵抗測定(三菱化学社製、低抵抗率計MCP−T600)を実施したところ、透過率85%の膜の表面抵抗が2kΩ/□であった。
In order to evaluate the produced film, a resonance Raman spectrum (manufactured by JASCO Corporation, NRS-2100, using argon laser 514.5 nm excitation light) was measured. A vibration mode characteristic of single-walled carbon nanotubes called a radial breathing mode was observed near 148.5 cm −1 , indicating that the thin film is composed of single-walled carbon nanotubes.
Similarly, in order to evaluate the film, a light absorption spectrum was measured (manufactured by Shimadzu Corporation, UV3150). In the light absorption spectrum, the three types of peaks of the first electronic excitation (band gap) S1 and the second electronic excitation S2 of the semiconducting single-walled carbon nanotube and the first electronic transition M1 of the metallic single-walled carbon nanotube are 2300 nm and 1250 nm, respectively. Observed at 800 nm.
Similarly, in order to evaluate the film, transmittance measurement at 550 nm (manufactured by Shimadzu Corporation, UV3150) and surface resistance measurement (manufactured by Mitsubishi Chemical Corporation, low resistivity meter MCP-T600) were performed. The surface resistance was 2 kΩ / □.

作製された膜の撥水性を評価するために水の接触角測定を行った。写真を図4(a)に示す。5μLの水滴を薄膜上に滴下して接触角を測定したところ145度であった。
比較のために石英基板に上記接触角測定を行ったところ接触角は36.6度であった。写真を図4(b)に示す。
In order to evaluate the water repellency of the produced film, the contact angle of water was measured. A photograph is shown in FIG. It was 145 degree | times when 5 microliters of water droplets were dripped on the thin film and the contact angle was measured.
For comparison, when the contact angle was measured on the quartz substrate, the contact angle was 36.6 degrees. A photograph is shown in FIG.

カーボンナノチューブの用途としては、トランジスターや顕微鏡用プローブなどのようにカーボンナノチューブの単線を使用する方法と、多数のカーボンナノチューブをまとめてバルクとして使用する方法とに分けられる。
バルクとして使用する方法の中でもカーボンナノチューブを薄膜にして使用する方法は、透明導電性薄膜やバイオセンサーとして実用化が有望視されている。
Applications of carbon nanotubes can be divided into a method using a single carbon nanotube, such as a transistor or a probe for a microscope, and a method using a large number of carbon nanotubes as a bulk.
Among the methods used as bulk, the method using carbon nanotubes as a thin film is expected to be put to practical use as a transparent conductive thin film or biosensor.

Claims (2)

流動気相CVD法により原料源からカーボンナノチューブを合成し、合成されたカーブンナノチューブを反応管に連結するチャンバー内において200℃以下に冷却されたデバイス用基板に直接付着させてデバイス用基板上に直接成膜させることを特徴とするカーボンナノチューブ成膜方法。Carbon nanotubes are synthesized from a raw material source by a fluidized gas phase CVD method, and the synthesized carbon nanotubes are directly attached to a device substrate cooled to 200 ° C. or less in a chamber connected to a reaction tube on the device substrate. A carbon nanotube film forming method characterized by directly forming a film. 流動気相CVD法により原料源からカーボンナノチューブを合成する反応管に連結してチャンバーを設け、チャンバー内において冷却手段により200℃以下に冷却されたデバイス用基板に直接カーブンナノチューブを付着させることを特徴とするカーボンナノチューブ成膜装置。A chamber is provided by connecting to a reaction tube for synthesizing carbon nanotubes from a raw material source by a fluidized gas phase CVD method, and the carbon nanotubes are directly attached to a device substrate cooled to 200 ° C. or lower by a cooling means in the chamber. A carbon nanotube film forming apparatus.
JP2009522589A 2007-07-06 2008-07-01 Carbon nanotube film forming method and film forming apparatus Expired - Fee Related JP4811690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009522589A JP4811690B2 (en) 2007-07-06 2008-07-01 Carbon nanotube film forming method and film forming apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007178585 2007-07-06
JP2007178585 2007-07-06
PCT/JP2008/061917 WO2009008291A1 (en) 2007-07-06 2008-07-01 Method for forming carbon nanotube film, film-forming apparatus, and carbon nanotube film
JP2009522589A JP4811690B2 (en) 2007-07-06 2008-07-01 Carbon nanotube film forming method and film forming apparatus

Publications (2)

Publication Number Publication Date
JPWO2009008291A1 JPWO2009008291A1 (en) 2010-09-09
JP4811690B2 true JP4811690B2 (en) 2011-11-09

Family

ID=40228469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009522589A Expired - Fee Related JP4811690B2 (en) 2007-07-06 2008-07-01 Carbon nanotube film forming method and film forming apparatus

Country Status (4)

Country Link
US (1) US20110014446A1 (en)
JP (1) JP4811690B2 (en)
CN (1) CN101707904B (en)
WO (1) WO2009008291A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120189846A1 (en) * 2007-01-03 2012-07-26 Lockheed Martin Corporation Cnt-infused ceramic fiber materials and process therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US8951632B2 (en) * 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
US20100279569A1 (en) * 2007-01-03 2010-11-04 Lockheed Martin Corporation Cnt-infused glass fiber materials and process therefor
US20100227134A1 (en) * 2009-03-03 2010-09-09 Lockheed Martin Corporation Method for the prevention of nanoparticle agglomeration at high temperatures
US20100260998A1 (en) * 2009-04-10 2010-10-14 Lockheed Martin Corporation Fiber sizing comprising nanoparticles
KR101696212B1 (en) * 2009-04-10 2017-01-13 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
US20100272891A1 (en) * 2009-04-10 2010-10-28 Lockheed Martin Corporation Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
US20100260931A1 (en) * 2009-04-10 2010-10-14 Lockheed Martin Corporation Method and apparatus for using a vertical furnace to infuse carbon nanotubes to fiber
KR20120036890A (en) * 2009-08-03 2012-04-18 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Incorporation of nanoparticles in composite fibers
KR20120099690A (en) * 2009-11-02 2012-09-11 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Cnt-infused aramid fiber materials and process therefor
US8784937B2 (en) 2010-09-14 2014-07-22 Applied Nanostructured Solutions, Llc Glass substrates having carbon nanotubes grown thereon and methods for production thereof
BR112013005529A2 (en) 2010-09-22 2016-05-03 Applied Nanostructured Sols carbon fiber substrates having carbon nanotubes developed therein, and processes for producing them
US9440855B2 (en) * 2012-02-13 2016-09-13 Osaka University High purity carbon nanotube, process for preparing the same and transparent conductive film using the same
US9138728B2 (en) 2012-02-22 2015-09-22 Mitsubishi Heavy Industries, Ltd. Catalyst for forming carbon nanotubes
CN102602912B (en) * 2012-03-15 2013-12-04 南昌大学 Synthesizing device for continuously producing carbon nano pipe with shape of crystal whisker
CN102994980B (en) * 2012-12-13 2015-01-14 苏州汉纳材料科技有限公司 Preparation method and device of high-conductivity carbon nanotube film
JP6039534B2 (en) 2013-11-13 2016-12-07 東京エレクトロン株式会社 Carbon nanotube generation method and wiring formation method
CN104671230B (en) * 2015-02-10 2016-10-05 中国科学院金属研究所 The continuous collection method of a kind of single wall carbon nano-tube film and special purpose device
WO2017057751A1 (en) * 2015-10-01 2017-04-06 株式会社名城ナノカーボン Device and method for manufacturing carbon nanotubes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307241A (en) * 2003-04-04 2004-11-04 Ulvac Japan Ltd Production method for carbon nanotube

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
WO2001016414A1 (en) * 1999-09-01 2001-03-08 Nikkiso Company Limited Carbon fibrous matter, production device of carbon fibrous matter, production method of carbon fibrous matter and deposit prevention device for carbon fibrous matter
US6835591B2 (en) * 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
WO2003011755A1 (en) * 2001-07-27 2003-02-13 University Of Surrey Production of carbon nanotubes
JP2004149954A (en) * 2002-10-30 2004-05-27 Nikkiso Co Ltd Metal/metal compound coated carbon nanofiber and method for producing the same
US20050163696A1 (en) * 2004-01-28 2005-07-28 Uhm Han S. Synthesis of carbon nanotubes by making use of microwave plasma torch
EP1877255A4 (en) * 2005-03-10 2011-03-30 Mat & Electrochem Res Corp Thin film production method and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307241A (en) * 2003-04-04 2004-11-04 Ulvac Japan Ltd Production method for carbon nanotube

Also Published As

Publication number Publication date
US20110014446A1 (en) 2011-01-20
WO2009008291A1 (en) 2009-01-15
CN101707904B (en) 2013-03-20
JPWO2009008291A1 (en) 2010-09-09
CN101707904A (en) 2010-05-12

Similar Documents

Publication Publication Date Title
JP4811690B2 (en) Carbon nanotube film forming method and film forming apparatus
Kim et al. Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials
Kim et al. Role of hydrogen in high-yield growth of boron nitride nanotubes at atmospheric pressure by induction thermal plasma
CA2559070C (en) Single, multi-walled, functionalized and doped carbon nanotubes and composites thereof
KR101262827B1 (en) Carbon nanotubes functionalized with fullerenes
Ago et al. Gas-phase synthesis of single-wall carbon nanotubes from colloidal solution of metal nanoparticles
Sun et al. “Snowing” graphene using microwave ovens
Zhou et al. Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes
CN102471065B (en) Device for manufacturing aligned carbon nanotube assembly
US20070090489A1 (en) Shape controlled growth of nanostructured films and objects
CN104995134B (en) Produce carbon nano-structured method and device
Maruyama Current status of single-walled carbon nanotube synthesis from metal catalysts by chemical vapor deposition
Chen et al. Low-temperature and ultrafast synthesis of patternable few-layer transition metal dichacogenides with controllable stacking alignment by a microwave-assisted selenization process
Wang et al. Wafer-scale growth of pristine and doped monolayer MoS2 films for electronic device applications
CN106458590A (en) Method and apparatus for producing nanomaterial
Meyyappan Carbon nanotubes
Jian et al. Mechanistic study of graphitic carbon layer and nanosphere formation on the surface of T-ZnO
Zhuang et al. Systematic investigation of the ball milling–annealing growth and electrical properties of boron nitride nanotubes
Liu et al. Tellurium-assisted and space-confined growth of graphene single crystals
JP4706058B2 (en) Method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes
CN112533868B (en) Method for producing carbon nanotubes
Kumar et al. An overview on the importance of chemical vapour deposition technique for graphene synthesis
Zhang et al. Morphology-controlled growth of chromium silicide nanostructures and their field emission properties
Tripathi et al. Synthesis and study of applications of metal coated carbon nanotubes
Angelucci et al. Growth of carbon nanotubes by Fe-catalyzed chemical vapor processes on silicon-based substrates

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees