JP4807711B2 - Alumina-based sintered body for insulator of spark plug - Google Patents

Alumina-based sintered body for insulator of spark plug Download PDF

Info

Publication number
JP4807711B2
JP4807711B2 JP04514399A JP4514399A JP4807711B2 JP 4807711 B2 JP4807711 B2 JP 4807711B2 JP 04514399 A JP04514399 A JP 04514399A JP 4514399 A JP4514399 A JP 4514399A JP 4807711 B2 JP4807711 B2 JP 4807711B2
Authority
JP
Japan
Prior art keywords
alumina
sintered body
based sintered
insulator
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04514399A
Other languages
Japanese (ja)
Other versions
JP2000247729A (en
Inventor
邦治 田中
桂 松原
禎広 山元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP04514399A priority Critical patent/JP4807711B2/en
Publication of JP2000247729A publication Critical patent/JP2000247729A/en
Application granted granted Critical
Publication of JP4807711B2 publication Critical patent/JP4807711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、セラミック製品の材料として好適な、高い絶縁性、良好な耐電圧性を有するアルミナ基焼結体に関するものである。特には、高温下(例えば700℃)での耐電圧性を要求されるスパークプラグの絶縁碍子用アルミナ基焼結体に関するものである。
【0002】
【従来の技術】
アルミナセラミックスは、耐電圧性、耐熱性及び機械的特性等に優れ、安価であるため、スパークプラグ用の絶縁碍子やICパッケージの多層配線基板などのセラミック製品の材料として用いられている。特に、スパークプラグの絶縁碍子に於いては室温から700℃付近の高温まで高い絶縁性と良好な耐電圧性が要求される。
【0003】
アルミナ基焼結体中に残留気孔が存在すると、高電圧印加時に残留気孔で絶縁破壊が起こるため、アルミナ基焼結体の耐電圧特性が低下する。そこで、アルミナ基焼結体の緻密化を目的として、種々の方法が検討されている。
【0004】
例えば、特開昭62−100474号公報では造粒子の粒径を制御することにより、また、特開昭62−143866号公報では、粒径の異なる2種類のアルミナ原料を使用することにより、焼結体中の残留気孔を減少させ耐電圧性を向上させる方法が開示されている。また、特開昭63−190753号公報では、Y、Laといった希土類やZrO等を含む焼結助剤を用い、また、焼結体の空孔率を6%以下にして高耐電圧化を達成している。
【0006】
【発明が解決しようとする課題】
本発明は、アルミナ絶縁層の肉厚を薄くしても700℃付近の高温下で十分かつ良好な耐電圧性が得られるスパークプラグの絶縁碍子用アルミナ基焼結体を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1の発明は、アルミナ基焼結体の鏡面研磨面に露出した気孔の特性を所定の範囲に規定したスパークプラグの絶縁碍子用アルミナ基焼結体を要旨とする。ここで規定する気孔の特性とは、(a)気孔の面積率(0.5%以上4%以下)、(b)気孔の最大長径Dmax(15μm以下)、(c)気孔の面積分布を対数正規分布で表示した際の標準偏差σ(2μm以下)である。気孔の特性を係る範囲に規定することでスパークプラグの絶縁碍子用アルミナ基焼結体の良好な耐電圧性が得られる
【0008】
ここにいう「焼結体の鏡面研磨面」とは、焼結体の表面或いは切断面を以下の方法を用いて研磨加工した面をいう。すなわち、45μmのダイヤモンド砥石を用いて平面に加工し、順次9μm、3μm、0.25μmのダイヤモンドペーストを用いて鏡面研磨を行い、Ra=0.01μm程度まで研磨加工した面である。
【0009】
前記(a)にいう「面積率で100%」とは、原則として、観察視野の具体的面積値を100%とすることをいう。例えば、倍率500倍のSEM写真に基づいて気孔の諸特性を得る場合、原則としてSEM写真の観察部の面積を100%とする。次いで、該SEM写真上に観察される気孔の総面積を画像処理装置を用いて求め、得られた気孔の総面積を観察部の面積で除して百分率にて面積率を算出する。気孔の面積割合が4%を超えると、耐電圧性が60kV/mm以下に低下する。
【0010】
前記(b)にいう「気孔の最大長径Dmax」とは、観察対象となった全気孔の気孔周縁上の2点間の直線距離のうち、最も大きい値のものをいう。気孔の最大長径Dmaxが15μmを超えると、耐電圧性が60kV/mm以下に低下したり不安定な挙動となる。
【0011】
前記(c)にいう「対数正規分布」とは、しばしば粒度分布を表すのに用いられるものである。対数正規分布による標準偏差σを用いることで気孔の大きさのばらつきを容易に判断できる。気孔の面積分布に基づく標準偏差σが2μm以上を超えると、良好な耐電圧性が得られなくなる
【0012】
したがって、上記の(a)、(b)、(c)の3種類のすべての特性を所定の範囲にコントロールすれば、良好な耐電圧性を有するスパークプラグの絶縁碍子用アルミナ基焼結体が得られる。
【0013】
請求項2の発明は、希土類元素RE.のうちLa(ランタン)、Pr(プラセオジウム)、Nd(ネオジウム)のうち少なくとも一種類を含むアルミナ基焼結体を要旨とし、請求項1に記載の発明のより好ましい構成を例示したものである。希土類元素のうちこれら3種類を用いれば、気孔の発生量を減らして、気孔径をある程度均一にすることができる。更に、アルミナ粒界の耐熱性を上げて耐電圧性を向上できる。希土類元素の添加量としては、0.01〜20重量部の範囲が特性面及びコスト面から望ましい。
【0014】
これら3種類の希土類元素は、硝酸塩、炭酸塩、水酸化物等の様々な形態で入手可能なため、製造方法の選択の幅を広くできる。また、HIP法(ホットアイソスタチックプレス法)、真空又は大気以外の雰囲気中での焼成、2000℃近い高温条件下での焼成等の特殊な条件を用いることなく、大気中で通常の温度範囲での焼成が可能になる。
【0015】
上記希土類を添加したアルミナ基焼結体中には、RE.−β−アルミナ(組成式:RE.Al1118)若しくはRE.AlO3から選ばれる少なくとも一種類の結晶相を析出させてもよい。係る結晶相を析出させることで、アルミナ粒界の耐熱性を上げて耐電圧性を更に向上できるからである。これらの結晶相は、焼成過程で反応焼成により析出させても、あらかじめ反応させて結晶相を析出させてから添加しても同様の効果が得られる。
【0016】
【実施例】
(1)アルミナ基焼結体の製作
平均粒径0.4μmのアルミナ原料粉末に、焼結助剤として平均粒径0.6μmのSiO粉末、平均粒径0.8μmのCaCO粉末、平均粒径0.3μmのMgO粉末及び表1に示す平均粒径1.0μmの各種希土類元素の酸化物を、表1に示す量比となるように秤量し配合した粉末を製造する。尚、希土類元素の添加量は、全て「RE.23換算」で求めた。
【0017】
これらの配合粉末をそれぞれボールミルにて、20mmφのアルミナボールを使用しエタノール中16時間混合した後、湯煎にて乾燥し混合粉末を得る。これらの混合粉末をそれぞれ150MPaの静水圧プレスで50×50×20mmの成形体に成形し、次に大気雰囲気下において表1に示す焼成温度(1475℃から1600℃)で2時間保持して焼成する。また、試料番号11及び試料番号13については、大気中での焼成の後に、1450℃×1000気圧×1時間の条件でHIP処理(ホットアイソスタチックプレス処理)する。
【0018】
(2)気孔率の測定
(1)で得られた各焼結体の切断面を45μmのダイヤモンド砥石を用いて平面に加工し、順次9μm、3μm、0.25μmのダイヤモンドペーストを用いて鏡面研磨を行い、Ra=0.01μm程度まで研磨する。この鏡面研磨面を走査型電子顕微鏡(SEM)にて観察する。倍率500倍にて撮影したSEM写真をもとに個々の気孔の長径、面積及び最大長径と視野面積を画像処理装置(機種名;ニレコ社製LUZEX3)を用いて測定する。結果を「気孔率」、「最大長径Dmax」として表2に示す。
【0019】
(3)標準偏差σの算出
測定した個々の長径及び面積を、長径について分級し(各分級の最大値をBmax(μm)、最小値をBmin(μm)としたとき、Log(Bmax)−Log(Bmin)=0.15)、各階級に属する気孔の面積を階級毎に合計した面積分布に対して対数正規分布を適用し、以下の数式1を用いて標準偏差σを求める。結果を「標準偏差σ」として表2に示す。
【0020】
【数1】

Figure 0004807711
【0021】
(4)耐電圧性の評価
耐電圧性は、700℃における耐電圧値で評価する。アルミナ基焼結体を16mm×16mm×0.65mmに加工した試験片1を用いて、図1に示す構成の装置により測定する。具体的な方法は以下のようである。まず、試験片1をアルミナ製碍筒2aとアルミナ製碍筒2bとではさんだ状態で、SiO系の封着ガラス3を用いて1400℃に加熱溶融し、ガラス接合体7を作製する。加熱用ヒータ5を有する加熱用ボックス8中にガラス接合体7をセットした後、高電圧発生装置6に接続された電極4aと接地された電極4bとで試験片1をはさむ。その後、加熱用ヒータ5で700℃まで加熱した状態で高電圧を印加し、絶縁破壊が発生したときの値を耐電圧値として計測する。結果は、「耐電圧平均値」、「耐電圧バラツキ幅(耐電圧値の最大値から最小値を引いた値)」として表2に示す。
【0022】
【表1】
Figure 0004807711
【0023】
【表2】
Figure 0004807711
【0024】
本発明の実施例である試料番号3、試料番号4、試料番号6、試料番号7、試料番号11乃至試料番号15では、気孔率、最大長径、標準偏差が規定の範囲内にあるため、耐電圧平均値が60kV/mm以上、耐電圧バラツキ幅が20kV/mm以下の優れた耐電圧性を示す。
【0025】
希土類元素を含む実施例である試料番号3、試料番号4、試料番号6、試料番号7、試料番号12、試料番号14、試料番号15では、HIP法(ホットアイソスタチックプレス法)を用いなくとも良好な焼結体が得られることがわかる。HIP法を用いた実施例である試料番号11及び試料番号13は、どちらも良好な耐電圧性が得られる。両者を比較すると、希土類元素を含む試料番号13の方が良好な耐電圧性を示すことがわかる。
【0026】
本発明の比較例である試料番号1及び試料番号2は、最大長径が規定範囲内にあるものの、気孔率及び標準偏差が規定範囲外のため、耐電圧性が劣る。同じく比較例である試料番号5は、気孔率及び最大長径は規定範囲内であるものの、標準偏差が規定範囲外のため、耐電圧バラツキ幅が大きい。同じく比較例である試料番号8は、気孔率、最大長径及び標準偏差の全てが規定範囲外であるため、耐電圧性が劣る。同じく比較例である試料番号9は、標準偏差は規定範囲内であるものの、気孔率及び最大長径が規定範囲外であるため、耐電圧平均値が劣る。同じく比較例である試料番号10は、気孔率及び標準偏差が規定範囲内であるものの、最大長径が規定範囲外であるため、耐電圧バラツキ幅が大きい。すなわち、気孔率、最大長径、標準偏差のいずれかが欠けても良好な耐電圧性が得られないことがわかる。
【0027】
【発明の効果】
本発明によれば、セラミック製品の材料として好適な、高い絶縁性、良好な耐電圧性を有するスパークプラグの絶縁碍子用アルミナ基焼結体を提供することができる
【図面の簡単な説明】
【図1】本発明に使用した耐電圧性評価方法の模式図である。
【符号の説明】
1 アルミナ基焼結体からなる試験片
2a アルミナ製碍筒
2b アルミナ製碍筒
3 封着ガラス
4a 電極
4b 電極
5 加熱用ヒータ
6 高電圧発生装置
7 ガラス接合体
8 加熱用ボックス[0001]
[Industrial application fields]
The present invention relates to an alumina-based sintered body having high insulation and good voltage resistance, which is suitable as a material for ceramic products. Particularly, it relates to Atsushi Ko pressure (for example 700 ° C.) the insulator for the alumina-based sintered body of the spark plug is required withstand voltage of at.
[0002]
[Prior art]
Alumina ceramics are excellent in voltage resistance, heat resistance, mechanical properties, and the like, and are inexpensive. Therefore, alumina ceramics are used as materials for ceramic products such as insulators for spark plugs and multilayer wiring boards for IC packages. In particular, an insulator for a spark plug is required to have a high insulation property and a good withstand voltage from room temperature to a high temperature around 700 ° C.
[0003]
If residual pores are present in the alumina-based sintered body, dielectric breakdown occurs in the residual pores when a high voltage is applied, so that the withstand voltage characteristics of the alumina-based sintered body deteriorate. Therefore, various methods have been studied for the purpose of densifying the alumina-based sintered body.
[0004]
For example, in Japanese Patent Laid-Open No. 62-1000047, the particle size of the particles is controlled, and in Japanese Patent Laid-Open No. 62-143866, two types of alumina raw materials having different particle sizes are used. A method for reducing the residual pores in the bonded body and improving the voltage resistance is disclosed. Japanese Patent Laid-Open No. 63-190753 uses a sintering aid containing rare earth such as Y 2 O 3 and La 2 O 3 , ZrO 2 and the like, and the sintered body has a porosity of 6% or less. High withstand voltage is achieved.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide an alumina-based sintered body for an insulator of a spark plug, which can obtain sufficient and good withstand voltage at a high temperature around 700 ° C. even if the thickness of the alumina insulating layer is reduced. To do.
[0007]
[Means for Solving the Problems]
The gist of the invention of claim 1 is an alumina-based sintered body for an insulator of a spark plug in which the characteristics of pores exposed on the mirror-polished surface of the alumina-based sintered body are defined within a predetermined range. The pore characteristics defined here are: (a) pore area ratio (0.5% or more and 4% or less), (b) pore maximum maximum diameter D max (15 μm or less), (c) pore area distribution. The standard deviation σ (2 μm or less) when displayed in a lognormal distribution. By defining the characteristics of the pores within such a range, good voltage resistance of the alumina-based sintered body for the insulator of the spark plug can be obtained .
[0008]
The “mirror-polished surface of the sintered body” herein refers to a surface obtained by polishing the surface or cut surface of the sintered body using the following method. That is, the surface is processed into a flat surface using a 45 μm diamond grindstone, and is then mirror-polished using diamond pastes of 9 μm, 3 μm, and 0.25 μm in order, and polished to Ra = 0.01 μm.
[0009]
The “area ratio of 100%” in the above (a) means that the specific area value of the observation field of view is 100% in principle. For example, when various characteristics of pores are obtained based on an SEM photograph with a magnification of 500 times, the area of the observation part of the SEM photograph is set to 100% in principle. Next, the total area of the pores observed on the SEM photograph is obtained using an image processing apparatus, and the total area of the obtained pores is divided by the area of the observation part to calculate the area ratio as a percentage. When the area ratio of the pores exceeds 4%, the voltage resistance decreases to 60 kV / mm or less.
[0010]
The “maximum long diameter D max of the pores” referred to in the above (b) means the one having the largest value among the linear distances between two points on the pore periphery of all the pores to be observed. When the maximum long diameter Dmax of the pores exceeds 15 μm , the voltage resistance decreases to 60 kV / mm or less, or the behavior becomes unstable.
[0011]
The “log normal distribution” referred to in the above (c) is often used to represent a particle size distribution. By using the standard deviation σ based on the lognormal distribution, it is possible to easily determine the variation in pore size. When the standard deviation σ based on the pore area distribution exceeds 2 μm or more, good voltage resistance cannot be obtained .
[0012]
Therefore, if all the three types of properties (a), (b), and (c) are controlled within a predetermined range, an alumina-based sintered body for an insulator of a spark plug having good voltage resistance can be obtained. can get.
[0013]
The invention of claim 2 provides a rare earth element RE. Among these, an alumina-based sintered body containing at least one of La (lanthanum), Pr (praseodymium), and Nd (neodymium) is used as a gist, and a more preferable configuration of the invention according to claim 1 is illustrated. If these three kinds of rare earth elements are used, the amount of generated pores can be reduced and the pore diameter can be made uniform to some extent. Furthermore, the voltage resistance can be improved by increasing the heat resistance of the alumina grain boundaries. The addition amount of the rare earth element is preferably in the range of 0.01 to 20 parts by weight from the viewpoint of characteristics and cost.
[0014]
Since these three types of rare earth elements are available in various forms such as nitrates, carbonates, hydroxides, etc., the range of selection of the production method can be widened. In addition, the normal temperature range in the atmosphere without using special conditions such as HIP (hot isostatic pressing), firing in an atmosphere other than vacuum or air, and firing at a high temperature near 2000 ° C. Firing is possible.
[0015]
In the alumina-based sintered body to which the rare earth is added, RE. -Β-alumina (composition formula: RE.Al 11 O 18 ) or RE. At least one crystal phase selected from AlO 3 may be precipitated. This is because by precipitating such a crystal phase, the heat resistance of the alumina grain boundary can be increased and the voltage resistance can be further improved. The same effect can be obtained by depositing these crystal phases by reaction firing in the firing process, or by adding them after reacting in advance to precipitate the crystal phase.
[0016]
【Example】
(1) Production of alumina-based sintered body Alumina raw material powder having an average particle size of 0.4 μm, SiO 2 powder having an average particle size of 0.6 μm, CaCO 3 powder having an average particle size of 0.8 μm, and an average as a sintering aid A powder is prepared by weighing and blending MgO powder having a particle size of 0.3 μm and oxides of various rare earth elements having an average particle size of 1.0 μm shown in Table 1 so as to have a quantitative ratio shown in Table 1. The addition amount of the rare earth elements, all determined by "RE. 2 O 3 in terms of".
[0017]
Each of these blended powders is mixed in ethanol using a 20 mmφ alumina ball in a ball mill for 16 hours and then dried in a hot water bath to obtain a mixed powder. Each of these mixed powders was molded into a 50 × 50 × 20 mm molded body by a hydrostatic pressure press of 150 MPa, and then held for 2 hours at a firing temperature (1475 ° C. to 1600 ° C.) shown in Table 1 in an air atmosphere. To do. Sample No. 11 and No. 13 are subjected to HIP treatment (hot isostatic press treatment) under conditions of 1450 ° C. × 1000 atm × 1 hour after firing in the atmosphere.
[0018]
(2) Measurement of porosity The cut surface of each sintered body obtained in (1) was processed into a flat surface using a 45 μm diamond grindstone, and mirror polished using diamond pastes of 9 μm, 3 μm, and 0.25 μm sequentially. And polishing to Ra = 0.01 μm. This mirror-polished surface is observed with a scanning electron microscope (SEM). Based on the SEM photograph taken at a magnification of 500 times, the long diameter, area, maximum long diameter and visual field area of each pore are measured using an image processing apparatus (model name: LUZEX3 manufactured by Nireco). The results are shown in Table 2 as “porosity” and “maximum major axis D max ”.
[0019]
(3) Calculation of standard deviation σ Each major axis and area measured are classified with respect to major axis (when the maximum value of each classification is Bmax (μm) and the minimum value is Bmin (μm), Log (Bmax)-Log (Bmin) = 0.15), the logarithmic normal distribution is applied to the area distribution obtained by summing the area of the pores belonging to each class for each class, and the standard deviation σ is obtained using the following formula 1. The results are shown in Table 2 as “standard deviation σ”.
[0020]
[Expression 1]
Figure 0004807711
[0021]
(4) Evaluation of withstand voltage The withstand voltage is evaluated by a withstand voltage value at 700 ° C. Using the test piece 1 obtained by processing an alumina-based sintered body into 16 mm × 16 mm × 0.65 mm, the measurement is performed with an apparatus having the configuration shown in FIG. The specific method is as follows. First, the test piece 1 is heated and melted at 1400 ° C. using a SiO 2 sealing glass 3 in a state where the alumina steel cylinder 2 a and the alumina steel cylinder 2 b are sandwiched, and a glass joined body 7 is produced. After setting the glass joined body 7 in the heating box 8 having the heater 5, the test piece 1 is sandwiched between the electrode 4 a connected to the high voltage generator 6 and the grounded electrode 4 b. Then, a high voltage is applied in the state heated to 700 degreeC with the heater 5 for a heater, and the value when a dielectric breakdown generate | occur | produces is measured as a withstand voltage value. The results are shown in Table 2 as “average withstand voltage value” and “withstand voltage variation width (value obtained by subtracting the minimum value from the maximum withstand voltage value)”.
[0022]
[Table 1]
Figure 0004807711
[0023]
[Table 2]
Figure 0004807711
[0024]
In Sample No. 3, Sample No. 4, Sample No. 6, Sample No. 7, and Sample No. 11 to Sample No. 15, which are examples of the present invention, the porosity, maximum major axis, and standard deviation are within the specified ranges. Excellent voltage resistance with a voltage average value of 60 kV / mm or more and a withstand voltage variation width of 20 kV / mm or less is exhibited.
[0025]
Sample No. 3, Sample No. 4, Sample No. 6, Sample No. 7, Sample No. 12, Sample No. 14, and Sample No. 15, which are examples containing rare earth elements, do not use the HIP method (hot isostatic pressing method). It can be seen that a good sintered body can be obtained. Sample No. 11 and Sample No. 13, which are examples using the HIP method, can obtain good voltage resistance. When both are compared, it can be seen that Sample No. 13 containing rare earth elements shows better voltage resistance.
[0026]
Sample No. 1 and Sample No. 2, which are comparative examples of the present invention, are inferior in voltage resistance because the porosity and standard deviation are outside the specified range, although the maximum major axis is within the specified range. Sample No. 5, which is also a comparative example, has a large withstand voltage variation width because the standard deviation is outside the specified range, although the porosity and the maximum major axis are within the specified range. Similarly, Sample No. 8, which is a comparative example, is inferior in voltage resistance because the porosity, maximum major axis, and standard deviation are all outside the specified range. Similarly, Sample No. 9, which is a comparative example, has a standard deviation within a specified range, but has a poor withstand voltage average value because the porosity and maximum major axis are outside the specified range. Similarly, Sample No. 10, which is a comparative example, has a large withstand voltage variation width because the maximum major axis is outside the specified range although the porosity and standard deviation are within the specified range. That is, it can be seen that good voltage resistance cannot be obtained even if any of porosity, maximum major axis, and standard deviation is missing.
[0027]
【The invention's effect】
According to the present invention, it is possible to provide an alumina-based sintered body for an insulator of a spark plug having a high insulation property and a good voltage resistance, which is suitable as a material for a ceramic product .
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a method for evaluating withstand voltage used in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Test piece 2a made of alumina-based sintered body Alumina steel tube 2b Alumina steel tube 3 Sealing glass 4a Electrode 4b Electrode 5 Heating heater 6 High voltage generator 7 Glass bonded body 8 Heating box

Claims (2)

焼結体の任意の鏡面研磨面に露出した気孔が以下の特徴を有するスパークプラグの絶縁碍子用アルミナ基焼結体。
(a)前記鏡面研磨面を面積率で100%とした場合の前記気孔の面積率が0.5以上4%以下である。
(b)前記気孔の最大長径Dmaxが15μm以下である。
(c)前記気孔の各長径(単位;μm)を確率変数とした場合の面積分布を対数正規分布で表示した際の標準偏差σが2μm以下である。
An alumina-based sintered body for an insulator of a spark plug, wherein pores exposed on an arbitrary mirror-polished surface of the sintered body have the following characteristics.
(A) The area ratio of the pores is 0.5 to 4% when the mirror-polished surface is 100% in area ratio.
(B) The maximum major axis D max of the pores is 15 μm or less.
(C) The standard deviation σ when the area distribution when each major axis (unit: μm) of the pores is a random variable is displayed as a lognormal distribution is 2 μm or less.
請求項1に記載のスパークプラグの絶縁碍子用アルミナ基焼結体であって、希土類元素RE.のうちLa(ランタン)、Pr(プラセオジウム)、Nd(ネオジウム)のうち少なくとも一種類を含むことを特徴とするスパークプラグの絶縁碍子用アルミナ基焼結体。 An alumina-based sintered body for an insulator of a spark plug according to claim 1, wherein the rare earth element RE. Among them, an alumina-based sintered body for an insulator of a spark plug, comprising at least one of La (lanthanum), Pr (praseodymium), and Nd (neodymium).
JP04514399A 1999-02-23 1999-02-23 Alumina-based sintered body for insulator of spark plug Expired - Lifetime JP4807711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04514399A JP4807711B2 (en) 1999-02-23 1999-02-23 Alumina-based sintered body for insulator of spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04514399A JP4807711B2 (en) 1999-02-23 1999-02-23 Alumina-based sintered body for insulator of spark plug

Publications (2)

Publication Number Publication Date
JP2000247729A JP2000247729A (en) 2000-09-12
JP4807711B2 true JP4807711B2 (en) 2011-11-02

Family

ID=12711067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04514399A Expired - Lifetime JP4807711B2 (en) 1999-02-23 1999-02-23 Alumina-based sintered body for insulator of spark plug

Country Status (1)

Country Link
JP (1) JP4807711B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690230B2 (en) 2006-03-16 2011-06-01 日本特殊陶業株式会社 Spark plug for internal combustion engine and method for manufacturing the same
JP4651732B1 (en) * 2009-09-25 2011-03-16 日本特殊陶業株式会社 Spark plug
JP4756087B2 (en) 2009-09-25 2011-08-24 日本特殊陶業株式会社 Spark plug and method of manufacturing spark plug
CN103492345B (en) * 2011-07-14 2016-04-06 株式会社东芝 Ceramic circuit board
JP6052249B2 (en) 2014-07-24 2016-12-27 株式会社デンソー Alumina sintered body and spark plug
JP6337801B2 (en) 2015-02-27 2018-06-06 株式会社デンソー Alumina sintered body and spark plug
JP7203062B2 (en) * 2020-04-07 2023-01-12 日本特殊陶業株式会社 Insulators for spark plugs and spark plugs

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260766A (en) * 1986-05-08 1987-11-13 東レ株式会社 Alumina sintered body
JP2539018B2 (en) * 1988-03-23 1996-10-02 株式会社神戸製鋼所 Al Lower 2 O Lower 3 Base ceramics
JPH03159958A (en) * 1989-11-16 1991-07-09 Asahi Chem Ind Co Ltd Alumina-based sintered body
JPH0515219U (en) * 1991-08-08 1993-02-26 株式会社明電舎 Insulation structure for electrical equipment
JPH06321620A (en) * 1993-05-14 1994-11-22 Noritake Co Ltd High toughness ceramic material
JPH09223568A (en) * 1996-02-14 1997-08-26 Ngk Spark Plug Co Ltd Insulator and spark plug
JPH09315849A (en) * 1996-05-28 1997-12-09 Ngk Spark Plug Co Ltd Aluminous sintered compact or insulator for spark plug and its production

Also Published As

Publication number Publication date
JP2000247729A (en) 2000-09-12

Similar Documents

Publication Publication Date Title
M’Peko et al. Field-assisted sintering of undoped BaTiO3: Microstructure evolution and dielectric permittivity
CN105849836B (en) Multilayer ceramic electronic component
TWI728327B (en) Composite sintered body, semiconductor manufacturing apparatus member, and method of manufacturing composite sintered body
CN108276008A (en) Silicon nitride board and use its silicon nitride circuit substrate
Yoshida et al. High-temperature creep resistance in lanthanoid ion-doped polycrystalline Al2O3
JP4807711B2 (en) Alumina-based sintered body for insulator of spark plug
JP2019182689A (en) Manufacturing method for sintered body and sintered body
JP6369837B2 (en) Spark plug
JP6783528B2 (en) Ceramic structure, its manufacturing method and members for semiconductor manufacturing equipment
JPH0712969B2 (en) Alumina porcelain and spark plug
KR101965895B1 (en) Electrostatic chuck and method for preparing the same
JP4748693B2 (en) High voltage endurance alumina-based sintered body and method for producing the same
Yoon et al. Control of connectivity of Ni electrode with heating rates during sintering and electrical properties in BaTiO 3 based multilayer ceramic capacitors
JP2021107304A (en) Dielectric composition and electronic device
JP4827110B2 (en) High voltage endurance alumina-based sintered body
CN111386581A (en) Thermistor sintered compact and temperature sensor element
Nozaki et al. BaTiO 3-based positive temperature coefficient of resistivity ceramics with low resistivities prepared by the oxalate method
CN109020537A (en) A kind of anti-reduction low-loss type barium phthalate base dielectric material
JP4368975B2 (en) High voltage endurance alumina-based sintered body and method for producing the same
Rhee et al. Investigation of high frequency (2.45 GHz, 30 GHz) sintering of Pb-based ferroelectrics
Uchikoshi et al. Effect of silica doping on the electrical conductivity of 3 mol% yttria-stabilized tetragonal zirconia prepared by colloidal processing
JP4780628B2 (en) Insulator for spark plug and manufacturing method thereof
EP2980044A1 (en) Dielectric porcelain composition and composite ceramic structural body
JP2001163674A (en) Silicon nitride sintered compact and method of producing the same
WO2024062832A1 (en) Ceramic substrate, ceramic circuit substrate, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term