JP2019182689A - Manufacturing method for sintered body and sintered body - Google Patents

Manufacturing method for sintered body and sintered body Download PDF

Info

Publication number
JP2019182689A
JP2019182689A JP2018072598A JP2018072598A JP2019182689A JP 2019182689 A JP2019182689 A JP 2019182689A JP 2018072598 A JP2018072598 A JP 2018072598A JP 2018072598 A JP2018072598 A JP 2018072598A JP 2019182689 A JP2019182689 A JP 2019182689A
Authority
JP
Japan
Prior art keywords
temperature
sintered body
electric field
manufacturing
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018072598A
Other languages
Japanese (ja)
Inventor
山本 剛久
Takehisa Yamamoto
剛久 山本
小林 哲朗
Tetsuro Kobayashi
哲朗 小林
智春 徳永
Tomoharu Tokunaga
智春 徳永
山下 雄大
Takehiro Yamashita
雄大 山下
亮佑 梅村
Ryosuke Umemura
亮佑 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP2018072598A priority Critical patent/JP2019182689A/en
Publication of JP2019182689A publication Critical patent/JP2019182689A/en
Pending legal-status Critical Current

Links

Abstract

To provide a novel technique for improving density of a sintered body.SOLUTION: A manufacturing method for a sintered body according to some aspect of the present disclosure is the manufacturing method for a sintered body in which prescribed electrical field is applied after raising the temperature of ceramic compressed powdery body up to a prescribed temperature. The prescribed temperature is a temperature higher than a flash sintering temperature in which electrical current passing in the ceramic compressed powdery body is abruptly increased in raising the temperature while applying the electrical field to the ceramic compressed powdery body. The prescribed electrical field is an electrical field in the range where the phenomenon occurs in which the electrical current passing in the ceramic compressed powdery body is abruptly increased in raising the temperature while applying the electrical field to the ceramic compressed powdery body.SELECTED DRAWING: Figure 1

Description

本開示は、焼結体に関する。   The present disclosure relates to a sintered body.

一般に、セラミックの焼結体は、原料粉末を圧紛・成型し、その成型体を高温下で熱処理することで作製される。熱処理温度(これを焼結温度と呼ぶ)は、セラミックの種類にも依存するが、1200℃〜1500℃であり、焼結時間は、数時間程度である。焼結体の密度を向上させるためには、上記のような一般的な焼結法以外にも、外部から圧力をかける方法(ホットプレス法やHIP法など)など多様な方法が考案されている。 Generally, a ceramic sintered body is produced by compacting and molding a raw material powder and heat-treating the molded body at a high temperature. The heat treatment temperature (referred to as sintering temperature) depends on the type of ceramic, but is 1200 ° C. to 1500 ° C., and the sintering time is about several hours. In order to improve the density of the sintered body, various methods such as a method of applying pressure from the outside (hot press method, HIP method, etc.) have been devised in addition to the general sintering method as described above. .

また、近年では、セラミック圧紛体に電界を印加することで、従来よりも低温、かつ、短時間で焼結を終了できるフラッシュ焼結法が開発されている(非特許文献1参照)。この焼結法の特徴は、電界を印加しながらセラミック圧紛体を昇温していくと、ある温度で急峻に試料電流が上昇し(以下、この現象を「フラッシュ現象」と呼称することがある。)、焼結工程が瞬時に終了することである。また、電界強度を増加させると、焼結体の収縮が始まる温度が低下するとともに、収縮挙動がより急峻に変化することが明らかになっている。   In recent years, a flash sintering method has been developed in which an electric field is applied to a ceramic compact so that the sintering can be completed at a lower temperature and in a shorter time than before (see Non-Patent Document 1). The characteristic of this sintering method is that when the ceramic compact is heated while applying an electric field, the sample current rises sharply at a certain temperature (hereinafter this phenomenon may be referred to as “flash phenomenon”). .), The sintering process is completed instantaneously. It has also been clarified that when the electric field strength is increased, the temperature at which the sintered body begins to shrink decreases and the shrinkage behavior changes more rapidly.

Marco Cologna et al、「Flash Sintering of Nanograin Zirconia in <5 s at 850℃」、 Rapid Communications of the American Ceramic Society、2010、Vol. 93、No. 11、p. 3556-3559Marco Cologna et al, “Flash Sintering of Nanograin Zirconia in <5 s at 850 ° C”, Rapid Communications of the American Ceramic Society, 2010, Vol. 93, No. 11, p. 3556-3559

しかしながら、フラッシュ現象が生じるフラッシュ温度は、電界が一定であれば一義的に決まってしまう。一方、焼結体の最終的な密度をより高くするためには、フラッシュ温度が高い方が有利であると考えられるが、従来のフラッシュ焼結法では、フラッシュ温度を任意に制御できない。そのため、焼結体の密度(緻密化)の観点では更なる改良の余地がある。   However, the flash temperature at which the flash phenomenon occurs is uniquely determined if the electric field is constant. On the other hand, in order to make the final density of the sintered body higher, it is considered that a higher flash temperature is advantageous, but the flash temperature cannot be arbitrarily controlled by the conventional flash sintering method. Therefore, there is room for further improvement in terms of the density (densification) of the sintered body.

本開示はこうした状況に鑑みてなされており、その例示的な目的の一つは、焼結体の密度を向上する新たな技術を提供することにある。   This indication is made in view of such a situation, and one of the exemplary purposes is to provide the new technique which improves the density of a sintered compact.

上記課題を解決するために、本開示のある態様の焼結体の製造方法は、セラミック圧粉体を所定温度まで昇温した後に、所定の電界を印加する焼結体の製造方法であって、所定温度は、セラミック圧粉体に電界を印加しながら昇温した場合に該セラミック圧粉体に流れる電流が急激に増加するフラッシュ焼結温度よりも高い温度であり、所定の電界は、セラミック圧粉体に電界を印加しながら昇温した場合に該セラミック圧粉体に流れる電流が急激に増加する現象が生じる範囲の電界である。   In order to solve the above problems, a method for manufacturing a sintered body according to an aspect of the present disclosure is a method for manufacturing a sintered body in which a predetermined electric field is applied after the ceramic green compact is heated to a predetermined temperature. The predetermined temperature is higher than the flash sintering temperature at which the current flowing in the ceramic green compact rapidly increases when the temperature is increased while applying an electric field to the ceramic green compact. When the temperature is increased while applying an electric field to the green compact, the electric field is in a range where a phenomenon in which the current flowing in the ceramic green compact rapidly increases occurs.

本開示によれば、焼結体の密度を向上することができる。   According to the present disclosure, the density of the sintered body can be improved.

試料(セラミック圧粉体)の温度と試料電流との関係を説明するための模式図である。It is a schematic diagram for demonstrating the relationship between the temperature of a sample (ceramic green compact), and a sample electric current. 本実施の形態に係る製造方法で製造した焼結体の透光性を示す図である。It is a figure which shows the translucency of the sintered compact manufactured with the manufacturing method which concerns on this Embodiment. ZrO−Y系状態図の要部を示す図である。It is a drawing showing the essential components of the ZrO 2 -Y 2 O 3 phase diagram. 変形例に係る焼結体試料の走査透過型電子顕微鏡(STEM)による像とエネルギー分散型X線分光(EDS)法による組成分析の結果を示す図である。It is a figure which shows the result of the composition analysis by the image by a scanning transmission electron microscope (STEM) and the energy dispersive X-ray spectroscopy (EDS) method of the sintered compact sample which concerns on a modification.

本開示のある態様の焼結体の製造方法は、セラミックの原料粉末を圧粉した試料を所定温度まで昇温した後に、所定の電界を印加する焼結体の製造方法であって、所定温度は、セラミックの原料粉末を圧粉した試料に電界を印加しながら昇温した場合に該試料に流れる電流が急激に増加するフラッシュ焼結温度よりも高い温度であり、所定の電界は、セラミックの原料粉末を圧粉した試料に電界を印加しながら昇温した場合に該試料に流れる電流が急激に増加する現象が生じる範囲の電界である。   A method for manufacturing a sintered body according to an aspect of the present disclosure is a method for manufacturing a sintered body in which a predetermined electric field is applied after a sample obtained by compacting a ceramic raw material powder is heated to a predetermined temperature. Is a temperature higher than the flash sintering temperature at which the current flowing through the sample rapidly increases when the temperature is increased while applying an electric field to a sample compacted with ceramic raw powder. This is an electric field in a range where a phenomenon in which the current flowing through the sample rapidly increases when the temperature is raised while applying the electric field to the sample compacted with the raw material powder.

この態様によると、電界を印加しながら昇温した場合に一義的に決まる従来のフラッシュ焼結温度よりも高い温度で焼結できる。また、所定温度をフラッシュ焼結温度よりも高くすることで、焼結体の密度を向上できる。   According to this aspect, sintering can be performed at a temperature higher than the conventional flash sintering temperature that is uniquely determined when the temperature is raised while applying an electric field. Moreover, the density of a sintered compact can be improved by making predetermined temperature higher than flash sintering temperature.

所定温度は、フラッシュ焼結温度よりも50℃以上高くてもよい。これにより、焼結体の密度を向上しやすい温度域で焼結できる。   The predetermined temperature may be 50 ° C. or higher than the flash sintering temperature. Thereby, it can sinter in the temperature range which is easy to improve the density of a sintered compact.

所定の電界は、50V/cm以上であるとよい。これにより、フラッシュ現象を生じさせることができ、比較的短時間で焼結を完了させることができる。   The predetermined electric field is preferably 50 V / cm or more. Thereby, a flash phenomenon can be caused and sintering can be completed in a relatively short time.

セラミックの原料粉末は、ZrOにY(2〜4.5mol%)を分散固溶させたものであってもよい。これにより、高硬度材料、高温下での使用、伝導性セラミック、固体電解質、透光性材料、等の様々な用途での耐久性を向上できる。 The ceramic raw material powder may be obtained by dispersing and dissolving Y 2 O 3 ( 2 to 4.5 mol%) in ZrO 2 . Thereby, durability in various uses, such as a high hardness material, use under high temperature, a conductive ceramic, a solid electrolyte, and a translucent material, can be improved.

本開示の別の態様は、焼結体である。この焼結体は、ZrO−Y系状態図において立方晶のZrOおよび正方晶のZrOの二相混合領域の組成比である焼結体であって、相対密度が99%以上であり、母相であるZrOに対するYの偏析の標準偏差が、化学量論比(mol比)の20%以内である。 Another aspect of the present disclosure is a sintered body. The sintered body is a sintered body having a composition ratio of the two-phase mixed region ZrO 2 cubic ZrO 2 and tetragonal crystal at ZrO 2 -Y 2 O 3 phase diagram, the relative density of 99% As described above, the standard deviation of Y segregation with respect to ZrO 2 as the parent phase is within 20% of the stoichiometric ratio (mol ratio).

この態様によると、立方晶のZrOや正方晶のZrOに対してYが比較的均一に分布しているため、安定した微細組織が得られる。 According to this aspect, since Y is distributed relatively uniformly with respect to cubic ZrO 2 and tetragonal ZrO 2 , a stable microstructure can be obtained.

の含有量が2〜4.5mol%であってもよい。これにより、フラッシュ焼結温度よりも高い焼結温度において、安定した二相混合領域の組成比である焼結体が得られる。 The content of Y 2 O 3 may be 2 to 4.5 mol%. Thus, a sintered body having a stable composition ratio of the two-phase mixed region can be obtained at a sintering temperature higher than the flash sintering temperature.

平均粒径が20〜200nmであってもよい。これにより、緻密で強度の高い焼結体が得られる。   The average particle size may be 20 to 200 nm. Thereby, a dense sintered body having high strength can be obtained.

なお、以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システム、などの間で変換したものもまた、本開示の態様として有効である。   It should be noted that any combination of the above-described components, and a representation of the present disclosure converted between a method, an apparatus, a system, and the like are also effective as an aspect of the present disclosure.

以下、図面等を参照しながら、本開示を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、以下に述べる構成は例示であり、本開示の範囲を何ら限定するものではない。   Hereinafter, embodiments for carrying out the present disclosure will be described in detail with reference to the drawings and the like. In the description of the drawings, the same elements are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. In addition, the configuration described below is an exemplification, and does not limit the scope of the present disclosure.

(焼結体の製造方法)
本実施の形態に係る焼結体の製造方法では、セラミックの原料粉末として3mol%のイットリア(Y)を均一に分散固溶させたジルコニア(ZrO)粉末(TZ−3Y:東ソー株式会社製、以下「3YSZ」と称する場合がある。)を使用した。この原料粉末を圧粉し、一軸および静水圧成型により、長さ15mm、断面形状が5mm×5mmの直方体の試料(セラミック圧粉体)を作製した。試料成型後、試料の長手方向両端面に、電極として白金(Pt)箔をPtペーストにより固定した。
(Method for producing sintered body)
In the method for manufacturing a sintered body according to the present embodiment, zirconia (ZrO 2 ) powder (TZ-3Y: Tosoh Corporation) in which 3 mol% of yttria (Y 2 O 3 ) is uniformly dispersed and dissolved as a ceramic raw material powder. Manufactured by the company, hereinafter referred to as “3YSZ”). This raw material powder was compacted, and a rectangular parallelepiped sample (ceramic compact) having a length of 15 mm and a cross-sectional shape of 5 mm × 5 mm was produced by uniaxial and isostatic pressing. After the sample molding, platinum (Pt) foil as an electrode was fixed with Pt paste on both end faces in the longitudinal direction of the sample.

次に、電極が固定された試料を、DCおよびAC電源を接続できるように改造を施した示差熱膨張計(Thermo plus EVO2 TMA8301:株式会社リガク製)に設置した。そして、この試料を所定温度まで昇温した後に、試料に所定の電界を印加した。その後、電気炉の昇温を停止し、以降その温度において1時間保持した後、電圧印加を停止して自然冷却を行った。   Next, the sample on which the electrode was fixed was installed in a differential thermal dilatometer (Thermo plus EVO2 TMA8301: manufactured by Rigaku Corporation) modified so that a DC and AC power source could be connected. And after heating up this sample to predetermined temperature, the predetermined electric field was applied to the sample. Thereafter, the temperature increase of the electric furnace was stopped, and thereafter, holding at that temperature for 1 hour, the voltage application was stopped and natural cooling was performed.

図1は、試料(セラミック圧粉体)の温度と試料電流との関係を説明するための模式図である。図1に示すラインL1は、昇温前に予め電圧を印加する従来のフラッシュ焼結法での温度と試料に流れる電流との関係を示している。図1に示すラインL1のように、従来のフラッシュ焼結法では、試料に所定の強度の電界が印加されている状態で昇温していくと、試料に流れる電流はフラッシュ焼結温度Tに近づくと急激に大きくなり、焼結が完了する。 FIG. 1 is a schematic diagram for explaining the relationship between the temperature of a sample (ceramic green compact) and the sample current. A line L1 shown in FIG. 1 shows the relationship between the temperature in the conventional flash sintering method in which a voltage is applied in advance before the temperature rise and the current flowing through the sample. As shown by the line L1 shown in FIG. 1, in the conventional flash sintering method, when the temperature is raised while an electric field having a predetermined intensity is applied to the sample, the current flowing through the sample is the flash sintering temperature T 0. As it approaches, it grows rapidly and the sintering is complete.

これに対して、本実施の形態に係る焼結体の製造方法では、図1に示すラインL2のように、試料に電圧を印加しない状態(あるいはフラッシュ現象が生じない程度の低い電圧を印加した状態)で、フラッシュ焼結温度Tよりも高い所定の温度Tまで昇温した後に、フラッシュ現象が生じる範囲の所定の電界を印加する。これにより、本実施の形態に係る焼結体の製造方法では、フラッシュ焼結温度TよりもΔTだけ温度が高い温度Tにおいて焼結が行われる。 On the other hand, in the method for manufacturing a sintered body according to the present embodiment, a voltage that is not applied to the sample (or a low voltage that does not cause a flash phenomenon) is applied as shown by a line L2 in FIG. In the state), after raising the temperature to a predetermined temperature T 1 higher than the flash sintering temperature T 0 , a predetermined electric field in a range where a flash phenomenon occurs is applied. Thus, in the manufacturing method of the sintered body according to the present embodiment, the sintering is performed at temperatures T 1 temperature only ΔT is higher than the flash sintering temperature T 0.

このように、本実施の形態に係る焼結体の製造方法は、電界を印加しながら昇温した場合に一義的に決まる従来のフラッシュ焼結温度Tよりも高い温度Tで焼結できる。また、所定温度をフラッシュ焼結温度よりも高くすることで、焼結体の密度を向上できる。原料粉末が3YSZの場合、所定の温度Tは950〜1300℃程度の範囲が好ましく、1000℃〜1200℃の範囲がより好ましい。また、所定の温度Tは、3YSZを焼結する場合の一般的な温度1500℃よりも十分低く、生産性の向上や装置構成の簡略化が図られる。 Thus, the method for manufacturing a sintered body according to the present embodiment can sinter at a temperature T 1 higher than the conventional flash sintering temperature T 0 that is uniquely determined when the temperature is raised while applying an electric field. . Moreover, the density of a sintered compact can be improved by making predetermined temperature higher than flash sintering temperature. If raw material powder is 3YSZ, predetermined temperatures T 1 is preferably in the range of about 950-1300 ° C., more preferably in the range of 1000 ° C. to 1200 ° C.. The predetermined temperatures T 1, the general temperature of 1500 well below ℃ when sintering the 3YSZ, simplification improved and device configuration of the productivity can be improved.

また、原料粉末が3YSZの場合、所定の電界は40V/cmよりも大きく、好ましくは、50〜120V/cmの範囲であり、より好ましくは60〜100V/cmの範囲である。これにより、フラッシュ現象を生じさせることができ、比較的短時間で焼結を完了させることができる。   When the raw material powder is 3YSZ, the predetermined electric field is larger than 40 V / cm, preferably in the range of 50 to 120 V / cm, more preferably in the range of 60 to 100 V / cm. Thereby, a flash phenomenon can be caused and sintering can be completed in a relatively short time.

また、所定の温度Tは、フラッシュ焼結温度Tよりも50℃以上高いとよい。これにより、焼結体の密度を向上しやすい温度域で焼結できる。 Further, the predetermined temperature T 1 is preferably 50 ° C. or higher than the flash sintering temperature T 0 . Thereby, it can sinter in the temperature range which is easy to improve the density of a sintered compact.

図2は、本実施の形態に係る製造方法で製造した焼結体の透光性を示す図である。図2に示す焼結体試料は、1200℃で焼結後、1時間保持されたものであり、可視光を透過させる程度まで密度が高い(緻密である)ことがわかる。   FIG. 2 is a diagram showing the translucency of the sintered body produced by the production method according to the present embodiment. The sintered body sample shown in FIG. 2 is held for 1 hour after sintering at 1200 ° C., and it can be seen that the density is high (dense) to the extent that visible light is transmitted.

図3は、ZrO−Y系状態図の要部を示す図である。ジルコニア単体(Y量が0mol%)の場合、室温では単斜晶(M相:Monoclinic)である。加熱して温度を上げていくと、1170℃以上で正方晶(T相:Tetragonal)に相変態する。更に、2370℃以上になると、立方晶(C相:Cubic)に相変態する。 FIG. 3 is a diagram showing a main part of the ZrO 2 —Y 2 O 3 system phase diagram. In the case of zirconia alone (Y 2 O 3 content is 0 mol%), it is monoclinic (M phase: Monoclinic) at room temperature. When the temperature is raised by heating, the phase transforms to tetragonal (T phase: Tetragonal) at 1170 ° C. or higher. Furthermore, when it becomes 2370 degreeC or more, it will transform into a cubic crystal (C phase: Cubic).

焼結のためにジルコニアを室温から温度を上げていくと、単斜晶から正方晶になり体積は収縮する。逆に、ジルコニアの温度を室温に戻していくと、正方晶から単斜晶に戻るが体積は膨張するため、割れてしまう。すなわち,イットリアのような安定化剤を含まない純粋なジルコニアは、焼結冷却過程で相変態温度を通過する時に破壊してしまう。   When the temperature of zirconia is increased from room temperature for sintering, the volume changes from monoclinic to tetragonal. Conversely, when the temperature of zirconia is returned to room temperature, it returns from tetragonal to monoclinic, but the volume expands and cracks. That is, pure zirconia that does not contain a stabilizer such as yttria is destroyed when it passes through the phase transformation temperature during the cooling process.

そこで、本実施の形態に係る焼結体の原料粉末は、安定化剤としてイットリアが配合されており、その組成は焼結過程で部分安定化ジルコニアが形成される範囲である。部分安定化ジルコニアは、安定化剤の割合を減らして正方晶(T相)と立方晶(C相)の二相組織(T相+C相)からなる(図3に示すR1領域)。そして、正方晶(T相)が準安定相としてジルコニアの高強度に寄与する。   Therefore, the raw material powder of the sintered body according to the present embodiment is blended with yttria as a stabilizer, and the composition thereof is within a range in which partially stabilized zirconia is formed during the sintering process. Partially stabilized zirconia is composed of a tetragonal crystal (T phase) and a cubic crystal (C phase) with a two-phase structure (T phase + C phase) by reducing the proportion of the stabilizer (R1 region shown in FIG. 3). Tetragonal crystals (T phase) contribute to the high strength of zirconia as a metastable phase.

そのため、図3に示すR1領域のうちT相単相のR2領域との境界線L3に近い組成のイットリアを含有するとよい。この場合、二相組織におけるT相の割合が多くなる。換言すると、R1領域のうちC相単相のR3領域との境界線L4から離れた組成のイットリアを含有するとよい。具体的には、ラインL4上のY量(mol%)の−25%より少ない組成(ラインL5の左側の組成)が好ましい。例えば、温度1500℃の焼結条件では、ラインL4上のY量は6.1mol%であり、Y量は約4.5mol%(6.1mol%×0.75)以下が好ましいことになる。同様に、1200℃の焼結条件では、ラインL4上のY量は7.2mol%であり、Y量は約5.4mol%以下が好ましいことになる。 Therefore, it is preferable to contain yttria having a composition close to the boundary line L3 with the T2 single-phase R2 region in the R1 region shown in FIG. In this case, the proportion of the T phase in the two-phase structure increases. In other words, it is preferable to contain yttria having a composition separated from the boundary line L4 with the R3 region of the C-phase single phase in the R1 region. Specifically, a composition (composition on the left side of the line L5) less than −25% of the amount of Y 2 O 3 (mol%) on the line L4 is preferable. For example, under sintering conditions at a temperature of 1500 ° C., the amount of Y 2 O 3 on the line L4 is 6.1 mol%, and the amount of Y 2 O 3 is about 4.5 mol% (6.1 mol% × 0.75) or less. Is preferred. Similarly, under the sintering condition of 1200 ° C., the amount of Y 2 O 3 on the line L4 is 7.2 mol%, and the amount of Y 2 O 3 is preferably about 5.4 mol% or less.

以上のように、本実施の形態に係るセラミックの原料粉末は、ZrOに(2〜5.4mol%、好ましくは2〜4.5mol%)のYを分散固溶させたものが好ましい。これにより、フラッシュ焼結温度よりも高い焼結温度において、安定した二相混合領域の組成比である焼結体が得られる。また、本実施の形態に係る焼結体は、ZrO−Y系状態図において立方晶のZrOおよび正方晶のZrOの二相混合領域の組成比である焼結体である。これにより、高硬度材料、高温下での使用、伝導性セラミック、固体電解質、透光性材料、等の様々な用途での耐久性を向上できる。 As described above, the ceramic raw material powder according to the present embodiment is obtained by dispersing and solid-dissolving ( 2 to 5.4 mol%, preferably 2 to 4.5 mol%) of Y 2 O 3 in ZrO 2. preferable. Thus, a sintered body having a stable composition ratio of the two-phase mixed region can be obtained at a sintering temperature higher than the flash sintering temperature. Further, the sintered body of the present embodiment is a sintered body having a composition ratio of the two-phase mixed region ZrO 2 cubic ZrO 2 and tetragonal crystal at ZrO 2 -Y 2 O 3 phase diagram . Thereby, durability in various uses, such as a high hardness material, use under high temperature, a conductive ceramic, a solid electrolyte, and a translucent material, can be improved.

(変形例)
上述と同様の原料粉末に対して、1200℃まで昇温した後、印加電圧60V/cm、制限電流700mA/mm、周波数100Hzの電界を印加し、制限電流に達してから5分間保持して焼結を行った。図4は、変形例に係る焼結体試料の走査透過型電子顕微鏡(STEM)による像とエネルギー分散型X線分光(EDS)法による組成分析の結果を示す図である。
(Modification)
After raising the temperature to 1200 ° C. for the same raw material powder as described above, an electric field with an applied voltage of 60 V / cm, a limiting current of 700 mA / mm 2 , and a frequency of 100 Hz is applied and held for 5 minutes after reaching the limiting current. Sintering was performed. FIG. 4 is a diagram showing an image of a sintered body sample according to a modification by a scanning transmission electron microscope (STEM) and a result of composition analysis by an energy dispersive X-ray spectroscopy (EDS) method.

図4の写真中に示す”1_Macro 6.04”、”15_Macro 5.66”、”16_Macro 6.23”、”17_Macro 5.73”、”18_Macro 6.09”は、写真に示す視野全体の多結晶組織におけるイットリウム(Y)の組成[at%]をEDS分析したものであり、分析を5回行ったことを示している。その平均値は5.95[at%]であり、Y換算すれば2.975[mol%]となる。そのため、図4に示す試料が、原料粉末として3mol%のイットリア(Y)を固溶させたジルコニア(ZrO)の組成とほぼ一致していることがわかる。 “1_Macro 6.04”, “15_Macro 5.66”, “16_Macro 6.23”, “17_Macro 5.73”, “18_Macro 6.09” shown in the photograph of FIG. This is an EDS analysis of the composition [at%] of yttrium (Y) in the crystal structure, indicating that the analysis was performed five times. The average value is 5.95 [at%], which is 2.975 [mol%] in terms of Y 2 O 3 . Therefore, it can be seen that the sample shown in FIG. 4 substantially matches the composition of zirconia (ZrO 2 ) in which 3 mol% of yttria (Y 2 O 3 ) is dissolved as a raw material powder.

次に、図4に示す”2_5.84”、”3_6.35”、”4_6.56”、”5_7.03”、”6_7.02”、”7_5.24”、”8_5.23”、”9_6.26”、”10_3.96”、”11_5.79”、”12_6.38”、”13_4.90”、”14_6.05”、”19_6.42”は、写真の□(PointまたはBox)や線(Line)で示す領域のYの組成であり、その平均値は5.93[at%]であり、Y換算すれば2.965[mol%]となる。 Next, “2_5.84”, “3_6.35”, “4_6.56”, “5_7.03”, “6_7.02”, “7_5.24”, “8_5.23”, “ "9_6.26", "10_3.96", "11_5.79", "12_6.38", "13_4.90", "14_6.05", and "19_6.42" are □ (Point or Box) This is the composition of Y in the region indicated by the line, and the average value is 5.93 [at%], which is 2.965 [mol%] in terms of Y 2 O 3 .

また、これら14箇所の領域の組成の標準偏差は[at%]換算で0.82である。つまり、図4に示す多結晶組織は、概ねY原子が5.93±0.82[at%]の範囲の組成で偏析している。つまり、母相であるZrOに対するYの偏析の標準偏差は、化学量論比(Y=6/100)の20%以内(0.82/5.93=0.138)である。より好ましくは、Yの偏析の標準偏差が15%以内であるとよい。 The standard deviation of the composition of these 14 regions is 0.82 in terms of [at%]. That is, the polycrystalline structure shown in FIG. 4 is segregated with a composition in which Y atoms are generally in the range of 5.93 ± 0.82 [at%]. That is, the standard deviation of Y segregation relative to the parent phase ZrO 2 is within 20% (0.82 / 5.93 = 0.138) of the stoichiometric ratio (Y = 6/100). More preferably, the standard deviation of Y segregation is 15% or less.

このように、立方晶のZrOや正方晶のZrOに対してYが比較的均一に分布しているため、安定した微細組織が得られる。なお、このことは図4に示す試料におけるY元素の分布をEDS分析でマッピングした結果において、偏りがほとんどないことからも確認されている。このように、本実施の形態に係る製造方法によれば、Yの偏りがあまりない微細組織を有する焼結体を、従来の焼結温度より比較的低温である1200℃のフラッシュ焼結で得られる。また、本実施の形態に係る焼結体は、図4に示すように、ボイドVが非常に少なく、相対密度が99%以上である。また、本実施の形態に係る焼結体の平均粒径は、20〜200nmであることが好ましい。このように、本実施の形態によれば、緻密で強度の高い焼結体を、従来よりも低温で、かつ、短時間で得られる。 Thus, since Y is distributed relatively uniformly with respect to cubic ZrO 2 and tetragonal ZrO 2 , a stable microstructure can be obtained. This is also confirmed from the fact that there is almost no bias in the result of mapping the distribution of the Y element in the sample shown in FIG. 4 by EDS analysis. Thus, according to the manufacturing method according to the present embodiment, a sintered body having a fine structure with little Y bias is obtained by flash sintering at 1200 ° C., which is relatively lower than the conventional sintering temperature. It is done. Further, as shown in FIG. 4, the sintered body according to the present embodiment has very few voids V and a relative density of 99% or more. Moreover, it is preferable that the average particle diameter of the sintered compact which concerns on this Embodiment is 20-200 nm. Thus, according to the present embodiment, a dense and high-strength sintered body can be obtained at a lower temperature and in a shorter time than in the past.

以上、本開示を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。   The present disclosure has been described based on the embodiments. This embodiment is an exemplification, and it is understood by those skilled in the art that various modifications can be made to the combinations of the respective constituent elements and processing processes, and such modifications are also within the scope of the present disclosure. is there.

例えば、本開示の焼結体の製造方法は、チタン酸バリウム(BaTiO)、チタン酸ストロンチウム(SrTiO)、イットリア(Y)、ムライト(3Al・2SiO〜2Al・SiO)、酸化スズ(SnO)、イットリウムアルミニウムガーネット(YAl12)、酸化亜鉛(ZnO)などの酸化物系セラミックの焼結体の製造に適用できる。 For example, the manufacturing method of the sintered body of the present disclosure includes barium titanate (BaTiO 3 ), strontium titanate (SrTiO 3 ), yttria (Y 2 O 3 ), mullite (3Al 2 O 3 .2SiO 2 to 2Al 2 O 3 · SiO 2 ), tin oxide (SnO), yttrium aluminum garnet (Y 3 Al 5 O 12 ), zinc oxide (ZnO), and other oxide-based ceramics.

本開示の焼結体の製造方法は、工業用の研磨・研削材、歯科用のセラミックス材料、電気導電性を利用した固体電解質膜材料、センサ用セラミックス材料の製造に利用が可能である。   The method for manufacturing a sintered body according to the present disclosure can be used for manufacturing industrial polishing / grinding materials, dental ceramic materials, solid electrolyte membrane materials using electrical conductivity, and ceramic materials for sensors.

Claims (7)

セラミック圧粉体を所定温度まで昇温した後に、所定の電界を印加する焼結体の製造方法であって、
前記所定温度は、前記セラミック圧粉体に電界を印加しながら昇温した場合に該セラミック圧粉体に流れる電流が急激に増加するフラッシュ焼結温度よりも高い温度であり、
前記所定の電界は、前記セラミック圧粉体に電界を印加しながら昇温した場合に該セラミック圧粉体に流れる電流が急激に増加する現象が生じる範囲の電界である、
ことを特徴とする焼結体の製造方法。
A method for producing a sintered body in which a predetermined electric field is applied after heating the ceramic green compact to a predetermined temperature,
The predetermined temperature is a temperature higher than a flash sintering temperature at which a current flowing in the ceramic green compact rapidly increases when the ceramic green compact is heated while applying an electric field,
The predetermined electric field is an electric field in a range in which a phenomenon in which a current flowing in the ceramic green compact rapidly increases when the ceramic green compact is heated while applying an electric field,
The manufacturing method of the sintered compact characterized by the above-mentioned.
前記所定温度は、前記フラッシュ焼結温度よりも50℃以上高いことを特徴とする請求項1に記載の焼結体の製造方法。   The method for manufacturing a sintered body according to claim 1, wherein the predetermined temperature is higher by 50 ° C. than the flash sintering temperature. 前記所定の電界は、50V/cm以上であることを特徴とする請求項1または2に記載の焼結体の製造方法。   The method for manufacturing a sintered body according to claim 1 or 2, wherein the predetermined electric field is 50 V / cm or more. 前記セラミック圧粉体の原料粉末は、ZrOにY(2〜4.5mol%)を分散固溶させたものであることを特徴とする請求項1乃至3のいずれか1項に記載の焼結体の製造方法。 The raw material powder of the ceramic green compact is obtained by dispersing and solid-dissolving Y 2 O 3 ( 2 to 4.5 mol%) in ZrO 2. The manufacturing method of the sintered compact of description. ZrO−Y系状態図において立方晶のZrOおよび正方晶のZrOの二相混合領域の組成比である焼結体であって、
相対密度が99%以上であり、
母相であるZrOに対するYの偏析の標準偏差が、化学量論比(mol比)の20%以内であることを特徴とする焼結体。
In the ZrO 2 —Y 2 O 3 phase diagram, a sintered body having a composition ratio of a two-phase mixed region of cubic ZrO 2 and tetragonal ZrO 2 ,
The relative density is 99% or more,
A sintered body characterized in that the standard deviation of Y segregation with respect to ZrO 2 as a parent phase is within 20% of the stoichiometric ratio (mol ratio).
の含有量が2〜4.5mol%であることを特徴とする請求項5に記載の焼結体。 The sintered body according to claim 5, wherein the content of Y 2 O 3 is 2 to 4.5 mol%. 平均粒径が20〜200nmであることを特徴とする請求項5または6に記載の焼結体。   The sintered body according to claim 5 or 6, wherein the average particle diameter is 20 to 200 nm.
JP2018072598A 2018-04-04 2018-04-04 Manufacturing method for sintered body and sintered body Pending JP2019182689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018072598A JP2019182689A (en) 2018-04-04 2018-04-04 Manufacturing method for sintered body and sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018072598A JP2019182689A (en) 2018-04-04 2018-04-04 Manufacturing method for sintered body and sintered body

Publications (1)

Publication Number Publication Date
JP2019182689A true JP2019182689A (en) 2019-10-24

Family

ID=68339455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018072598A Pending JP2019182689A (en) 2018-04-04 2018-04-04 Manufacturing method for sintered body and sintered body

Country Status (1)

Country Link
JP (1) JP2019182689A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261935A (en) * 2020-03-04 2020-06-09 四川固蜀材料科技有限公司 Sodium ion conductor solid electrolyte material, preparation method and application
WO2020251040A1 (en) * 2019-06-12 2020-12-17 クラレノリタケデンタル株式会社 Fluorescent ceramic manufacturing method and fluorescent ceramic
WO2021020425A1 (en) * 2019-07-29 2021-02-04 国立大学法人東海国立大学機構 Sintered compact manufacturing method and sintered compact manufacturing device
CN113307624A (en) * 2021-05-13 2021-08-27 佛山华骏特瓷科技有限公司 Method for sintering ceramic at room temperature
JP2021175698A (en) * 2020-05-01 2021-11-04 クラレノリタケデンタル株式会社 Zirconia-calcinated body capable of producing fluorescent zirconia-sintered body
CN114478065A (en) * 2022-03-08 2022-05-13 郑州航空工业管理学院 Method for rapidly heat-treating reinforced and toughened compact ceramic material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020251040A1 (en) * 2019-06-12 2020-12-17 クラレノリタケデンタル株式会社 Fluorescent ceramic manufacturing method and fluorescent ceramic
WO2021020425A1 (en) * 2019-07-29 2021-02-04 国立大学法人東海国立大学機構 Sintered compact manufacturing method and sintered compact manufacturing device
CN111261935A (en) * 2020-03-04 2020-06-09 四川固蜀材料科技有限公司 Sodium ion conductor solid electrolyte material, preparation method and application
JP2021175698A (en) * 2020-05-01 2021-11-04 クラレノリタケデンタル株式会社 Zirconia-calcinated body capable of producing fluorescent zirconia-sintered body
CN113307624A (en) * 2021-05-13 2021-08-27 佛山华骏特瓷科技有限公司 Method for sintering ceramic at room temperature
CN114478065A (en) * 2022-03-08 2022-05-13 郑州航空工业管理学院 Method for rapidly heat-treating reinforced and toughened compact ceramic material

Similar Documents

Publication Publication Date Title
JP2019182689A (en) Manufacturing method for sintered body and sintered body
Liu et al. Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0. 5Na0. 5TiO3 based ceramics
Diao et al. Effect of SiO2 additive on dielectric response and energy storage performance of Ba0. 4Sr0. 6TiO3 ceramics
Morrison et al. Characterization of lanthanum‐doped barium titanate ceramics using impedance spectroscopy
US8940220B2 (en) Methods of flash sintering
Kok et al. Flash sintering of a three‐phase alumina, spinel, and yttria‐stabilized zirconia composite
CN109133915A (en) A kind of high energy storage barium phthalate base dielectric material and preparation method thereof
CN105753474A (en) Strontium-doped lanthanum chromite thermistor material
CN105967674A (en) Chromium-doped magnesium aluminate high temperature thermistor material and preparation method thereof
Wei et al. Improvement of the piezoelectric and ferroelectric properties of (K, Na) 0.5 NbO3 ceramics via two-step calcination–milling route
Şavklıyıldız et al. Flash sintering and dielectric properties of K0. 5Na0. 5NbO3
Biesuz et al. Porcelain stoneware consolidation by flash sintering
CN114262223A (en) In + Ta co-doped TiO2Mega dielectric ceramic, preparation method and application thereof
Yoshida et al. Doping effect on the flash sintering of Y2O3: promotion of densification and optical translucency
Liu et al. Screening sintering aids for 0.88 (Bi0. 4Na0. 2K0. 2Ba0. 2) TiO3–0.12 Sr (Mg1/3Nb2/3) O3 high‐entropy dielectric ceramics
CN114222724B (en) Method and apparatus for producing sintered body
CN106187189A (en) A kind of energy storage microwave dielectric ceramic materials and preparation method thereof
CN112279638B (en) Lead-free PTC thermistor ceramic with far infrared performance and preparation method thereof
Qi et al. Yttrium doping behavior in BaTiO3 ceramics at different sintered temperature
JP5844507B2 (en) Method for producing semiconductor porcelain composition and heater using semiconductor porcelain composition
Shimonosono et al. Effect of grain size on electrical properties of scandia-stabilized zirconia
Wang et al. Low temperature sintering properties of LiF-doped BaTiO 3-based dielectric ceramics for AC MLCCs
Nie et al. Enhanced performances of sandwich structure Pb0. 99 (Zr0. 95Ti0. 05) 0.98 Nb0. 02O3 ferroelectric ceramics for pulsed power application
Issa et al. Effect of cerium oxide (CeO2) additives on the dielectric properties of BaTiO3 ceramics
JP7365947B2 (en) Method for manufacturing garnet-type solid electrolyte sintered body for all-solid-state lithium-ion battery and method for manufacturing all-solid-state lithium-ion battery