JP4807072B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4807072B2
JP4807072B2 JP2005377233A JP2005377233A JP4807072B2 JP 4807072 B2 JP4807072 B2 JP 4807072B2 JP 2005377233 A JP2005377233 A JP 2005377233A JP 2005377233 A JP2005377233 A JP 2005377233A JP 4807072 B2 JP4807072 B2 JP 4807072B2
Authority
JP
Japan
Prior art keywords
nonaqueous electrolyte
mass
secondary battery
electrolyte secondary
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005377233A
Other languages
Japanese (ja)
Other versions
JP2007179883A (en
Inventor
勝志 西江
森  澄男
吉幸 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2005377233A priority Critical patent/JP4807072B2/en
Publication of JP2007179883A publication Critical patent/JP2007179883A/en
Application granted granted Critical
Publication of JP4807072B2 publication Critical patent/JP4807072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery.

近年、民生用の携帯電話、ポータブル機器や携帯情報端末などの急速な小型軽量化・多様化に伴い、その電源である電池に対して、小型で軽量かつ高エネルギー密度で、さらに長期間繰り返し充放電が実現できる二次電池の開発が強く要求されている。なかでも、水溶液系電解液を使用する鉛電池やニッケルカドミウム電池と比較して、これらの要求を満たす二次電池としてリチウムイオン二次電池などの非水電解質二次電池が最も有望であり、活発な研究がおこなわれている。   In recent years, with the rapid miniaturization and diversification of consumer mobile phones, portable devices and personal digital assistants, etc., the batteries used as the power source are compact, lightweight, high energy density, and repeatedly charged for a long time. There is a strong demand for the development of secondary batteries capable of discharging. Among them, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are the most promising and active as secondary batteries that meet these requirements compared to lead batteries and nickel cadmium batteries that use aqueous electrolytes. Research has been conducted.

非水電解質二次電池の正極活物質には、二硫化チタン、五酸化バナジウムおよび三酸化モリブデンをはじめとして、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物およびスピネル型マンガン酸化物等の一般式LiMO(ただし、Mは一種以上の遷移金属)で表される種々の化合物が検討されている。なかでも、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物およびスピネル型リチウムマンガン複合酸化物などは、4Vvs.Li/Li以上の極めて貴な電位での充放電が可能であるため、正極として用いることで高い放電電圧を有する電池を実現できる。 The positive electrode active material of the nonaqueous electrolyte secondary battery includes general formula Li such as titanium disulfide, vanadium pentoxide and molybdenum trioxide, lithium cobalt composite oxide, lithium nickel composite oxide and spinel type manganese oxide. x MO 2 (however, M is one or more transition metals) various compounds represented by have been studied. Especially, lithium cobalt complex oxide, lithium nickel complex oxide, spinel type lithium manganese complex oxide, etc. are 4Vvs. Since charging / discharging at an extremely noble potential of Li / Li + or higher is possible, a battery having a high discharge voltage can be realized by using it as a positive electrode.

非水電解質二次電池の負極活物質には、金属リチウム、リチウム合金、リチウムを吸蔵・放出が可能な炭素材料など種々検討されているが、なかでも炭素材料を使用すると、サイクル寿命の長い電池が得られ、かつ安全性が高いという利点がある。   Various studies have been made on negative electrode active materials for non-aqueous electrolyte secondary batteries, such as metallic lithium, lithium alloys, and carbon materials capable of occluding and releasing lithium. In particular, when carbon materials are used, batteries with a long cycle life are used. Is obtained, and there is an advantage that safety is high.

非水電解質二次電池の非水電解質には、一般にエチレンカーボネートやプロピレンカーボネートなどの高誘電率溶媒とジメチルカーボネートやジエチルカーボネートなどの低粘度溶媒との混合系溶媒にLiPFやLiBF等のLi塩を溶解させた電解液が使用されているが、これらの溶媒やリチウム塩は、目的の電池性能によって無数の組み合わせが可能である。 The nonaqueous electrolyte of the nonaqueous electrolyte secondary battery generally includes a mixed solvent of a high dielectric constant solvent such as ethylene carbonate and propylene carbonate and a low viscosity solvent such as dimethyl carbonate and diethyl carbonate, and LiPF 6 and LiBF 4. Although an electrolytic solution in which a salt is dissolved is used, these solvents and lithium salts can be combined innumerably depending on the target battery performance.

近年開発が進められているハイブリッド車などの移動体搭載用の電池では、良好な寿命性能だけでなく、寒冷地での使用を考慮した、優れた低温放電性能が求められ、さらには、寿命末期においても十分な低温放電性能を有することが求められている。   Batteries for mobile vehicles such as hybrid vehicles that have been developed in recent years require not only good life performance but also excellent low-temperature discharge performance considering use in cold regions. However, it is required to have sufficient low-temperature discharge performance.

この低温放電特性を向上させる方法には種々の方法があり、上述のようなリチウムイオン二次電池では、例えば、特許文献1に示されるように、低粘度でかつ凝固点の低いメチルアセテートなどのカルボン酸エステルを溶媒として用いる方法が検討されている。   There are various methods for improving the low-temperature discharge characteristics. In the lithium ion secondary battery as described above, for example, as shown in Patent Document 1, a low viscosity and a low freezing point such as methyl acetate is used. Methods using acid esters as solvents have been studied.

また、特許文献2および特許文献3に示されるように、一般的なLi塩であるLiPFに代わって、リチウムビス(オキサラト)ボレートをLi塩として用いることで、電解液の熱安定性の向上や、正極活物質に含まれる遷移金属の溶出を引き起こすフッ酸の発生の抑制によって寿命性能を改善する方法が検討されている。 Further, as shown in Patent Document 2 and Patent Document 3, lithium bis (oxalato) borate is used as a Li salt in place of LiPF 6 which is a general Li salt, thereby improving the thermal stability of the electrolytic solution. In addition, a method for improving the life performance by suppressing generation of hydrofluoric acid that causes elution of transition metals contained in the positive electrode active material has been studied.

また、特許文献4には、高分子ゲル電解質を用いた非水電解質電池において、高分子ゲル電解質に含まれる電解液には、リチウムビス(オキサイド)ボレートやLiPFなどから選ばれる少なくとも1種のリチウム塩を含む技術が開示されている。 Patent Document 4 discloses that in a nonaqueous electrolyte battery using a polymer gel electrolyte, the electrolyte contained in the polymer gel electrolyte includes at least one selected from lithium bis (oxide) borate, LiPF 6 and the like. Techniques involving lithium salts are disclosed.

さらに、特許文献5に示されるように、不飽和スルトン化合物を含有する非水電解液を用いることによって、電池の容量低下およびガス発生を抑制して、寿命特性を改善する方法が検討されている。
特許第2924329号公報 特表2002−519352号公報 特表2003−536229号公報 特開2005−050755号公報 特開2002−329528号公報
Furthermore, as shown in Patent Document 5, a method for improving life characteristics by suppressing a decrease in battery capacity and gas generation by using a non-aqueous electrolyte containing an unsaturated sultone compound has been studied. .
Japanese Patent No. 2924329 Special table 2002-519352 gazette Special table 2003-536229 gazette JP 2005-050755 A JP 2002-329528 A

しかしながら、特許文献1に記載のように、電解液の溶媒にメチルアセテートなどのカルボン酸エステルを用いた場合、カルボン酸エステルは鎖状炭酸エステルよりも還元されやすいために、寿命性能が悪くなるという問題があった。   However, as described in Patent Document 1, when a carboxylic acid ester such as methyl acetate is used as the solvent of the electrolytic solution, the carboxylic acid ester is more easily reduced than the chain carbonic acid ester, so that the life performance is deteriorated. There was a problem.

特許文献2や特許文献3に記載のように、電解質塩にリチウムビス(オキサラト)ボレートを用いる場合、非水電解質の伝導率がLiPFをLi塩として用いた非水電解質よりも低いために、低温放電性能が低下する問題があった。 As described in Patent Document 2 and Patent Document 3, when lithium bis (oxalato) borate is used as the electrolyte salt, the nonaqueous electrolyte has a lower conductivity than the nonaqueous electrolyte using LiPF 6 as the Li salt. There was a problem that the low-temperature discharge performance deteriorated.

特許文献4には、電解質塩としてリチウムビス(オキサイド)ボレートを用いた例は記載されていないため、最適濃度や他のリチウム塩と組み合わせた場合の電池特性は不明であった。   Patent Document 4 does not describe an example in which lithium bis (oxide) borate is used as an electrolyte salt. Therefore, the battery concentration when combined with an optimum concentration or another lithium salt has been unknown.

特許文献5では、非水電解液に不飽和スルトン化合物を含有させることにより、非水電解液二次電池の高温環境下での寿命特性の改善効果は認められたが、低温放電性能が低下するという問題があった。   In Patent Document 5, the effect of improving the life characteristics of the nonaqueous electrolyte secondary battery in a high temperature environment was recognized by including the unsaturated sultone compound in the nonaqueous electrolyte, but the low temperature discharge performance was lowered. There was a problem.

そこで、本発明は、サイクル寿命性能と、サイクル後の低温放電性能とが良好な非水電解質二次電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide a non-aqueous electrolyte secondary battery having good cycle life performance and low-temperature discharge performance after cycling.

本願発明者らは、上記課題を解決するために鋭意研究を重ねた結果、前記非水電解質中に、化学式1で示されるリチウムビス(オキサラト)ボレートを0.1〜1.0質量%と、化学式2で示される不飽和スルトン化合物を0.2〜1.5質量%とを含有させることによって、サイクル寿命性能と、サイクル後の低温放電性能とが良好な非水電解質二次電池を得ることができることを見出した。また、前記不飽和スルトン化合物として、化3で示される1,3−プロペンスルトンを用いることで、特に良好なサイクル寿命性能と、サイクル後の低温放電性能とが得られることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present application have included 0.1 to 1.0 mass% of lithium bis (oxalato) borate represented by Chemical Formula 1 in the non-aqueous electrolyte, By including 0.2 to 1.5 mass% of the unsaturated sultone compound represented by Chemical Formula 2, a non-aqueous electrolyte secondary battery having good cycle life performance and low-temperature discharge performance after cycling is obtained. I found out that I can. Further, it was found that by using 1,3-propene sultone represented by Chemical Formula 3 as the unsaturated sultone compound, particularly good cycle life performance and low-temperature discharge performance after cycling can be obtained.

請求項1の発明は、正極と、負極と、非水電解質とを備えた非水電解質二次電池において、前記非水電解質中に、化学式(1)で示されるリチウムビス(オキサラト)ボレート0.1〜1.0質量%と、化学式(2)で示される不飽和スルトン化合物とを含有することを特徴とする。   The invention of claim 1 is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte. In the non-aqueous electrolyte, lithium bis (oxalato) borate represented by the chemical formula (1) 0. It contains 1 to 1.0% by mass and an unsaturated sultone compound represented by the chemical formula (2).

Figure 0004807072
Figure 0004807072

Figure 0004807072
ただし、化学式(2)において、R1〜R4は、それぞれ独立して、水素、フッ素、または炭素数1〜4のフッ素を含んでもよい炭化水素基であり、nは1〜3の整数である。
Figure 0004807072
However, in Chemical formula (2), R1-R4 is respectively independently the hydrocarbon group which may contain hydrogen, a fluorine, or C1-C4 fluorine, and n is an integer of 1-3.

請求項2の発明は、上記非水電解質二次電池において、不飽和スルトン化合物として化学式(3)で示される1,3−プロペンスルトンを用いることを特徴とする。   The invention of claim 2 is characterized in that, in the non-aqueous electrolyte secondary battery, 1,3-propene sultone represented by the chemical formula (3) is used as the unsaturated sultone compound.

Figure 0004807072
請求項3の発明は、正極と、負極と、非水電解質とを備えた非水電解質二次電池の製造方法において、前記非水電解質中に、化学式(1)で示されるリチウムビス(オキサラト)ボレート0.1〜1.0質量%と、化学式(2)で示される不飽和スルトン化合物0.2〜1.5質量%とを含有することを特徴とする。
Figure 0004807072
According to a third aspect of the present invention, there is provided a non-aqueous electrolyte secondary battery manufacturing method including a positive electrode, a negative electrode, and a non-aqueous electrolyte. In the non-aqueous electrolyte, lithium bis (oxalato) represented by the chemical formula (1) is provided. It contains 0.1 to 1.0% by mass of borate and 0.2 to 1.5% by mass of an unsaturated sultone compound represented by the chemical formula (2).

Figure 0004807072
Figure 0004807072

Figure 0004807072
ただし、式(2)において、R1〜R4は、それぞれ独立して、水素、フッ素、または炭素数1〜4のフッ素を含んでもよい炭化水素基であり、nは1〜3の整数である。
Figure 0004807072
However, in Formula (2), R1-R4 is respectively independently the hydrocarbon group which may contain hydrogen, a fluorine, or C1-C4 fluorine, and n is an integer of 1-3.

請求項1の発明によれば、リチウムイオンを吸蔵・放出する物質を含む正極と、負極と、非水電解質とで構成する非水電解質二次電池において、前記非水電解質中に、化学式(1)で示されるリチウムビス(オキサラト)ボレートを0.1〜1.0質量%と、化学式(2)で示される不飽和スルトン化合物とを同時に含有することによって、充放電サイクルにともなう放電容量の低下が抑制され、かつ充放電サイクル後においても良好な低温放電性能を得ることができる。   According to the first aspect of the present invention, in the nonaqueous electrolyte secondary battery including a positive electrode containing a substance that absorbs and releases lithium ions, a negative electrode, and a nonaqueous electrolyte, the nonaqueous electrolyte includes a chemical formula (1 ) Lithium bis (oxalato) borate represented by 0.1) to 1.0% by mass and an unsaturated sultone compound represented by chemical formula (2) at the same time, thereby reducing the discharge capacity accompanying the charge / discharge cycle Can be suppressed, and good low-temperature discharge performance can be obtained even after the charge / discharge cycle.

この理由は明確には解明されていないが、一般に、電池を充放電サイクルさせた場合、貴な電位を有する正極および卑な電位を有する負極上で非水電解質の酸化および還元反応が進行し、ガス発生、活物質の集電性の低下、電極上への高抵抗の被膜形成および正負極の容量バランスのずれなどがおこることによって、電池の放電容量の低下、つまりサイクル寿命性能の低下や、低温放電性能の低下が生じると考えられている。   The reason for this is not clearly understood, but generally, when a battery is charged and discharged, oxidation and reduction reactions of the nonaqueous electrolyte proceed on the positive electrode having a noble potential and the negative electrode having a base potential, As a result of gas generation, reduction of current collecting performance of the active material, formation of a high-resistance film on the electrode and capacity balance between the positive and negative electrodes, the battery discharge capacity decreases, that is, the cycle life performance decreases, It is believed that the low temperature discharge performance is degraded.

リチウムビス(オキサラト)ボレートと不飽和スルトン化合物とを合わせて用いることで、それぞれを単独で用いた場合よりも特異的に良好な特性が得られるのは、リチウムビス(オキサラト)ボレートと不飽和スルトン化合物とからなる混成皮膜が負極上に形成し、上記の劣化メカニズムの起点のひとつである非水電解質の還元分解を抑制する相乗効果を発揮したためであると推察される。   When lithium bis (oxalato) borate and an unsaturated sultone compound are used in combination, the lithium bis (oxalato) borate and the unsaturated sultone can be obtained with better characteristics than when they are used alone. This is presumably because a hybrid film composed of the compound formed on the negative electrode and exhibited a synergistic effect of suppressing the reductive decomposition of the non-aqueous electrolyte, which is one of the starting points of the deterioration mechanism.

リチウムビス(オキサラト)ボレートと不飽和スルトン化合物とを同時に含有する場合、非水電解質の総質量に対するリチウムビス(オキサラト)ボレートの含有量が0.1質量%より少ない量では、負極活物質表面上に低抵抗で安定な皮膜を形成することができず、1.0質量%を超える量では、リチウムビス(オキサラト)ボレートの分解によって発生するガスが多くなり、電池膨れが著しくなる。   When the lithium bis (oxalato) borate and the unsaturated sultone compound are contained at the same time, if the lithium bis (oxalato) borate content is less than 0.1% by mass relative to the total mass of the nonaqueous electrolyte, However, if the amount exceeds 1.0% by mass, the amount of gas generated by the decomposition of lithium bis (oxalato) borate increases and the battery swells significantly.

また、上記不飽和スルトン化合物として、化学式(3)で示される1,3−プロペンスルトンを用いることで、特に優れたサイクル寿命性能と低温放電性能とを得ることができる。この理由は明確には解明できていないが、1,3−プロペンスルトンを用いた場合、他の不飽和スルトン化合物を用いた場合よりも比較的低抵抗な皮膜を負極表面上に形成するためであると推察される。   Further, by using 1,3-propene sultone represented by chemical formula (3) as the unsaturated sultone compound, particularly excellent cycle life performance and low temperature discharge performance can be obtained. The reason for this is not clearly understood, but when 1,3-propene sultone is used, a relatively low resistance film is formed on the negative electrode surface as compared with the case of using other unsaturated sultone compounds. It is assumed that there is.

請求項3の発明によれば、非水電解質二次電池の製造方法において、非水電解質中に、化学式(1)で示されるリチウムビス(オキサラト)ボレートを0.1〜1.0質量%と、化学式(2)で示される不飽和スルトン化合物を0.2〜1.5質量%とを同時に含有させることにより、充放電サイクルにともなう放電容量の低下が抑制され、かつ充放電サイクル後においても良好な低温放電性能を得ることができる。   According to invention of Claim 3, in the manufacturing method of a nonaqueous electrolyte secondary battery, 0.1 to 1.0 mass% of lithium bis (oxalato) borate represented by the chemical formula (1) is included in the nonaqueous electrolyte. By simultaneously containing 0.2 to 1.5% by mass of the unsaturated sultone compound represented by the chemical formula (2), the decrease in the discharge capacity accompanying the charge / discharge cycle is suppressed, and even after the charge / discharge cycle. Good low temperature discharge performance can be obtained.

なお、非水電解質二次電池の製造時の非水電解質中に、不飽和スルトン化合物の含有量が0.2質量%より少ない場合は、十分な寿命性能を得ることができず、1.5質量%を超える場合は、不飽和スルトン化合物に起因する高抵抗な皮膜が形成されるため、十分な低温放電性能を得ることができない。   When the content of the unsaturated sultone compound is less than 0.2% by mass in the non-aqueous electrolyte at the time of manufacturing the non-aqueous electrolyte secondary battery, sufficient life performance cannot be obtained, and 1.5 When the content exceeds mass%, a high-resistance film resulting from the unsaturated sultone compound is formed, so that sufficient low-temperature discharge performance cannot be obtained.

本発明は、正極と、負極と、非水電解質とを備えた非水電解質二次電池において、前記非水電解質中に、リチウムビス(オキサラト)ボレート0.1〜1.0質量%と、不飽和スルトン化合物とを含有することを特徴とする。   The present invention provides a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte contains 0.1 to 1.0% by mass of lithium bis (oxalato) borate, And a saturated sultone compound.

ここで、リチウムビス(オキサラト)ボレートとは、化学式(1)で示される構造を有するものであり、また、不飽和スルトン化合物とは、化学式(2)で示される構造を有するものである。   Here, lithium bis (oxalato) borate has a structure represented by chemical formula (1), and an unsaturated sultone compound has a structure represented by chemical formula (2).

Figure 0004807072
Figure 0004807072

Figure 0004807072
ただし、化学式(2)において、R1〜R4は、それぞれ独立して、水素、フッ素、または炭素数1〜4のフッ素を含んでもよい炭化水素基であり、nは1〜3の整数である。また、化学式(2)において、n=2または3の場合、各炭素に結合するR1およびR2は、それぞれ独立して、水素、フッ素、または炭素数1〜4のフッ素を含んでもよい炭化水素基である。
Figure 0004807072
However, in Chemical formula (2), R1-R4 is respectively independently the hydrocarbon group which may contain hydrogen, a fluorine, or C1-C4 fluorine, and n is an integer of 1-3. In the chemical formula (2), when n = 2 or 3, R1 and R2 bonded to each carbon are each independently a hydrocarbon group that may contain hydrogen, fluorine, or fluorine having 1 to 4 carbon atoms. It is.

ここで化学式(2)で示される不飽和スルトン化合物の具体例としては、1,3−プロペンスルトン、1−メチル−1,3−プロペンスルトン、1−フルオロ−1,3−プロペンスルトン、2−メチル−1,3−プロペンスルトン、2−フルオロ−1,3−プロペンスルトン、3−メチル−1,3−プロペンスルトン、3−フルオロ−1,3−プロペンスルトン、1−エチル−1,3−プロペンスルトン、2−エチル−1,3−プロペンスルトン、3−エチル−1,3−プロペンスルトン、2,3−ジメチル−1,3−プロペンスルトン、1,4−ブテンスルトンなどが挙げられる。   Specific examples of the unsaturated sultone compound represented by the chemical formula (2) include 1,3-propene sultone, 1-methyl-1,3-propene sultone, 1-fluoro-1,3-propene sultone, 2- Methyl-1,3-propene sultone, 2-fluoro-1,3-propene sultone, 3-methyl-1,3-propene sultone, 3-fluoro-1,3-propene sultone, 1-ethyl-1,3- Examples include propene sultone, 2-ethyl-1,3-propene sultone, 3-ethyl-1,3-propene sultone, 2,3-dimethyl-1,3-propene sultone, 1,4-butene sultone, and the like.

これらは単独でまたは混合して使用することができるが、負極表面上に形成する皮膜の抵抗上昇を抑制する点から、化学式(3)で示される1,3−プロペンスルトンを用いることが好ましい。また、R1〜R4が炭素数5以上の炭化水素基のものや、nが4以上の不飽和スルトン化合物は非水電解質の粘度上昇による注液性の低下を招くため、好ましくない。   These can be used alone or in combination, but it is preferable to use 1,3-propene sultone represented by the chemical formula (3) from the viewpoint of suppressing an increase in resistance of the film formed on the negative electrode surface. In addition, R1 to R4 having a hydrocarbon group having 5 or more carbon atoms or unsaturated sultone compounds having n of 4 or more are not preferable because the liquid injection property is lowered due to an increase in viscosity of the nonaqueous electrolyte.

Figure 0004807072
さらに本発明は、正極と、負極と、非水電解質とを備えた非水電解質二次電池の製造方法において、前記非水電解質中に、化学式(1)で示されるリチウムビス(オキサラト)ボレート0.1〜1.0質量%と、化学式(2)で示される不飽和スルトン化合物0.2〜1.5質量%とを含有することを特徴とする。
Figure 0004807072
Furthermore, the present invention provides a method for producing a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte contains lithium bis (oxalato) borate 0 represented by the chemical formula (1). 0.1 to 1.0% by mass and 0.2 to 1.5% by mass of the unsaturated sultone compound represented by the chemical formula (2).

Figure 0004807072
Figure 0004807072

Figure 0004807072
ただし、化学式(2)において、R1〜R4は、それぞれ独立して、水素、フッ素、または炭素数1〜4のフッ素を含んでもよい炭化水素基であり、nは1〜3の整数である。また、化学式(2)において、n=2または3の場合、各炭素に結合するR1およびR2は、それぞれ独立して、水素、フッ素、または炭素数1〜4のフッ素を含んでもよい炭化水素基である。
Figure 0004807072
However, in Chemical formula (2), R1-R4 is respectively independently the hydrocarbon group which may contain hydrogen, a fluorine, or C1-C4 fluorine, and n is an integer of 1-3. In the chemical formula (2), when n = 2 or 3, R1 and R2 bonded to each carbon are each independently a hydrocarbon group that may contain hydrogen, fluorine, or fluorine having 1 to 4 carbon atoms. It is.

非水電解質としては、電解液または固体電解質のいずれも使用することができる。電解液を用いる場合には、電解液溶媒として、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネートなどの環状炭酸エステルを含んでいてもよく、その他溶媒としてγ−ブチロラクトン、γ−バレロラクトン、スルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソランやハロゲン化ジオキソラン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルイソプロピルカーボネート、エチルイソプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、アセトニトリル、ハロゲン化アセトニトリルや、エトキシペンタフルオロシクロトリホスファゼンなどのアルコキシおよびハロゲン置換環状ホスファゼン類および鎖状ホスファゼン類、また、リン酸トリエチルやリン酸トリメチルなどのリン酸エステル類、N−メチルオキサゾリジノン、N−エチルオキサゾリジノン等の非水溶媒を含んでいてもよく、単独で、またはこれらを混合して使用することができる。   As the non-aqueous electrolyte, either an electrolytic solution or a solid electrolyte can be used. When using an electrolytic solution, the electrolytic solvent may contain cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate, and other solvents include γ-butyrolactone, γ-valerolactone, Sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyl-1,3-dioxolane, halogenated dioxolane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methylpropyl Carbonate, ethylpropyl carbonate, dipropyl carbonate, methyl isopropyl carbonate, ethyl isopropyl carbonate, diisopropyl carbonate, dibutyl car Bonates, acetonitrile, halogenated acetonitrile, alkoxy and halogen-substituted cyclic phosphazenes such as ethoxypentafluorocyclotriphosphazene and chain phosphazenes, phosphate esters such as triethyl phosphate and trimethyl phosphate, N-methyloxazolidinone , N-ethyloxazolidinone and other non-aqueous solvents may be contained, and these may be used alone or in combination.

好ましくは、環状炭酸エステルとしてエチレンカーボネートとプロピレンカーボネートを単独または混合したものを用い、鎖状炭酸エステルとしてジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートを単独または混合したものを用いることが好ましい。また、非水電解液の溶媒中の環状炭酸エステルは体積比で10〜60%が好ましく、20〜50%であることがより好ましい。鎖状炭酸エステルの含有量は40〜90%が好ましく、50〜80%であることがより好ましい。   It is preferable to use one or a mixture of ethylene carbonate and propylene carbonate as the cyclic carbonate and a mixture of dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate as the chain carbonate. Further, the cyclic carbonate in the solvent of the nonaqueous electrolytic solution is preferably 10 to 60% by volume, and more preferably 20 to 50%. The chain carbonate content is preferably 40 to 90%, more preferably 50 to 80%.

また、環状炭酸エステルと鎖状炭酸エステルの他に、メチルアセテート、エチルアセテート、エチルモノフルオロアセテート、プロピルアセテート、ブチルアセテート、メチルプロピオネート、エチルプロピオネート、プロピルプロピオネート、メチルブチレート、エチルブチレート、プロピルブチレートなどに代表される鎖状カルボン酸エステルを含んでいてもよく、その非水電解液の溶媒に対する割合は0%〜80%まで適宜決定すればよい。   In addition to cyclic carbonate and chain carbonate, methyl acetate, ethyl acetate, ethyl monofluoroacetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, A chain carboxylic acid ester represented by ethyl butyrate, propyl butyrate and the like may be contained, and the ratio of the nonaqueous electrolytic solution to the solvent may be appropriately determined from 0% to 80%.

非水電解質は、これらの非水溶媒に支持塩を溶解して使用する。一般に、リチウムビス(オキサラト)ボレートは支持塩として知られているが、本発明におけるリチウムビス(オキサラト)ボレートは負極表面上への皮膜形成剤として使用されるため、支持塩とはならない。支持塩としては、LiClO、LiPF、LiBF、LiAsF、LiCFCO、LiCFSO、LiCFCFSO、LiCFCFCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCF、LiN(COCFCF、LiBF、LiPF(CおよびLiPF(CFCFなどの塩もしくはこれらの混合物を使用することができ、より好ましくはLiPFを用いるか、あるいはLiPFを主体とし、前記電解質を少量混合して用いることが好ましい。 The nonaqueous electrolyte is used by dissolving the supporting salt in these nonaqueous solvents. In general, lithium bis (oxalato) borate is known as a supporting salt, but lithium bis (oxalato) borate in the present invention is not used as a supporting salt because it is used as a film forming agent on the surface of the negative electrode. Examples of the supporting salt include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiCF 3 CF 2 CF 2 SO 3 , LiN (SO 2 CF 3 ). 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 , LiN (COCF 2 CF 3 ) 2 , LiBF 2 C 2 O 4 , LiPF 2 (C 2 O 4 ) 2 and LiPF 3 (CF 2 CF 3 ) 3 or a mixture thereof can be used, and LiPF 6 is more preferably used, or LiPF 6 is mainly used, and the electrolyte is preferably mixed in a small amount.

また、電池特性向上のために、リチウムビス(オキサラト)ボレートと不飽和スルトン化合物に加えて少量の添加剤を非水電解質中に混合してもよく、ビニレンカーボネートやビニルエチレンカーボネートなどの不飽和結合含有カーボネート、ビフェニル、シクロヘキシルベンゼン、tert−ブチルベンゼン、フルオロビフェニル、フルオロベンゼン、アニソール類などの芳香族化合物やフルオロオクタンなどのハロゲン置換アルカンなどを目的に応じて適宜添加してもよく、溶媒のエステル交換反応の抑制を目的とした場合は、ビニレンカーボネートなどの不飽和結合含有カーボネートを混合して用いてもよい。   In addition to lithium bis (oxalato) borate and unsaturated sultone compounds, a small amount of additives may be mixed in the non-aqueous electrolyte to improve battery characteristics, and unsaturated bonds such as vinylene carbonate and vinyl ethylene carbonate. Aromatic compounds such as carbonate, biphenyl, cyclohexylbenzene, tert-butylbenzene, fluorobiphenyl, fluorobenzene, anisole, and halogen-substituted alkanes such as fluorooctane may be added as appropriate according to the purpose, and ester of the solvent For the purpose of suppressing the exchange reaction, an unsaturated bond-containing carbonate such as vinylene carbonate may be mixed and used.

固体電解質を用いる場合は、高分子固体電解質として有孔性高分子固体電解質膜を用い、高分子固体電解質にさらに環状炭酸エステルと鎖状炭酸酸エステルとを含む非水電解液を含有させることで良い。   When using a solid electrolyte, a porous polymer solid electrolyte membrane is used as the polymer solid electrolyte, and the polymer solid electrolyte is further added with a non-aqueous electrolyte containing a cyclic carbonate and a chain carbonate. good.

本発明を適用する非水電解質二次電池の正極活物質としては、特に制限はなく、種々の材料を適宜使用できる。例えば、二酸化マンガン、五酸化バナジウムのような遷移金属化合物や、硫化鉄、硫化チタンのような遷移金属カルコゲン化合物、さらにはこれらの遷移金属とリチウムの複合酸化物LiMO2−δ(ただし、Mは、Co、NiまたはMnを表し、0.4≦x≦1.2、0≦δ≦0.5である複合酸化物)、またはこれらの複合酸化物にAl、Mn、Fe、Ni、Co、Cr、Ti、Znから選ばれる少なくとも一種の元素、または、P、Bなどの非金属元素を含有した化合物を使用することができる。さらに、リチウムとニッケルの複合酸化物、すなわちLiNiM1M22−δで表される正極活物質(ただし、M1、M2はAl、Mn、Fe、Ni、Co、Cr、Ti、Znから選ばれる少なくとも一種の元素、または、P、Bなどの非金属元素でもよい。さらに0.4≦x≦1.2、0.8≦p+q+r≦1.2、0≦δ≦0.5である)などを用いることができる。また、有機化合物としては、例えばポリアニリン等の導電性ポリマー等が挙げられる。さらに、無機化合物、有機化合物を問わず、上記各種活物質を混合して用いてもよい。 There is no restriction | limiting in particular as a positive electrode active material of the nonaqueous electrolyte secondary battery to which this invention is applied, A various material can be used suitably. For example, transition metal compounds such as manganese dioxide and vanadium pentoxide, transition metal chalcogen compounds such as iron sulfide and titanium sulfide, and composite oxides of these transition metals and lithium Li x MO 2-δ (however, M represents Co, Ni, or Mn, and is a composite oxide in which 0.4 ≦ x ≦ 1.2 and 0 ≦ δ ≦ 0.5), or these composite oxides may include Al, Mn, Fe, Ni, A compound containing at least one element selected from Co, Cr, Ti, and Zn, or a nonmetallic element such as P and B can be used. Furthermore, a composite oxide of lithium and nickel, that is, a positive electrode active material represented by Li x Ni p M1 q M2 rO 2-δ (where M1 and M2 are Al, Mn, Fe, Ni, Co, Cr, Ti , Zn, or a nonmetallic element such as P or B. Further, 0.4 ≦ x ≦ 1.2, 0.8 ≦ p + q + r ≦ 1.2, 0 ≦ δ ≦ 0. 5). Examples of the organic compound include conductive polymers such as polyaniline. Furthermore, the above various active materials may be mixed and used regardless of whether they are inorganic compounds or organic compounds.

さらに、負極材料たる化合物としては、グラファイト、難黒鉛化性炭素(ハードカーボン)、易黒鉛化性炭素(ソフトカーボン)等の炭素質材料が好適であり、これらの炭素材料と共にAl、Si、Snなどの合金系化合物や金属Liを含んでいてもよいが、安全性や寿命性能の面から難黒鉛化性炭素や易黒鉛化性炭素を主体とすることが特に好ましい。   Further, as the negative electrode material, carbonaceous materials such as graphite, non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon) and the like are suitable, and together with these carbon materials, Al, Si, Sn Although it may contain an alloy-based compound such as the above and metal Li, it is particularly preferable to mainly contain non-graphitizable carbon or graphitizable carbon from the viewpoint of safety and life performance.

また、本発明に係る非水電解質電池の隔離体としては、織布、不織布、合成樹脂微多孔膜等を用いることができ、特に、合成樹脂微多孔膜を好適に用いることができる。なかでもポリエチレン及びポリプロピレン製微多孔膜や、アラミドなどを加工した耐熱性樹脂またはこれらを複合した微多孔膜等のポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗等の面で好適に用いられる。   Moreover, as a separator of the nonaqueous electrolyte battery according to the present invention, a woven fabric, a non-woven fabric, a synthetic resin microporous membrane, or the like can be used, and a synthetic resin microporous membrane can be particularly preferably used. Among them, polyolefin microporous membranes such as polyethylene and polypropylene microporous membranes, heat-resistant resins processed from aramid, etc., or microporous membranes that combine these are suitable in terms of thickness, membrane strength, membrane resistance, etc. Used.

さらに、高分子固体電解質等の固体電解質を用いることで、セパレータを兼ねさせることもできる。さらに、合成樹脂微多孔膜と高分子固体電解質等を組み合わせて使用してもよい。この場合、高分子固体電解質として有孔性高分子固体電解質膜を用い、高分子固体電解質にさらに電解液を含有させる。   Furthermore, a separator can also be used by using a solid electrolyte such as a polymer solid electrolyte. Further, a synthetic resin microporous membrane and a polymer solid electrolyte may be used in combination. In this case, a porous polymer solid electrolyte membrane is used as the polymer solid electrolyte, and the polymer solid electrolyte further contains an electrolytic solution.

また、電池の形状は特に限定されるものではなく、角形、長円筒形、コイン形、ボタン形、シート形、円筒型電池等の様々な形状の非水電解質二次電池に適用可能である。   The shape of the battery is not particularly limited, and can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a rectangular shape, a long cylindrical shape, a coin shape, a button shape, a sheet shape, and a cylindrical battery.

以下、本発明を適用した具体的な実施例について説明するが、本発明は本実施例により何ら限定されるものではなく、その主旨を変更しない範囲において適宜変更して実施することが可能である。   Hereinafter, specific embodiments to which the present invention is applied will be described. However, the present invention is not limited to the embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention. .

[実施例1〜15および比較例1〜11]
[実施例1]
図1は、本実施例の角形非水電解質二次電池の概略断面図である。この角形非水電解質二次電池1は、アルミニウム集電体に正極合材を塗布してなる正極3と、銅集電体に負極合材を塗布してなる負極4とがセパレータ5を介して巻回された扁平巻状電極群2と、非水電解液とを電池ケース6に収納してなる、幅30mm×高さ50mm×厚さ5mmのものである。
[Examples 1 to 15 and Comparative Examples 1 to 11]
[Example 1]
FIG. 1 is a schematic cross-sectional view of a prismatic nonaqueous electrolyte secondary battery of the present example. In this rectangular nonaqueous electrolyte secondary battery 1, a positive electrode 3 formed by applying a positive electrode mixture to an aluminum current collector and a negative electrode 4 formed by applying a negative electrode mixture to a copper current collector are interposed via a separator 5. A wound flat flat electrode group 2 and a non-aqueous electrolyte are housed in a battery case 6 and have a width of 30 mm × height of 50 mm × thickness of 5 mm.

電池ケース6には、安全弁8を設けた電池蓋7がレーザー溶接によって取り付けられ、正極3は正極リード10を介して電池蓋7と接続され、負極4は負極リード11を介して負極端子9と接続されている。   A battery lid 7 provided with a safety valve 8 is attached to the battery case 6 by laser welding, the positive electrode 3 is connected to the battery lid 7 via the positive electrode lead 10, and the negative electrode 4 is connected to the negative electrode terminal 9 via the negative electrode lead 11. It is connected.

正極板は、結着剤であるポリフッ化ビニリデン8質量%と導電剤であるアセチレンブラック6質量%とスピネル型リチウムマンガン複合酸化物(LiMn)である正極活物質86質量%とを混合してなる正極合材に、N−メチルピロリドンを加えてペースト状に調製した後、これを厚さ20μmのアルミニウム箔集電体両面に塗布、乾燥することによって作製した。 The positive electrode plate is a mixture of 8% by mass of polyvinylidene fluoride as a binder, 6% by mass of acetylene black as a conductive agent, and 86% by mass of a positive electrode active material as spinel type lithium manganese composite oxide (LiMn 2 O 4 ). N-methylpyrrolidone was added to the positive electrode mixture thus prepared to prepare a paste, which was then applied to both surfaces of a 20 μm thick aluminum foil current collector and dried.

負極板は、難黒鉛化性炭素90質量%とポリフッ化ビニリデン10質量%をN−メチルピロリドンに加えてペースト状に調製した後、これを厚さ10μmの銅箔集電体両面に塗布、乾燥することによって製作した。   The negative electrode plate was prepared by adding 90% by mass of non-graphitizable carbon and 10% by mass of polyvinylidene fluoride to N-methylpyrrolidone to prepare a paste, which was then applied to both sides of a 10 μm thick copper foil current collector and dried. Made by doing.

セパレータには、ポリエチレン微多孔膜を用いた。非水電解質としては、エチレンカーボネート(EC):ジメチルカーボネート(DMC):エチルメチルカーボネート(EMC)=25:35:40(体積比)の混合溶媒にLiPFを1mol/L溶解した溶液を用いた。 A polyethylene microporous membrane was used for the separator. As the non-aqueous electrolyte, a solution in which 1 mol / L of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC): dimethyl carbonate (DMC): ethyl methyl carbonate (EMC) = 25: 35: 40 (volume ratio) was used. .

さらに、非水電解質中に、化学式(1)で示されるリチウムビス(オキサラト)ボレート(以下では「LiBOB」と略す)を0.10質量%と、化学式(3)で示される1,3−プロペンスルトン(以下では「PS」と略す)を0.20質量%とを含有させた非水電解質を用いた。以上の構成・手順で実施例1の非水電解質二次電池を作製した。   Further, 0.10% by mass of lithium bis (oxalato) borate (hereinafter abbreviated as “LiBOB”) represented by the chemical formula (1) in the non-aqueous electrolyte and 1,3-propene represented by the chemical formula (3) A nonaqueous electrolyte containing 0.20% by mass of sultone (hereinafter abbreviated as “PS”) was used. The nonaqueous electrolyte secondary battery of Example 1 was produced by the above configuration / procedure.

Figure 0004807072
Figure 0004807072

Figure 0004807072
なお、ここで「非水電解質中にLiBOBを0.10質量%含有させる」とは、ECとDMCとEMCとLiPFとLiBOBとPSの合計質量に対するLiBOBの質量の割合が0.10%であることを意味し、「非水電解質中に1,3−プロペンスルトンを0.20質量%含有させる」とは、ECとDMCとEMCとLiPFとLiBOBとPSの合計質量に対するPSの質量の割合が0.20%であることを意味する。
Figure 0004807072
In addition, “containing 0.10% by mass of LiBOB in the nonaqueous electrolyte” here means that the ratio of the mass of LiBOB to the total mass of EC, DMC, EMC, LiPF 6 , LiBOB, and PS is 0.10%. It means that “containing 0.20% by mass of 1,3-propene sultone in the non-aqueous electrolyte” means that the mass of PS relative to the total mass of EC, DMC, EMC, LiPF 6 , LiBOB and PS. It means that the ratio is 0.20%.

[実施例2]
非水電解質中にLiBOBを0.50質量%、PSを0.20質量%含有させたこと以外は実施例1と同様にして、実施例2の非水電解質二次電池を作製した。
[Example 2]
A nonaqueous electrolyte secondary battery of Example 2 was produced in the same manner as Example 1 except that 0.50% by mass of LiBOB and 0.20% by mass of PS were contained in the nonaqueous electrolyte.

[実施例3]
非水電解質中にLiBOBを1.00質量%、PSを0.20質量%含有させたこと以外は実施例1と同様にして、実施例3の非水電解質二次電池を作製した。
[Example 3]
A nonaqueous electrolyte secondary battery of Example 3 was produced in the same manner as in Example 1 except that LiBOB was contained in 1.00% by mass and PS was contained in 0.20% by mass in the nonaqueous electrolyte.

[実施例4]
非水電解質中にLiBOBを0.10質量%、PSを1.00質量%含有させたこと以外は実施例1と同様にして、実施例4の非水電解質二次電池を作製した。
[Example 4]
A nonaqueous electrolyte secondary battery of Example 4 was produced in the same manner as Example 1, except that LiBOB was contained in 0.10% by mass and PS in 1.00% by mass in the nonaqueous electrolyte.

[実施例5]
非水電解質中にLiBOBを0.50質量%、PSを1.00質量%含有させたこと以外は実施例1と同様にして、実施例5の非水電解質二次電池を作製した。
[Example 5]
A nonaqueous electrolyte secondary battery of Example 5 was produced in the same manner as Example 1 except that 0.50% by mass of LiBOB and 1.00% by mass of PS were contained in the nonaqueous electrolyte.

[実施例6]
非水電解質中にLiBOBを1.00質量%、PSを1.00質量%含有させたこと以外は実施例1と同様にして、実施例6の非水電解質二次電池を作製した。
[Example 6]
A nonaqueous electrolyte secondary battery of Example 6 was produced in the same manner as in Example 1 except that LiBOB was included in 1.00 mass% and PS in 1.00 mass% in the nonaqueous electrolyte.

[実施例7]
非水電解質中にLiBOBを0.10質量%、PSを1.50質量%含有させたこと以外は実施例1と同様にして、実施例7の非水電解質二次電池を作製した。
[Example 7]
A nonaqueous electrolyte secondary battery of Example 7 was produced in the same manner as Example 1 except that 0.10% by mass of LiBOB and 1.50% by mass of PS were contained in the nonaqueous electrolyte.

[実施例8]
非水電解質中にLiBOBを0.50質量%、PSを1.50質量%含有させたこと以外は実施例1と同様にして、実施例8の非水電解質二次電池を作製した。
[Example 8]
A nonaqueous electrolyte secondary battery of Example 8 was produced in the same manner as Example 1 except that 0.50% by mass of LiBOB and 1.50% by mass of PS were contained in the nonaqueous electrolyte.

[実施例9]
非水電解質中にLiBOBを1.00質量%、PSを1.50質量%含有させたこと以外は実施例1と同様にして、実施例9の非水電解質二次電池を作製した。
[Example 9]
A nonaqueous electrolyte secondary battery of Example 9 was produced in the same manner as in Example 1 except that LiBOB was contained in 1.00% by mass and PS was contained in 1.50% by mass in the nonaqueous electrolyte.

[実施例10]
非水電解質中にLiBOBを0.10質量%、PSを0.10質量%含有させたこと以外は実施例1と同様にして、比較例10の非水電解質二次電池を作製した。
[Example 10]
A nonaqueous electrolyte secondary battery of Comparative Example 10 was produced in the same manner as Example 1 except that 0.10 mass% LiBOB and 0.10 mass% PS were contained in the nonaqueous electrolyte.

[実施例11]
非水電解質中にLiBOBを0.50質量%、PSを0.10質量%含有させたこと以外は実施例1と同様にして、比較例11の非水電解質二次電池を作製した。
[Example 11]
A nonaqueous electrolyte secondary battery of Comparative Example 11 was produced in the same manner as in Example 1, except that 0.50% by mass of LiBOB and 0.10% by mass of PS were contained in the nonaqueous electrolyte.

[実施例12]
非水電解質中にLiBOBを1.00質量%、PSを0.10質量%含有させたこと以外は実施例1と同様にして、比較例12の非水電解質二次電池を作製した。
[Example 12]
A nonaqueous electrolyte secondary battery of Comparative Example 12 was produced in the same manner as in Example 1 except that LiBOB was contained in 1.00 mass% and PS was contained in 0.10 mass% in the nonaqueous electrolyte.

[実施例13]
非水電解質中にLiBOBを0.10質量%、PSを2.00質量%含有させたこと以外は実施例1と同様にして、比較例13の非水電解質二次電池を作製した。
[Example 13]
A nonaqueous electrolyte secondary battery of Comparative Example 13 was produced in the same manner as Example 1 except that 0.10 mass% LiBOB and 2.00 mass% PS were contained in the nonaqueous electrolyte.

[実施例14]
非水電解質中にLiBOBを0.50質量%、PSを2.00質量%含有させたこと以外は実施例1と同様にして、比較例14の非水電解質二次電池を作製した。
[Example 14]
A nonaqueous electrolyte secondary battery of Comparative Example 14 was produced in the same manner as in Example 1 except that 0.50% by mass of LiBOB and 2.00% by mass of PS were contained in the nonaqueous electrolyte.

[実施例15]
非水電解質中にLiBOBを1.00質量%、PSを2.00質量%含有させたこと以外は実施例1と同様にして、比較例15の非水電解質二次電池を作製した。
[Example 15]
A nonaqueous electrolyte secondary battery of Comparative Example 15 was produced in the same manner as in Example 1 except that LiBOB was contained in 1.00 mass% and PS was contained in 2.00 mass% in the nonaqueous electrolyte.

[比較例1]
LiBOBとPSとを含まない非水電解質を用いたこと以外は実施例1と同様にして、比較例1の非水電解質二次電池を作製した。
[Comparative Example 1]
A nonaqueous electrolyte secondary battery of Comparative Example 1 was produced in the same manner as in Example 1, except that a nonaqueous electrolyte containing no LiBOB and PS was used.

[比較例2]
非水電解質中にLiBOBを0.01質量%、PSを0.20質量%含有させたこと以外は実施例1と同様にして、比較例2の非水電解質二次電池を作製した。
[Comparative Example 2]
A nonaqueous electrolyte secondary battery of Comparative Example 2 was produced in the same manner as in Example 1 except that 0.01% by mass of LiBOB and 0.20% by mass of PS were contained in the nonaqueous electrolyte.

[比較例3]
非水電解質中にLiBOBを1.2質量%、PSを0.20質量%含有させたこと以外は実施例1と同様にして、比較例3の非水電解質二次電池を作製した。
[Comparative Example 3]
A nonaqueous electrolyte secondary battery of Comparative Example 3 was produced in the same manner as in Example 1 except that 1.2% by mass of LiBOB and 0.20% by mass of PS were contained in the nonaqueous electrolyte.

[比較例4]
非水電解質中にLiBOBを0.01質量%、PSを1.00質量%含有させたこと以外は実施例1と同様にして、比較例4の非水電解質二次電池を作製した。
[Comparative Example 4]
A nonaqueous electrolyte secondary battery of Comparative Example 4 was produced in the same manner as in Example 1 except that 0.01% by mass of LiBOB and 1.00% by mass of PS were contained in the nonaqueous electrolyte.

[比較例5]
非水電解質中にLiBOBを1.20質量%、PSを1.00質量%含有させたこと以外は実施例1と同様にして、比較例5の非水電解質二次電池を作製した。
[Comparative Example 5]
A nonaqueous electrolyte secondary battery of Comparative Example 5 was produced in the same manner as in Example 1 except that 1.20 mass% LiBOB and 1.00 mass% PS were contained in the nonaqueous electrolyte.

[比較例6]
非水電解質中にLiBOBを0.01質量%、PSを1.50質量%含有させたこと以外は実施例1と同様にして、比較例6の非水電解質二次電池を作製した。
[Comparative Example 6]
A nonaqueous electrolyte secondary battery of Comparative Example 6 was produced in the same manner as in Example 1 except that 0.01% by mass of LiBOB and 1.50% by mass of PS were contained in the nonaqueous electrolyte.

[比較例7]
非水電解質中にLiBOBを1.20質量%、PSを1.50質量%含有させたこと以外は実施例1と同様にして、比較例7の非水電解質二次電池を作製した。
[Comparative Example 7]
A nonaqueous electrolyte secondary battery of Comparative Example 7 was produced in the same manner as in Example 1 except that 1.20 mass% LiBOB and 1.50 mass% PS were contained in the nonaqueous electrolyte.

[比較例8]
非水電解質中にLiBOBを0.01質量%、PSを0.10質量%含有させたこと以外は実施例1と同様にして、比較例8の非水電解質二次電池を作製した。
[Comparative Example 8]
A nonaqueous electrolyte secondary battery of Comparative Example 8 was produced in the same manner as in Example 1 except that 0.01% by mass of LiBOB and 0.10% by mass of PS were contained in the nonaqueous electrolyte.

[比較例9]
非水電解質中にLiBOBを1.20質量%、PSを0.10質量%含有させたこと以外は実施例1と同様にして、比較例9の非水電解質二次電池を作製した。
[Comparative Example 9]
A nonaqueous electrolyte secondary battery of Comparative Example 9 was produced in the same manner as in Example 1 except that LiBOB was contained in the nonaqueous electrolyte at 1.20 mass% and PS at 0.10 mass%.

[比較例10]
非水電解質中にLiBOBを0.01質量%、PSを2.00質量%含有させたこと以外は実施例1と同様にして、比較例10の非水電解質二次電池を作製した。
[Comparative Example 10]
A nonaqueous electrolyte secondary battery of Comparative Example 10 was produced in the same manner as in Example 1 except that 0.01% by mass of LiBOB and 2.00% by mass of PS were contained in the nonaqueous electrolyte.

[比較例11]
非水電解質中にLiBOBを1.20質量%、PSを2.00質量%含有させたこと以外は実施例1と同様にして、比較例11の非水電解質二次電池を作製した。
[Comparative Example 11]
A nonaqueous electrolyte secondary battery of Comparative Example 11 was produced in the same manner as in Example 1 except that LiBOB was contained in the nonaqueous electrolyte at 1.20 mass% and PS at 2.00 mass%.

[特性測定]
実施例1〜15および比較例1〜11の角形非水電解質二次電池を各5セルづつ作製し、初期放電容量確認試験をおこなった。初期放電容量は、25℃において、250mA定電流で4.2Vまで、さらに4.2V定電圧で、合計3時間充電した後、250mA定電流で終止電圧2.5Vの条件で放電をおこなった。
[Characteristic measurement]
The square nonaqueous electrolyte secondary batteries of Examples 1 to 15 and Comparative Examples 1 to 11 were prepared for each 5 cells, and an initial discharge capacity confirmation test was performed. The initial discharge capacity was up to 4.2 V at a constant current of 250 mA at 25 ° C., and further charged at a constant voltage of 4.2 V for a total of 3 hours, and then discharged at a constant current of 250 mA and a final voltage of 2.5 V.

つぎに、充放電サイクル寿命試験をおこなった。初期放電容量確認試験時の充放電条件で、45℃の恒温槽中にて500サイクルの充放電をおこない、その後、25℃で5時間冷却した後に25℃で容量確認試験をおこなった。   Next, a charge / discharge cycle life test was conducted. Under the charge / discharge conditions during the initial discharge capacity confirmation test, 500 cycles of charge / discharge were performed in a 45 ° C. constant temperature bath, and after cooling at 25 ° C. for 5 hours, a capacity confirmation test was performed at 25 ° C.

その後、−20℃での低温放電試験をおこなった。低温放電試験は、25℃において、初期放電容量確認試験時の充電条件で充電した後、電池を−20℃で5時間冷却し、−20℃の恒温槽中で、250mA定電流で終止電圧2.5Vの条件で放電をおこなった。   Thereafter, a low temperature discharge test at −20 ° C. was performed. In the low-temperature discharge test, the battery was charged at 25 ° C. under the charging conditions used in the initial discharge capacity confirmation test, and then the battery was cooled at −20 ° C. for 5 hours, in a constant temperature bath at −20 ° C., with a final current of 2 at 250 mA constant current. Discharge was performed under the condition of .5V.

なお、45℃充放電サイクル試験の500サイクル目の「容量保持率」は、初期放電容量に対する45℃充放電500サイクル後の25℃での放電容量の割合を100分率で示したものである。また、「低温保持率」は、高温充放電500サイクル後の電池において、初期放電容量に対する−20℃での放電容量の割合を100分率で示したものである。   The “capacity retention ratio” at the 500th cycle in the 45 ° C. charge / discharge cycle test is a ratio of the discharge capacity at 25 ° C. after 500 cycles of 45 ° C. charge / discharge to the initial discharge capacity in terms of 100 minutes. . The “low temperature retention rate” is the percentage of the discharge capacity at −20 ° C. relative to the initial discharge capacity in 100 minutes in the battery after 500 cycles of high temperature charge / discharge.

実施例1〜9および比較例1〜17の非水電解質二次電池の電解質中のLiBOBおよびPSの含有量、試験結果を表1に示す。なお、表1において、「容量保持率」および「低温保持率」は、5セルの平均値を示したものである。   Table 1 shows the contents and test results of LiBOB and PS in the electrolytes of the nonaqueous electrolyte secondary batteries of Examples 1 to 9 and Comparative Examples 1 to 17. In Table 1, “capacity holding ratio” and “low temperature holding ratio” indicate average values of five cells.

Figure 0004807072
Figure 0004807072

表1の結果から、非水電解質中に、リチウムビス(オキサラト)ボレートを0.2〜1.0質量%含有し、かつ1,3−プロペンスルトンを含有した実施例1〜15のサイクル寿命性能および低温放電性能は、いずれの添加剤も含有しない比較例1よりも著しく良好であることがわかった。   From the results of Table 1, the cycle life performance of Examples 1 to 15 containing 0.2 to 1.0% by mass of lithium bis (oxalato) borate and 1,3-propene sultone in the nonaqueous electrolyte. The low-temperature discharge performance was found to be significantly better than that of Comparative Example 1 which did not contain any additive.

また、実施例1〜15のサイクル寿命性能および低温放電性能は、リチウムビス(オキサラト)ボレートの含有量が0.1〜1.0質量%の範囲内にない比較例2〜11よりも非常に良好であった。   In addition, the cycle life performance and low-temperature discharge performance of Examples 1 to 15 are much higher than those of Comparative Examples 2 to 11 in which the content of lithium bis (oxalato) borate is not in the range of 0.1 to 1.0% by mass. It was good.

なお、非水電解質中に、リチウムビス(オキサラト)ボレートを0.2〜1.0質量%含有した実施例1〜15の中では、1,3−プロペンスルトンを0.20〜1.5質量%含有した実施例1〜9の方が、1,3−プロペンスルトンを0.10質量%含有した実施例10〜12および2.00質量%含有した実施例13〜15よりも、サイクル寿命性能および低温放電性能とも優れていることがわかった。   In Examples 1 to 15 containing 0.2 to 1.0% by mass of lithium bis (oxalato) borate in the nonaqueous electrolyte, 1,3-propene sultone was 0.20 to 1.5% by mass. % Of Examples 1-9 containing 1% propylene sultone, cycle life performance than Examples 10-12 containing 0.10% by mass and Examples 13-15 containing 2.00% by mass It was also found that the low-temperature discharge performance was excellent.

この原因は現時点では不明であるが、リチウムビス(オキサラト)ボレートに起因する低温放電性能に優れた性質と、1,3−プロペンスルトンに起因するサイクル寿命性能に優れた性質とを兼ね備えた混成皮膜が負極表面上に形成され、特異な作用を発揮したためであると推察される。   The cause of this is unknown at this time, but it is a hybrid film that combines the properties of excellent low-temperature discharge performance attributable to lithium bis (oxalato) borate and the property of superior cycle life performance attributable to 1,3-propene sultone. Is formed on the surface of the negative electrode, and it is presumed that this is due to its unique action.

[実施例16、17および比較例12]
[実施例16]
非水電解質中にLiBOBを0.10質量%含有し、PSに代えて1−フルオロ−1,3−プロペンスルトンを0.20質量%添加したこと以外は実施例1と同様にして、実施例16の非水電解質二次電池を作製した。
[Examples 16 and 17 and Comparative Example 12]
[Example 16]
The same procedure as in Example 1 was performed except that 0.10% by mass of LiBOB was contained in the nonaqueous electrolyte, and 0.20% by mass of 1-fluoro-1,3-propene sultone was added instead of PS. Sixteen nonaqueous electrolyte secondary batteries were produced.

[実施例17]
非水電解質中にLiBOBを0.10質量%含有し、PSに代えて1,4−ブテンスルトンを0.20質量%添加したこと以外は実施例1と同様にして、実施例17の非水電解質二次電池を作製した。
[Example 17]
The nonaqueous electrolyte of Example 17 was the same as Example 1 except that 0.10% by mass of LiBOB was contained in the nonaqueous electrolyte, and 0.20% by mass of 1,4-butene sultone was added instead of PS. A secondary battery was produced.

[比較例12]
非水電解質中にLiBOBに0.10質量%含有し、PSに代えてエチレンサルファイトを0.20質量%添加したこと以外は実施例1と同様にして、比較例12の非水電解質二次電池を作製した。
[Comparative Example 12]
The nonaqueous electrolyte secondary of Comparative Example 12 is the same as Example 1 except that 0.10% by mass of LiBOB is contained in the nonaqueous electrolyte and 0.20% by mass of ethylene sulfite is added instead of PS. A battery was produced.

[特性測定]
実施例16、17および比較例12の角形非水電解質二次電池を各5セルづつ作製し、実施例1と同等の条件で、初期放電容量確認試験、45℃での充放電サイクル寿命試験および−20℃での低温放電試験をおこなった。
[Characteristic measurement]
The square nonaqueous electrolyte secondary batteries of Examples 16 and 17 and Comparative Example 12 were prepared for each 5 cells, and under the same conditions as in Example 1, an initial discharge capacity confirmation test, a charge / discharge cycle life test at 45 ° C., and A low temperature discharge test at −20 ° C. was performed.

実施例16、17および比較例12の非水電解質二次電池の電解質中のLiBOB含有量、添加溶媒の含有量、試験結果を表2に示す。なお、表2において、「容量保持率」および「低温保持率」は、5セルの平均値を示したものである。   Table 2 shows the LiBOB content, the content of the additive solvent, and the test results in the electrolytes of the nonaqueous electrolyte secondary batteries of Examples 16 and 17 and Comparative Example 12. In Table 2, “capacity retention” and “low temperature retention” are average values of five cells.

Figure 0004807072
Figure 0004807072

表2から、実施例16および実施例17に示すように、種々の不飽和スルトン化合物を用いた場合においても良好なサイクル寿命性能と高い低温放電性能とが得られることがわかった。しかし、比較例12のように、不飽和スルトン化合物以外の溶媒を添加した場合には、サイクル寿命性能、低温放電性能とも改善されなかった。   From Table 2, as shown in Example 16 and Example 17, it was found that good cycle life performance and high low-temperature discharge performance can be obtained even when various unsaturated sultone compounds are used. However, as in Comparative Example 12, when a solvent other than the unsaturated sultone compound was added, neither cycle life performance nor low temperature discharge performance was improved.

[実施例18〜24]
[実施例18]
非水電解質溶媒の組成をEC:DMC=25:75(体積比)としたこと以外は実施例1と同様にして、実施例18の非水電解質二次電池を作製した。
[Examples 18 to 24]
[Example 18]
A nonaqueous electrolyte secondary battery of Example 18 was produced in the same manner as in Example 1 except that the composition of the nonaqueous electrolyte solvent was EC: DMC = 25: 75 (volume ratio).

[実施例19]
非水電解質溶媒の組成をEC:EMC=25:75(体積比)としたこと以外は実施例1と同様にして、実施例19の非水電解質二次電池を作製した。
[Example 19]
A nonaqueous electrolyte secondary battery of Example 19 was produced in the same manner as in Example 1 except that the composition of the nonaqueous electrolyte solvent was EC: EMC = 25: 75 (volume ratio).

[実施例20]
非水電解質溶媒の組成をEC:DEC=25:75(体積比)としたこと以外は実施例1と同様にして、実施例20の非水電解質二次電池を作製した。
[Example 20]
A nonaqueous electrolyte secondary battery of Example 20 was produced in the same manner as in Example 1 except that the composition of the nonaqueous electrolyte solvent was EC: DEC = 25: 75 (volume ratio).

[実施例21]
非水電解質溶媒の組成をEC:DMC:EMC:DEC=20:20:30:30(体積比)としたこと以外は実施例1と同様にして、実施例21の非水電解質二次電池を作製した。
[Example 21]
The nonaqueous electrolyte secondary battery of Example 21 was obtained in the same manner as in Example 1 except that the composition of the nonaqueous electrolyte solvent was EC: DMC: EMC: DEC = 20: 20: 30: 30 (volume ratio). Produced.

[実施例22]
非水電解質溶媒の組成をPC:DMC:EMC=20:40:40(体積比)としたこと以外は実施例1と同様にして、実施例22の非水電解質二次電池を作製した。
[Example 22]
A nonaqueous electrolyte secondary battery of Example 22 was fabricated in the same manner as Example 1 except that the composition of the nonaqueous electrolyte solvent was PC: DMC: EMC = 20: 40: 40 (volume ratio).

[実施例23]
非水電解質溶媒の組成をEC:エチルアセテート=25:75(体積比)としたこと以外は実施例1と同様にして、実施例23の非水電解質二次電池を作製した。
[Example 23]
A nonaqueous electrolyte secondary battery of Example 23 was fabricated in the same manner as in Example 1 except that the composition of the nonaqueous electrolyte solvent was EC: ethyl acetate = 25: 75 (volume ratio).

[実施例24]
非水電解質溶媒の組成をEC:メチルプロピオネート=25:75(体積比)としたこと以外は実施例1と同様にして、実施例24の非水電解質二次電池を作製した。
[Example 24]
A nonaqueous electrolyte secondary battery of Example 24 was produced in the same manner as in Example 1 except that the composition of the nonaqueous electrolyte solvent was EC: methylpropionate = 25: 75 (volume ratio).

[特性測定]
実施例18〜24の角形非水電解質二次電池を各5セルづつ作製し、実施例1と同等の条件で、初期放電容量確認試験、45℃での充放電サイクル寿命試験および−20℃での低温放電試験をおこなった。
[Characteristic measurement]
The square non-aqueous electrolyte secondary batteries of Examples 18 to 24 were prepared for each 5 cells, and under the same conditions as in Example 1, the initial discharge capacity confirmation test, the charge / discharge cycle life test at 45 ° C., and the −20 ° C. A low temperature discharge test was conducted.

実施例18〜24の非水電解質二次電池の電解質の溶媒組成および試験結果を表3に示す。なお、表3において、「容量保持率」および「低温保持率」は、5セルの平均値を示したものである。   Table 3 shows the solvent composition and test results of the electrolytes of the nonaqueous electrolyte secondary batteries of Examples 18 to 24. In Table 3, “capacity holding ratio” and “low temperature holding ratio” are average values of five cells.

Figure 0004807072
Figure 0004807072

表3から、電解質の溶媒組成として、環状カーボネートと鎖状カーボネートの種類や混合比率を変化させた場合や、また、鎖状カーボネートの代わりにエチルアセテートやメチルプロピオネートなどの鎖状カルボン酸エステルを用いた場合にも同様の効果が得られることがわかった。   From Table 3, as the solvent composition of the electrolyte, when the type and mixing ratio of the cyclic carbonate and the chain carbonate are changed, or a chain carboxylate such as ethyl acetate or methyl propionate instead of the chain carbonate It was found that the same effect can be obtained when using.

なお、上記実施例では、電解質塩として濃度1mol/lのLiPFを用いたが、電解質塩の種類や濃度を変化させた場合にも同様の効果が得られた。 In the above example, LiPF 6 having a concentration of 1 mol / l was used as the electrolyte salt, but the same effect was obtained when the type and concentration of the electrolyte salt were changed.

さらに、正極活物質としてリチウムコバルト酸化物やリチウムニッケル酸化物やそれらの混合系を用いた場合にも同様の効果が得られ、負極活物質として黒鉛やコークス類、また、負極の一部に合金を用いた場合でも同様の効果が得られた。   Further, when lithium cobalt oxide or lithium nickel oxide or a mixed system thereof is used as the positive electrode active material, the same effect can be obtained. As the negative electrode active material, graphite or coke, or an alloy of a part of the negative electrode The same effect was obtained even when using.

以上のことから、非水電解質中に、リチウムビス(オキサラト)ボレートを0.1〜1.0質量%含有し、かつ不飽和スルトン化合物を含有させることで、良好なサイクル寿命性能と高い低温放電性能とが得られることがわかった。   From the above, by containing 0.1 to 1.0% by mass of lithium bis (oxalato) borate in the nonaqueous electrolyte and containing an unsaturated sultone compound, good cycle life performance and high low temperature discharge It was found that performance was obtained.

また、正極と、負極と、非水電解質とを備えた非水電解質二次電池の製造方法において、前記非水電解質中に、リチウムビス(オキサラト)ボレート0.1〜1.0質量%と、不飽和スルトン化合物0.2〜1.5質量%とを含有させることにより、良好なサイクル寿命性能と高い低温放電性能とを示す非水電解質二次電池を製造できることがわかった。   Further, in the method for producing a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, the non-aqueous electrolyte contains 0.1 to 1.0% by mass of lithium bis (oxalato) borate, It was found that a nonaqueous electrolyte secondary battery exhibiting good cycle life performance and high low-temperature discharge performance can be produced by containing 0.2 to 1.5 mass% of the unsaturated sultone compound.

本発明の実施例及び比較例の角形電池の断面構造を示す図。The figure which shows the cross-section of the square battery of the Example and comparative example of this invention.

符号の説明Explanation of symbols

1 角型非水電解質二次電池
2 巻回型電極群
3 正極
4 負極
5 セパレータ
DESCRIPTION OF SYMBOLS 1 Square type non-aqueous electrolyte secondary battery 2 Winding type electrode group 3 Positive electrode 4 Negative electrode 5 Separator

Claims (3)

正極と、負極と、非水電解質とを備えた非水電解質二次電池において、前記非水電解質中に、化学式(1)で示されるリチウムビス(オキサラト)ボレート0.1〜1.0質量%と、化学式(2)で示される不飽和スルトン化合物とを含有することを特徴とする非水電解質二次電池。
Figure 0004807072
Figure 0004807072
ただし、化学式(2)において、R1〜R4は、それぞれ独立して、水素、フッ素、または炭素数1〜4のフッ素を含んでもよい炭化水素基であり、nは1〜3の整数である。
In a nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte, lithium bis (oxalato) borate represented by the chemical formula (1) is 0.1 to 1.0% by mass in the nonaqueous electrolyte. And an unsaturated sultone compound represented by the chemical formula (2).
Figure 0004807072
Figure 0004807072
However, in Chemical formula (2), R1-R4 is respectively independently the hydrocarbon group which may contain hydrogen, a fluorine, or C1-C4 fluorine, and n is an integer of 1-3.
不飽和スルトン化合物が化学式(3)で示される1,3−プロペンスルトンであることを特徴とする請求項1に記載の非水電解質二次電池。
Figure 0004807072
The non-aqueous electrolyte secondary battery according to claim 1, wherein the unsaturated sultone compound is 1,3-propene sultone represented by the chemical formula (3).
Figure 0004807072
正極と、負極と、非水電解質とを備えた非水電解質二次電池の製造方法において、前記非水電解質中に、化学式(1)で示されるリチウムビス(オキサラト)ボレート0.1〜1.0質量%と、化学式(2)で示される不飽和スルトン化合物0.2〜1.5質量%とを含有することを特徴とする非水電解質二次電池の製造方法。
Figure 0004807072
Figure 0004807072
ただし、化学式(2)において、R1〜R4は、それぞれ独立して、水素、フッ素、または炭素数1〜4のフッ素を含んでもよい炭化水素基であり、nは1〜3の整数である。
In the method for producing a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, lithium bis (oxalato) borate represented by the chemical formula (1) 0.1 to 1. The manufacturing method of the nonaqueous electrolyte secondary battery characterized by containing 0 mass% and the unsaturated sultone compound 0.2-1.5 mass% shown by Chemical formula (2).
Figure 0004807072
Figure 0004807072
However, in Chemical formula (2), R1-R4 is respectively independently the hydrocarbon group which may contain hydrogen, a fluorine, or C1-C4 fluorine, and n is an integer of 1-3.
JP2005377233A 2005-12-28 2005-12-28 Nonaqueous electrolyte secondary battery Active JP4807072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377233A JP4807072B2 (en) 2005-12-28 2005-12-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377233A JP4807072B2 (en) 2005-12-28 2005-12-28 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2007179883A JP2007179883A (en) 2007-07-12
JP4807072B2 true JP4807072B2 (en) 2011-11-02

Family

ID=38304857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377233A Active JP4807072B2 (en) 2005-12-28 2005-12-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4807072B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9153836B2 (en) 2007-08-23 2015-10-06 Sony Corporation Electrolytic solutions and battery
JP4775346B2 (en) * 2007-08-27 2011-09-21 ソニー株式会社 Lithium ion secondary battery
JP4780337B2 (en) * 2007-08-23 2011-09-28 ソニー株式会社 Lithium ion secondary battery
JP2009054287A (en) * 2007-08-23 2009-03-12 Sony Corp Electrolyte solution and battery
JP4793378B2 (en) * 2007-11-16 2011-10-12 ソニー株式会社 Non-aqueous electrolyte battery
JP5315674B2 (en) * 2007-11-19 2013-10-16 セントラル硝子株式会社 Non-aqueous battery electrolyte and non-aqueous battery using the same
KR101069511B1 (en) 2008-02-01 2011-09-30 주식회사 엘지화학 Non-aqueous electrolyte and secondary battery comprising the same
JP5258353B2 (en) * 2008-03-31 2013-08-07 三洋電機株式会社 Nonaqueous electrolyte secondary battery
KR101387899B1 (en) * 2009-08-04 2014-04-21 도요타지도샤가부시키가이샤 Lithium ion nonaqueous electrolyte secondary battery
JP5448001B2 (en) * 2009-08-04 2014-03-19 トヨタ自動車株式会社 Non-aqueous electrolyte type lithium ion secondary battery
DE102011084009A1 (en) * 2011-10-05 2013-04-11 Varta Microbattery Gmbh Lithium-ion cells with improved properties
JP5884967B2 (en) * 2011-10-18 2016-03-15 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
KR101551135B1 (en) 2011-10-28 2015-09-07 아사히 가세이 가부시키가이샤 Non-aqueous secondary battery
JP5754358B2 (en) * 2011-11-22 2015-07-29 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
US20150194704A1 (en) * 2012-07-20 2015-07-09 Basf Se Electrochemical cells
JP2014035895A (en) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP6032474B2 (en) * 2012-09-11 2016-11-30 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
US10096864B2 (en) 2013-07-01 2018-10-09 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
KR20150004678A (en) * 2013-07-03 2015-01-13 삼성에스디아이 주식회사 Lithium pouch type battery
JP6376454B2 (en) * 2014-08-28 2018-08-22 株式会社Gsユアサ Power storage device and method for manufacturing power storage device
JP6361920B2 (en) * 2014-09-05 2018-07-25 トヨタ自動車株式会社 Lithium ion battery
JP6098684B2 (en) 2015-08-12 2017-03-22 セントラル硝子株式会社 Non-aqueous electrolyte secondary battery electrolyte and non-aqueous electrolyte secondary battery using the same
CN105481825A (en) * 2015-12-31 2016-04-13 石家庄圣泰化工有限公司 Preparation method of prop-1-ene-1,3-sultone derivatives
CN105428719B (en) * 2015-12-31 2018-12-18 石家庄圣泰化工有限公司 Wide temperature lithium-ion battery electrolytes of high voltage and preparation method and application
CN105390742A (en) * 2015-12-31 2016-03-09 石家庄圣泰化工有限公司 High-voltage lithium-ion battery electrolyte as well as preparation method and application thereof
JP7326681B2 (en) * 2019-07-30 2023-08-16 三井化学株式会社 Non-aqueous electrolyte for batteries and lithium secondary batteries
CN113921914B (en) * 2021-09-30 2023-05-02 宁德新能源科技有限公司 Electrolyte solution, and electrochemical device and electronic device using same
WO2024053674A1 (en) * 2022-09-08 2024-03-14 三井化学株式会社 Nonaqueous electrolyte solution for batteries, lithium secondary battery precursor, method for producing lithium secondary battery, and lithium secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4175792B2 (en) * 2001-08-27 2008-11-05 セントラル硝子株式会社 Electrolytic solution or gel electrolyte for electrochemical device and battery
JP3797197B2 (en) * 2001-11-01 2006-07-12 株式会社ジーエス・ユアサコーポレーション Nonaqueous electrolyte secondary battery
JP4686131B2 (en) * 2004-03-09 2011-05-18 株式会社東芝 Nonaqueous electrolyte secondary battery
JP2005259592A (en) * 2004-03-12 2005-09-22 Sanyo Electric Co Ltd Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolytic solution secondary battery

Also Published As

Publication number Publication date
JP2007179883A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP4807072B2 (en) Nonaqueous electrolyte secondary battery
US7341807B2 (en) Non-flammable nonaqueous electrolyte solution and lithium ion cell using same
JP4151060B2 (en) Non-aqueous secondary battery
JP4972922B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery
JP4042034B2 (en) Non-aqueous electrolyte battery
US7608364B2 (en) Lithium ion secondary battery
JP4092618B2 (en) Nonaqueous electrolyte secondary battery
WO2010150508A1 (en) Lithium-ion secondary battery
JP6005277B2 (en) Lithium secondary battery with improved life characteristics
JP2003142152A (en) Non-aqueous electrolyte secondary battery
JP5115109B2 (en) Non-aqueous electrolyte battery
WO2010016475A1 (en) Nonaqueous electrolyte and lithium cell using the same
WO2014038174A1 (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP4433163B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4893003B2 (en) Nonaqueous electrolyte secondary battery
JP5272635B2 (en) Nonaqueous electrolyte secondary battery
JP4968614B2 (en) Secondary battery electrolyte and secondary battery using the same
CN113748553B (en) Nonaqueous electrolyte secondary battery
JP4940617B2 (en) Nonaqueous electrolyte secondary battery
WO2016204278A1 (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same
JP2011014476A (en) Lithium ion secondary battery
JP5098171B2 (en) Nonaqueous electrolyte secondary battery
JP5011742B2 (en) Nonaqueous electrolyte secondary battery
JP2006080008A (en) Nonaqueous electrolyte secondary battery
JP2010080226A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081030

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4807072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150