JP4801912B2 - 超音波診断装置 - Google Patents

超音波診断装置 Download PDF

Info

Publication number
JP4801912B2
JP4801912B2 JP2005061602A JP2005061602A JP4801912B2 JP 4801912 B2 JP4801912 B2 JP 4801912B2 JP 2005061602 A JP2005061602 A JP 2005061602A JP 2005061602 A JP2005061602 A JP 2005061602A JP 4801912 B2 JP4801912 B2 JP 4801912B2
Authority
JP
Japan
Prior art keywords
power mode
high power
doppler
ultrasonic
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005061602A
Other languages
English (en)
Other versions
JP2005305129A (ja
Inventor
雅夫 滝本
智久 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Priority to JP2005061602A priority Critical patent/JP4801912B2/ja
Priority to US11/084,159 priority patent/US7850609B2/en
Publication of JP2005305129A publication Critical patent/JP2005305129A/ja
Application granted granted Critical
Publication of JP4801912B2 publication Critical patent/JP4801912B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、超音波診断装置に係り、特に被検体に対して超音波の送受波を行なって得られたドプラ信号のスペクトラムデータを表示し、そのスペクトラムデータに基づいて各種の計測を行なう超音波診断装置に関する。
超音波診断装置は、超音波プローブに内蔵された圧電振動子から発生する超音波パルスあるいは連続波を被検体内に放射し、被検体組織の音響インピーダンスの差異によって生ずる超音波反射波を前記圧電振動子によって受信してモニタ上に表示するものである。この診断方法は、超音波パルスを用いて2次元画像を表示する超音波断層法と、超音波パルスあるいは超音波連続波を被検体内の移動反射体(例えば血液や組織)に照射した場合に生じるドプラ偏移成分を周波数分析して得られたドプラスペクトラムの時間的変化(以下、スペクトラムデータと呼ぶ。)を表示する、所謂超音波ドプラスペクトラム法がある。
超音波断層法には、反射強度の2次元分布を表示するBモード法とドプラ成分を用いて血流や組織の速度情報を2次元的にカラー表示するカラードプラ法があり、これらの方法は超音波プローブを体表に接触させるだけの簡単な操作でリアルタイムの2次元画像を容易に観察することができるため、各種臓器の形態診断や機能診断に広く用いられている。
一方、超音波ドプラスペクトラム法には、上記超音波断層法の場合と同様にパルス波を用いる方法(パルスドプラ法)と連続波を用いる方法(連続波ドプラ法)があり、何れの場合も血流や組織の移動速度を定量的に計測する場合に使用される。特に、距離方向(超音波送受波方向)の分解能を必要とし、流速あるいは移動速度が比較的遅い症例にはパルスドプラ法が、又、心臓弁疾患患者の場合のように血流速が極めて速いゆえにドプラスペクトラムが幾重にも折り返る症例には連続波ドプラ法が適用されている。
上記超音波スペクトラム法におけるスペクトラムデータは、通常、表示画面の横軸を時間軸、縦軸を周波数成分、輝度を各周波数成分のパワーの大きさに対応させたソノグラム形式によって表示される。そして、心臓弁疾患患者等の重症度判定には、上記ソノグラム形式によって表示された逆流成分スペクトラムの最大周波数成分の値(最大流速値)あるいは、このスペクトラムの最大周波数成分に基づいて生成されたトレース波形が一般に用いられている。
従来のスペクトラムデータ生成方法を図16に示す。図16(a)は、パルスドプラ法あるいは連続波ドプラ法によって被検体から得られた超音波ドプラ信号をFFT(高速フーリエ変換)分析して得られたドプラスペクトラム151であり、縦軸はドプラ偏移周波数、横軸はスペクトラムの大きさ(パワー)に対応している。又、図16(b)は、ドプラスペクトラム151の時間的変化を示すスペクトラムデータ152であり、既に述べたように縦軸はドプラ偏移周波数、横軸は観測時間に対応し、ドプラスペクトラム151のパワーは輝度によって表現されている。そして、このスペクトラムデータ152と共に収集される心電波形(ECG波形)153が同時表示される。一方、図16(c)は、上記スペクトラムデータの収集において超音波プローブの圧電振動子から放射される超音波の大きさ(以下、送信音響出力と呼ぶ。)の時間的変化を示しており、従来は、この図16(c)に示すように常に一定の送信音響出力が用いられていた。
ところで、被検体に放射された超音波が移動反射体において反射するとき反射波の間でランダムな干渉が生じ、その結果、ドプラスペクトラムにおいて干渉ノイズ(スペックルノイズ)が発生することが従来から知られている。即ち、図16(a)に示すように、算出されたドプラスペクトラム151(実線)は、真のドプラスペクトラム154(破線)に対して干渉ノイズによる凹凸が生じる。このため、このドプラスペクトラム151の時間的変化を示す図16(b)のスペクトラムデータ152においても上記干渉ノイズの影響による不連続パターンが生じ、最大周波数成分(最大流速値)等の時間的変化を正確に観察することが困難となる。
又、この干渉ノイズの影響は、移動反射体からの反射強度が小さいが故にドプラスペクトラムのS/Nが小さい場合に顕著であり、例えば、スペクトラムデータにおける負の最大周波数成分のトレース155により心臓弁疾患患者等の重症度判定を行なう場合には正確な自動トレース、あるいはマニュアルトレースが困難となるのみならず、マニュアルトレースの場合には、トレースに多くの時間を要し、このトレースを行なう操作者の負担が増大する等の問題点を有していた。
このような問題点に対して、スペクトラムデータの各周波数成分単位で観測時間方向の移動平均を行なうことによって上記干渉ノイズを低減する方法が提案されている(例えば特許文献1の第4−6頁、第1−2図)。
この方法によれば、干渉ノイズによる影響が低減するため、スペクトラムデータにおける辺縁部、即ち、最大周波数成分等を連続且つ平滑に表示することができ、トレースデータにおける視認性が向上する。しかしながら、このような効果を得るためには、上述の移動平均処理を比較的長い観測時間において行なう必要があるため、スペクトラムデータの鮮明度が大幅に劣化する。
一方、超音波ドプラ信号のS/Nを改善する方法として、超音波プローブの送信音響出力を高める方法が考えられるが、FDA(米国食品医薬品局)等において制定された発熱規制や音響出力規制による限界がある。特に、上記送信音響出力は、超音波プローブの表面温度に対する規制や生体組織の温度上昇に対する規制(所謂、サーマルインデックス)によってその上限値が定められ、通常の装置では既に許容値の上限に近い送信音響出力を用いてスペクトラムデータの生成が行なわれているため、この送信音響出力を更に増大させることは不可能である。
特開平6ー327672号公報
本発明の目的は、超音波ドプラスペクトラム法における圧電振動子の駆動方法を制御することによって、発熱規制あるいは音響出力規制を遵守すると共に、被検体から得られる超音波ドプラ成分に基づいて生成されるドプラスペクトラムあるいはスペクトラムデータを高感度で観察することが可能な超音波診断装置を提供することにある。
本発明の第1局面に係る超音波診断装置は、被検体に対して超音波を送信し、前記被検体からエコーを受信するために複数の圧電振動子を有する超音波プローブと、前記超音波を前記圧電振動子から発生するために前記複数の圧電振動子にそれぞれ対応する複数の駆動信号を発生する駆動部と、前記駆動信号の振幅が比較的高い高パワーモードと前記駆動信号の振幅が比較的低い低パワーモードとを前記被検体の生体信号に同期して切り替えるために前記駆動部を制御する制御部と、前記エコーに基づいてドプラ信号を検出するドプラ信号検出部と、前記検出されたドプラ信号に基づいてスペクトラムデータを生成するスペクトラムデータ生成部と、前記スペクトラムデータを表示する表示部とを具備する。
本発明の第2局面に係る超音波診断装置は、被検体に対して超音波を送信し、前記被検体からエコーを受信するために複数の圧電振動子を有する超音波プローブと、前記超音波で前記被検体内部を走査するために前記複数の圧電振動子にそれぞれ対応する複数の駆動信号を発生する駆動部と、前記駆動信号の振幅が比較的高い高パワーモードと前記駆動信号の振幅が比較的低い低パワーモードとを前記被検体の生体信号に同期して切り替えるために前記駆動部を制御する制御部と、前記エコーに基づいて画像データを生成する画像データ生成部と、前記画像データを表示する表示部とを具備する。
本発明によれば、超音波ドプラスペクトラム法における圧電振動子の駆動方法を制御することによって、発熱規制あるいは音響出力規制を遵守すると共に、被検体から得られる超音波ドプラ成分に基づいて生成されるドプラスペクトラムあるいはスペクトラムデータの観察したい部分を高感度で観察することができる。
以下、図面を参照して本発明の実施形態を説明する。
(第1実施形態)
以下に述べる本発明の第1の実施形態の特徴は、診断情報の収集を目的とした高パワーモード駆動と装置動作等のモニタリングを目的とした低パワーモード駆動を交互に繰り返すことによってスペクトラムデータの収集を行ない、前記高パワーモード駆動を被検体の生体信号に基づいて開始することを特徴としている。
(装置の構成)
以下では、本発明の実施形態における超音波診断装置の構成と各ユニットの動作につき図1乃至図6を用いて説明する。尚、図1は、本実施形態における超音波診断装置の全体構成を示すブロック図であり、図2は、この超音波診断装置を構成する送受信部及びデータ生成部のブロック図を示す。
図1に示す超音波診断装置100は、被検体に対して超音波の送受波を行なう超音波プローブ20と、超音波プローブ20に対して電気信号の送受信を行なう送受信部40と、送受信部40から得られた受信信号に対して信号処理を行ない、Bモードデータ、カラードプラデータ、更にはドプラスペクトラムの生成を行なうデータ生成部50と、このデータ生成部50において生成された上記データを保存して、2次元のBモード画像データ及びカラードプラ画像データ、更にはスペクトラムデータを生成し、更に、このスペクトラムデータを用いてシネデータの生成と保存を行なうデータ処理・記憶部70と、生成されたBモード画像データ、カラードプラ画像データ及びスペクトラムデータの表示を行なう表示部15を備えている。
更に、超音波診断装置100は、超音波断層法や超音波ドプラスペクトラム法における送信音響出力を制御する音響出力制御部80と、送受信部40、あるいはデータ生成部50に対して、超音波パルスの中心周波数あるいは超音波連続波の周波数(fo)とほぼ等しい周波数の連続波あるいは矩形波を発生する基準信号発生部1と、操作者によって被検体情報、設定条件、更にはコマンド信号等が入力される入力部17と、上記超音波診断装置100の各ユニットを統括的に制御するシステム制御部19を備えており、被検体の心電波形を収集するECGユニット18が別途設けられている。
超音波プローブ20は、被検体の表面に対してその前面を接触させ超音波の送受波を行なうものであり、1次元に配列された複数個(N個)の微小な圧電振動子をその先端部に有している。この圧電振動子は電気音響変換素子であり、送信時には電気的なパルスあるいは連続波を送信超音波に変換し、又、受信時には超音波反射波(受信超音波)を電気信号(受信信号)に変換する機能を有している。小型、軽量に構成された超音波プローブ20は、ケーブルを介して送受信部40に接続されている。超音波プローブ20にはセクタ走査対応、リニア走査対応、コンベックス走査対応等があり、診断部位に応じて任意に選択される。以下では心臓疾患の診断を目的としたセクタ走査対応の超音波プローブ20を用いた場合について述べるが、この方法に限定されるものではなく、リニア走査対応、あるいはコンベックス走査対応であってもよい。
図2に示した送受信部40は、超音波プローブ20から送信超音波を放射するための駆動信号を生成する送信部2と、前記超音波プローブ20からの受信超音波を受信する受信部3を備えている。
そして、送信部2は、レートパルス発生器41と、送信遅延回路42と、駆動回路43を備え、レートパルス発生器41は、Bモード法、カラードプラ法及びパルスドプラ法において基準信号発生部1から供給される連続波を分周することによって送信超音波の繰り返し周期(Tr)を決定するレートパルスを生成する。一方、連続波ドプラ法においては、基準信号発生部1から供給される連続波をそのまま次段の送信遅延回路42に供給する。
送信遅延回路42は、送信において細いビーム幅を得るために所定の深さに送信超音波を収束するための遅延時間と所定の方向に送信超音波を放射するための遅延時間をレートパルス発生器41から供給されるレートパルスあるいは連続波に与える。一方、駆動回路43は、超音波プローブ20に内蔵された圧電振動子を駆動するための駆動信号を前記レートパルスあるいは連続波に基づいて生成する。この駆動回路43は、音響出力制御部80から供給される制御信号に基づいて、Bモード法あるいはカラードプラ法においては通常パワーモード及び低パワーモードの駆動信号を、又、超音波ドプラスペクトラム法においては高パワーモード及び低パワーモードの駆動信号を生成する。
一方、受信部3は、プリアンプ44と、受信遅延回路45と、加算器46を備えている。プリアンプ44は、圧電振動子によって電気信号(受信信号)に変換された微小信号を増幅し十分なS/Nを確保する。又、受信遅延回路45は、細い受信ビーム幅を得るため所定の深さからの受信超音波を収束するための遅延時間と、所定方向からの受信超音波に対して強い受信指向性を設定するための遅延時間をプリアンプ44の出力に与え、次いで、所定の遅延時間が与えられた受信遅延回路45の出力は加算器46に送られて加算合成(整相加算)される。
尚、送信部2における送信遅延回路42及び駆動回路43、受信部3におけるプリアンプ44及び受信遅延回路45は、通常、超音波プローブ20の圧電振動子数と略同数の独立なチャンネル数を有しているが、連続波ドプラ法においては前記N個の圧電振動子を2分割して得られた第1の圧電振動子群と、この圧電振動子群に接続された送信部2を送波用として用い、残りの第2の圧電振動子群とこの圧電振動子群に接続された受信部3を受波用として用いている。
次に、データ生成部50は、受信部3の加算器46から出力された受信信号を信号処理してBモードデータを生成するBモードデータ生成部4と、前記受信信号に対して直交検波を行なってドプラ信号の検出を行なうドプラ信号検出部5と、検出されたドプラ信号を信号処理してカラードプラデータを生成するカラードプラデータ生成部6と、前記ドプラ信号を周波数分析してドプラスペクトラムを生成するドプラスペクトラム生成部7を備えている。
高パワーモードでは、ドプラスペクトラムのパワー値が高くなる。それにより典型的には表示輝度が高くなる。低パワーモードでは、ドプラスペクトラムのパワー値が低くなる。それにより典型的には表示輝度が低くなる。高パワーモードと低パワーモードとでは、輝度は相違する。高パワーモードと低パワーモードとでは、S/Nは相違する。高パワーモードと低パワーモードとでは、スペクトラムの波形(パワーの周波数分布)は本質的に相似である。
Bモードデータ生成部4は、包絡線検波器51と対数変換器52とA/D変換器53を備えている。Bモードデータ生成部4の入力信号、即ち、受信部3の加算器46から出力された受信信号に対して包絡線検波器51は包絡線検波を行ない、対数変換器52は、検波信号の振幅を対数変換して弱い信号を相対的に強調する。そして、A/D変換器53は、この対数変換器52の出力信号をデジタル信号に変換し、Bモードデータを生成する。
一方、ドプラ信号検出部5は、π/2移相器54、ミキサ55−1及び55−2、LPF(低域通過フィルタ)56−1及び56−2を備えており、後述する動作により送受信部40の受信部3から供給された受信信号に対して直交位相検波を行なってドプラ信号を検出する。
又、カラードプラデータ生成部6は、2チャンネルから構成されるA/D変換器57、
ドプラ信号記憶回路58、MTIフィルタ59、自己相関演算器60を備えている。そして、A/D変換器57は、ドプラス信号検出部5のLPF56−1及び56−2から出力されたドプラ信号、即ち、直交位相検波されたアナログ信号をデジタル信号に変換し、ドプラ信号記憶部58に保存する。次いで、高域通過用のデジタルフィルタであるMTIフィルタ59は、ドプラ信号記憶部58に一旦保存された前記ドプラ信号を読み出し、このドプラ信号に対して臓器の呼吸性移動や拍動性移動などに起因するドプラ成分(クラッタ成分)を除去する。又、自己相関演算器60は、MTIフィルタ59によって血流情報のみが抽出されたドプラ信号に対して自己相関値を算出し、更に、この自己相関値に基づいて血流の平均流速値や分散値などを算出する。
一方、ドプラスペクトラム生成部7は、切り換え回路65と、SH(サンプルホールド回路)61と、HPF(高域通過フィルタ)62と、A/D変換器63と、FFT分析器64を備えている。そして、ドプラ信号検出部5において得られたドプラ信号に対してFFT分析を行なう。尚、前記SH61、HPF62、A/D変換器63は何れも2チャンネルで構成され、夫々のチャンネルにはドプラ信号検出部5から出力されるドプラ信号の複素成分、即ち実成分(I成分)と虚成分(Q成分)が供給される。
次に、本実施形態におけるスペクトラムデータの生成において、重要な構成要素となる上述のドプラ信号検出部5とドプラスペクトラム生成部7の基本動作につき、図3に示したタイムチャートを参照して更に詳しく説明する。
図3は、パルスドプラ法によってスペクトラムデータを生成する場合のタイムチャートを示したものであり、図3(a)は、基準信号発生部1から出力される基準信号、図3(b)は、送受信部40のレートパルス発生器41から出力される周期Trのレートパルス、図3(c)は、受信部3の加算器46から得られる受信信号を示している。又、図3(d)は、ドプラ信号検出部5のLPF56から出力される直交位相検波出力、図3(e)は、ドプラスペクトラム生成部7におけるSH61のサンプリング(レンジゲート)位置を決定するためにシステム制御部19供給されるサンプリングパルス、図3(f)は、SH61によってサンプルホールドされたドプラ信号、そして、図3Gは、HPF62によって平滑化された前記レンジゲートにおけるドプラ信号を示している。
即ち、図2の受信部3から出力された受信信号(図3(c))は、ドプラ信号検出部5のミキサ55−1及び55−2の第1の入力端子に入力される。一方、この受信信号の中心周波数とほぼ等しい周波数foをもった基準信号発生部1の基準信号(図3(a))は、ミキサ55−1の第2の入力端子に直接供給され、π/2移相器54において90度位相がシフトした基準信号はミキサ55−2の第2の入力端子に送られる。そして、ミキサ55−1及び55−2による乗算出力は、LPF56−1及び56−2に送られ、ドプラ信号検出部5の入力信号の周波数と基準信号発生部1から供給される基準信号の周波数(fo)との和の成分(2fo近傍の成分)が除去され、差の成分(零周波数近傍の成分)のみがドプラ信号として抽出される(図3(d))。
次に、SH61には、上記LPF56−1及び56−2から出力されたドプラ信号と、システム制御部19が基準信号発生部1の基準信号を分周して生成したサンプリングパルス(レンジゲートパルス)が供給され(図3(e))、このサンプリングパルスによって所望の距離からのドプラ信号がサンプルホールドされる(図3(f))。尚、このサンプリングパルスは、送信超音波が放射されるタイミングを決定するレートパルス(図3(b))から遅延時間Ts後に発生し、この遅延時間Tsは入力部17において任意に設定可能である。
即ち、操作者は、サンプリングパルスの遅延時間Tsを変更することによって超音波プローブ20から所望の距離Lgにおけるドプラ信号を抽出することが可能となる。尚、このとき、遅延時間Tsと所望距離Lgは、被検体内の音速度をCとすれば、
2Lg/C=Ts
の関係にある。
次に、SH61から出力された所望距離Lgのドプラ信号に重畳した階段状のノイズ成分は、HPF62によって除去され(図3(g))、更に、平滑化された上記ドプラ信号は、A/D変換器63によってデジタル信号に変換された後、FFT分析器64に供給される。
FFT分析器64は、図示しない演算回路と記憶回路を備え、A/D変換器63から出力されるドプラ信号は前記記憶回路に一旦保存され、前記演算回路は、この記憶回路に保存された一連のドプラ信号の所定期間においてFFT分析を行なう。
一方、連続波ドプラ法の場合には、ドプラ信号検出部5の出力はドプラスペクトラム生成部7の切り換え回路65を介してA/D変換器63に直接入力され、デジタル信号に変換された後FFT分析器64において周波数分析が行なわれる。尚、連続波ドプラ法は距離分解能を有していないため、所定の超音波送受波方向における異なる深さの移動反射体によって得られる複数のドプラ信号成分が重畳して受信される。
図4は、FFT分析器64におけるFFT分析方法を模式的に示したものであり、図4(a)は、FFT分析器64に入力されるドプラ信号Ao、図4(b)は、このドプラ信号Aoの所定期間をFFT分析して得られた周波数スペクトラムBx(x=1、2、・・・)を示す。そして、ドプラスペクトラム生成部7のA/D変換器63から出力された離散的なドプラ信号(図4(a))のうち、例えば、q1乃至qmのm個のドプラ信号成分に対してFFT分析が行なわれ、スペクトラム成分p1乃至pmに対する最初の周波数スペクトラムB1が計測される。次いで、時間ΔT後のm個のドプラ信号成分q1+j乃至qm+jがFFT分析されて新たな周波数スペクトラムB2が計測される。尚、図4(a)ではj=3の場合について示している。
以下、同様にして、時間2ΔT後のq1+2j乃至qm+2j、時間3ΔT後のq1+3j乃至qm+3j・・・のm個のドプラ信号成分に対しても順次FFT分析が行なわれてスペクトラム成分p1乃至pmに対する周波数スペクトラムB3、B4、・・・・が計測される。(図4(b))。
次に、図1に戻って、データ処理・記憶部70は、データ記憶部8とデータ処理部9を備えており、データ記憶部8は、データ生成部50において走査方向単位で生成されたBモードデータ、カラードプラデータ及びドプラスペクトラムを順次保存して、2次元のBモード画像データ、カラードプラ画像データ及びスペクトラムデータを生成する。更に、上記スペクトラムデータを用いてデータ処理部9が生成したシネデータの保存を行なう。
一方、データ処理部9は、Bモード画像データ及びカラードプラ画像データに対する画像処理や走査変換(スキャンコンバージョン)、スペクトラムデータの最大周波数成分に対するトレースデータの生成、更に、音響出力制御部80の制御によって生成された高パワーモードのスペクトラムデータを合成したシネデータの生成等を行なう。
次に、音響出力制御部80は、図示しない演算回路と記憶回路を備え、パルスドプラ法あるいは連続波ドプラ法における高パワーモード及び低パワーモードの種々の設定を行なう。図5は、連続波ドプラ法における圧電振動子駆動方法を示した図であり、以下では、送信音響出力を圧電振動子駆動電圧と駆動期間によって制御する場合について説明するが、これに限定されるものではなく、例えば、パルスドプラ法の場合には、駆動パルスの波数を制御してもよい。
即ち、図5(a)は、被検体から得られるECG波形を、又、図5(b)は、このECG波形に同期して送信部2の駆動回路43からプローブ20の圧電振動子に印加される電圧波形を示している。例えば、ECG波形のR波から予め設定された所定遅延時間τ1後に駆動電圧(振幅電圧)Vの高パワーモードの駆動が開始され、この高パワーモードは期間τ2の間継続した後、駆動電圧Vの低パワーモードに移行する。高パワーモードの駆動電圧の中心周波数は、低パワーモードの駆動電圧の中心周波数と略同一である。更に、この低パワーモードは、期間τ3後に再び駆動電圧Vの高パワーモードに移行する。尚、図5(b)に示した駆動電圧Vは、従来の連続波ドプラ法における駆動電圧を示しており、V<V<Vの関係にある。
ここで、単位時間当たりに許容される送信音響出力の上限値をW0とすれば、上記駆動電圧V、V、Vと駆動期間τ2及びτ3は次式(1)の関係にある。但し、Wは本実施形態における単位時間当たりの送信音響出力であり、Kは比例定数である。
Figure 0004801912
即ち、式(1)によれば、単位時間当たりの送信音響出力Wは、高パワーモードの駆動期間τ2と駆動電圧V及び低パワーモードの駆動期間τ3と駆動電圧Vによって決定され、これら4つのパラメータのうち3つのパラメータを操作者が設定することによって、残りのパラメータの許容音響出力W0に対する最適な値を算出することが可能となる。具体的には、高パワーモードにおける駆動電圧V及び駆動期間τ2と低パワーモードにおける駆動電圧Vを設定することによって低パワーモードの期間τ3、即ち、高パワーモードの繰り返し周期τ4(τ4=τ2+τ3)を算出することが好適であるが、算出するパラメータについては特に限定されない。
音響出力制御部80の前記記憶回路には式(1)に基づく演算プログラムが予め保管されており、前記演算回路は、例えば、この演算プログラムとシステム制御部19を介して入力部17から供給される3つのパラメータの値を用いて残りのパラメータの最適値を算出する。
次に、表示部15は、図示しない表示用データ生成回路と変換回路とモニタを備えており、データ処理・記憶部70において生成されたBモード画像データ、カラードプラ画像データ、スペクトラムデータ、更には、このスペクトラムデータのシネデータは前記表示用データ生成回路において合成されて表示用データが生成され、この表示用データは、変換回路においてD/A変換とテレビフォーマット変換が行われてモニタに表示される。
一方、入力部17は、操作パネル上に表示パネルやキーボード、トラックボール、マウス、選択ボタン、入力ボタン等の入力デバイスを備え、患者情報の入力、データ収集モード、表示条件等の設定、更には、種々のコマンド信号の入力等を行なう。特に、パルスドプラ法あるいは連続波ドプラ法においては、高パワーモードにおける駆動開始タイミングと駆動期間τ2、高パワーモード及び低パワーモードにおける駆動電圧V及びV、データ収集のための送受信方向(θD)やレンジゲート位置(Lg)の設定等が行なわれる。尚、高パワーモードにおける駆動開始タイミングは、通常、図5に示したように被検体のECG信号に基づいて設定されるが、操作者が入力部17の入力デバイス(入力ボタン)を用いて直接設定してもよい。
図17、図18にはシステム制御部19により生成されるドプラ条件設定画面の例が示されている。図17は高パワーモードを心拍周期の一部期間に設定し、残りの期間に低パワーモードを設定する場合の設定画面を示す。図18は、高パワーモードを被検体の1又は連続する所定数の心拍期間に設定し、低パワーモードを被検体の連続する所定数の心拍期間に設定する場合の設定画面を示す。画面には、レンジゲート203が重畳されたBモード画像200とともに、被検体の心電波形215が表示される。また、画面には、「Vmax」と表記されたボタン、「All Wave」と表記されたボタン、増減ボタン209、211が、高パワーモードの継続期間を表すラインマーク213とともに表示される。ラインマーク213以外の期間は低パワーモードの継続期間である。
「Vmax」と表記されたボタンは、高パワーモードが心拍周期の一部期間に設定されて、最高流速を高S/Nで検査するという目的に対応している。「Vmax」と表記されたボタンがクリックされたとき、システム制御部19は、図17に例示するように、最高流速検査に好適なR波からの遅延時間(初期値)t1だけ遅延した位置に、最高流速検査に好適な時間幅t2に相当する長さを有するラインマーク213を配置する。ラインマーク213とともに、遅延時間t1と継続期間t2は数値欄217、219にそれぞれ表示される。「Vmax」と表記されたボタンがクリックされたとき、増減ボタン209、211は非選択状態になる。操作者は入力部17を操作して、ラインマーク213を所望の位置に移動し、所望の長さに調整する。または操作者は入力部17を操作して、数値欄217、219に遅延時間t1と継続期間t2を直接的に数値を入力することもできる。それにより高パワーモードと低パワーモードそれぞれの時期と継続期間が設定される。
「All Wave」と表記されたボタンは、高パワーモードを被検体の1又は連続する所定数の心拍期間に設定し、低パワーモードを被検体の連続する所定数の心拍期間に設定する目的に対応している。「All Wave」と表記されたボタンがクリックされたとき、増減ボタン209、211が操作可能な選択状態になる。「All Wave」と表記されたボタンがクリックされたとき、システム制御部19は、図18に例示するように、初期的に設定されている1心拍期間に相当する長さを有する複数のラインマーク213が、初期的に設定されている3心拍期間に相当する長さを有する間隔をへだてて配置される。ラインマーク213の長さは高パワーモードの継続期間に対応する。ペアのラインマーク213の間隔は、低パワーモードの継続期間に対応する。高パワーモードの継続期間を増減するとき、操作者は、増減ボタン209を操作する。高パワーモードの継続期間は、心拍期間を単位として増減する。高パワーモードの継続期間の増減に応じて、ラインマーク213の長さが伸縮する。低パワーモードの継続期間を増減するとき、操作者は、増減ボタン211を操作する。低パワーモードの継続期間も、心拍期間を単位として増減する。低パワーモードの継続期間の増減に応じて、ペアのラインマーク213の間隔が拡大縮小する。
システム制御部19は、図示しないCPUと記憶回路を備え、操作者によって入力部17から予め入力あるいは設定される上述の各種情報は記憶回路に保存される。そして、CPUは、これらの情報に基づいて、送受信部40、データ生成部50、データ処理・記憶部70、音響出力制御部80、更には表示部15の制御やシステム全体の制御を統括して行なう。
次に、ECGユニット18は、被検体の心電波形を収集するために備えられ、このECGユニット18で得られた心電波形のP波、Q波、R波、S波、T波の何れかに基づいて、パルスドプラ法あるいは連続波ドプラ法における高パワーモードの駆動開始タイミングが設定される。
次に、本実施形態のパルスドプラ法あるいは連続波ドプラ法における圧電振動子駆動方法と、この駆動によって得られるスペクトルデータにつき図6を用いて説明する。
図6は、ECGユニット18から供給されるECG波形に基づいて高パワーモードにおける駆動開始タイミングt1、t3・・・駆動期間τ2及び駆動周期τ4が設定される場合であり、図6(a)は、高パワーモード及び低パワーモードにおける駆動電圧V,Vと駆動期間τ2、τ3を示している。一方、図6(b)は、被検体から周期τ5で得られるECG波形161と、高パワーモードの駆動期間を示す高パワーインジケータ162と、図6(a)の駆動電圧によって生成されるスペクトラムデータ163を示している。そして、ECG波形161、高パワーインジケータ162はスペクトラムデータ163と共に表示部15のモニタに表示される。
尚、上記の高パワーモードインジケータ162は、先ず初期設定された高パワーモードの駆動開始タイミングと駆動期間に基づいて表示され、操作者は、このインジケータの位置及び長さを、入力部17の入力デバイスを用いて更新することによって高パワーモードの駆動期間を新たに設定することが可能である。
(スペクトラムデータの生成手順)
次に、図1乃至図12を用いて本実施形態におけるスペクトラムデータの生成手順について説明する。但し、図7は、本実施形態における上記生成手順を示すフローチャートである。尚、本実施形態では、パルスドプラ法を中心に説明するが、連続波ドプラ法においても略同様の手順によってスペクトラムデータの生成が可能である。
超音波データの収集に先立って、操作者は、先ず入力部17にて患者情報を入力し、Bモード画像データ、カラードプラ画像データ及びスペクトラムデータの収集モードを選択する。次いで、操作者は、図8に示すようにパルスドプラ法の高パワーモード及び低パワーモードにおける駆動電圧V、V、Bモード法の通常モード及び低パワーモードにおける駆動電圧VBH,VBL、カラードプラ法の通常モード及び低パワーモードにおける駆動電圧VcH,VcLを設定し、更に高パワーモードの駆動開始タイミングτ1と駆動期間τ2を設定する。そして、これらの情報は、システム制御部19の図示しない記憶回路に保存される(図7のステップS1)。
上述の初期設定が終了したならば、操作者は、超音波プローブ20の先端(超音波送受信面)を被検体体表面の所定の位置に固定することによって、通常モードにおける第1の走査方向(θ1方向)のBモードデータを得るための超音波送受波が行なわれる。即ち、図2のレートパルス発生器41は、基準信号発生部1から供給される基準信号を分周することによって、超音波パルスの繰り返し周期Trを決定するレートパルスを生成し、このレートパルスを送信遅延回路42に供給する。
次いで、送信遅延回路42は、所定の深さに超音波を集束するための集束用遅延時間と、第1の走査方向(θ1)に超音波を送信するための偏向用遅延時間をレートパルスに与え、このレートパルスを駆動回路43に供給する。そして、駆動回路43は、レートパルスの駆動によって生成される駆動電圧VBHの駆動信号を、ケーブルを介して超音波プローブ20におけるN個の圧電振動子に供給し、前記第1の走査方向に対して超音波パルスを放射する。
被検体に放射された超音波パルスの一部は、音響インピーダンスの異なる臓器間の境界面あるいは組織にて反射する。又、この超音波が心臓壁や血球などの動きのある反射体で反射する場合、その超音波周波数はドプラ偏移を受ける。
被検体の組織や血球にて反射した超音波反射波(受信超音波)は、超音波プローブ20の圧電振動子によって受信されて電気信号(受信信号)に変換され、この受信信号は、受信部3におけるNチャンネルの独立なプリアンプ44にて増幅されてNチャンネルの受信遅延回路45に送られる。
受信遅延回路45は、所定の深さからの超音波を収束するための集束用遅延時間と、前記第1の走査方向に強い受信指向性をもたせて受信するための偏向用遅延時間を前記受信信号に与えた後、加算器46に送る。そして、加算器46は、受信遅延回路45から出力されるNチャンネルの受信信号を加算合成し、1つの受信信号に纏めた後、Bモードデータ生成部4に供給する。
次いで、加算器46の出力信号はBモードデータ生成部4において対数変換、包絡線検波、A/D変換がなされた後、図1のデータ処理・記憶部70におけるデータ記憶部8に保存される。
一方、通常モードにおけるカラードプラ画像データの生成においては、受信信号のドプラ偏移を求めるために上述と同様な手順によって、前記第1の走査方向に連続して複数回(L回)の超音波送受信を行ない、このとき得られた受信信号に対して周波数解析を行なう。
即ち、システム制御部19は、駆動回路43の駆動電圧をVCHに設定し、第1の走査方向に対してカラードプラ用の最初の超音波送受信を行なう。そして、得られた受信信号をドプラ信号検出部5に供給し、ミキサ55−1、55−2及びLPF56−1、56−2による直交位相検波から2チャンネルの複素信号を生成する。次いで、この複素信号の実成分、及び虚成分の各々をカラードプラデータ生成部6のA/D変換器57にてデジタル信号に変換した後ドプラ信号記憶部58に保存する。前記第1の走査方向に対する2回目乃至L回目の超音波送受波によって得られた受信信号についても同様な処理を行なって複素信号を収集し、ドプラ信号記憶部58に保存する。
第1の走査方向に対するL回の超音波送受信によって得られた複素信号のドプラ信号記憶部58への保存が終了したならば、システム制御部19は、ドプラ信号記憶部58に保存されている複素信号の中から所定位置(深さ)に対応した複素信号成分を順次読み出し、MTIフィルタ59に供給する。そして、MTIフィルタ59は、供給された複素信号成分に対してフィルタ処理を行ない、例えば心筋などの組織の運動によって生ずる組織ドプラ成分(クラッタ成分)を排除し、血流の流れに起因する血流ドプラ成分のみを抽出する。
前記複素信号の供給を受けた自己相関演算器60は、この複素信号を用いて自己相関処理を行ない、更に、自己相関処理結果に基づいて血流の平均速度値や分散値、あるいはパワー値などを算出する。このような演算を、第1の走査方向の他の位置(深さ)に対しても行ない、算出された血流の平均速度値、分散値あるいはパワー値などを図1のデータ処理・記憶部70におけるデータ記憶部8に保存する。
次いで、システム制御部19は、第2の走査方向(θ2)乃至第Mの走査方向(θM)に対しても同様な超音波送受波を行なう。そして、このとき得られたBモードデータ及びカラードプラデータは、データ記憶部8に保存される。
以上述べた手順によって、走査方向単位で得られるBモードデータとカラードプラデータはデータ記憶部8に順次保存されてBモード画像データ及びカラードプラ画像データが生成され、データ処理部98において画像処理や走査変換がなされる。そして、表示部15の表示用データ生成回路は、走査変換後の画像データを合成して表示用データを生成し、更に、この表示用データを変換回路に供給してD/A変換やTVフォーマット変換を行ないモニタに表示する(図7のステップS2)。
次に、操作者は、表示されたこれらの画像データに対して、スペクトラムデータを収集する走査方向(θD)を示すマーカ(方向マーカ)及び距離(Lg)を示すマーカ(レンジゲートマーカ)を入力部17の入力デバイスを用いて移動し、最適な位置に設定する(図7のステップS3)。そして、スペクトラムデータの収集位置が決定したならば、高パワーモードにおける駆動開始コマンドを入力部17より入力する(図7のステップS4)。
このコマンド信号を受信したシステム制御部19は、Bモードデータ及びカラードプラデータの生成を一旦停止し、次いで、音響出力制御部80は、圧電振動子駆動電圧がVになるように送信部2の駆動回路43を制御する。次いで、走査方向θDに対してスペクトラムデータを収集するための超音波送受波を行ない、加算器46の出力信号(受信信号)をドプラ信号検出部5に供給する。
ドプラ信号検出部5は、既に図3に示したように、前記受信信号に対して直交位相検波を行なって得られた複素信号をドプラスペクトラム生成部7のSH61に供給する。一方、SH61には、操作者によって設定されたレンジゲート位置Lgに対応したサンプリングパルスがシステム制御部19より供給され、このサンプリングパルスに基づいて上記複素信号がサンプルホールドされる。そして、走査方向θDに対して周期Trで複数回行なわれる超音波送受波によって得られたSH61の出力は、HPF62において平滑化された後、A/D変換器63においてデジタル信号に変換され、FFT分析器64の図示しない記憶回路に保存される。
FFT分析器64の図示しない演算回路は、図4に示したように、連続して収集されるドプラ信号に対して所定時間(ΔT)シフトした期間を複数設定し、これらの各々の期間におけるドプラ信号に対してFFT分析を行なってドプラスペクトラムを生成する。
即ち、FFT分析器64の演算回路は、図4(a)に示すように、レートパルス周期Trの周期で得られた離散的なドプラ信号に対して、例えばq1乃至qmのm個の信号成分を読み出してFFT分析を行ない、スペクトラム成分p1乃至pmから構成されるドプラスペクトラムB1を算出する。そして、算出されたドプラスペクトラムB1は、データ処理・記憶部70のデータ記憶部8に供給される。
以下、同様にして、図4に示した時間ΔT後、時間2ΔT後、時間3ΔT後・・・のm個のドプラ信号成分に対して、ドプラスペクトラム生成部7のFFT分析器64はドプラスペクトラムB2,B3,B4・・・の算出を行なう。そして、算出された複数のドプラスペクトラムはソノグラム形式でデータ記憶部8に保存されて高パワーモードにおけるスペクトラムデータが生成され、このスペクトラムデータは表示部15に表示される(図7のステップS5)。
上述の高パワーモードの駆動期間が予め設定された期間τ2に達したならば(図7のステップS6)、システム制御部19は、Bモード画像データ及びカラードプラ画像データの生成を復活させ、次いで、音響出力制御部80は、低パワーモードにおけるBモード用駆動電圧VBL(VBLVBH)、カラードプラ用駆動電圧VCL(VCL<VCH
及びパルスドプラ用駆動電圧V(V<V)を設定する。
次いで、Bモードデータ及びカラードプラデータとドプラスペクトラムの生成を上述の同様の手順によって行ない、これらのデータに基づいてデータ処理・記憶部70が生成したBモード画像データ、カラードプラ画像データ及びスペクトラムデータは表示部15のモニタに表示される(図7のステップS7)。
一方、音響出力制御部80は、高パワーモード時の駆動電圧Vと駆動期間τ2、及び低パワーモード時の駆動電圧Vを既出の式(1)に代入することによって低パワーモードの駆動期間τ3を予め算出し、上記低パワーモードの駆動期間が上記τ3に達したならば再び高パワーモードに戻す(図7のステップS8)。尚、低パワーモードにおけるBモード用駆動電圧VBL及びカラードプラ用駆動電圧Vがパルスドプラ用駆動電圧V
略等しい場合には式(1)がそのまま適用可能であるが、異なる場合には低パワーモード時の駆動電圧を補正して駆動期間τ3の算出を行なう必要がある。
以上述べた手順によって高パワーモードと低パワーモードにおけるスペクトラムデータの生成と表示を交互に行ない、更に、上記低パワーモードのスペクトラムデータと並行して図9に示すような低パワーモードのBモード画像データ及びカラードプラ画像データ164の生成と表示を行なう(図7のステップS5乃至S8)。
一方、データ処理・記憶部70のデータ処理部9は、図10に示すように、高パワーモードと低パワーモードが交互に繰り返して得られるスペクトラムデータ163の中から高パワーモードのスペクトラム画像データ163hを抽出してシネデータ165を生成し(図7のステップS9)、データ記憶部8のシネデータ記憶領域に保存するとともに、必要に応じて表示部15のモニタに表示する。
ところで、図6では、高パワーモードの駆動周期τ4が心拍周期τ5より大きな場合について述べたが、図11に示すようにτ4<τ5が可能な場合においても適用できる。即ち、図11に示すようにECG波形161に基づいて高パワーモードにおける駆動開始タイミングt1、t3、t5、t7・・・駆動期間τ2及び駆動周期τ4が設定された場合、1心拍中の例えば最大周波数成分(最大流速値)が得られる部分のみに高パワーモードの駆動期間τ2を設定することによって、臨床上重要な情報を感度よく観察することが可能となる。
尚、上述の実施形態では、パルスドプラ法によるスペクトラムデータの生成と表示を例に説明したが、連続波ドプラ法においても同様な手順によってスペクトラムデータを得ることができる。即ち、送信部2の駆動回路43は、送信遅延回路42を介して供給される基準信号発生部1の連続波に基づいて連続波駆動信号を生成し、超音波プローブ20の第1の振動子群に供給する。一方、超音波プローブ20の第2の振動子群によって得られた受信信号は、受信部3、ドプラ信号検出部5、ドプラスペクトラム生成部7のA/D変換器63及びFFT分析器64を介してデータ処理・記憶部70に送られ、スペクトラムデータが生成される。
(変形例)
次に、本実施形態の変形例につき図12を用いて説明する。本変形例の特徴は、連続波ドプラ法によって高パワーモードのスペクトラムデータを生成する際に、超音波プローブ20におけるN個の圧電振動子を第1の振動子群と、この振動子群に隣接した第2の振動子群に分割し、送信用に用いる振動子群と受信用に用いる振動子群を交互に切り替えて用いることにある。
図12は、ECG波形の一心拍周期で高パワーモードと低パワーモードを繰り返してスペクトルデータの生成を行なう場合を示しており、図6の場合と同様にして図12(a)は、高パワーモード及び低パワーモードにおける駆動電圧V,及びVと駆動期間τ2及びτ3を示している。一方、図12(b)は、ECG波形161及び高パワーインジケータ162と共に得られるスペクトルデータ163を示しており、更に、図12(c)は、夫々の高パワーモード期間τ2の送信及び受信に使用される超音波プローブ20の振動子群22を示している。
超音波プローブ20を構成するN個の圧電振動子21−1乃至21−Nは、例えば、圧電振動子21−1乃至21−N/2によって構成される第1の振動子群22−1と圧電振動子21−(N/2+1)乃至21−Nによって構成される第2の振動子群22−2に分割され、時刻t1乃至t2の第1の高パワーモード期間においては、第1の振動子群22−1を用いて送信超音波が放射され、第2の振動子群22−2を用いて受信超音波が検出される。一方、時刻t3乃至t4の第2の高パワーモード期間においては、第1の振動子群22−1が受信用に、又、第2の振動子群22−2が送信用に用いられ、更に、時刻t5乃至t6の第3の高パワーモード期間においては、第1の高パワーモード期間と同様に第1の振動子群22−1が送信用に、第2の振動子群22−2が受信用に用いられる。
このようにして送信用振動子群と受信用振動子群を交互に切り替えながら高パワーモードの超音波送受波を行なうことによって、第1の振動子群22−1あるいは第2の圧電振動子群22−2における発熱量は上記切り替えを行なわない従来の場合と比較して約1/2に低減する。
以上述べたように、上述の第1の実施形態によれば、超音波ドプラスペクトラム法におけるスペクトラムデータの生成期間を従来法より送信音響出力の大きな高パワーモード期間と従来法より送信音響出力の小さな低パワーモード期間に区分して超音波の送受波を行なうため、単位時間当たりの送信音響出力を増大させること無く高感度のスペクトラムデータを生成することができる。
特に、発熱規制あるいは音響出力規制に基づいて高パワーモードにおける送信音響出力及び駆動期間と低パワーモードにおける送信音響出力及び駆動期間が設定されるため、全体的な出力を低く抑えて上記規制を遵守すると共に、臨床上要求されるドプラスペクトラムあるいはスペクトラムデータの観察したい部分を高パワーモード期間にして高感度で得ることが可能となる。このため、スペクトラムデータの例えば最大周波数成分に対するトレースデータの生成が容易となり、操作者の負担が減少すると共に診断効率が向上する。
一方、低パワーモード期間において生成される低感度のスペクトラムデータを用いて診断することは適当ではないが、このデータを観察することによって、装置の正常動作を確認することができる。
又、低パワーモード期間において表示されるBモード画像データやカラードプラ画像データについても上記と同様の効果がある。即ち、これらの画像データ上に示される方向マーカやレンジゲートマーカによってスペクトラムデータの収集位置を常時モニタリングすることができ、その位置が適当でない場合には入力部の入力デバイスを用いて最適な位置に変更することが可能となる。
更に、上述の第1の実施形態の変形例によれば、連続波ドプラ法において送信に用いる振動子群と受信に用いる振動子群を高パワーモードの繰り返し毎に切り替えて使用することにより、超音波プローブにおける発熱量を低減することができる。このため、高パワーモードの駆動電圧を増大させることが可能となりスペクトラムデータを更に高感度で生成することができる。
(第2実施形態)
次に、本発明の第2の実施形態につき図13乃至図15を用いて説明する。本実施形態の特徴は、操作者が入力部にて入力する駆動開始コマンド信号に基づいて高パワーモードにおけるスペクトラムデータの生成を行なうことにある。
この第2の実施形態における超音波診断装置の構成は、図1及び図2に示した第1の実施形態の超音波診断装置100と同様であるため説明を省略し、図13のフローチャートに基づいて本実施形態におけるスペクトラムデータの生成手順について以下に説明する。但しこのフローチャートにおいて、図7に示した第1の実施形態のフローチャートと同一のステップについての詳細な説明は省略する。尚、本実施形態においてもパルスドプラ法を中心に説明するが、連続波ドプラ法においても略同様の手順によってスペクトラムデータを生成することができる。
超音波データの収集に先立って、操作者は、上述の第1の実施形態の場合と同様に、駆動電圧や駆動期間などの設定を行ない(図13のステップS11)、例えば、図7のステップS7と同様の手順によって低パワーモードにおけるBモード画像データやカラードプラ画像データ、更には、暫定的な収集位置におけるスペクトラムデータの生成と表示を行なう(図13のステップS12)。
次に、操作者は、表示されたBモード画像データあるいはカラードプラ画像データに対して、スペクトラムデータの収集位置を決定する方向マーカとレンジゲートマーカを所望の位置に設定し(図13のステップS13)、このとき表示されたスペクトラムデータを観察した操作者は、所望のタイミングにおいて高パワーモードの駆動開始コマンドを入力部17より入力する(図13のステップS14)。
このコマンド信号を受信したシステム制御部19は、Bモードデータ及びカラードプラデータの生成を一旦停止し、次いで、音響出力制御部80は、駆動回路43の駆動電圧をVに設定する。次いで、走査方向θDに対してスペクトラムデータを収集するための超音波送受波を行ない、図7のステップS5と同様の手順によって高パワーモードのスペクトラムデータの生成と表示を行なう(図13のステップS15)。
上述の高パワーモードの超音波送受波とスペクトラムデータの生成期間が予め設定された期間τ2に達したならば(図13のステップS16)、システム制御部19は、Bモード画像データ及びカラードプラ画像データの生成を復活させ、次いで、音響出力制御部80は、低パワーモードにおけるBモード用駆動電圧VBL、カラードプラ用駆動電圧VCL及びパルスドプラ用駆動電圧Vを設定する。
次いで、低パワーモードにおけるBモードデータ及びカラードプラデータとドプラスペクトラムの生成を図13のステップS12と同様の手順によって行ない、得られたBモード画像データ、カラードプラ画像データ及びスペクトラムデータを表示部15のモニタに表示する(図13のステップS17)。
図14は、上述の本実施形態における圧電振動子駆動方法と、この駆動によって得られるスペクトルデータを示したものであり、高パワーモード期間τ2がECG波形の略3心拍分に相当する場合である。この実施形態では、高パワーモードにおける駆動は操作者が入力部17より入力する駆動開始コマンド信号に基づいて行なわれ、この駆動開始コマンドが入力されるまでは低パワーモードによるBモード画像データ、カラードプラ画像データ及びスペクトラムデータの表示が行なわれる。
一方、音響出力制御部80は、高パワーモードの駆動電圧Vと駆動期間τ2、及び低パワーモードの駆動電圧Vを既出の式(1)に代入することによって低パワーモードの駆動期間τ3を予め算出し、上記低パワーモードのデータ生成期間τxと駆動期間τ3に基づいて駆動開始コマンド信号の入力待ち時間τw(τw=τ3−τx)を算出する。そして、この入力待ち時間τwは、システム制御部19及びデータ処理・記憶部70を介して表示部15に供給され、表示部15は、この入力待ち時間τwに関する情報と上述のスペクトラムデータ等を合成してモニタ上に表示する(図13のステップS18)。
図15は、入力待ち時間の表示例であり、ECG波形161、高パワーインジケータ162、スペクトラムデータ163と共に、低パワーモードにおけるデータ生成時間τxの最新データを示す生成時間バー166、入力待ち時間τwを表示する待ち時間表示欄167が示される。次いで、操作者は、上記入力待ち時間τwが零になったことを確認したならば(図13のステップS19)、図13のステップS14に戻り、以降、上述のステップS14乃至S19を繰り返す。
以上述べた第2の実施形態によれば、上述の第1の実施形態と同様にして超音波ドプラスペクトラム法におけるスペクトラムデータの生成期間を従来法より送信音響出力の大きな高パワーモード期間と従来法より送信音響出力の小さな低パワーモード期間に区分して超音波の送受波を行なうため、高パワーモード期間において診断に用いる高感度のスペクトラムデータが生成され、低パワーモード期間において装置の正常動作やデータ収集位置等の確認を行なうことができる。このため、高パワーモード期間において得られた高感度のスペクトラムデータに対するトレースデータの生成が容易となり、操作者の負担が減少すると共に診断効率が向上する。
又、発熱規制や音響出力規制によって定められた許容送信音響出力、高パワーモードにおける送信音響出力及び駆動期間、低パワーモードにおける送信音響出力に基づいて高パワーモードの駆動開始までの待ち時間が表示され、この待ち時間に基づいて操作者は高パワーモードの駆動開始コマンドを入力することができるため、定められた規制を遵守すると共に臨床上要求される高感度のドプラスペクトラムあるいはスペクトラムデータを所望のタイミングで得ることが可能となる。
尚、上述の第2の実施形態の説明では、表示部に入力待ち時間を表示する方法について述べたが、低パワーモードにおけるデータ生成時間τxが予め設定された駆動時間(継続時間)τ3に等しくなった時点でその旨を表示部に表示してもよく、又、図示しない音声出力部による音声を用いてもよい。
又、この実施形態においても、連続波ドプラ法によってスペクトラムデータの生成を行なう際には、超音波プローブにおける第1の振動子群と、この振動子群に隣接した第2の振動子群を交互に切り替えて高パワーモードの送信及び受信を行なうことにより超音波プローブにおける発熱を低減させることができる。
以上、本発明の実施形態について述べてきたが、本発明は上記の実施形態に限定されるものでは無く、変形して実施することが可能である。例えば、高パワーモードにおける送信音響出力を更に増大するために、低パワーモードにおける駆動電圧VLを零、即ち、超音波の送受波を停止してもよく、同様にして低パワーモードにおけるBモード画像データ及びカラードプラ画像データの表示は行なわなくてもよい。
一方、上述の実施形態にて用いたECGユニットは、超音波診断装置内に内蔵してもよいが、独立に設置してもよい。又、図12では、N/2の圧電振動子を有する送信用圧電振動子群及び受信用振動子群について示したが、夫々の振動子群における圧電振動子の数は等しくなくともよい。更に、上述の実施形態ではスペクトラムデータの最大周波数成分に対するトレースデータの生成について述べたが、これに限定されるものではなく、例えば、平均周波数成分や中心周波数成分であってもよい。又、高パワーモード期間及び低パワーモード期間に含まれるECG波形の心拍数は上述の実施形態に示したものに限定されない。
一方、上述の実施形態の受信部はアナログ方式について述べたがデジタル方式であっても構わない。又、この超音波診断装置によって生成されるBモード画像データ及びカラードプラ画像データは2次元の画像データに限定されるものではなく、3次元画像データであってもよい。そして、超音波プローブは、3次元画像データを生成するために圧電振動子が2次元配列されていてもよい。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
本発明の第1の実施形態における超音波診断装置の全体構成を示すブロック図。 第1実施形態における送受信部及びデータ生成部の構成を示すブロック図。 第1実施形態におけるドプラ信号検出部とドプラスペクトラム生成部の基本動作を示すタイムチャート。 第1実施形態のFFT分析方法を示す図。 第1実施形態の連続波ドプラ法における圧電振動子駆動方法を示す図。 第1実施形態における圧電振動子駆動方法とこの駆動によって得られるスペクトルデータを示す図。 第1実施形態におけるスペクトラムデータの生成手順を示すフローチャート。 第1実施形態の高パワーモード及び低パワーモードにおける駆動電圧の設定を示す図。 第1実施形態の低パワーモードにおいて得られるスペクトラムデータとBモード画像データ及びカラードプラ画像データを示す図。 第1実施形態の高パワーモードにおいて得られたスペクトラムデータを合成して生成されるシネデータを示す図。 第1実施形態における圧電振動子駆動方法とこの駆動によって得られるスペクトラムデータの他の具体例を示す図。 第1実施形態の変形例における圧電振動子切り替え駆動方法を示す図。 本発明の第2の実施形態におけるスペクトラムデータの生成手順を示すフローチャート。 第2実施形態の圧電振動子駆動方法とこの駆動によって得られるスペクトラムデータを示す図。 第2実施形態におけるスペクトラムデータと入力待ち時間の表示例を示す図。 従来法における圧電振動子駆動方法とこの駆動によって得られるスペクトラムデータを示す図。 第1実施形態において、高パワーモードの継続期間の設定画面例を示す図。 第1実施形態において、高パワーモードの継続期間の他の設定画面例を示す図。
符号の説明
1…基準信号発生部、15…表示部、17…入力部、18…ECGユニット、19…システム制御部、20…超音波プローブ、40…送受信部、50…データ生成部、70…データ処理・記憶部、100…超音波診断装置。

Claims (14)

  1. 被検体に対して超音波を送信し、前記被検体からエコーを受信するために複数の圧電振動子を有する超音波プローブと、
    前記超音波を前記圧電振動子から発生するために前記複数の圧電振動子にそれぞれ対応する複数の駆動信号を発生する駆動部と、
    前記駆動信号の振幅が比較的高い高パワーモードと前記駆動信号の振幅が比較的低い低パワーモードとを前記被検体の生体信号に同期して切り替えるために前記駆動部を制御する制御部と、
    前記エコーに基づいてドプラ信号を検出するドプラ信号検出部と、
    前記検出されたドプラ信号に基づいてスペクトラムデータを生成するスペクトラムデータ生成部と、
    前記スペクトラムデータを表示する表示部とを具備することを特徴とする超音波診断装置。
  2. 前記高パワーモードは、前記被検体の心拍周期内の一部期間に選択されることを特徴とする請求項1に記載した超音波診断装置。
  3. 前記被検体の心拍周期に対して前記一部期間を設定操作するための操作部をさらに備えることを特徴とする請求項2に記載した超音波診断装置。
  4. 前記被検体の心電波形を前記一部期間に対応するラインマークとともに表示する表示部をさらに備えることを特徴とする請求項3に記載した超音波診断装置。
  5. 前記操作部の操作に従って前記表示された心電波形に対する前記ラインマークの位置および前記ラインマークの長さが調整され、前記制御部により前記ラインマークの位置および長さに応じて前記一部期間が設定されることを特徴とする請求項4に記載した超音波診断装置。
  6. 前記高パワーモードは、前記被検体の1又は連続する所定数の心拍期間に選択されることを特徴とする請求項1に記載した超音波診断装置。
  7. 前記高パワーモードが継続される心拍数と、前記低パワーモードが継続される心拍数とを個々に設定操作するための操作部をさらに備えることを特徴とする請求項6に記載した超音波診断装置。
  8. 前記高パワーモードが継続される心拍数は初期的に1に設定され、前記低パワーモードが継続される心拍数は初期的に3に設定されることを特徴とする請求項7に記載した超音波診断装置。
  9. 前記高パワーモードの駆動信号は前記低パワーモードの駆動信号よりも電圧振幅が大きいことを特徴とする請求項1に記載した超音波診断装置。
  10. 前記高パワーモードの駆動信号は前記低パワーモードの駆動信号と中心周波数は略同一であることを特徴とする請求項9に記載した超音波診断装置。
  11. 前記表示部は、前記スペクトラムデータを、前記生体信号としての心電波形と前記高パワーモードの継続期間を示す高パワーインジケータとともに表示することを特徴とする請求項1に記載した超音波診断装置。
  12. 前記超音波の単位時間当たりの送信音響出力が所定の上限値未満となるように、前記高パワーモードにおける駆動電圧、前記高パワーモードの継続期間及び前記低パワーモードにおける駆動電圧とに基づいて前記低パワーモードの継続期間を決定する決定部をさらに備えることを特徴とする請求項1記載の超音波診断装置。
  13. 前記高パワーモードのもとで得られたスペクトラムデータを繋ぎ合わせてシネデータを生成するシネデータ生成部をさらに備えることを特徴とする請求項1記載の超音波診断装置。
  14. 前記駆動部は、前記高パワーモードのもとで駆動する圧電振動子を、前記超音波プローブの第1の圧電振動子と第2の圧電振動子とで前記高パワーモードの継続期間ごとに交互に切り換えることを特徴とする請求項1に記載した超音波診断装置。
JP2005061602A 2004-03-24 2005-03-04 超音波診断装置 Active JP4801912B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005061602A JP4801912B2 (ja) 2004-03-24 2005-03-04 超音波診断装置
US11/084,159 US7850609B2 (en) 2004-03-24 2005-03-21 Ultrasound diagnostic apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004086749 2004-03-24
JP2004086749 2004-03-24
JP2005061602A JP4801912B2 (ja) 2004-03-24 2005-03-04 超音波診断装置

Publications (2)

Publication Number Publication Date
JP2005305129A JP2005305129A (ja) 2005-11-04
JP4801912B2 true JP4801912B2 (ja) 2011-10-26

Family

ID=35055321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005061602A Active JP4801912B2 (ja) 2004-03-24 2005-03-04 超音波診断装置

Country Status (2)

Country Link
US (1) US7850609B2 (ja)
JP (1) JP4801912B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007134394A1 (en) * 2006-05-22 2007-11-29 Uscom Limited Cardiac measurement system and method
JP5100087B2 (ja) * 2006-11-02 2012-12-19 株式会社東芝 心電信号検出装置及び超音波診断装置
JP5274806B2 (ja) 2007-09-26 2013-08-28 株式会社東芝 超音波診断装置及びその方法並びに超音波診断装置の制御プログラム
CN101461719B (zh) * 2007-12-18 2012-02-01 深圳迈瑞生物医疗电子股份有限公司 一种多普勒扫描变换实现方法和装置
JP5355924B2 (ja) * 2008-03-31 2013-11-27 株式会社東芝 超音波診断装置
CA2760809A1 (en) * 2009-05-01 2010-11-04 Yoram Palti Doppler based flow measurements
JP5398514B2 (ja) * 2009-12-21 2014-01-29 株式会社東芝 カラードプラ超音波診断装置
JP5414581B2 (ja) * 2010-03-12 2014-02-12 株式会社東芝 超音波診断装置
JP5972561B2 (ja) * 2011-12-08 2016-08-17 東芝メディカルシステムズ株式会社 超音波診断装置、画像処理装置及び画像処理プログラム
KR101484958B1 (ko) * 2012-03-28 2015-01-21 삼성메디슨 주식회사 초음파 시스템 및 초음파 영상 획득 방법
KR102192005B1 (ko) * 2014-02-28 2020-12-16 삼성전자주식회사 초음파 진단 장치 및 그 동작방법
KR102346128B1 (ko) * 2014-12-31 2022-01-03 삼성메디슨 주식회사 초음파 진단 장치, 웨어러블 장치, 그에 따른 초음파 진단 장치 제어방법, 그에 따른 웨어러블 장치 제어방법 및 그를 기록한 기록 매체
KR101797042B1 (ko) 2015-05-15 2017-11-13 삼성전자주식회사 의료 영상 합성 방법 및 장치
JP6411969B2 (ja) * 2015-08-17 2018-10-24 富士フイルム株式会社 超音波診断装置およびドプラ波形画像生成方法
JP6573838B2 (ja) * 2016-02-10 2019-09-11 株式会社神戸製鋼所 回転機の異常検知システム
US20170224309A1 (en) * 2016-02-10 2017-08-10 Toshiba Medical Systems Corporation Ultrasonic diagnostic device
US20180329045A1 (en) * 2017-05-12 2018-11-15 General Electric Company Flexible ultrasound system for both imaging and high power delivery applications
US20180344292A1 (en) * 2017-05-31 2018-12-06 General Electric Company Methods and system for automatically analyzing a doppler spectrum
JP7449773B2 (ja) 2020-05-14 2024-03-14 富士フイルムヘルスケア株式会社 超音波診断装置及び送信方法
CN113633900B (zh) * 2021-08-04 2024-01-26 四川泰猷科技有限公司 基于医用超声治疗装置的不同频段频率和功率调整方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477858A (en) * 1986-07-30 1995-12-26 Siemens Medical Systems, Inc. Ultrasound blood flow/tissue imaging system
JP2916219B2 (ja) * 1990-06-19 1999-07-05 富士通株式会社 超音波診断装置
JPH06327672A (ja) * 1993-05-18 1994-11-29 Toshiba Medical Eng Co Ltd 超音波ドプラ診断装置
JPH07286999A (ja) * 1994-02-28 1995-10-31 Toshiba Medical Eng Co Ltd 超音波診断装置
JP2956534B2 (ja) * 1995-06-05 1999-10-04 松下電器産業株式会社 超音波ドプラ血流計
JP3713329B2 (ja) * 1996-06-04 2005-11-09 株式会社東芝 超音波ドプラ診断装置
US6193659B1 (en) * 1997-07-15 2001-02-27 Acuson Corporation Medical ultrasonic diagnostic imaging method and apparatus
US6171246B1 (en) * 1999-04-29 2001-01-09 Michalakis Averkiou Realtime ultrasonic imaging of perfusion using ultrasonic contrast agents
JP4387526B2 (ja) * 1999-11-25 2009-12-16 株式会社東芝 超音波ドプラ診断装置
US6210335B1 (en) * 1999-12-08 2001-04-03 General Electric Company Acoustic flash to increase penetration
JP4010809B2 (ja) * 2001-12-27 2007-11-21 東芝医用システムエンジニアリング株式会社 超音波診断装置
JP4057351B2 (ja) 2002-06-12 2008-03-05 アロカ株式会社 超音波診断装置
US6612989B1 (en) * 2002-06-18 2003-09-02 Koninklijke Philips Electronics N.V. System and method for synchronized persistence with contrast agent imaging
US6824518B2 (en) * 2002-11-26 2004-11-30 Siemens Medical Solutions Usa, Inc. High transmit power diagnostic ultrasound imaging
JP4245428B2 (ja) * 2003-07-29 2009-03-25 東芝医用システムエンジニアリング株式会社 超音波ドプラ診断装置及び画像データ生成方法

Also Published As

Publication number Publication date
US7850609B2 (en) 2010-12-14
US20050222506A1 (en) 2005-10-06
JP2005305129A (ja) 2005-11-04

Similar Documents

Publication Publication Date Title
JP4801912B2 (ja) 超音波診断装置
JP4920302B2 (ja) 超音波診断装置及び超音波計測方法
JP4202697B2 (ja) 超音波診断装置、超音波画像表示装置および超音波画像表示方法
US5690111A (en) Ultrasound diagnostic apparatus
JP4744994B2 (ja) 超音波ドプラ診断装置及び診断パラメータ計測方法
JP4245428B2 (ja) 超音波ドプラ診断装置及び画像データ生成方法
JP2007319540A (ja) 超音波ドプラ診断装置及び超音波ドプラ診断装置の制御プログラム
JP2006197967A (ja) 超音波診断装置及び超音波画像表示装置
JP2010124842A (ja) 超音波診断装置
JP2005087634A (ja) 超音波診断装置及び計測データ表示方法
WO2014013839A1 (ja) 超音波診断装置及び画像処理装置
JP2004313291A (ja) 超音波診断装置、医用画像解析装置及び医用画像解析方法
JP4649147B2 (ja) 超音波診断装置
JP4891590B2 (ja) 超音波ドプラ計測装置及びドプラ信号処理プログラム
JP4660126B2 (ja) 超音波血流イメージング装置
JP4497873B2 (ja) 超音波ドプラ診断装置
JP2004329609A (ja) 超音波診断装置
JP2004073850A (ja) 超音波診断装置、医用画像装置、データ処理装置、データ処理方法、及びソフトウェア記録媒体
JP2010005322A (ja) 超音波診断装置
JP2008142130A (ja) 超音波診断装置およびその制御処理プログラム
JP4685458B2 (ja) 超音波診断装置
JP2008104640A (ja) 超音波診断装置、心拍同期信号生成装置及び心拍同期信号生成方法
JP2008279110A (ja) 超音波診断装置及び血流情報観測装置
JP4691185B2 (ja) 超音波画像表示装置
JP4679141B2 (ja) 超音波診断装置および超音波診断画像の表示方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4801912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350