JP4796362B2 - Heat transfer tube for LNG vaporizer and method for manufacturing the same - Google Patents

Heat transfer tube for LNG vaporizer and method for manufacturing the same Download PDF

Info

Publication number
JP4796362B2
JP4796362B2 JP2005265666A JP2005265666A JP4796362B2 JP 4796362 B2 JP4796362 B2 JP 4796362B2 JP 2005265666 A JP2005265666 A JP 2005265666A JP 2005265666 A JP2005265666 A JP 2005265666A JP 4796362 B2 JP4796362 B2 JP 4796362B2
Authority
JP
Japan
Prior art keywords
heat transfer
lng
transfer tube
alloy
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005265666A
Other languages
Japanese (ja)
Other versions
JP2007078237A (en
Inventor
龍哉 安永
亘 漆原
淳 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005265666A priority Critical patent/JP4796362B2/en
Priority to EP06291353A priority patent/EP1762639A1/en
Priority to TW095131788A priority patent/TW200720617A/en
Priority to CNA2006101536505A priority patent/CN1932428A/en
Publication of JP2007078237A publication Critical patent/JP2007078237A/en
Application granted granted Critical
Publication of JP4796362B2 publication Critical patent/JP4796362B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Description

この発明は、防食効果に優れたLNG(液化天然ガス)気化器用伝熱管およびその製造方法と、この伝熱管を用いたLNG気化器に関する。   The present invention relates to a heat transfer tube for an LNG (liquefied natural gas) vaporizer having an excellent anticorrosion effect, a method for producing the same, and an LNG vaporizer using the heat transfer tube.

液化天然ガス(以下LNGと記す)は、通常、低温高圧の液状で移送あるいは貯蔵され、使用される前に気化される。この気化には、大量のLNGを気化させることができるオープンラックベーパライザ(以下ORVと記す)と称される気化器が用いられる。図1は、このORVの一例を示したもので、ORVは、海水との熱交換によってLNGを加熱して気化させる熱交換器の一種である(例えば、特許文献1参照)。海水は、海水ヘッダー6から散水ノズル7を経てトラフ8に溜められ、トラフ8の側縁部から溢流、伝熱管3aをカーテン状に配列して形成されたパネル3の外面を濡らしながら垂下する。一方、LNGは、LNGマニホールド1に導入されてパネル3の下部に連結されたLNGが流通する下部ヘッダー2に送られ、海水との熱交換によって加熱されてパネル3の各伝熱管3a内で気化して上昇し、気化した天然ガス(NG)は、上部ヘッダー4、4からNGマニホールド5へ導出される。   Liquefied natural gas (hereinafter referred to as LNG) is usually transported or stored in a liquid at a low temperature and high pressure, and is vaporized before being used. For this vaporization, a vaporizer called an open rack vaporizer (hereinafter referred to as ORV) capable of vaporizing a large amount of LNG is used. FIG. 1 shows an example of this ORV. The ORV is a kind of heat exchanger that heats and vaporizes LNG by heat exchange with seawater (see, for example, Patent Document 1). Seawater is accumulated in the trough 8 from the seawater header 6 through the watering nozzle 7, overflows from the side edge of the trough 8, and hangs down while wetting the outer surface of the panel 3 formed by arranging the heat transfer tubes 3a in a curtain shape. . On the other hand, the LNG is introduced into the LNG manifold 1 and sent to the lower header 2 through which the LNG connected to the lower portion of the panel 3 circulates. The LNG is heated by heat exchange with the seawater and air is passed through each heat transfer tube 3 a of the panel 3. The natural gas (NG) that has risen and vaporized is discharged from the upper headers 4 and 4 to the NG manifold 5.

前記パネル3を形成する伝熱管3aの材質として、熱伝導性が良好であること、およびパネル3として要求される複雑な形状に加工しやすいことなどの観点から、通常アルミニウム合金が使用されている。アルミニウム合金は、海水に浸漬された状態では腐食しやすく、一旦腐食し始めると、腐食部分が集中的に侵食され、孔があく孔食を受けやすい欠点がある。このため、海水に浸漬されるなどの用途に用いられるアルミニウム合金については、防食処理が盛んに研究され、現在、犠牲防食作用を利用した防食処理が主流となっている。前記特許文献1では、前記LNG気化器で、パネル3の外面を濡らしながら垂下した海水が溜まった海水ポンド中に浸漬したLNGが流通する下部ヘッダー2に、パネル3(伝熱管3a)の材質であるアルミニウム合金よりも腐食されやすい亜鉛(Zn)などの金属、すなわちイオン化傾向の大きい金属または合金バルク(図示省略)を電気的に接続して犠牲陽極とし、この犠牲陽極が電気化学的に溶解して消耗することにより、対極となる下部ヘッダー2およびパネル3の表面を防食する防食処理法が開示されている。しかし、LNG気化器では、パネル3を構成する伝熱管3aの表面にトラフ8の側縁部から溢流した海水が直接当たるため、前記犠牲陽極を設けていても、いわゆるエロージョン・コロージョンによる腐食の発生は避けがたい。このため、海水が直接接触しないように、また、被覆合金が局部的に剥がれた場合でも、その防食作用によって伝熱管表面の腐食が防止されるように、伝熱管3aの表面に、その材質のアルミニウム合金よりもイオン化傾向の大きい合金(以下被覆合金と記す)を被覆することが望ましい。従来、このような犠牲防食作用を有する合金としてAl−Zn合金がよく知られ、Al−2%Zn合金、またはAl−15%Zn合金などがよく使用されている。この被覆合金を溶射して伝熱管表面に皮膜を形成することにより、腐食が有効に防止される。  As a material of the heat transfer tube 3a forming the panel 3, an aluminum alloy is usually used from the viewpoints of good thermal conductivity and easy processing into a complicated shape required for the panel 3. . Aluminum alloys are easily corroded when immersed in seawater, and once corroded, the corroded portion is eroded intensively and is susceptible to pitting corrosion. For this reason, with respect to aluminum alloys used for applications such as being immersed in seawater, anticorrosion treatment has been actively studied, and at present, anticorrosion treatment using sacrificial anticorrosive action has become mainstream. In Patent Document 1, the material of the panel 3 (heat transfer tube 3a) is attached to the lower header 2 in which the LNG immersed in the seawater pond in which the drooping seawater accumulated while wetting the outer surface of the panel 3 is wet with the LNG vaporizer. A metal, such as zinc (Zn), that is more susceptible to corrosion than an aluminum alloy, that is, a metal or alloy bulk (not shown) that has a high tendency to ionize, is electrically connected to form a sacrificial anode. An anticorrosion treatment method is disclosed in which the surfaces of the lower header 2 and the panel 3 serving as counter electrodes are anticorrosive by being consumed. However, in the LNG vaporizer, since the seawater overflowing from the side edge of the trough 8 directly hits the surface of the heat transfer tube 3a constituting the panel 3, even if the sacrificial anode is provided, corrosion caused by so-called erosion / corrosion is caused. Occurrence is inevitable. For this reason, the surface of the heat transfer tube 3a is made of the material so that the seawater is not in direct contact and the corrosion of the heat transfer tube surface is prevented by the anticorrosion action even when the coating alloy is locally peeled off. It is desirable to coat an alloy having a higher ionization tendency than an aluminum alloy (hereinafter referred to as a coating alloy). Conventionally, an Al—Zn alloy is well known as an alloy having such sacrificial anticorrosive action, and an Al-2% Zn alloy, an Al-15% Zn alloy, or the like is often used. Corrosion is effectively prevented by spraying this coating alloy to form a film on the surface of the heat transfer tube.

前記伝熱管表面に形成する皮膜の防食性にさらに向上させるために、例えば、特許文献2では、アルミニウムまたはアルミニウム合金の伝熱管(押出管材)の表面に、第1層として、電気化学的に犠牲層として働くZnを被覆し、熱交換器製造時のろう付けによるZnの蒸発を防止するために、第1層の上に、AlまたはAl−Ca、Al−Zn−Ca系等のAl合金を溶射して耐食性を改善したアルミニウム製熱交換器用管材が開示されている。また、特許文献3では、伝熱管表面に、Al−Zn合金層を形成し、さらにその表面にIn,Sn、HgおよびCdから選ばれる1種または2種以上の元素を含むAl−Zn合金層を形成して高い耐食性を有するようにしたAl合金製伝熱管が開示されている。一方、特許文献4では、Al合金母材管の表面に、Al−Zn合金材をクラッドして厚膜の犠牲陽極被膜を形成したORV型気化器用のフィンチューブ(フィン型伝熱管)が開示されている。
特開平9−178391号公報 特開平1−114698号公報 特公平7−1157号公報 特開平5−164496号公報
In order to further improve the corrosion resistance of the film formed on the surface of the heat transfer tube, for example, in Patent Document 2, the surface of the heat transfer tube (extruded tube material) of aluminum or aluminum alloy is electrochemically sacrificed as a first layer. In order to coat Zn acting as a layer and prevent evaporation of Zn due to brazing at the time of manufacturing a heat exchanger, Al or Al-Ca, Al-Zn-Ca-based Al alloy or the like is formed on the first layer. An aluminum heat exchanger tube with improved corrosion resistance by thermal spraying is disclosed. In Patent Document 3, an Al—Zn alloy layer is formed on the surface of the heat transfer tube, and further, an Al—Zn alloy layer containing one or more elements selected from In, Sn, Hg, and Cd on the surface thereof. A heat transfer tube made of an Al alloy is disclosed which has a high corrosion resistance by forming the structure. On the other hand, Patent Document 4 discloses a fin tube (fin type heat transfer tube) for an ORV type vaporizer in which an Al—Zn alloy material is clad on a surface of an Al alloy base material tube to form a thick sacrificial anode coating. ing.
JP-A-9-178391 Japanese Patent Laid-Open No. 1-114698 Japanese Patent Publication No.7-1157 Japanese Patent Laid-Open No. 5-16496

しかし、ORVのパネル3の下部および下部ヘッダー2は、LNG(液体状態の天然ガス)が流通するため、氷点下まで冷却されている。このようなORVの低温領域で溢流垂下する海水に接触する状態では、伝熱管母材のアルミニウム合金表面に酸化皮膜が形成されにくくなり、伝熱管母材の電極電位が、特許文献1〜4に記載されたAl−Zn合金皮膜の電極電位よりも低くなり、Al−Zn合金皮膜の犠牲防食作用が発揮されなくなり、伝熱管母材が保護されない虞がある。例えば、海水温度が高い場合、またはパネル3のLNG流通による冷却負荷が大きい場合などの環境条件によっては、Al−Zn合金皮膜の高い電位にアルミ合金伝熱管母材が引っ張られて、伝熱管母材がガルバニック腐食される虞がある。   However, the lower and lower headers 2 of the ORV panel 3 are cooled to below freezing point because LNG (liquid natural gas) flows. In the state of contact with seawater overflowing and dripping in such a low temperature region of ORV, it becomes difficult to form an oxide film on the aluminum alloy surface of the heat transfer tube base material, and the electrode potential of the heat transfer tube base material is set to Patent Documents 1-4. The electrode potential of the Al—Zn alloy film described in 1) is lower, the sacrificial anticorrosive action of the Al—Zn alloy film is not exhibited, and the heat transfer tube base material may not be protected. For example, depending on the environmental conditions such as when the seawater temperature is high or when the cooling load due to LNG distribution on the panel 3 is large, the aluminum alloy heat transfer tube base material is pulled to the high potential of the Al-Zn alloy film, and the heat transfer tube mother There is a risk of galvanic corrosion of the material.

この発明は、このような問題点に鑑みてなされたものであり、その課題は、冷却負荷が大きいため、表面に酸化皮膜が形成されにくいパネル下部側や下部ヘッダーに配置しても、Al合金母材表面の腐食損傷を防止する効果に優れたLNG気化器用伝熱管およびその製造方法と、この伝熱管を用いたLNG気化器を提供することである。   The present invention has been made in view of such problems, and the problem is that even if it is arranged on the lower panel side or the lower header where the oxide film is difficult to be formed on the surface because the cooling load is large, the Al alloy An object of the present invention is to provide a heat transfer tube for an LNG vaporizer excellent in the effect of preventing corrosion damage on the surface of a base material, a method for manufacturing the same, and an LNG vaporizer using the heat transfer tube.

前記の課題を解決するために、この発明では以下の構成を採用したのである。   In order to solve the above problems, the present invention employs the following configuration.

即ち、請求項1に係るLNG気化器用伝熱管は、内部にLNGが流通し、外表面に海水が供給され、この海水と前記LNGとが熱交換してLNGを気化させる、外表面に防食皮膜が形成されたAl合金からなるLNG気化器用伝熱管であって、前記防食皮膜が、Mgを前記Al合金のMg組成よりも多い3〜50質量%含有したAlおよびMgよりなるAl合金皮膜であると共に、溶射加工によって形成されたAl合金皮膜であることを特徴とする。 That is, the heat transfer tube for an LNG vaporizer according to claim 1 has an anticorrosive coating on the outer surface, in which LNG circulates and seawater is supplied to the outer surface, and the seawater and the LNG exchange heat to vaporize LNG. A heat transfer tube for an LNG vaporizer made of an Al alloy formed with an anti-corrosion coating, wherein the anticorrosion coating is an Al alloy coating made of Al and Mg containing 3 to 50% by mass of Mg higher than the Mg composition of the Al alloy. In addition, it is an Al alloy film formed by thermal spraying.

前述のように、伝熱管のアルミニウム合金母材表面に酸化皮膜が形成されにくい環境条件下では、これらの母材合金よりもZnの自然電極電位が高くなるため、Al−Zn溶射皮膜の方が伝熱管または下部ヘッダーの母材合金よりも電位が高くなり、犠牲防食効果が得られなくなる。このため、伝熱管母材のアルミニウム合金表面に酸化皮膜が形成されにくい環境条件下でも、犠牲防食作用を発揮させるためには、熱力学的にAlよりも電位が低い金属の、例えば溶射加工による皮膜を形成する必要がある。このような金属としては、Mgが最適であり、Mgを含有する合金皮膜で、伝熱管や下部ヘッダーの材質として用いられるAl合金母材よりも「卑」な皮膜であれば、犠牲防食皮膜として良好に適用できる。なお、熱力学的にAlよりも電位が低い金属としては、Mgの他に、Hf(ハフニウム)、Ti(チタン)、Be(ベリリウム)がある。この中、Ti、Beの酸化皮膜はAlの酸化皮膜よりも強固であり、これらの金属が熱力学的にAlよりも「卑」な金属であっても、LNG気化器が運転される環境を考えると、実質的にAlよりも「貴」な金属となる。また、HfやTiを含有する金属は伸線性が著しくわるく、皮膜形成手段であるフレーム溶射に用いる溶射材に加工することも困難である。したがって、Hf、Tiを犠牲防食用皮膜に適用することはできない。一方、Beには毒性があるため、皮膜形成作業時の危険性やORV運転時の海洋汚染の問題があり、また、非常に高価な材料であるため、犠牲防食用皮膜としては不適である。   As described above, since the natural electrode potential of Zn is higher than that of the base metal alloy under an environmental condition in which an oxide film is not easily formed on the surface of the aluminum alloy base material of the heat transfer tube, the Al-Zn sprayed coating is more preferable. The potential becomes higher than the base metal alloy of the heat transfer tube or the lower header, and the sacrificial anticorrosive effect cannot be obtained. For this reason, in order to exert a sacrificial anticorrosive action even under environmental conditions in which an oxide film is not easily formed on the surface of the aluminum alloy of the heat transfer tube base metal, for example, by thermal spraying of a metal having a lower potential than Al thermodynamically It is necessary to form a film. As such a metal, Mg is optimal, and an alloy film containing Mg, which is a “base” film than an Al alloy base material used as a material for heat transfer tubes and lower headers, can be used as a sacrificial anticorrosive film. Applicable well. In addition to Mg, there are Hf (hafnium), Ti (titanium), and Be (beryllium) as thermodynamically lower metals than Al. Among these, Ti and Be oxide films are stronger than Al oxide films, and even if these metals are thermodynamically “base” metals than Al, the environment in which the LNG vaporizer is operated When considered, the metal is substantially more noble than Al. Moreover, the metal containing Hf and Ti has remarkably poor drawability, and it is difficult to process it into a thermal spray material used for flame spraying as a film forming means. Therefore, Hf and Ti cannot be applied to the sacrificial anticorrosive film. On the other hand, since Be is toxic, there is a risk of film formation work and marine pollution during ORV operation, and it is a very expensive material, so it is not suitable as a sacrificial anticorrosive film.

また、前記Al合金皮膜のMg含有量が1%を下回ると、犠牲防食効果が不十分となる。このため、犠牲防食効果をより発現させるためには、Mg含有量は3質量%以上とする必要があり、犠牲防食効果がより有効となる。一方、Mg含有量の増加に伴い、Al−Mg合金皮膜の犠牲防食作用は高まるが、温度などの環境条件によっては皮膜の消耗速度が大きくなり過ぎる。このため、Mg含有量は50質量%以下とする必要があり、20質量%以下が好ましい。すなわち、Mg組成が3〜50質量%の場合、皮膜の密着性、犠牲防食効果と皮膜耐久性とがいずれも好適に満足される。On the other hand, when the Mg content of the Al alloy film is less than 1%, the sacrificial anticorrosive effect is insufficient. For this reason, in order to express a sacrificial anticorrosive effect more, Mg content needs to be 3 mass% or more, and a sacrificial anticorrosive effect becomes more effective. On the other hand, as the Mg content increases, the sacrificial anticorrosive action of the Al—Mg alloy film increases, but the consumption rate of the film becomes too high depending on environmental conditions such as temperature. For this reason, Mg content needs to be 50 mass% or less, and 20 mass% or less is preferable. That is, when the Mg composition is 3 to 50% by mass, the adhesion of the film, the sacrificial anticorrosive effect, and the film durability are all preferably satisfied.

請求項2に係るLNG気化器用伝熱管は、前記Al合金皮膜の膜厚が100〜1000μmの範囲にあることを特徴とする。The heat transfer tube for an LNG vaporizer according to claim 2 is characterized in that the film thickness of the Al alloy film is in the range of 100 to 1000 μm.

上記Al合金皮膜を、前述のように、ORVに適用する場合には、耐膨れ剥離性を向上させるために、膜厚を適切に制御することが重要である。膜厚が100μmを下回ると、溶射皮膜自体の腐食代が不足するため、伝熱管または下部ヘッダーのアルミ合金母材が容易に海水に露出するようになる。最小膜厚として100μm以上、好ましくは150μm以上、200μm以上がさらに好ましい。また、早期の腐食を防止するためには、溶射皮膜は厚い方がよいが、膜厚が1000mmを超えると、溶射による成膜時の残留応力により剥離が助長されるため、膜厚は1000μm以下、好ましくは800μm以下、さらに好ましくは600μm以下にすることが好ましい。As described above, when the Al alloy film is applied to ORV, it is important to appropriately control the film thickness in order to improve the blistering resistance. When the film thickness is less than 100 μm, the corrosion allowance of the spray coating itself is insufficient, so that the aluminum alloy base material of the heat transfer tube or the lower header is easily exposed to seawater. The minimum film thickness is 100 μm or more, preferably 150 μm or more, more preferably 200 μm or more. In order to prevent premature corrosion, it is better that the thermal spray coating is thicker, but if the film thickness exceeds 1000 mm, peeling is promoted by the residual stress during film formation by thermal spraying, so the film thickness is 1000 μm or less. The thickness is preferably 800 μm or less, more preferably 600 μm or less.

請求項に係るLNG気化器用伝熱管は、前記Al合金皮膜前記伝熱管との界面の中心線平均粗さ(Ra75)が10〜100μmの範囲にあることを特徴とする。 The heat transfer tube for an LNG vaporizer according to claim 3 is characterized in that the center line average roughness (Ra75) of the interface between the Al alloy film and the heat transfer tube is in the range of 10 to 100 μm.

前記溶射皮膜と前記伝熱管または前記下部ヘッダー、すなわちAl合金母材との界面の凹凸を大きくすることにより、溶射皮膜の内部欠陥と溶射皮膜表面との間に形成される酸素濃淡電池による界面の優先溶解が前記欠陥周囲に拡大する速度が抑制され、溶射皮膜の耐膨れ剥離性が向上する。この方法は、Al−Zn合金などの他の溶射皮膜に比べて密着性が確保しにくいAl−Mg合金溶射皮膜の密着性改善に有効な方法である。この密着性改善について詳細に検討した結果、低温域で流動海水が接触する環境下でのAl合金母材への溶射皮膜の耐剥離性は、溶射皮膜とAl合金母材の界面の中心線平均粗さRaが10μm以上の場合に向上し、優れた密着特性が得られることが判明した。密着性改善の観点から、前記界面の中心線平均粗さRa75は、12μmがより好ましく、14μmがさらに好ましい。一方、溶射皮膜とAl合金母材の界面の凹凸が大きすぎると、界面で溶射皮膜が充填されない空隙が形成されやすくなり、この空隙に海水が侵入し、界面の優先腐食が助長される。このため、界面の凹凸は、中心線平均粗さRa75が100μm以下が好ましく、80μm以下がより好ましく、60μm以下がさらに好ましい。   By increasing the unevenness of the interface between the sprayed coating and the heat transfer tube or the lower header, that is, the Al alloy base material, the interface of the oxygen concentration cell formed between the internal defect of the sprayed coating and the surface of the sprayed coating is increased. The speed at which the preferential dissolution spreads around the defect is suppressed, and the blistering resistance of the sprayed coating is improved. This method is an effective method for improving the adhesion of an Al—Mg alloy sprayed coating, which is difficult to secure the adhesion compared to other sprayed coatings such as an Al—Zn alloy. As a result of a detailed examination of this adhesion improvement, the peel resistance of the thermal spray coating to the Al alloy base material in an environment where fluid seawater contacts in a low temperature range is the average of the center line at the interface between the thermal spray coating and the Al alloy base material. It was found that when the roughness Ra was 10 μm or more, the roughness Ra was improved and excellent adhesion characteristics were obtained. From the viewpoint of improving adhesiveness, the centerline average roughness Ra75 of the interface is more preferably 12 μm and even more preferably 14 μm. On the other hand, if the unevenness at the interface between the thermal spray coating and the Al alloy base material is too large, voids that are not filled with the thermal spray coating are likely to be formed at the interface, and seawater enters the voids, thereby promoting preferential corrosion at the interface. For this reason, as for the unevenness | corrugation of an interface, centerline average roughness Ra75 has preferable 100 micrometers or less, 80 micrometers or less are more preferable, and 60 micrometers or less are further more preferable.

請求項に係るLNG気化器用伝熱管は、前記界面の粗さが、#16以上のブラスト粒子を含有するブラスト剤を前記溶射皮膜が形成される前記伝熱管の外表面に吹き付けて形成されたことを特徴とする。 The heat transfer tube for an LNG vaporizer according to claim 4 is formed by spraying a blasting agent containing blast particles having a roughness of # 16 or more on the outer surface of the heat transfer tube on which the sprayed coating is formed. It is characterized by that.

このように、#16以上の細粒のブラスト粒子を含有するブラスト剤を用いてブラスト粗面処理を行なうことにより、前記界面の粗さ(凹凸)を、10〜100μmの範囲に調整することが可能である。   Thus, by performing a blast roughening process using a blasting agent containing fine blast particles of # 16 or more, the roughness (unevenness) of the interface can be adjusted in the range of 10 to 100 μm. Is possible.

請求項に係るLNG気化器用伝熱管は、前記Al合金皮膜の、前記伝熱管の中心を通る断面での最表面から深さ100μmまでの領域に存在する気孔の面積率が15%以下であることを特徴とする。 In the heat transfer tube for an LNG vaporizer according to claim 5 , the area ratio of pores existing in a region from the outermost surface to a depth of 100 μm in a cross section passing through the center of the heat transfer tube of the Al alloy film is 15% or less. It is characterized by that.

このように、Al合金皮膜の表層部の気孔面積率を15%以下に、望ましくは10%以下に抑制すれば、膨れ剥離面積率が顕著に低下するため、良好な犠牲防食効果が得られる。   Thus, if the pore area ratio of the surface layer part of the Al alloy film is suppressed to 15% or less, preferably 10% or less, the blistering and peeling area ratio is remarkably lowered, and thus a good sacrificial anticorrosive effect can be obtained.

請求項に係るLNG気化器は、前記溶射皮膜が形成された伝熱管を複数カーテン状に配列したパネルと、このパネルの上部および下部にそれぞれ連結された気化ガス排出用の上部ヘッダーおよびLNG供給用の、下部ヘッダーとからなるパネルユニットを備え、前記パネルユニットの上部からパネルの表面に沿って流下させた海水と前記伝熱管内を下部ヘッダー側から上部ヘッダー側へ流通するLNGとの熱交換により、LNGを気化させるようにしたLNG気化器である。 An LNG vaporizer according to claim 6 is a panel in which a plurality of heat transfer tubes on which the thermal spray coating is formed are arranged in a curtain shape, an upper header for discharging vaporized gas connected to an upper portion and a lower portion of the panel, and an LNG supply. Heat exchange between seawater flown down from the upper part of the panel unit along the surface of the panel and LNG flowing in the heat transfer pipe from the lower header side to the upper header side Thus, the LNG vaporizer is configured to vaporize LNG.

請求項に係るLNG気化器は、前記伝熱管の溶射皮膜が、少なくともパネル下部および下部ヘッダーの外表面に形成されたLNG気化器である。 The LNG vaporizer which concerns on Claim 7 is an LNG vaporizer by which the sprayed coating of the said heat exchanger tube was formed in the outer surface of the panel lower part and the lower header at least.

前述のように、この種のLNG気化器では、下部ヘッダーおよびパネル下部ではLNGが液体状態であるため、氷点下まで冷却されており、このような低温領域で溢流垂下する海水に接触する状態では、伝熱管母材のアルミニウム合金表面に酸化皮膜が形成されにくくなる。このため、少なくともこの低温域のパネル下部および下部ヘッダーに前述の溶射皮膜を被覆しておくと、良好な防食効果が得られる。   As described above, in this type of LNG vaporizer, since LNG is in a liquid state in the lower header and the lower part of the panel, it is cooled to below freezing point, and in a state where it contacts seawater that overflows in such a low temperature region. Further, an oxide film is hardly formed on the surface of the aluminum alloy of the heat transfer tube base material. For this reason, if the above-mentioned sprayed coating is coated on at least the lower part of the panel and the lower header in this low temperature region, a good anticorrosive effect can be obtained.

請求項8に係るLNG気化器用伝熱管の製造方法は、内部にLNGが流通し、外表面に海水が供給され、この海水と前記LNGとが熱交換してLNGを気化させる、外表面に防食皮膜が形成されたAl合金からなるLNG気化器用伝熱管の製造方法であって、前記防食皮膜を、Mgを前記Al合金のMg組成よりも多い3〜50質量%含有するAlおよびMgよりなるAl合金の溶射加工により皮膜を形成した後に、この溶射皮膜の表面に溶射皮膜の気孔面積率を下げるための機械加工処理を施すことを特徴とする。 The method of manufacturing a heat transfer tube for an LNG vaporizer according to claim 8 is the anticorrosion on the outer surface, wherein LNG is circulated inside, seawater is supplied to the outer surface, and the seawater and the LNG exchange heat to vaporize LNG. A method for producing a heat transfer tube for an LNG vaporizer made of an Al alloy having a film formed thereon, wherein the anticorrosion film is made of Al containing 3 to 50% by mass of Mg larger than the Mg composition of the Al alloy and Al made of Mg After the coating is formed by thermal spraying of the alloy, the surface of the thermal spray coating is subjected to a machining process for reducing the pore area ratio of the thermal spray coating .

このように、溶射皮膜の表面に、グラインダー研削やショットピーニングなどの機械加工を施せば、溶射皮膜に存在する気孔欠陥が減少するため、使用中の膨れや剥離などの損傷が抑制され、良好な犠牲防食効果が発揮される。   In this way, if the surface of the thermal spray coating is subjected to machining such as grinder grinding or shot peening, pore defects present in the thermal spray coating are reduced, so that damage such as blistering and peeling during use is suppressed, which is favorable. Sacrificial anti-corrosion effect is demonstrated.

請求項9に係るLNG気化器用伝熱管の製造方法は、前記機械加工の前処理または/および後処理として、前記溶射皮膜に封孔剤含浸処理を行なうことを特徴とする。 The method for manufacturing a heat transfer tube for an LNG vaporizer according to claim 9 is characterized in that the sprayed coating is impregnated with a sealant as a pretreatment or / and a posttreatment of the machining.

このように、機械加工に加えて封孔剤含浸処理を行なえば、溶射皮膜に存在する気孔がさらに減少するため、膨れや剥離などの損傷が一層抑制される。 As described above, when the sealing agent impregnation treatment is performed in addition to the machining, the pores existing in the sprayed coating are further reduced, and thus damage such as blistering and peeling is further suppressed.

この発明では、LNG気化器の、低温領域で海水に接触する、Al合金からなる合金伝熱管の少なくともパネル下部側の外表面および下部ヘッダーの外表面に、熱力学的にAlよりも電位が低い金属であるMgを、前記Al合金よりも多い3〜50質量%含有するAlおよびMgよりなるAl合金皮膜を形成したので、伝熱管や下部ヘッダーのアルミニウム合金表面に酸化皮膜が形成されにくい環境条件下でも、前記Mgを含有する合金皮膜は伝熱管や下部ヘッダーのAl合金母材よりも電極電位が低いため、良好な犠牲防食効果が得られる。また、適正な粒子径のブラスト剤を用いてブラスト処理を行うことにより、界面の凹凸を所要の中心線平均粗さ(Ra75)の範囲に収めたので、溢流垂下する海水と接触する環境下での前記Al合金皮膜の耐剥離性が、実用上支障のないレベルにまで向上した。さらに、前記合金皮膜を形成した後に、機械加工や封孔剤含浸処理を施すことが耐剥離性の向上に顕著な効果が得られ、これらにより、伝熱管の腐食損傷が回避されてLNG気化器の操業効率および耐用年数が向上する。 In the present invention, at least the outer surface of the lower part of the panel and the outer surface of the lower header of the alloy heat transfer tube made of an Al alloy that contacts seawater in the low temperature region of the LNG vaporizer has a thermodynamically lower potential than Al. Since the Al alloy film made of Al and Mg containing 3 to 50% by mass of Mg, which is a metal, is larger than the Al alloy, it is difficult to form an oxide film on the aluminum alloy surface of the heat transfer tube and the lower header. Even under the above, since the alloy film containing Mg has a lower electrode potential than the Al alloy base material of the heat transfer tube and the lower header, a good sacrificial anticorrosive effect can be obtained. In addition, by performing blasting using a blasting agent having an appropriate particle size, the unevenness of the interface is within the required centerline average roughness (Ra75), so that the environment is in contact with the overflowing seawater. The peel resistance of the Al alloy film at 1 is improved to a level where there is no practical problem. Furthermore, after forming the alloy film, performing machining or impregnating treatment with a sealant has a significant effect on improving the peel resistance, thereby avoiding corrosion damage to the heat transfer tube and reducing the LNG vaporizer. Operating efficiency and service life of

以下に、この発明の実施形態を添付の図1に基づいて説明する。   Embodiments of the present invention will be described below with reference to FIG.

図1は、実施形態の伝熱管が組み込まれたLNG気化器を示したもので、複数の伝熱管3aをカーテン状に配列したパネル3と、このパネル3の上部および下部にそれぞれ連結されたLNG供給用の下部ヘッダー2および気化ガス(NG)排出用の上部ヘッダー4とからなるAl合金(例えば、A3203などのAl−Mn系合金、A5083などのAl−Mg系合金、A6063などのAl−Mg−Si系合金)製の複数のパネルユニットUが並列に配置されている。前記下部ヘッダー2および上部ヘッダー4は、それぞれ下部のLNGマニホールド1および上部のNGマニホールド5に接続されている。各パネルユニットUのパネル3間の上方には、LNGを気化させる熱源としての海水を流下させるトラフ8がそれぞれ配置されている。LNGは、下部のLNGマニホールド1から下部ヘッダー2に送られ、パネル3の各伝熱管3a内を上昇する過程で前記海水と熱交換して気化し、上部ヘッダー4から上部のNGマニホールド5を経て、ガスライン(図示省略)に供給される。   FIG. 1 shows an LNG vaporizer in which the heat transfer tube of the embodiment is incorporated. A panel 3 in which a plurality of heat transfer tubes 3a are arranged in a curtain shape, and an LNG connected to the upper and lower portions of the panel 3, respectively. An Al alloy (for example, an Al-Mn alloy such as A3203, an Al-Mg alloy such as A5083, or an Al-Mg such as A6063) composed of a lower header 2 for supply and an upper header 4 for discharging vaporized gas (NG). A plurality of panel units U made of (Si-based alloy) are arranged in parallel. The lower header 2 and the upper header 4 are connected to a lower LNG manifold 1 and an upper NG manifold 5, respectively. Above each panel unit U of the panel units U, troughs 8 are provided for flowing down seawater as a heat source for vaporizing LNG. The LNG is sent from the lower LNG manifold 1 to the lower header 2 and is vaporized by exchanging heat with the seawater in the process of rising in the heat transfer tubes 3a of the panel 3, and from the upper header 4 through the upper NG manifold 5. , Supplied to a gas line (not shown).

前記伝熱管3aと下部ヘッダー2のそれぞれの外表面には、Mg組成が1〜80質量%、好ましくは3〜30質量% のAl合金皮膜、すなわちAl−Mg合金皮膜が、溶射加工により、100〜1000μm 、好ましくは200〜600μmの範囲の膜厚に形成されている。この溶射加工によるAl−Mg合金皮膜の伝熱管3aおよび下部ヘッダー2、すなわちAl合金母材への密着性を向上させるために、溶射加工による皮膜形成の前処理として、粒径#16以上の細粒のブラスト剤を用いて、前記Al合金母材の外表面に、中心線平均粗さRa75が10〜100μm、好ましくは14〜60μmの範囲に、ブラスト粗面処理が施され、溶射皮膜とAl合金母材の界面の凹凸が調整される。そして、溶射膜形成後、Al−Mg合金皮膜への浸透性に優れた、例えば、高分子エポキシ樹脂を溶射膜表面に少なくとも1回塗布する封孔剤含浸処理を施すことが望ましい。なお、伝熱管3aへのAl−Mg合金皮膜の被覆は、必ずしも、伝熱管3aの全表面に施す必要はなく、少なくともパネル3の下部1m程度までの被覆でよい。 On the outer surface of each of the heat transfer tube 3a and the lower header 2, an Al alloy film having an Mg composition of 1 to 80% by mass, preferably 3 to 30% by mass, that is, an Al—Mg alloy film is formed by thermal spraying. The film thickness is in the range of ˜1000 μm, preferably 200 to 600 μm. In order to improve the adhesion of the Al—Mg alloy film to the heat transfer tube 3 a and the lower header 2, that is, the Al alloy base material by the thermal spraying process, as a pretreatment for the film formation by the thermal spraying process, a fine particle having a particle size of # 16 or more is used. Using a grain blasting agent, the outer surface of the Al alloy base material is subjected to a blast roughening treatment in a range of centerline average roughness Ra75 of 10 to 100 μm, preferably 14 to 60 μm, and a sprayed coating and Al The unevenness of the interface of the alloy base material is adjusted. Then, after forming the sprayed film, it is desirable to perform a sealing agent impregnation treatment that is excellent in permeability to the Al—Mg alloy film, for example, applying a polymer epoxy resin to the surface of the sprayed film at least once. Note that the Al—Mg alloy coating on the heat transfer tube 3a does not necessarily have to be applied to the entire surface of the heat transfer tube 3a, and may be at least about 1 m below the panel 3.

前記伝熱管および下部ヘッダーのAl合金母材と溶射皮膜との界面の凹凸、即ちRa75が、少なくとも10〜100μmの範囲にあることは、局所的に実現しても意味がなく、溶射膜被覆面全体で実現する必要がある。このため、本実施形態では、予め、溶射皮膜を被覆するAl合金母材の対象表面域から、無作為に10箇所以上測定点選んで、JIS B 0031・JIS B 0061の付属書で定義されている測定方法により、中心線平均粗さRa75を測定する。そして、全測定値の相加平均が前記Ra75の範囲にあることを確認してから、溶射皮膜の成膜を行なう。このAl合金母材と溶射皮膜との界面の凹凸は、溶射皮膜を成膜した後に測定することも可能である。この場合には、同一ブラスト処理、同一溶射皮膜形成処理のロットから任意に抽出した前記Al合金母材の、溶射皮膜の被覆面から無作為に10点以上の測定箇所を選んで、溶射膜被覆面の断面をSEM観察し、画像処理を行なうことにより、Ra75を算出することができる。この場合も、全測定値の相加平均が前記Ra75の範囲にあることが必要である。なお、前記界面の凹凸は、ブラスト処理の代わりに機械加工により付与することも可能である。   The unevenness of the interface between the Al alloy base material of the heat transfer tube and the lower header and the sprayed coating, that is, Ra75 is in the range of at least 10 to 100 μm, even if locally realized, it is meaningless, the sprayed coating surface It needs to be realized as a whole. For this reason, in this embodiment, 10 or more measurement points are selected at random from the target surface area of the Al alloy base material that covers the thermal spray coating, and defined in the appendix of JIS B 0031 and JIS B 0061. The center line average roughness Ra75 is measured by a measuring method. Then, after confirming that the arithmetic average of all the measured values is within the range of Ra75, the thermal spray coating is formed. The unevenness at the interface between the Al alloy base material and the thermal spray coating can also be measured after the thermal spray coating is formed. In this case, 10 or more measurement points are selected at random from the coating surface of the sprayed coating of the Al alloy base material arbitrarily extracted from the same blasting process and the same sprayed coating forming lot, and the sprayed coating is applied. Ra75 can be calculated by observing the cross section of the surface with SEM and performing image processing. Also in this case, it is necessary that the arithmetic average of all the measured values is in the range of Ra75. In addition, the unevenness | corrugation of the said interface can also be provided by machining instead of blasting.

LNG気化器(ORV)のパネル3と下部ヘッダー2(図1参照)付近の環境を模擬するため、まず、直径16mm、厚さ4mmの純アルミニウムの円板を準備し、この円板の中心を通る直線を境界として、一方の領域表面に、表1に示す各種組成の溶射皮膜を300μmの厚さで成膜し、溶射後は特に何の処理も施さずに、供試材とした。そして、この供試材の、溶射加工を施していない他方の領域裏面に、ペルチェ素子を密着させることにより、前記供試材の円板裏面を氷点下20℃まで冷却した、溶射皮膜が成膜された一方の領域表面を前記氷点下20℃の温度状態で、30℃の市販の人工海水(富田製薬製「マリンアートハイ」)に20時間曝した後、腐食により形成された前記円板素地のくぼみ量、および溶射皮膜のくぼみ量を表面粗さ計で測定した。測定結果を表1に示す。表1から、従来のAl−Zn系溶射皮膜(NO.15、NO.16)の場合は、溶射皮膜のくぼみ量は1〜2μmと少なく、一方円板素地のくぼみ量は12μm程度と多く、前記海水暴露環境では溶射皮膜の犠牲防食効果があまり発揮されていないことがわかる。これに対し、Al−Mg系溶射皮膜の場合は、Al−Zn系溶射皮膜の場合に比べて溶射皮膜のくぼみ量は多く、円板素地のくぼみ量は少なくなっており、Mg含有量が1%以上では、溶射皮膜のくぼみ量が5μm以上と多くなって、溶射皮膜の犠牲防食効果が発現されており、それに伴って、円板素地のくぼみ量が8μm以下と少なくなっている。とくに、前記純アルミ円板素地のくぼみ量を少なくする観点からは、Mg組成は、1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上とするのが有効である。なお、Mg組成が5質量%以上では、前記円板素地のくぼみ量はあまり変化しないが、Al−Mg溶射皮膜のくぼみ量が大きくなり、Mg組成が80質量%を超えて90質量%になると、溶射皮膜の消耗が著しくなるため、Mg組成は、80質量%以下とするのが好ましい。溶射皮膜の過度の消耗を防止するという観点からは、Mg組成は、より好ましくは50質量%以下、さらに好ましくは30質量%以下とするのが有効である。なお、表1で、G1、G2、G3は、犠牲防食効果の評価レベルを表しており、G1<G2<G3の順に犠牲防食効果が大きくなる。 In order to simulate the environment near the panel 3 of the LNG vaporizer (ORV) and the lower header 2 (see FIG. 1), first, a pure aluminum disk having a diameter of 16 mm and a thickness of 4 mm is prepared. With a straight line passing as a boundary, a sprayed coating having various compositions shown in Table 1 was formed on the surface of one region with a thickness of 300 μm, and after the thermal spraying, no treatment was performed to obtain a test material. And the thermal spray coating which cooled the disk back surface of the said test material to 20 degreeC below freezing by making a Peltier device closely_contact | adhere to the other area | region back surface which has not performed thermal spraying processing of this test material is formed into a film. The surface of the other area is exposed to 30 ° C. commercial artificial seawater (“Marine Art High” manufactured by Tomita Pharmaceutical Co., Ltd.) for 20 hours at a temperature of 20 ° C. below the freezing point. The amount and the amount of indentation of the sprayed coating were measured with a surface roughness meter. The measurement results are shown in Table 1. From Table 1, the conventional Al-Zn-based thermal spray coating (NO.15, NO. 16) in the case of the amount of depression of the thermal spray coating is as small as 1 to 2 [mu] m, whereas the amount recesses of the disc matrix Many about 12 [mu] m, It can be seen that the sacrificial anticorrosive effect of the thermal spray coating is not sufficiently exhibited in the seawater exposure environment. On the other hand, in the case of the Al—Mg-based sprayed coating, the amount of indentation in the sprayed coating is larger than that in the case of the Al—Zn-based sprayed coating, the amount of indentation in the disk substrate is small, and the Mg content is 1. If it is% or more, the indentation amount of the thermal spray coating is increased to 5 μm or more, and the sacrificial anticorrosive effect of the thermal spray coating is exhibited, and accordingly, the indentation amount of the disk substrate is reduced to 8 μm or less. In particular, from the viewpoint of reducing the amount of indentation in the pure aluminum disc substrate, it is effective that the Mg composition is 1% by mass or more, more preferably 3% by mass or more, and further preferably 5% by mass or more. In addition, when the Mg composition is 5% by mass or more, the indentation amount of the disk substrate does not change so much, but the indentation amount of the Al—Mg sprayed coating increases, and when the Mg composition exceeds 80% by mass and becomes 90% by mass. And, since the consumption of the sprayed coating becomes remarkable, the Mg composition is preferably 80% by mass or less. From the viewpoint of preventing excessive wear of the sprayed coating, it is effective that the Mg composition is more preferably 50% by mass or less, and further preferably 30% by mass or less. In Table 1, G1, G2, and G3 represent evaluation levels of the sacrificial anticorrosive effect, and the sacrificial anticorrosive effect increases in the order of G1 <G2 <G3.

Figure 0004796362
Figure 0004796362

厚さ5mmの200mm四方のアルミ合金(A5083)板の片面に機械加工によって種々の粗さの表面凹凸を付与して、アルミ母材とした。この機械加工直後に、表面粗さ計を用いて各アルミ母材の中心線平均粗さRa75を測定した。試験条件ごとに、機械加工時の目標表面粗さが同じである各アルミ母材を10枚(N数=10)準備し、この10枚のRa75の平均値を各アルミ母材と溶射皮膜の界面の凹凸(Ra75)として、表2に記載した。アルミ母材との良好な接着性を確保するため、機械加工後直ちに、Al−5質量%Mg線材を用いたフレーム溶射により、厚さ300μmまでのAl−5質量%Mgの皮膜を、アルミ母材の機械加工を施した表面に成膜した。また、一部のアルミ母材の機械加工を施した表面には、Al−90%質量Mg線材を用いたフレーム溶射により、厚さ300μmのAl−90%Mg皮膜を成膜した。溶射後はとくに何の処理も施さずに供試材とした。試験条件ごとの、溶射皮膜組成と膜厚を表2に記載した。   Surface irregularities with various roughnesses were imparted to one surface of a 200 mm square aluminum alloy (A5083) plate having a thickness of 5 mm to obtain an aluminum base material. Immediately after this machining, the center line average roughness Ra75 of each aluminum base material was measured using a surface roughness meter. For each test condition, 10 aluminum base materials having the same target surface roughness during machining (N number = 10) were prepared, and the average value of the 10 Ra75s was determined for each aluminum base material and the thermal spray coating. It was shown in Table 2 as the unevenness | corrugation (Ra75) of an interface. In order to ensure good adhesion to the aluminum base material, an Al-5 mass% Mg film having a thickness of up to 300 μm is formed by flame spraying using an Al-5 mass% Mg wire immediately after machining. A film was formed on the machined surface of the material. Further, an Al-90% Mg coating having a thickness of 300 μm was formed on the surface of the machined part of the aluminum base material by flame spraying using an Al-90% mass Mg wire. After thermal spraying, it was used as a test material without any particular treatment. Table 2 shows the thermal spray coating composition and film thickness for each test condition.

Figure 0004796362
Figure 0004796362

表2に記載したNO.1〜21の溶射皮膜を成膜した各アルミ母材10枚をそれぞれ試験片として、膨れ剥離試験を実施した。まず、前記試験片をそれぞれ、20℃、pH8.2、流速3m/sの人工海水に3ヶ月間浸漬し、浸漬後の溶射皮膜の表面に発生した膨れ剥離の面積率を測定し、10枚の試験片の平均値を、NO.1〜21の溶射皮膜を成膜した各アルミの膨れ剥離の面積率として表2に記載した。表2で、溶射皮膜とアルミ母材の界面の凹凸(Ra75)と膨れ剥離面積率との関係に着目すると、界面の凹凸(Ra75)が約10μm以上(NO.2、NO.3試験片)になると、膨れ剥離面積率は20%程度に急激に低下し、流動海水環境中での耐剥離性が向上することがわかる。また、この膨れ剥離面積率は、界面の凹凸(Ra75)が約12μm以上(NO.4、NO.5試験片)になると半減し、さらに約14μm以上(NO.6試験片)になると、2〜3%程度と著しく減少する。従って、前記界面の凹凸(Ra75)は、10μm以上、好ましくは12μm以上、さらに好ましくは14μm以上とするのが有効である。   The NO. A blister peel test was conducted using 10 aluminum base materials each having a thermal spray coating of 1 to 21 as test pieces. First, each of the test pieces was immersed in artificial seawater at 20 ° C., pH 8.2, and flow rate of 3 m / s for 3 months, and the area ratio of blistering and peeling generated on the surface of the sprayed coating after immersion was measured. The average value of the test pieces of NO. It was described in Table 2 as the area ratio of blistering and peeling of each aluminum film having a thermal spray coating of 1 to 21. In Table 2, paying attention to the relationship between the unevenness (Ra75) at the interface between the thermal spray coating and the aluminum base material and the bulging and peeling area ratio, the unevenness (Ra75) at the interface is about 10 μm or more (NO.2 and NO.3 test pieces). Then, the swollen peel area ratio rapidly decreases to about 20%, and it can be seen that the peel resistance in a flowing seawater environment is improved. In addition, the swelling peeling area ratio is halved when the unevenness (Ra75) at the interface becomes about 12 μm or more (NO.4, NO.5 test piece), and further becomes about 14 μm or more (NO.6 test piece). Remarkably reduced to about 3%. Therefore, it is effective that the unevenness (Ra75) of the interface is 10 μm or more, preferably 12 μm or more, more preferably 14 μm or more.

表2に記載したNO.1〜21の溶射皮膜を成膜した各アルミ母材10枚をそれぞれ試験片として、膨れ剥離試験を実施した。まず、前記試験片をそれぞれ、20℃、pH8.2、流速3m/sの人工海水(富田製薬製「マリンアートハイ」)に3ヶ月間浸漬し、浸漬後の溶射皮膜の表面に発生した膨れ剥離の面積率を画像解析により測定・算出し、10枚の試験片の平均値を、NO.1〜21の溶射皮膜を成膜した各アルミの膨れ剥離の面積率として表2に記載した。表2で、溶射皮膜とアルミ母材の界面の凹凸(Ra75)と膨れ剥離面積率との関係に着目すると、界面の凹凸(Ra75)が約10μm以上(NO.2、NO.3試験片)になると、膨れ剥離面積率は20%程度に急激に低下し、流動海水環境中での耐剥離性が向上することがわかる。また、この膨れ剥離面積率は、界面の凹凸(Ra75)が約12μm以上(NO.4、NO.5試験片)になると半減し、さらに約14μm以上(NO.6試験片)になると、2〜3%程度と著しく減少する。従って、流動海水環境中で前記溶射皮膜の耐剥離性が向上させるためには、前記界面の凹凸(Ra75)は、10μm以上、好ましくは12μm以上、さらに好ましくは14μm以上とするのが有効である。   The NO. A blister peel test was conducted using 10 aluminum base materials each having a thermal spray coating of 1 to 21 as test pieces. First, each test piece was immersed in artificial seawater (Tomita Pharmaceutical's “Marine Art High”) at 20 ° C., pH 8.2, and flow rate of 3 m / s for 3 months, and blisters formed on the surface of the sprayed coating after immersion. The area ratio of peeling was measured and calculated by image analysis, and the average value of 10 test pieces was determined as NO. It was described in Table 2 as the area ratio of blistering and peeling of each aluminum film having a thermal spray coating of 1 to 21. In Table 2, paying attention to the relationship between the unevenness (Ra75) at the interface between the thermal spray coating and the aluminum base material and the bulging and peeling area ratio, the unevenness (Ra75) at the interface is about 10 μm or more (NO.2 and NO.3 test pieces). Then, the swollen peel area ratio rapidly decreases to about 20%, and it can be seen that the peel resistance in a flowing seawater environment is improved. In addition, the swelling peeling area ratio is halved when the unevenness (Ra75) at the interface becomes about 12 μm or more (NO.4, NO.5 test piece), and further becomes about 14 μm or more (NO.6 test piece). Remarkably reduced to about 3%. Therefore, in order to improve the peel resistance of the thermal spray coating in a flowing seawater environment, it is effective that the unevenness (Ra75) of the interface is 10 μm or more, preferably 12 μm or more, more preferably 14 μm or more. .

一方、前記界面の凹凸(Ra75)が約60μm付近(NO.11試験片)から膨れ剥離面積率は再び上昇し始め、100μmを超えたNO.16の試験片では、膨れ剥離面積率は、NO.1試験片の10μmを下回る場合と同程度にまで急激に上昇する。このように、界面の凹凸(Ra75)が大きくなり過ぎると、溶射皮膜とアルミ母材の間に皮膜が充填されない空隙が形成されやすくなり、この空隙に海水が浸入して界面の優先腐食を助長するため、剥離面積率が上昇し、溶射皮膜の耐剥離性が低下する。従って、界面の凹凸(Ra75)は、100μm以下、好ましくは80μm以下、さらに好ましくは60μm以下とするのが有効である。   On the other hand, the unevenness of the interface (Ra75) swelled from around 60 μm (NO.11 test piece), and the peeled area ratio started to increase again, and the NO. For the 16 test pieces, the swollen peel area ratio was NO. It rapidly rises to the same extent as when it is below 10 μm of one test piece. Thus, when the unevenness (Ra75) at the interface becomes too large, a void that is not filled with the coating is easily formed between the sprayed coating and the aluminum base material, and seawater enters the void to promote preferential corrosion at the interface. Therefore, the peel area ratio is increased, and the peel resistance of the thermal spray coating is lowered. Therefore, it is effective that the unevenness (Ra75) at the interface is 100 μm or less, preferably 80 μm or less, more preferably 60 μm or less.

なお、Mg組成が本発明を外れて90質量%と多い場合(試験片NO.20、21)には、界面の凹凸(Ra75)が本発明の範囲(10〜100μm)に入っていても、膨れ剥離面積率が著しく大きくなる。また、Mg組成および界面の凹凸(Ra75)が本発明の範囲内でも、溶射皮膜の膜厚が本発明の範囲外の50μmと薄い場合にも、膨れ剥離面積率が大きくなる。これは、Mg組成が90質量%と多くなると、溶射皮膜の消耗が激しくなり、より早期にアルミ母材と合金皮膜界面に海水が浸透する状態になるため、この母材ー皮膜界面にアルミの錆が多く発生する。このため、合金皮膜の膨れや剥離が生じやすくなり、膨れ剥離面積が著しく大きくなる。溶射皮膜が50μmと薄い場合にも、より早期にアルミ母材と合金皮膜界面に海水が浸透する状態になるため、同様に合金皮膜の膨れや剥離が生じやすくなり、膨れ剥離面積が大きくなる。   In the case where the Mg composition deviates from the present invention and is as large as 90% by mass (test pieces NO. 20, 21), even if the unevenness of the interface (Ra75) is within the range of the present invention (10 to 100 μm), The swollen peel area ratio is significantly increased. Even when the Mg composition and the unevenness of the interface (Ra75) are within the range of the present invention, the swelled peeling area ratio is increased even when the film thickness of the sprayed coating is as thin as 50 μm outside the range of the present invention. This is because when the Mg composition increases to 90% by mass, the sprayed coating is consumed more rapidly, and seawater penetrates into the aluminum base material and alloy film interface earlier. A lot of rust occurs. For this reason, it becomes easy to produce the swelling and peeling of an alloy film, and a swelling peeling area becomes large remarkably. Even when the thermal spray coating is as thin as 50 μm, seawater penetrates into the aluminum base material and the alloy coating interface earlier, so that the alloy coating tends to swell and peel in the same manner, and the swell and peel area increases.

厚さ5mmの200mm四方のアルミ合金(A5083)板をアルミ母材として、その片面にAl−5質量%Mg合金を溶射してAl−5質量%Mg合金皮膜を被覆し、表3に示すように、溶射皮膜を被覆した後の処理が異なるNo.1からNo.7の供試材を、それぞれ11枚ずつ作製した。   As shown in Table 3, a 200 mm square aluminum alloy (A5083) plate having a thickness of 5 mm was used as an aluminum base material, and an Al-5 mass% Mg alloy was sprayed on one side to coat an Al-5 mass% Mg alloy film. No. 2 in which the treatment after coating the sprayed coating is different. 1 to No. Eleven specimens were prepared for each of the seven specimens.

Figure 0004796362
Figure 0004796362

表3に示した溶射後の処理終了後の膜厚が300μmとなるように、No.1〜No.7の各供試材の溶射皮膜を成膜した。すなわち、目標溶射皮膜厚は、溶射後の機械加工を行わないNo.1、No.2の供試材で300μm、溶射後にグラインダー研削(10秒間研削)検索を行なうNo.3の供試材で470μm、ショットピーニング処理(処理時間60秒)を行なうNo.4〜No.7の供試材で400μmとした。溶射後の機械加工および処理を行わないNo.1、No.2の供試材の皮膜厚、および溶射後の機械加工および各処理を施したNo.3〜No.7の供試材の皮膜厚は、11枚(N=11)の同一処理材間でもバラツキがあったが、No.1〜No.7の全供試材の皮膜厚は、250〜350μmの範囲に収まった。   The thermal spray coating of each of the test materials No. 1 to No. 7 was formed so that the film thickness after the thermal spraying treatment shown in Table 3 was 300 μm. That is, the target sprayed coating thickness is 300 μm for the No. 1 and No. 2 specimens that are not machined after thermal spraying, and the No. 3 specimen that is used for grinder grinding (grinding for 10 seconds) after spraying. 470 μm, No. 4 to No. 7 specimens for shot peening treatment (treatment time 60 seconds), and 400 μm. Film thickness of No. 1 and No. 2 specimens not subjected to machining and treatment after thermal spraying, and No. 3 to No. 7 specimens subjected to machining and various treatments after thermal spraying Although the thickness was varied among 11 (N = 11) identical processing materials, the film thicknesses of all the test materials No. 1 to No. 7 were in the range of 250 to 350 μm.

それぞれ11枚ずつ用意したNo.1〜No.7の供試材から各1枚を、溶射皮膜の最表面から深さ100μmまでの領域での気孔面積率の計測用試験片として供した。各計測用試験片200mm×200mmの全領域から、まんべんなく10部位を選定し、この部位から計測用サンプルを切り出し、実施例1および実施例2の場合と同様に、溶射皮膜の断面をSEM観察し、溶射皮膜の最表面から深さ100μmまでの領域に観察される気孔面積率を画像解析により求めた。このようにして求めたNo.1〜No.7の各供試材の10部位の気孔面積率の平均値を、溶射皮膜の最表面から深さ100μmまでの領域での気孔面積率として表3に記載した。   One sample from No. 1 to No. 7 specimens prepared 11 each was used as a test piece for measuring the pore area ratio in the region from the outermost surface of the thermal spray coating to a depth of 100 μm. From the entire area of each test specimen 200 mm × 200 mm, select 10 parts evenly, cut out the measurement sample from this part, and observe the cross section of the sprayed coating in the same manner as in Example 1 and Example 2. The pore area ratio observed in the region from the outermost surface of the sprayed coating to a depth of 100 μm was determined by image analysis. Table 3 shows the average values of the pore area ratios at the 10 sites of the No. 1 to No. 7 specimens thus obtained as the pore area ratios in the region from the outermost surface of the thermal spray coating to a depth of 100 μm. It was described in.

No.1〜No.7の供試材の残りの各10枚を、それぞれ試験片として膨れ剥離試験を実施した。まず、前記試験片をそれぞれ、20℃、pH8.2、流速3m/sの人工海水に3ヶ月間浸漬した。この浸漬暴露試験後の各試験片を、溶射皮膜側が内側になるように曲げ加工をして溶射皮膜に圧縮応力を付与したときに発生する溶射皮膜の膨れ剥離発生状況をSEM観察し、溶射皮膜の表面に発生した膨れ剥離の面積率を画像解析により測定・算出し、No.1〜No.7の各供試材の10枚の膨れ剥離面積率の平均値を、膨れ剥離面積率として表3に記載した。   A swelling peel test was carried out using the remaining 10 specimens of No. 1 to No. 7 as test pieces. First, each of the test pieces was immersed in artificial seawater at 20 ° C., pH 8.2, and flow rate of 3 m / s for 3 months. Each specimen after this immersion exposure test is bent so that the thermal spray coating side is inward, and the state of blistering and peeling of the thermal spray coating that occurs when compressive stress is applied to the thermal spray coating is observed by SEM, and the thermal spray coating is observed. The area ratio of blistering and peeling that occurred on the surface of the sample was measured and calculated by image analysis, and the average value of the ten blistering and peeling area ratios of each of the test materials No. 1 to No. 7 was expressed as the blistering and peeling area ratio. 3.

表3から、溶射皮膜の気孔面積率は、溶射後の機械加工およびその後の処理を施さないNo.1供試材、溶射後の機械加工は施さず、封孔剤含浸処理のみのNo.2供試材では、17〜18%程度と大きく、それに対応して膨れ剥離面積も大きい。溶射後、グラインダー研削またはショットピーニングの機械加工のみを施したNo.3、No.4供試材では6〜10%程度に低下し、膨れ剥離面積率も2〜4%と大きく低下する。溶射後、封孔剤含浸処理とショットピーニングの機械加工を組み合わせた処理を施したNo.5〜No.7供試材では、気孔面積率は1.6%程度と著しく低下し、それに対応して膨れ剥離面積率も1%以下と著しく低減する。このように、溶射後に封孔含浸処理と機械加工を組み合わせた複合処理を施すことが、気孔面積率および膨れ剥離面積率の低減に極めて有効であることを把握した。   From Table 3, the pore area ratio of the thermal spray coating is No. 1 sample material that is not subjected to mechanical processing after thermal spraying and subsequent processing, and No. 2 that is not subjected to mechanical processing after thermal spraying and is only impregnated with a sealant. In the test material, it is as large as about 17 to 18%, and the swelling and peeling area is correspondingly large. After thermal spraying, the No. 3 and No. 4 specimens subjected to only grinder grinding or shot peening machining are reduced to about 6 to 10%, and the swollen peel area ratio is greatly reduced to 2 to 4%. In No.5 to No.7 specimens that were subjected to a combination of sealant impregnation treatment and shot peening machining after thermal spraying, the pore area ratio was significantly reduced to about 1.6%. As a result, the swollen peel area ratio is significantly reduced to 1% or less. As described above, it has been understood that it is extremely effective to reduce the pore area ratio and the swollen peeling area ratio by performing the combined treatment combining the sealing impregnation treatment and the machining after the thermal spraying.

LNG気化器の斜視図である。It is a perspective view of an LNG vaporizer.

符号の説明Explanation of symbols

1・・・LNGマニホールド
2・・・下部ヘッダー
3・・・パネル
3a・・・伝熱管
4・・・上部ヘッダー
5・・・NGマニホールド
6・・・海水ヘッダー
7・・・散水ノズル
8・・・トラフ
U・・・パネルユニット

DESCRIPTION OF SYMBOLS 1 ... LNG manifold 2 ... Lower header 3 ... Panel 3a ... Heat transfer pipe 4 ... Upper header 5 ... NG manifold 6 ... Seawater header 7 ... Sprinkling nozzle 8 ...・ Trough U ・ ・ ・ Panel unit

Claims (9)

内部にLNGが流通し、外表面に海水が供給され、この海水と前記LNGとが熱交換してLNGを気化させる、外表面に防食皮膜が形成されたAl合金からなるLNG気化器用伝熱管であって、前記防食皮膜が、Mgを前記Al合金のMg組成よりも多い3〜50質量%含有したAlおよびMgよりなるAl合金皮膜であると共に、溶射加工によって形成されたAl合金皮膜であることを特徴とするLNG気化器用伝熱管。   An LNG vaporizer heat transfer tube made of an Al alloy with an anti-corrosion coating formed on the outer surface, in which LNG circulates inside, seawater is supplied to the outer surface, and the seawater and the LNG exchange heat to vaporize LNG. The anticorrosion film is an Al alloy film composed of Al and Mg containing 3 to 50% by mass of Mg more than the Mg composition of the Al alloy, and is an Al alloy film formed by thermal spraying. A heat transfer tube for an LNG vaporizer characterized by the following. 前記Al合金皮膜の膜厚が100〜1000μmの範囲にあることを特徴とする請求項1に記載のLNG気化器用伝熱管。   The heat transfer tube for an LNG vaporizer according to claim 1, wherein the thickness of the Al alloy film is in a range of 100 to 1000 µm. 前記Al合金皮膜と前記伝熱管との界面の中心線平均粗さ(Ra75)が10〜100μmの範囲にあることを特徴とする請求項1または2に記載のLNG気化器用伝熱管。   The heat transfer tube for an LNG vaporizer according to claim 1 or 2, wherein the center line average roughness (Ra75) of the interface between the Al alloy film and the heat transfer tube is in the range of 10 to 100 µm. 前記界面の粗さが、#16以上のブラスト粒子を含有するブラスト剤を前記溶射皮膜が形成される前記伝熱管の外表面に吹き付けて形成されたことを特徴とする請求項3に記載のLNG気化器用伝熱管。   4. The LNG according to claim 3, wherein the roughness of the interface is formed by spraying a blasting agent containing blast particles of # 16 or more onto an outer surface of the heat transfer tube on which the sprayed coating is formed. Heat transfer tube for vaporizer. 前記Al合金皮膜の、前記伝熱管の中心を通る断面での最表面から深さ100μmまでの領域に存在する気孔の面積率が15%以下であることを特徴とする請求項3または4に記載のLNG気化器用伝熱管。   5. The area ratio of pores existing in a region from the outermost surface in a cross section passing through the center of the heat transfer tube to a depth of 100 μm of the Al alloy film is 15% or less. LNG vaporizer heat transfer tube. 請求項1から5のいずれかに記載の溶射皮膜が形成された伝熱管を複数カーテン状に配列したパネルと、このパネルの上部および下部にそれぞれ連結された気化ガス排出用の上部ヘッダーおよびLNG供給用の下部ヘッダーとからなるパネルユニットを備え、前記パネルユニットの上部からパネルの表面に沿って流下させた海水と前記伝熱管内を下部ヘッダー側から上部ヘッダー側へ流通するLNGとの熱交換により、LNGを気化させるようにしたLNG気化器。   A panel in which a plurality of heat transfer tubes on which the thermal spray coating according to any one of claims 1 to 5 is formed are arranged in a curtain shape, an upper header for discharging vaporized gas connected to an upper portion and a lower portion of the panel, and an LNG supply By a heat exchange between the seawater flown down from the upper part of the panel unit along the surface of the panel and the LNG circulating in the heat transfer pipe from the lower header side to the upper header side. An LNG vaporizer adapted to vaporize LNG. 前記伝熱管の溶射皮膜が、少なくともパネル下部および下部ヘッダーの外表面に形成された請求項6に記載のLNG気化器。   The LNG vaporizer according to claim 6, wherein the thermal spray coating of the heat transfer tube is formed at least on the outer surface of the lower part of the panel and the lower header. 内部にLNGが流通し、外表面に海水が供給され、この海水と前記LNGとが熱交換してLNGを気化させる、外表面に防食皮膜が形成されたAl合金からなるLNG気化器用伝熱管の製造方法であって、前記防食皮膜を、Mgを前記Al合金のMg組成よりも多い3〜50質量%含有するAlおよびMgよりなるAl合金の溶射加工により皮膜を形成した後に、この溶射皮膜の表面に溶射皮膜の気孔面積率を下げるための機械加工処理を施すことを特徴とするLNG気化器用伝熱管の製造方法。 LNG is circulated therein, seawater is supplied to the outer surface, the sea water and the with LNG exchange heat to vaporize the LNG, the LNG vaporization dexterity heat transfer tube made of Al alloy anticorrosive film on the outer surface of which is formed In the production method, the anticorrosion film is formed by thermal spraying of an Al alloy composed of Al and Mg containing 3 to 50% by mass of Mg, which is higher than the Mg composition of the Al alloy. A method for producing a heat transfer tube for an LNG vaporizer, characterized in that a machining process is performed on the surface to reduce the pore area ratio of a thermal spray coating . 前記機械加工の前処理または/および後処理として、前記溶射皮膜に封孔剤含浸処理を行なうことを特徴とする請求項8に記載のLNG気化器用伝熱管の製造方法。 9. The method for manufacturing a heat transfer tube for an LNG vaporizer according to claim 8, wherein the thermal spray coating is subjected to a sealing agent impregnation treatment as a pre-treatment and / or post-treatment of the machining.
JP2005265666A 2005-09-13 2005-09-13 Heat transfer tube for LNG vaporizer and method for manufacturing the same Expired - Fee Related JP4796362B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005265666A JP4796362B2 (en) 2005-09-13 2005-09-13 Heat transfer tube for LNG vaporizer and method for manufacturing the same
EP06291353A EP1762639A1 (en) 2005-09-13 2006-08-24 Heat transfer tube for LNG vaporizer, its production method, and LNG vaporizer using such heat transfer tubes
TW095131788A TW200720617A (en) 2005-09-13 2006-08-29 Heat transfer tube for LNG vaporizer, its production method, and LNG vaporizer using such heat transfer tubes
CNA2006101536505A CN1932428A (en) 2005-09-13 2006-09-12 Heat transfer tube for LNG vaporizer, its production method, and LNG vaporizer using such heat transfer tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265666A JP4796362B2 (en) 2005-09-13 2005-09-13 Heat transfer tube for LNG vaporizer and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2007078237A JP2007078237A (en) 2007-03-29
JP4796362B2 true JP4796362B2 (en) 2011-10-19

Family

ID=37878383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265666A Expired - Fee Related JP4796362B2 (en) 2005-09-13 2005-09-13 Heat transfer tube for LNG vaporizer and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP4796362B2 (en)
CN (1) CN1932428A (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921472B1 (en) * 2007-09-26 2015-12-11 Valeo Systemes Thermiques COATING FOR HEAT EXCHANGER MATERIAL
JP5088748B2 (en) * 2008-10-16 2012-12-05 株式会社神戸製鋼所 Durable member and open rack type vaporizer using the same
JP5088747B2 (en) * 2008-10-16 2012-12-05 株式会社神戸製鋼所 Durable member
JP5385754B2 (en) * 2009-10-27 2014-01-08 株式会社神戸製鋼所 Heat exchange member
JP5144629B2 (en) * 2009-11-27 2013-02-13 株式会社神戸製鋼所 Heat transfer tube and header tube of open rack type vaporizer
JP5363427B2 (en) * 2010-06-18 2013-12-11 株式会社神戸製鋼所 Low temperature liquefied gas vaporizer
JP5714944B2 (en) * 2011-03-10 2015-05-07 株式会社神戸製鋼所 Low temperature liquefied gas vaporizer
JP2014202320A (en) * 2013-04-08 2014-10-27 株式会社神戸製鋼所 Vaporizer of cold temperature liquid gas
EP3663696A1 (en) * 2013-12-04 2020-06-10 Zehnder Group International AG Coil for a heating body and heating body comprising said coil
CN104089499B (en) * 2014-06-27 2017-03-15 山东诺维科轻量化装备有限公司 Liquified natural gas vaporizer and its production equipment and method
JP2016076701A (en) * 2014-10-07 2016-05-12 ジャパンファインスチール株式会社 Electromagnetic wave shield film and compact including the same
CN104806877B (en) * 2015-04-24 2017-01-18 江苏誉特能源装备有限公司 Forced LNG (Liquefied Natural Gas) evaporator for ships
JP6420223B2 (en) * 2015-10-14 2018-11-07 株式会社神戸製鋼所 Gas vaporizer
JP6838864B2 (en) * 2016-03-17 2021-03-03 株式会社神戸製鋼所 Aluminum alloy LNG vaporizer member and LNG vaporizer
JP7045231B2 (en) * 2018-03-22 2022-03-31 住友精密工業株式会社 Thermal spraying method of open rack heat exchanger
JP6990209B2 (en) * 2019-04-26 2022-01-12 株式会社Uacj Aluminum alloy piping material and its manufacturing method
JP7288842B2 (en) * 2019-11-26 2023-06-08 三菱重工マリンマシナリ株式会社 Cold heat recovery system, ship with cold heat recovery system, and cold heat recovery method
CN113412390A (en) * 2020-01-16 2021-09-17 神乐燃气技术株式会社 Heat exchanger

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170655A (en) * 1989-11-29 1991-07-24 Toyota Motor Corp Aluminum-base sliding member
JPH03281769A (en) * 1990-03-30 1991-12-12 Ohbayashi Corp Surface treatment for building material
JPH05230580A (en) * 1992-02-20 1993-09-07 Furukawa Alum Co Ltd Corrosion resistant aluminum alloy brazing sheet
JPH0829095A (en) * 1994-07-08 1996-02-02 Sumitomo Precision Prod Co Ltd Open rack type carburetor
JPH11270996A (en) * 1998-03-23 1999-10-05 Kobe Steel Ltd Lng vaporizer
FR2840396A1 (en) * 2002-05-28 2003-12-05 Valeo Thermique Moteur Sa DEVICE FOR PROTECTING A HEAT EXCHANGER AGAINST CORROSION
JP4502622B2 (en) * 2003-10-22 2010-07-14 九州電力株式会社 Thermal spraying method

Also Published As

Publication number Publication date
CN1932428A (en) 2007-03-21
JP2007078237A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP4796362B2 (en) Heat transfer tube for LNG vaporizer and method for manufacturing the same
EP1762639A1 (en) Heat transfer tube for LNG vaporizer, its production method, and LNG vaporizer using such heat transfer tubes
WO2017159054A1 (en) Member formed from aluminum alloy and lng vaporizer
JP5144629B2 (en) Heat transfer tube and header tube of open rack type vaporizer
Li et al. Influence of surface roughness of substrate on corrosion behavior of MAO coated ZM5 Mg alloy
JP6075782B2 (en) Method for manufacturing heat transfer tube for LNG vaporizer and heat transfer tube for LNG vaporizer
JP4773780B2 (en) Heat transfer tube for LNG vaporizer and LNG vaporizer using the same
WO2017203805A1 (en) Member formed from aluminum alloy and lng vaporizer
TW201245482A (en) Tubular target comprising a protective device
JP5336797B2 (en) Manufacturing method of heat transfer tube and header tube of open rack type vaporizer
KR20000052682A (en) Advanced galvanic corrosion protection
KR100865212B1 (en) Heat transfer tube for lng vaporizer, its production method, and lng vaporizer using such heat transfer tubes
JP5572128B2 (en) Corrosion-resistant aluminum alloy member and open rack type vaporizer heat transfer tube or header tube
JP5385754B2 (en) Heat exchange member
JP2003239085A (en) Inorganic film clad copper or copper alloy member, method of forming inorganic film to surface of copper or copper alloy member, heat exchanger for hot-water supply device, and method of manufacturing the same
JP4834513B2 (en) Heat transfer tube for LNG vaporizer, manufacturing method thereof, and LNG vaporizer using the same
Lunder et al. Pretreatment of aluminum alloy 6060 by selective removal of surface intermetallics
JP4418361B2 (en) Al-Zn alloy sprayed coating Al alloy member, manufacturing method thereof, and open rack vaporizer type liquefied natural gas vaporizer
JP2005265393A (en) Heat transfer pipe for open rack type vaporizer
Sperandio et al. Influence of silicon on the corrosion behavior of AleZneIn sacrificial anode
JP4480257B2 (en) Surface coated austenitic stainless steel for fuel tanks with excellent stress corrosion cracking resistance
Sun Comparative Investigations from Tribological and Corrosion Properties of Alumina and Nickel-Alumina Coatings on Cast Iron
JP4398784B2 (en) Heat transfer tube for open rack type vaporizer
JP4464762B2 (en) Al alloy member for liquefied gas vaporizer with excellent corrosion resistance and liquefied gas vaporizer
JP2006038368A (en) Heat transfer tube made of al alloy of open rack type vaporizer, and its manufacturing method of heat transfer tube made of al alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100708

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100830

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4796362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees