JP6075782B2 - Method for manufacturing heat transfer tube for LNG vaporizer and heat transfer tube for LNG vaporizer - Google Patents

Method for manufacturing heat transfer tube for LNG vaporizer and heat transfer tube for LNG vaporizer Download PDF

Info

Publication number
JP6075782B2
JP6075782B2 JP2013251225A JP2013251225A JP6075782B2 JP 6075782 B2 JP6075782 B2 JP 6075782B2 JP 2013251225 A JP2013251225 A JP 2013251225A JP 2013251225 A JP2013251225 A JP 2013251225A JP 6075782 B2 JP6075782 B2 JP 6075782B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
base material
sacrificial anode
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013251225A
Other languages
Japanese (ja)
Other versions
JP2014157009A (en
Inventor
潤一郎 衣笠
潤一郎 衣笠
吉田 龍生
龍生 吉田
正高 東
正高 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013251225A priority Critical patent/JP6075782B2/en
Publication of JP2014157009A publication Critical patent/JP2014157009A/en
Application granted granted Critical
Publication of JP6075782B2 publication Critical patent/JP6075782B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

本発明は、LNG気化器用伝熱管の製造方法およびLNG気化器用伝熱管に関するものである。   The present invention relates to a method for manufacturing a heat transfer tube for an LNG vaporizer and a heat transfer tube for an LNG vaporizer.

液化天然ガス(以下LNGとも言う。)は、通常低温高圧の液状で移送あるいは貯蔵されるが、実際に使用されるときには事前に気化される。海水との熱交換によってLNGを加熱して気化させるオープンラック式気化器(以下ORVとも言う。)では、熱伝導性が良好であるアルミニウム合金が伝熱管として使用されている。しかし、アルミニウム合金(以下、Al合金とも言う)は、海水と接触することで腐食し、一旦腐食が始まるとその部分が集中的に侵され、いわゆる孔のあく孔食を受け易いという欠点がある。   Liquefied natural gas (hereinafter also referred to as LNG) is usually transported or stored in a liquid state of low temperature and high pressure, but is vaporized in advance when actually used. In an open rack type vaporizer (hereinafter also referred to as ORV) that heats and vaporizes LNG by heat exchange with seawater, an aluminum alloy having good thermal conductivity is used as a heat transfer tube. However, aluminum alloys (hereinafter also referred to as Al alloys) corrode when they come into contact with seawater, and once corrosion begins, the portion is eroded intensively and is susceptible to so-called hole pitting corrosion. .

そこで、従来から上記のような用途に用いられるAl合金を対象として、それの防食処理が盛んに研究され、現在犠牲防食作用を利用した方法がその主流を占めている。   Therefore, anti-corrosion treatment has been actively studied for Al alloys used for the above-mentioned applications, and methods using sacrificial anti-corrosion action are currently in use.

この犠牲防食作用を有する被覆合金として、Al−Zn合金やAl−Mg合金が公知であり、例えばAl−2%Zn、Al−15%Zn、Al−5%Mgなどの合金が使用されている。またこの合金をORV用伝熱管母材に被覆する方法として、例えば特許文献1では、母材(アルミニウム合金)より電位の卑なAl−Zn合金を溶射により被覆して犠牲防食層(犠牲陽極被膜層とも言う)とし、優先的にこの層のZnをイオンとして海水中に溶解させることで母材を保護する技術が開示されている。しかしながら特許文献1のような溶射被膜では、犠牲陽極被膜層の主成分であるAlの作用で表面が不働態化しやすい。従って、犠牲陽極被膜層中に不可避的に存在する孔欠陥(気孔)を経由してORV用伝熱管母材との界面の気孔に海水が侵入し、溶存酸素が不足して電位が低くなる界面欠陥部の活性面と、犠牲陽極被膜層の最表面の電位が高くなる不働態部との間で電池(酸素濃淡電池)が形成され、界面部で優先的に腐食してしまう。この腐食に伴い生成した腐食生成物(Al酸化物やAl水酸化物など)が絶えず生成することで体積膨張が起こり、その結果、犠牲陽極層が押し上げられ、犠牲陽極被膜層の膨れや剥離に至ってしまい、かえって短寿命となるという問題点がある。   Al-Zn alloys and Al-Mg alloys are known as coating alloys having this sacrificial anticorrosive action, and alloys such as Al-2% Zn, Al-15% Zn, Al-5% Mg are used. . Further, as a method of coating this alloy on the heat transfer tube base material for ORV, for example, in Patent Document 1, a base Al-Zn alloy having a potential lower than that of the base material (aluminum alloy) is coated by thermal spraying to form a sacrificial anticorrosive layer (sacrificial anode coating And a technology for protecting the base material by preferentially dissolving Zn in this layer as ions in seawater. However, in the thermal spray coating as in Patent Document 1, the surface is easily passivated by the action of Al which is the main component of the sacrificial anode coating layer. Therefore, the seawater enters the pores at the interface with the heat transfer tube base material for ORV through the pore defects (pores) unavoidably present in the sacrificial anode coating layer, and the interface becomes low in potential due to insufficient dissolved oxygen. A battery (oxygen concentration battery) is formed between the active surface of the defective portion and the passive portion where the potential of the outermost surface of the sacrificial anode coating layer is increased, and corrosion preferentially occurs at the interface portion. Corrosion products (Al oxide, Al hydroxide, etc.) generated along with this corrosion are constantly generated, resulting in volume expansion. As a result, the sacrificial anode layer is pushed up, and the sacrificial anode coating layer is swollen or peeled off. In other words, there is a problem that the service life is short.

上述したような環境下で使用される犠牲陽極被膜層の耐剥離性を向上させる手段として、特許文献2や特許文献3に開示されているような技術(ORVのLNG気化器用伝熱管母材の表面粗度を粗くする方法)が知られている。例えば、特許文献2では、伝熱管母材と犠牲陽極被膜層との界面の粗さについて、平均粗さRaを0.1〜50μm、最大粗さRmaxを10〜200μmに制御している。また、特許文献3では、伝熱管母材と犠牲陽極被膜層との界面の粗さについて、平均粗さRaを15〜50μm、最大粗さRmaxを150〜500μmに制御している。さらに、特許文献3に開示された伝熱管母材の表面粗度を得る手法として、粒度#14〜20の粒子が混合されたブラスト粉末でブラスト処理することが提案され、そのブラスト粉末は、純度90〜98%の溶融アルミナであることを推奨している。   As a means for improving the peel resistance of the sacrificial anode coating layer used in the environment as described above, a technique as disclosed in Patent Document 2 or Patent Document 3 (ORV LNG vaporizer heat transfer tube base material). A method for increasing the surface roughness) is known. For example, in Patent Document 2, with respect to the roughness of the interface between the heat transfer tube base material and the sacrificial anode coating layer, the average roughness Ra is controlled to 0.1 to 50 μm and the maximum roughness Rmax is controlled to 10 to 200 μm. In Patent Document 3, the roughness of the interface between the heat transfer tube base material and the sacrificial anode coating layer is controlled to an average roughness Ra of 15 to 50 μm and a maximum roughness Rmax of 150 to 500 μm. Furthermore, as a technique for obtaining the surface roughness of the heat transfer tube base material disclosed in Patent Document 3, it is proposed to perform blasting with blast powder mixed with particles of particle size # 14 to 20, and the blast powder has a purity of 90-98% fused alumina is recommended.

特許第3041159号公報Japanese Patent No. 3041159 特開2005−265393号公報JP 2005-265393 A 特許第4834513号公報Japanese Patent No. 4834513

しかしながら、上記特許文献2、3に開示された技術にも、以下のような問題点が存在する。   However, the techniques disclosed in Patent Documents 2 and 3 also have the following problems.

すなわち、ORVの高効率化を図るために、落下海水の流速増大や連続長時間運転を実施する場合、特許文献2、3に記載されたような伝熱管母材と犠牲陽極被膜層との界面の粗さについて、平均粗さRaと最大粗さRmaxを制御するだけでは、図3に示すような伝熱管母材と犠牲陽極被膜層との界面で生じる腐食反応に起因して形成される腐食生成物アの堆積による界面の伝熱管母材側の凹部の谷のアンカー効果に寄与する有効深さの減少が顕著になる(ただし、図3においては、後述する説明のために、最大谷深さRvも付記してある。)。このように、界面の伝熱管母材側の凹部の谷のアンカー効果に寄与する有効深さの減少が顕著になると、犠牲陽極被膜層を伝熱管母材に密着させるアンカー効果の寄与分(符号イに示す長さ)が減少してしまい、犠牲陽極被膜層の膨れや剥離に繋がる(すなわち、耐剥離性の低下に繋がる)虞があることが判明した。   That is, in order to increase the efficiency of ORV, when increasing the flow rate of falling seawater or performing continuous long-time operation, the interface between the heat transfer tube base material and the sacrificial anode coating layer as described in Patent Documents 2 and 3 Corrosion formed due to the corrosion reaction occurring at the interface between the heat transfer tube base material and the sacrificial anode coating layer as shown in FIG. 3 only by controlling the average roughness Ra and the maximum roughness Rmax. The reduction of the effective depth that contributes to the anchor effect of the valley of the recess on the side of the heat transfer tube base material at the interface due to the accumulation of the product becomes remarkable (however, in FIG. Rv is also added.) In this way, when the reduction in the effective depth contributing to the anchor effect of the concave valley on the side of the heat transfer tube base material at the interface becomes significant, the contribution of the anchor effect that causes the sacrificial anode coating layer to be in close contact with the heat transfer tube base material (symbol) It has been found that there is a risk that the sacrificial anode coating layer may swell and peel (that is, lead to a decrease in peel resistance).

発明の目的は、落下海水の流速増大や連続長時間運転が実施される場合にも犠牲陽極被膜層の耐剥離性に優れる、LNG気化器用伝熱管の製造方法およびLNG気化器用伝熱管を提供することにある。   An object of the present invention is to provide a method for manufacturing a heat transfer tube for an LNG vaporizer and a heat transfer tube for an LNG vaporizer that are excellent in the peel resistance of the sacrificial anode coating layer even when the flow rate of falling seawater is increased or when continuous operation is performed for a long time. There is.

この目的を達成するために、本発明の請求項1に記載の発明は、
Al合金製伝熱管母材の外表面にAl合金からなる犠牲陽極被膜層が形成され、この伝熱管母材の断面を解析したとき、前記伝熱管母材と犠牲陽極被膜層の界面の粗さが、平均粗さRa:5〜50μm、最大谷深さRv:30〜400μmであるオープンラック式のLNG気化器用伝熱管の製造方法であって、粒度#14〜24の内の少なくともいずれか1つの粒度を選択し、その選択した粒度中の粒子の粒径1000μm以上の構成率が80%以上になるようにさらに調整されたブラスト粉末を用いて、Al合金製伝熱管母材の外表面をブラスト処理することを特徴とするLNG気化器用伝熱管の製造方法である。
In order to achieve this object, the invention according to claim 1 of the present invention provides:
A sacrificial anode coating layer made of an Al alloy is formed on the outer surface of the Al alloy heat transfer tube base material, and when the cross section of the heat transfer tube base material is analyzed, the roughness of the interface between the heat transfer tube base material and the sacrificial anode coating layer is Is an open rack type LNG vaporizer heat transfer tube having an average roughness Ra of 5 to 50 μm and a maximum valley depth Rv of 30 to 400 μm, and at least one of the particle sizes # 14 to 24 The outer surface of the Al alloy heat transfer tube base material is selected using a blast powder further selected so that the composition ratio of particles having a particle size of 1000 μm or more in the selected particle size is 80% or more. It is a manufacturing method of the heat exchanger tube for LNG vaporizers characterized by performing blasting.

請求項2に記載の発明は、請求項1に記載の発明において、前記ブラスト粉末がアルミナであって、前記ブラスト処理後に伝熱管母材上に残存するブラスト粉末を除去する除去処理を行なうことを特徴とする。   The invention according to claim 2 is the invention according to claim 1, wherein the blast powder is alumina, and a removal treatment for removing the blast powder remaining on the heat transfer tube base material after the blast treatment is performed. Features.

請求項3に記載の発明は、請求項2に記載の発明において、前記アルミナの純度が、90〜96質量%であることを特徴とする。   The invention according to claim 3 is the invention according to claim 2, wherein the purity of the alumina is 90 to 96 mass%.

請求項4に記載の発明は、請求項1〜3のいずれか1項に記載の発明において、前記犠牲陽極被膜層が、Al−Zn合金およびAl−Mg合金の少なくともいずれか1つからなることを特徴とする。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the sacrificial anode coating layer is made of at least one of an Al-Zn alloy and an Al-Mg alloy. It is characterized by.

請求項5に記載の発明は、
Al合金製伝熱管母材の外表面にAl合金からなる犠牲陽極被膜層が形成されたオープンラック式のLNG気化器用伝熱管であって、前記伝熱管母材の断面を解析したとき、前記伝熱管母材と犠牲陽極被膜層の界面の粗さが、平均粗さRa:5〜50μm、最大谷深さRv:30〜400μmであり、かつ、前記犠牲陽極被膜層の膨れ数が、100cmあたり10個未満であり、かつ、1mm×1mmの視野範囲において間隔10μmの格子点法により各格子点にて前記界面の密着または非密着を判定し、非密着点の3つ隣りの格子点までに非密着点が存在する場合、それら2つの非密着点間の密着している格子点も非密着点とする非密着点評価法によって求めた非密着界面率の10視野の平均値が20%未満であることを特徴とするLNG気化器用伝熱管である。
The invention described in claim 5
An open rack type LNG vaporizer heat transfer tube in which a sacrificial anode coating layer made of an Al alloy is formed on the outer surface of an Al alloy heat transfer tube base material, and when the cross section of the heat transfer tube base material is analyzed, The roughness of the interface between the heat pipe base material and the sacrificial anode coating layer is an average roughness Ra: 5 to 50 μm, a maximum valley depth Rv: 30 to 400 μm, and the sacrificial anode coating layer has a swelling number of 100 cm 2. The contact point or non-contact state of the interface is determined at each lattice point by a lattice point method with an interval of 10 μm in a visual field range of 1 mm × 1 mm, and up to three lattice points adjacent to the non-contact point. When there are non-adhering points, the average value of 10 fields of non-adhering interface ratio determined by the non-adhering point evaluation method in which the lattice points adhering between these two non-adhering points are also non-adhering points is 20%. LNG characterized by being less than Of a dexterous heat transfer tube.

請求項6に記載の発明は、請求項5に記載の発明において、前記犠牲陽極被膜層が、Al−Zn合金およびAl−Mg合金の少なくともいずれか1つからなることを特徴とする。   The invention according to claim 6 is the invention according to claim 5, wherein the sacrificial anode coating layer is made of at least one of an Al—Zn alloy and an Al—Mg alloy.

以上のように、本発明に係るLNG気化器用伝熱管の製造方法は、
Al合金製伝熱管母材の外表面にAl合金からなる犠牲陽極被膜層が形成され、この伝熱管母材の断面を解析したとき、前記伝熱管母材と犠牲陽極被膜層の界面の粗さが、平均粗さRa:5〜50μm、最大谷深さRv:30〜400μmであるオープンラック式のLNG気化器用伝熱管の製造方法であって、粒度#14〜24の内の少なくともいずれか1つの粒度を選択し、その選択した粒度中の粒子の粒径1000μm以上の構成率が80%以上になるようにさらに調整されたブラスト粉末を用いて、Al合金製伝熱管母材の外表面をブラスト処理することを特徴とする。
As mentioned above, the manufacturing method of the heat exchanger tube for LNG vaporizers concerning the present invention is as follows.
A sacrificial anode coating layer made of an Al alloy is formed on the outer surface of the Al alloy heat transfer tube base material, and when the cross section of the heat transfer tube base material is analyzed, the roughness of the interface between the heat transfer tube base material and the sacrificial anode coating layer is Is an open rack type LNG vaporizer heat transfer tube having an average roughness Ra of 5 to 50 μm and a maximum valley depth Rv of 30 to 400 μm, and at least one of the particle sizes # 14 to 24 The outer surface of the Al alloy heat transfer tube base material is selected using a blast powder further selected so that the composition ratio of particles having a particle size of 1000 μm or more in the selected particle size is 80% or more. It is characterized by blasting.

これにより、落下海水の流速増大や連続長時間運転が実施される場合にも犠牲陽極被膜層の耐剥離性に優れたLNG気化器用伝熱管の製造が可能である。   Thereby, it is possible to manufacture a heat transfer tube for an LNG vaporizer that is excellent in the peel resistance of the sacrificial anode coating layer even when the flow rate of falling seawater is increased or continuous long-time operation is performed.

また、本発明に係るLNG気化器用伝熱管は、
Al合金製伝熱管母材の外表面にAl合金からなる犠牲陽極被膜層が形成されたオープンラック式のLNG気化器用伝熱管であって、前記伝熱管母材の断面を解析したとき、前記伝熱管母材と犠牲陽極被膜層の界面の粗さが、平均粗さRa:5〜50μm、最大谷深さRv:30〜400μmであり、かつ、前記犠牲陽極被膜層の膨れ数が、100cmあたり10個未満であり、かつ、1mm×1mmの視野範囲において間隔10μmの格子点法により各格子点にて前記界面の密着または非密着を判定し、非密着点の3つ隣りの格子点までに非密着点が存在する場合、それら2つの非密着点間の密着している格子点も非密着点とする非密着点評価法によって求めた非密着界面率の10視野の平均値が20%未満であることを特徴とする。
Moreover, the heat transfer tube for an LNG vaporizer according to the present invention is:
An open rack type LNG vaporizer heat transfer tube in which a sacrificial anode coating layer made of an Al alloy is formed on the outer surface of an Al alloy heat transfer tube base material, and when the cross section of the heat transfer tube base material is analyzed, The roughness of the interface between the heat pipe base material and the sacrificial anode coating layer is an average roughness Ra: 5 to 50 μm, a maximum valley depth Rv: 30 to 400 μm, and the sacrificial anode coating layer has a swelling number of 100 cm 2. The contact point or non-contact state of the interface is determined at each lattice point by a lattice point method with an interval of 10 μm in a visual field range of 1 mm × 1 mm, and up to three lattice points adjacent to the non-contact point. When there are non-adhering points, the average value of 10 fields of non-adhering interface ratio determined by the non-adhering point evaluation method in which the lattice points adhering between these two non-adhering points are also non-adhering points is 20%. It is characterized by being less than.

これにより、落下海水の流速増大や連続長時間運転が実施される場合にも犠牲陽極被膜層の耐剥離性に優れたLNG気化器用伝熱管を実現可能である。   Thereby, it is possible to realize a heat transfer tube for an LNG vaporizer that is excellent in the peel resistance of the sacrificial anode coating layer even when the flow velocity of the falling seawater is increased or the continuous long-time operation is performed.

本発明に係るLNG気化器用伝熱管の断面図である。It is sectional drawing of the heat exchanger tube for LNG vaporizers which concerns on this invention. 本発明に係る平均粗さRaと最大谷深さRvの求め方および凹部の谷に堆積する腐食生成物アを説明するための模式図である。It is a schematic diagram for demonstrating how to obtain the average roughness Ra and the maximum valley depth Rv according to the present invention and the corrosion products deposited in the valleys of the recesses. 従来例に係る平均粗さRaおよび最大粗さRmaxの求め方および凹部の谷に堆積する腐食生成物アを説明するための模式図である。It is a schematic diagram for demonstrating the method of calculating | requiring average roughness Ra and the maximum roughness Rmax which concern on a prior art example, and the corrosion product a deposited in the trough of a recessed part. 本発明に係るオープンラック式のLNG気化器の摸擬試験体の模式図である。It is a schematic diagram of a simulated specimen of an open rack type LNG vaporizer according to the present invention.

以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明に係るLNG気化器用伝熱管の断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a heat transfer tube for an LNG vaporizer according to the present invention.

図1において、1はAl合金製のLNG気化器用伝熱管、2は伝熱管1の母材、3は伝熱管1の母材2の外表面に溶射により形成されたAl合金からなる犠牲陽極被膜層である。   In FIG. 1, 1 is a heat transfer tube for an LNG vaporizer made of an Al alloy, 2 is a base material of the heat transfer tube 1, and 3 is a sacrificial anode coating made of Al alloy formed on the outer surface of the base material 2 of the heat transfer tube 1 by thermal spraying. Is a layer.

以下に、本発明に係るLNG気化器用伝熱管の製造方法に如何にして想到し得たのかについて、詳述する。   Below, it explains in full detail how it came to the production method of the heat exchanger tube for LNG vaporizers concerning the present invention.

伝熱管1の母材2としては、3000系、5000系、6000系、7000系などのAl合金が用いられる。   As the base material 2 of the heat transfer tube 1, Al alloys such as 3000 series, 5000 series, 6000 series, and 7000 series are used.

また、犠牲陽極被膜層3としては、Al−Zn合金(例えば、Zn:0.1〜30質量%、残部がAlおよび不可避的不純物)およびAl−Mg合金(例えば、Mg:0.1〜15質量%、残部がAlおよび不可避的不純物)の少なくともいずれか1種が用いられる。犠牲陽極被膜層3は伝熱管1の母材2を形成するAl合金の電位と比較して卑となる電位とすれば良い。なお、ZnとMgを共に含有する場合は、それぞれの元素の含有量が前記範囲を満足し、かつ、含有量の合計を30質量%以下(Al:70質量%以上)とすることが好ましい。このようなAl合金で犠牲陽極被膜層3を構成することにより、犠牲陽極被膜層3にピンホール等の部分的な欠損が生じても、犠牲陽極被膜層3が腐食環境(海水中)で積極的にアノード反応(M→Mn++ne、M:Al、Zn、Mg n:価数)を起こすことで伝熱管1の母材2の腐食を防止する(犠牲防食)ことができる。 The sacrificial anode coating layer 3 includes an Al—Zn alloy (for example, Zn: 0.1 to 30 mass%, the balance being Al and inevitable impurities) and an Al—Mg alloy (for example, Mg: 0.1 to 15). At least one of mass%, the balance being Al and inevitable impurities) is used. The sacrificial anode coating layer 3 may have a base potential as compared with the potential of the Al alloy forming the base material 2 of the heat transfer tube 1. When both Zn and Mg are contained, the content of each element preferably satisfies the above range, and the total content is preferably 30% by mass or less (Al: 70% by mass or more). By constructing the sacrificial anode coating layer 3 with such an Al alloy, even if the sacrificial anode coating layer 3 is partially damaged such as pinholes, the sacrificial anode coating layer 3 is positive in a corrosive environment (in seawater). In particular, by causing an anode reaction (M → M n + + ne , M: Al, Zn, Mg n: valence), corrosion of the base material 2 of the heat transfer tube 1 can be prevented (sacrificial protection).

本発明に係るLNG気化器用伝熱管においては、腐食のみならず冷却による氷結や温度差による応力が、連続長時間に亘りかかるため、伝熱管1の母材2と犠牲陽極被膜層3との界面には、より大きな密着力が求められる。このようなより大きな密着力を実現するために、伝熱管1の母材2と犠牲陽極被膜層3との界面はできる限り粗面とする必要があり、単純には平均粗さRaおよび最大粗さRmaxをより大きくする方が望ましいと考えられていた。   In the heat transfer tube for an LNG vaporizer according to the present invention, not only corrosion but also freezing due to cooling or stress due to a temperature difference is applied over a long period of time, so the interface between the base material 2 of the heat transfer tube 1 and the sacrificial anode coating layer 3 Requires greater adhesion. In order to realize such a larger adhesion, the interface between the base material 2 and the sacrificial anode coating layer 3 of the heat transfer tube 1 needs to be as rough as possible, simply, the average roughness Ra and the maximum roughness. It was thought that it would be desirable to increase the Rmax.

しかしながら、単純に平均粗さRaおよび最大粗さRmaxを大きくする制御を試みていたのでは、図3(上述した従来技術)に示すような伝熱管1の母材2と犠牲陽極被膜層3との界面で生じる腐食反応に起因して形成される腐食生成物アの堆積による界面の伝熱管1の母材2側の凹部の谷のアンカー効果に寄与する有効深さの減少が顕著になる{すなわち、最大粗さRmaxを大きくしたものの、界面の伝熱管1の母材2側の凹部の谷の最大谷深さRvを制御し規定しているわけではなく、最大谷深さRvの大きな箇所は認められず、腐食生成物アの堆積により、界面の伝熱管1の母材2側の凹部の谷が埋められてしまう}現象が発生した。これでは、犠牲陽極被膜層3を伝熱管1の母材2に密着させるアンカー効果の寄与分(符号イに示す長さ)が減少してしまい、犠牲陽極被膜層3の膨れや剥離に繋がる(すなわち、耐剥離性の低下に繋がる)虞があることが判明した。   However, if control for simply increasing the average roughness Ra and the maximum roughness Rmax is attempted, the base material 2 and the sacrificial anode coating layer 3 of the heat transfer tube 1 as shown in FIG. The reduction of the effective depth that contributes to the anchor effect of the valley of the concave portion on the base material 2 side of the heat transfer tube 1 at the interface due to the deposition of the corrosion product formed due to the corrosion reaction occurring at the interface of { That is, although the maximum roughness Rmax is increased, the maximum valley depth Rv of the concave portion of the recess on the base material 2 side of the heat transfer tube 1 at the interface is not controlled and defined, but the portion where the maximum valley depth Rv is large Was not observed, and the deposition of the corrosion products filled the valleys of the recesses on the base metal 2 side of the heat transfer tube 1 at the interface}. As a result, the contribution of the anchor effect (the length indicated by reference symbol (i)) for bringing the sacrificial anode coating layer 3 into close contact with the base material 2 of the heat transfer tube 1 is reduced, leading to blistering or peeling of the sacrificial anode coating layer 3 ( That is, it has been found that there is a risk that the peeling resistance may be lowered.

また、上述した平均粗さRaと最大粗さRmaxに関して、同じ界面での粗さを評価した場合、両者には一定の相関{Ra=(0.10〜0.17)×Rmax}があることが知られている。すなわち、平均粗さRaを制御することは、最大粗さRmaxを制御することとほぼ同意義と解釈することができる点からも、伝熱管1の母材2と犠牲陽極被膜層3との界面のより大きな密着力確保のために、平均粗さRaと最大粗さRmaxの制御および規定では不十分であることが分かる。   Further, when the roughness at the same interface is evaluated with respect to the above-described average roughness Ra and maximum roughness Rmax, both have a certain correlation {Ra = (0.10 to 0.17) × Rmax}. It has been known. That is, controlling the average roughness Ra can be interpreted as having almost the same meaning as controlling the maximum roughness Rmax. From the viewpoint of the interface between the base material 2 of the heat transfer tube 1 and the sacrificial anode coating layer 3. It can be seen that the control and regulation of the average roughness Ra and the maximum roughness Rmax are insufficient in order to secure a larger adhesion strength.

そこで、本願発明者らは鋭意検討した結果、複雑な形状を有する伝熱管1の母材2の表面のような複雑なフィン形状を有する場合、図2に示すように、一部に、腐食生成物アの堆積により、界面の伝熱管1の母材2側の凹部の谷のアンカー効果に寄与する有効深さの減少する箇所が多少あっても、なお、腐食生成物アの堆積により、界面の伝熱管1の母材2側の凹部の谷のアンカー効果に寄与する有効深さの減少が少ない箇所{すなわち、犠牲陽極被膜層3を伝熱管1の母材2に密着させるアンカー効果の寄与分(符号イに示す長さ)が十分ある箇所}を規定できる最大谷深さRvの制御が、平均粗さRaと共に重要であることを見出した。さらに、伝熱管1の母材2の断面を解析した結果、伝熱管1の母材2と犠牲陽極被膜層3の界面の粗さが、平均粗さRa:5〜50μm、最大谷深さRv:30〜400μmであるのが好ましいことが判明した。   Accordingly, as a result of intensive studies, the inventors of the present application have found that when a complicated fin shape such as the surface of the base material 2 of the heat transfer tube 1 having a complicated shape is present, as shown in FIG. Even if there is a part where the effective depth that contributes to the anchor effect of the valley of the concave portion on the base metal 2 side of the heat transfer tube 1 at the interface is reduced due to the accumulation of the material a, Where there is little decrease in the effective depth contributing to the anchor effect of the valley of the recess on the base material 2 side of the heat transfer tube 1 {that is, the contribution of the anchor effect in which the sacrificial anode coating layer 3 is brought into close contact with the base material 2 of the heat transfer tube 1 It has been found that control of the maximum valley depth Rv that can define a minute (a portion having a sufficient length (the length indicated by symbol A)) is important together with the average roughness Ra. Furthermore, as a result of analyzing the cross section of the base material 2 of the heat transfer tube 1, the roughness of the interface between the base material 2 of the heat transfer tube 1 and the sacrificial anode coating layer 3 is as follows: average roughness Ra: 5 to 50 μm, maximum valley depth Rv : It was found that the thickness is preferably 30 to 400 μm.

ここで、平均粗さRaとは、図2および図3に示す伝熱管1の母材2と犠牲陽極被膜層3との界面を模式的に示す凹凸の中間線Aと凹凸曲線Bとに囲まれた部分の面積に等しくなるような長方形を描いたときの長方形の縦の長さ(すなわち、基準長さにおける凹凸曲線Bの絶対値の平均値)に相当し、画像解析などで求めることができる。また、最大粗さRmaxとは、基準長さにおける凹凸曲線Bの凹凸の最大値を指す。さらに、最大谷深さRvとは、基準長さにおける凹凸曲線Bの伝熱管1の母材2側の谷(凹形状)の深さの最大値を指す。上記画像処理は特に規定しないが、例えば、RBS社の画像解析ソフト(例えば、ImageJ)等が推奨される。例えば、伝熱管1の母材2と犠牲陽極被膜層3との界面を含む切断面を研磨して光学顕微鏡にて100倍視野で任意に5視野撮影し、撮影した断面写真に対して上記画像解析ソフトにより上記凹凸曲線Bの形状を求め、そこから平均粗さRa、最大粗さRmaxおよび最大谷深さRvが算出される。なお、断面写真の倍率は最大粗さに応じて適宜変更できる。   Here, the average roughness Ra is surrounded by an uneven middle line A and an uneven curve B schematically showing the interface between the base material 2 and the sacrificial anode coating layer 3 of the heat transfer tube 1 shown in FIGS. This corresponds to the vertical length of the rectangle when the rectangle is equal to the area of the measured portion (that is, the average value of the absolute values of the uneven curve B at the reference length), and can be obtained by image analysis or the like. it can. Further, the maximum roughness Rmax indicates the maximum value of the unevenness of the uneven curve B at the reference length. Furthermore, the maximum valley depth Rv indicates the maximum value of the depth of the valley (concave shape) on the base material 2 side of the heat transfer tube 1 of the uneven curve B at the reference length. The image processing is not particularly defined, but for example, RBS image analysis software (for example, ImageJ) is recommended. For example, the cut surface including the interface between the base material 2 of the heat transfer tube 1 and the sacrificial anode coating layer 3 is polished and arbitrarily photographed at five times with a 100 × field of view with an optical microscope. The shape of the concavo-convex curve B is obtained by analysis software, and the average roughness Ra, the maximum roughness Rmax, and the maximum valley depth Rv are calculated therefrom. In addition, the magnification of the cross-sectional photograph can be appropriately changed according to the maximum roughness.

上述した本発明に係る伝熱管1の母材2と犠牲陽極被膜層3との界面の平均粗さRaと最大谷深さRvを実現するための手段としては、伝熱管1の母材2の表面をブラスト処理するための大きな径のブラスト粉末を多く必要とする。   As means for realizing the average roughness Ra and maximum valley depth Rv of the interface between the base material 2 of the heat transfer tube 1 and the sacrificial anode coating layer 3 according to the present invention described above, the base material 2 of the heat transfer tube 1 A large amount of blast powder with a large diameter is required for blasting the surface.

しかしながら、単にブラスト粉末径が大き過ぎると、必要以上に上記凹凸曲線Bの凸部形状が損なわれたり、特に複雑な形状を有する伝熱管の谷部に代表されるような凹部にブラスト粉末が当たらなくなる。したがって、粒度#14〜24の内の少なくともいずれか1つの粒度を選択し、その選択した粒度中の粒子の粒径1000μm以上の構成率が80%以上になるようにさらに調整し、伝熱管1の母材2の外表面をブラスト処理する必要がある。また、この粒子は、アルミナが好ましく、さらに、純度が90〜96質量%であるブラスト粉末を用いるのがより好ましいが、必ずしもこれのみに限定されるものではない。すなわち、純度が90〜96質量%のアルミナに相当する硬さと靭性を有するものであれば、様々な材質の粒子をブラスト粉末として用いることが可能である。   However, if the diameter of the blast powder is simply too large, the shape of the convex portion of the concave-convex curve B will be damaged more than necessary, or if the blast powder hits a concave portion represented by a valley portion of a heat transfer tube having a particularly complicated shape. Disappear. Therefore, at least one of the particle sizes # 14 to 24 is selected, and further adjusted so that the composition ratio of particles having a particle size of 1000 μm or more in the selected particle size becomes 80% or more, and the heat transfer tube 1 The outer surface of the base material 2 must be blasted. The particles are preferably alumina, and more preferably blast powder having a purity of 90 to 96% by mass, but is not necessarily limited thereto. That is, as long as it has hardness and toughness corresponding to alumina having a purity of 90 to 96% by mass, particles of various materials can be used as blast powder.

ここで、ブラスト粉末の粒度は、JIS R6001(研磨材粒度)の規定に従う。例えば、この規定によるF(#)20では、「研磨材粉末が、1000μmと850μmの二つのふるいにとどまったものを合わせて70%以上存在すること」と規定されている。しかし、これでは本発明に係る伝熱管1の母材2と犠牲陽極被膜層3との界面の平均粗さRaと最大谷深さRvを実現するためには十分ではなく、「ブラスト粉末は、粒度#20を選択したならば、1000μmと850μmの二つのふるいにとどまったもの(粒子)の粒径1000μm以上の構成率が80%以上になるようにさらに調整すること、好ましくは90%以上になるようにさらに調整すること」が必要になる。   Here, the particle size of the blast powder complies with JIS R6001 (abrasive particle size). For example, F (#) 20 according to this rule stipulates that “the abrasive powder should be 70% or more of the powders remaining in the two screens of 1000 μm and 850 μm”. However, this is not sufficient to realize the average roughness Ra and the maximum valley depth Rv of the interface between the base material 2 and the sacrificial anode coating layer 3 of the heat transfer tube 1 according to the present invention. If particle size # 20 is selected, further adjustment is made so that the composition ratio of particles having a particle size of 1000 μm or more of particles (particles) staying in two screens of 1000 μm and 850 μm is 80% or more, preferably 90% or more It is necessary to make further adjustments.

また、ブラスト処理後に、伝熱管1の母材2の表面にブラスト粉末が残存すると、腐食に加えて氷結や温度差による応力を長時間受けることによって、伝熱管1の母材2に残存するブラスト粉末を起点として、伝熱管1の母材2と犠牲陽極被膜層3との密着性が損なわれて非密着部分が拡大し、牲陽極被膜層3の剥離が生じる虞がある。   In addition, if blast powder remains on the surface of the base material 2 of the heat transfer tube 1 after blasting, the blasting remains on the base material 2 of the heat transfer tube 1 by being subjected to stress due to freezing or temperature difference in addition to corrosion for a long time. Starting from the powder, the adhesion between the base material 2 of the heat transfer tube 1 and the sacrificial anode coating layer 3 may be impaired, and the non-adhered portion may be enlarged, and the sacrificial anode coating layer 3 may be peeled off.

したがって、本発明に係る伝熱管1の母材2と犠牲陽極被膜層3との界面構造を達成するためには、伝熱管1の母材2に残存するブラスト粉末を除去するのが好ましい。また、ブラスト粉末は伝熱管1の母材2に突き刺さるように存在するため、得られた粗面を損なわずにブラスト粉末を完全に除去可能な実用技術は現在のところ見当たらない。現状では、先端がプラスチックや毛製のブラシや刷毛を用いて、刷き取ることにより除去することが望ましい。先端が金属製やセラミック製のものは、得られた粗面を損なう恐れがあるので避ける方が賢明である。   Therefore, in order to achieve the interface structure between the base material 2 of the heat transfer tube 1 and the sacrificial anode coating layer 3 according to the present invention, it is preferable to remove the blast powder remaining on the base material 2 of the heat transfer tube 1. In addition, since the blast powder exists so as to pierce the base material 2 of the heat transfer tube 1, no practical technique that can completely remove the blast powder without damaging the obtained rough surface has been found at present. At present, it is desirable to remove the tip by brushing with a brush or brush made of plastic or bristle. It is advisable to avoid metal tips or ceramic tips because they may damage the resulting rough surface.

なお、伝熱管1の母材2の外表面に設けられたフィン部の凹部に引っかかった大きなブラスト片については、先の細い金属棒でブラスト片を掻き出すように除去すればよい。このようにして、伝熱管1の母材2の外表面に残存するブラスト粉末が腐食や耐剥離性阻害に及ぼす影響を低減するように、ブラスト粉末をできるだけ除去することが好ましい。そのためには、ブラスト粉末が伝熱管1の母材2から除去しやすい構造であること、存在することが見出し易いことが望ましい。   In addition, what is necessary is just to remove so that a blast piece may be scraped out with a thin metal stick about the big blast piece caught in the recessed part of the fin part provided in the outer surface of the preform | base_material 2 of the heat exchanger tube 1. FIG. In this way, it is preferable to remove the blast powder as much as possible so as to reduce the influence of the blast powder remaining on the outer surface of the base material 2 of the heat transfer tube 1 on corrosion and peel resistance inhibition. For this purpose, it is desirable that the blast powder has a structure that can be easily removed from the base material 2 of the heat transfer tube 1 and that it is easy to find that it exists.

上述したような各種条件をすべて満足させるためには、ブラスト粉末として、粒度#14〜24の内の少なくともいずれか1つの粒度を選択し、その選択した粒度中の粒子の粒径1000μm以上の構成率が80%以上になるようにさらに調整しなければならない。例えば、この粒子は、上述したようにアルミナが好ましく、さらに、純度が90〜96質量%であるブラスト粉末を用いるのがより好ましい。   In order to satisfy all the above-mentioned various conditions, at least one of the particle sizes # 14 to 24 is selected as the blast powder, and the particle size in the selected particle size is 1000 μm or more. Further adjustments must be made so that the rate is greater than 80%. For example, the particles are preferably alumina as described above, and more preferably blast powder having a purity of 90 to 96% by mass.

ここで、ブラスト粉末の粒子の粒径は、レーザー回折散乱法により測定した。   Here, the particle size of the blast powder particles was measured by a laser diffraction scattering method.

次に、後述する非密着界面率について説明する。本発明に係るLNG気化器用伝熱管には、上述したように、ORVの高効率化を図るために、落下海水の流速増大や連続長時間運転が必須となるため、したがって、腐食のみならず冷却による氷結や温度差による長時間に亘る応力がかかる。腐食に加えて氷結や温度差による長時間に亘る応力を受けることによって、伝熱管1の母材2に残存するブラスト粉末を起点として、伝熱管1の母材2と犠牲陽極被膜層3との密着性が損なわれて非密着部分が拡大し、犠牲陽極被膜層3の剥離が生じることが明らかとなった。   Next, the non-contact interface ratio described later will be described. As described above, in the heat transfer tube for LNG vaporizer according to the present invention, in order to increase the efficiency of ORV, it is essential to increase the flow rate of falling seawater and to operate continuously for a long time. Stress is applied for a long time due to icing and temperature difference. By receiving stress for a long time due to freezing or temperature difference in addition to corrosion, the base material 2 of the heat transfer tube 1 and the sacrificial anode coating layer 3 start from the blast powder remaining in the base material 2 of the heat transfer tube 1. It was revealed that the adhesion was impaired and the non-adhered portion was enlarged, and the sacrificial anode coating layer 3 was peeled off.

このような応力によってブラスト粉末は伸縮しないため、この応力によって伝熱管1の母材2と犠牲陽極被膜層3との界面に隙間が形成され、この隙間に入り込んだ海水が冷却することによって応力が生じ、犠牲陽極被膜層3の割れや剥離を生じるものと考えられる。更に、前記隙間に入り込んだ海水によって、伝熱管1の母材2と犠牲陽極被膜層3との間で電池が形成されて、犠牲陽極被膜層3が犠牲防食によって腐食して来るため、ますます犠牲陽極被膜層3の剥離が促進されるものと考えられる。よって、一般的には、腐食や耐剥離性を低下させることのないブラスト粉末が、適切な処置を怠ると、かえって犠牲陽極被膜層3の腐食や耐剥離性を促進することが分かった。即ち、犠牲陽極被膜層3の断面から解析した場合に、伝熱管1の母材2と犠牲陽極被膜層3間に存在するブラスト粉末および粒子(粉塵)の存在により生ずる犠牲陽極被膜層3の空隙が少なく、伝熱管1の母材2と犠牲陽極被膜層3密着している部分が多い方が望ましい。但し、非密着部は腐食と応力によって徐々に広がるため、密着部は30μmの範囲以上に連続しないと耐剥離作用が働かないことが判明した。従って、30μm未満の密着部については非密着部と見做すこととする。   Since the blast powder does not expand and contract due to such stress, a gap is formed at the interface between the base material 2 of the heat transfer tube 1 and the sacrificial anode coating layer 3 due to this stress, and the stress is generated by cooling the seawater that has entered the gap. It is considered that the sacrificial anode coating layer 3 is cracked or peeled off. Furthermore, since the seawater entering the gap forms a battery between the base material 2 of the heat transfer tube 1 and the sacrificial anode coating layer 3, the sacrificial anode coating layer 3 is corroded due to sacrificial corrosion protection. It is considered that peeling of the sacrificial anode coating layer 3 is promoted. Therefore, in general, it has been found that blast powder that does not reduce corrosion and peel resistance promotes corrosion and peel resistance of the sacrificial anode coating layer 3 on the contrary, if an appropriate measure is neglected. That is, when analyzed from the cross section of the sacrificial anode coating layer 3, voids in the sacrificial anode coating layer 3 caused by the presence of blast powder and particles (dust) existing between the base material 2 of the heat transfer tube 1 and the sacrificial anode coating layer 3. It is desirable that the number of the portions of the heat transfer tube 1 that are in close contact with the base material 2 and the sacrificial anode coating layer 3 is large. However, since the non-adhered part gradually spreads due to corrosion and stress, it has been found that the adhesion-resistant part does not work unless the adhering part is continuous beyond the range of 30 μm. Therefore, the contact portion of less than 30 μm is regarded as a non-contact portion.

そして、非密着点評価法によって求めた非密着界面率の10視野の平均値が20%未満であるのが好ましく、10%未満であればより好ましい。非密着界面率が20%以上であると、犠牲陽極被膜層3の伝熱管1の母材2に対する耐剥離性が不十分であり、腐食と応力により容易に犠牲陽極被膜層3が剥離するからである。一方、前記非密着界面率が10%未満であると耐剥離性が良好であり、伝熱管1の母材2と犠牲陽極被膜層3との界面に非密着部が存在しても犠牲陽極被膜層3の割れや剥離につながり難いのでより好ましい。   And it is preferable that the average value of 10 visual field of the non-adhesion interface rate calculated | required by the non-adhesion point evaluation method is less than 20%, and if it is less than 10%, it is more preferable. When the non-adhesion interface ratio is 20% or more, the sacrificial anode coating layer 3 has insufficient peel resistance with respect to the base material 2 of the heat transfer tube 1, and the sacrificial anode coating layer 3 easily peels off due to corrosion and stress. It is. On the other hand, if the non-contact interface ratio is less than 10%, the peel resistance is good, and the sacrificial anode coating is provided even if there is a non-contact portion at the interface between the base material 2 and the sacrificial anode coating layer 3 of the heat transfer tube 1. Since it is hard to lead to the crack and peeling of the layer 3, it is more preferable.

ここで、伝熱管1の母材2と犠牲陽極被膜層3との界面は凹凸が存在するため、非密着界面率や非密着部の長さは、次のようにして求められる。即ち、犠牲陽極被膜層3を断面から顕微鏡解析し、伝熱管1の母材2と犠牲陽極被膜層3との界面を含む1mm×1mmの視野範囲において間隔10μmの格子点法により各格子点にて前記界面の密着または非密着を判定し、非密着点の3つ隣りの格子点までに非密着点が存在する場合、それら2つの非密着点間の密着している格子点も非密着点とする。非密着界面率は、非密着点数/全格子点数を算出して求められる。前記界面が平面の場合は、界面を視野に平行として全格子点を100点とすることが推奨される。   Here, since the interface between the base material 2 of the heat transfer tube 1 and the sacrificial anode coating layer 3 has irregularities, the non-adhesive interface ratio and the length of the non-adhesive portion are determined as follows. That is, the sacrificial anode coating layer 3 is microscopically analyzed from the cross section, and each lattice point is obtained by a lattice point method with an interval of 10 μm in a 1 mm × 1 mm visual field range including the interface between the base material 2 of the heat transfer tube 1 and the sacrificial anode coating layer 3. If the adhesion or non-adhesion of the interface is determined and there is a non-adhesion point up to three lattice points adjacent to the non-adhesion point, the adhesion between the two non-adhesion points is also a non-adhesion point. And The non-contact interface ratio is obtained by calculating the number of non-contact points / the total number of lattice points. When the interface is a plane, it is recommended that the interface is parallel to the field of view and the total lattice points are 100 points.

また、非密着部の長さは、上述のように評価した非密着点の連続点数にて評価し、連続20点が上述の200μm長さにあたる。尚、何れの評価も、出来るだけ多くの断面について行うことが望ましい。非密着界面率は、10視野の平均値にて評価し、非密着点の連続および非密着点での伝熱管1の母材2と犠牲陽極被膜層3との距離は、10視野での最大値にて評価することが求められる。   Further, the length of the non-contact portion is evaluated by the number of continuous points of non-contact points evaluated as described above, and the continuous 20 points corresponds to the above-mentioned 200 μm length. It is desirable to perform any evaluation on as many cross sections as possible. The non-contact interface ratio is evaluated by an average value of 10 visual fields, and the distance between the base material 2 of the heat transfer tube 1 and the sacrificial anode coating layer 3 at the continuous and non-adhesive points is the maximum in 10 visual fields. It is required to evaluate by value.

また、上述した非密着界面率の評価に先立って、目視判定による犠牲陽極被膜層3の膨れ{ここで言う「膨れの定義」は、犠牲陽極被膜層3が伝熱管1の母材2の外表面から100μm以上離れた状態を指す}、さらに剥離および割れ(これら3つを総称して改めて「膨れ」と言う)の数を評価する必要がある。そして、犠牲陽極被膜層3の膨れ(これは、上記総称した「膨れ」を指す)数が、100cmあたり10個未満であるのが好ましく、5個未満であればより好ましい。 Prior to the evaluation of the non-adhesion interface ratio described above, the sacrificial anode coating layer 3 bulges by visual judgment {the definition of bulging here refers to the sacrificial anode coating layer 3 being outside the base material 2 of the heat transfer tube 1. It is necessary to evaluate the number of peeling and cracking (collectively referring to these three collectively as “bulging”). And the number of blisters of the sacrificial anode coating layer 3 (which refers to the above-mentioned “swollen”) is preferably less than 10 per 100 cm 2 and more preferably less than 5.

なお、伝熱管1の母材2の外表面に犠牲陽極被膜層3を形成する方法としては、高効率化が求められる伝熱管1の形状が複雑化していること、および、溶接部での施工性の観点から、上述したような溶射法にて形成することが好ましい。また、犠牲陽極被膜層3のより具体的な形成に関して述べるならば、溶射材料とし、上記成分のAl合金を例えば線状、または粉末状の形態にし、熱源を燃焼ガスとするフレーム溶射法を適用すれば良い。なお、犠牲陽極被膜層3の膜厚は、100〜800μm、好ましくは150〜500μmが適当である。   In addition, as a method of forming the sacrificial anode coating layer 3 on the outer surface of the base material 2 of the heat transfer tube 1, the shape of the heat transfer tube 1 that requires high efficiency is complicated, and construction at the welded portion is performed. From the viewpoint of property, it is preferable to form by the thermal spraying method as described above. If more specific formation of the sacrificial anode coating layer 3 is described, a flame spraying method in which the thermal spray material is used, the Al alloy of the above components is in a linear or powder form, and the heat source is a combustion gas is applied. Just do it. The sacrificial anode coating layer 3 has a thickness of 100 to 800 μm, preferably 150 to 500 μm.

また、犠牲陽極被膜層3の耐久性をさらに高めるため、上記溶射法によって施工した犠牲陽極被膜層3に対し、エポキシ樹脂などの封孔剤を用いて封孔処理を行っても良い。この封孔剤としては、一般に用いられている溶射被膜用封孔剤でよいが、Al−Zn合金やAl−Mg合金からなる犠牲陽極被膜層3への浸透性に優れた高分子エポキシ樹脂のSAクリア(神東塗料株式会社製)を犠牲陽極被膜層3の表面に1回以上塗布することが好ましい。   Further, in order to further enhance the durability of the sacrificial anode coating layer 3, the sacrificial anode coating layer 3 applied by the thermal spraying method may be sealed using a sealing agent such as an epoxy resin. As the sealing agent, a generally used sealing agent for thermal spray coating may be used. However, a polymer epoxy resin excellent in permeability to the sacrificial anode coating layer 3 made of an Al—Zn alloy or an Al—Mg alloy may be used. SA clear (manufactured by Shinto Paint Co., Ltd.) is preferably applied to the surface of the sacrificial anode coating layer 3 at least once.

また、クラッド構造となるように、Al合金製の母材2(例えば、A5052やA5083)の外表面に厚さが50〜2000μmの犠牲陽極層{母材2のAl合金よりも電位が卑なAl合金(例えば、A7072)、図示せず}を予め設けた伝熱管1において、上述したような所定の溶射方法(段落番号0045参照)を用いて、前記犠牲陽極層の表面にさらに犠牲陽極被膜層3を形成することも可能である。この場合、まず前記犠牲陽極層と犠牲陽極被膜層3の界面の粗さが、平均粗さRa:5〜50μm、最大谷深さRv:30〜400μmとなるように、粒度#14〜24の内の少なくともいずれか1つの粒度を選択し、その選択した粒度中の粒子の粒径1000μm以上の構成率が80%以上になるようにさらに調整されたブラスト粉末を用いて、前記犠牲陽極層の外表面をブラスト処理する。その後、ブラスト粉末を除去し、上述したような所定の溶射条件(段落番号0025および0045参照)で前記犠牲陽極層の外表面に膜厚が100〜800μmの犠牲陽極被膜層3を形成すればよい。なお、この場合の犠牲陽極被膜層3は、母材2および母材2にクラッドされた前記犠牲陽極層の電位と比較して卑となる電位を有したAl合金であればよい(例えば、Al−2%Zn合金やAl−5%Mg合金など)。   Also, a sacrificial anode layer having a thickness of 50 to 2000 μm on the outer surface of the Al alloy base material 2 (for example, A5052 or A5083) so that a clad structure is formed (potential is lower than that of the Al alloy of the base material 2). In the heat transfer tube 1 in which an Al alloy (for example, A7072) (not shown) is provided in advance, the sacrificial anode coating is further formed on the surface of the sacrificial anode layer by using the predetermined spraying method as described above (see paragraph 0045). It is also possible to form the layer 3. In this case, first, the roughness of the interface between the sacrificial anode layer and the sacrificial anode coating layer 3 is such that the average roughness Ra is 5 to 50 μm and the maximum valley depth Rv is 30 to 400 μm. Of the sacrificial anode layer using a blast powder further selected so that the composition ratio of particles having a particle size of 1000 μm or more in the selected particle size is 80% or more. Blast the outer surface. Thereafter, the blast powder is removed, and the sacrificial anode coating layer 3 having a film thickness of 100 to 800 μm is formed on the outer surface of the sacrificial anode layer under the predetermined spraying conditions (see paragraphs 0025 and 0045) as described above. . The sacrificial anode coating layer 3 in this case may be an Al alloy having a base potential compared to the base material 2 and the potential of the sacrificial anode layer clad on the base material 2 (for example, Al -2% Zn alloy and Al-5% Mg alloy).

このような製造方法で形成された伝熱管1を用いると、母材2と母材2にクラッドされた前記犠牲陽極層の界面のさらなる防食強化が図られるばかりか、前記犠牲陽極層およびその上に形成された犠牲陽極被膜層3のトータルとしての耐剥離性にもより一段優れる。仮に、上述した母材2と母材2にクラッドされた前記犠牲陽極層からのみなる伝熱管1を用いる場合、万が一、前記犠牲陽極層が損耗しても、損耗した該当箇所を上述した方法で補修することも可能である。   When the heat transfer tube 1 formed by such a manufacturing method is used, not only the anticorrosion strengthening of the interface between the base material 2 and the sacrificial anode layer clad on the base material 2 is achieved, but also the sacrificial anode layer and the top thereof. Further, the sacrificial anode coating layer 3 formed in the above is further excellent in peeling resistance as a total. If the heat transfer tube 1 composed only of the base material 2 and the sacrificial anode layer clad on the base material 2 is used, even if the sacrificial anode layer is worn out, the corresponding portion that has been worn out is determined by the method described above. It can also be repaired.

LNG気化器用伝熱管を模擬するため、縦100mm×横100mm×厚さ20mmのAl合金(A5083、A5052、A7072)の板材(伝熱管1の母材2に相当)を準備し、片面を山高さ5mm、山と山の間が60度の角度を成すような△形状が連続する形状に加工した。さらに、これらの板材の片面に対して、種々の条件にてショットブラストで粗面化し、表面に残存するブラスト粉末を、先端がプラスチック製のデッキブラシで刷き落として除去した。表面に食い込んでいる大きなブラスト片については、鋼製の錐で掻き出して除去した。   In order to simulate a heat transfer tube for LNG vaporizer, a plate material (corresponding to base material 2 of heat transfer tube 1) of an Al alloy (A5083, A5052, A7072) having a length of 100 mm, a width of 100 mm, and a thickness of 20 mm is prepared, and one side has a mountain height. It was processed into a shape in which Δ shapes were continuous such that the angle between the peaks was 5 mm and the angle between the peaks was 60 degrees. Furthermore, one side of these plate materials was roughened by shot blasting under various conditions, and the blast powder remaining on the surface was removed by scraping off the tip with a plastic deck brush. The large blast pieces biting into the surface were removed by scraping with a steel cone.

その後、ショットブラスト後の表面上に犠牲陽極被膜層3に相当するフレーム溶射法(熱源:プロパン−酸素)によるAl−2%Zn、Al−5%Mg合金の溶射被膜を形成し供試材とした。上述した手法にて断面を観察して、粗度と密着点評価(溶射被膜の膨れ、密着性)を行った。各条件とも10視野で観察し評価した。   Thereafter, a sprayed coating of Al-2% Zn and Al-5% Mg alloy was formed on the surface after shot blasting by flame spraying method (heat source: propane-oxygen) corresponding to the sacrificial anode coating layer 3 did. The cross section was observed by the method described above, and the roughness and adhesion point evaluation (swelling and adhesion of the sprayed coating) were performed. Each condition was observed and evaluated in 10 fields of view.

実機での使用環境を考慮した熱サイクル腐食試験として、作製した供試材に対して以下の試験を行った。供試材の溶射被膜(犠牲陽極被膜層3に相当)形成面へ、pH8.2、液温35℃に調整した人工海水(株式会社ヤシマ製金属腐食試験用アクアマリン)の噴霧を行い、1日1回、LNGによる伝熱管1の母材2を模擬するため、Al合金(A5083、A5052、A7072)の板材のみを液体窒素に浸漬し冷却する工程を合計3ヶ月行った。該工程が1週間終了する毎に、供試材の外観を観察して供試材の溶射被膜の膨れ数を評価した。そして、溶射被膜の膨れ数については目視による観察を行い、100cmあたりの膨れ数が5個未満のものを「◎」、5個以上10個未満のものを「○」、10個以上20個未満のものを「△」、20個以上のものを「×」として評価した。 The following tests were performed on the prepared specimens as a thermal cycle corrosion test in consideration of the use environment in the actual machine. Artificial seawater (Aquamarine for metal corrosion test manufactured by Yashima Co., Ltd.) adjusted to pH 8.2 and liquid temperature of 35 ° C. is sprayed on the surface of the sprayed coating (corresponding to sacrificial anode coating layer 3) of the test material. In order to simulate the base material 2 of the heat transfer tube 1 by LNG once a day, a step of immersing only the plate material of the Al alloy (A5083, A5052, A7072) in liquid nitrogen and cooling was performed for a total of three months. Each time the process was completed for one week, the appearance of the test material was observed to evaluate the number of blisters of the sprayed coating of the test material. Then, the number of blisters of the sprayed coating is visually observed. When the number of blisters per 100 cm 2 is less than 5, “◎”, when 5 or more and less than 10 are “◯”, 10 or more and 20 Less than “” was evaluated, and 20 or more were evaluated as “x”.

Al合金(A5083、A5052、A7072)の板材と溶射被膜の密着性(すなわち、伝熱管1の母材2と犠牲陽極被膜層3の密着性に相当)については、3ヶ月の試験終了後の供試材の切断面を研磨して光学顕微鏡にて100倍視野を任意に10視野観察し、間隔10μmの格子点法により各格子点にて、Al合金(A5083、A5052、A7072)の板材と溶射被膜の界面の密着または非密着を判定し、非密着点の3つ隣りの格子点までに非密着点が存在する場合、それら2つの非密着点間の密着している格子点も非密着点とする非密着点評価法によって求めた非密着界面率の10視野の平均値が10%未満であるのものを「◎」、10%以上20%未満のものを「○」、20%以上30%未満のものを「△」、30%以上のものを「×」として評価した。また、各種サンプルのブラスト処理条件、ブラスト粉末の除去処理有無と、得られたサンプルの粗度、溶射被膜種、腐食試験8週間後の溶射被膜の膨れおよびAl合金(A5083、A5052、A7072)の板材と溶射被膜の界面の非密着界面率の評価結果(密着性)を下記表1に示す。   The adhesion between the Al alloy (A5083, A5052, A7072) plate and the thermal spray coating (that is, equivalent to the adhesion between the base material 2 of the heat transfer tube 1 and the sacrificial anode coating layer 3) is provided after the end of the three-month test. The cut surface of the sample is polished and 10 fields of view are arbitrarily observed with an optical microscope at 10 times magnification, and sprayed with a plate of Al alloy (A5083, A5052, A7072) at each lattice point by a lattice point method with an interval of 10 μm. When the adhesion or non-adhesion of the coating interface is determined and there are non-adhesion points up to three adjacent lattice points of the non-adhesion points, the adhering lattice points between the two non-adhesion points are also non-adhesion points. When the average value of 10 fields of non-adhesion interface ratio determined by the non-adhesion point evaluation method is less than 10%, “◎”, 10% or more but less than 20% “◯”, 20% or more 30 Less than% is "△", 30% or more They were evaluated for as "×". Also, the blasting conditions of various samples, the presence or absence of blast powder removal treatment, the roughness of the obtained sample, the type of sprayed coating, the swelling of the sprayed coating after 8 weeks of corrosion test, and the Al alloy (A5083, A5052, A7072). Table 1 below shows the evaluation results (adhesiveness) of the non-adhesion interface ratio at the interface between the plate material and the sprayed coating.

Figure 0006075782
Figure 0006075782

供試材No.2、およびNo.4〜7、およびNo.11、No.13は、いずれも所望の表面粗さRaと最大谷深さRvを満たし、さらに適切にAl合金(A5083)の板材の表面に残存したブラスト粉末を除去したため、腐食サイクル試験後も溶射被膜の膨れが発生せず、かつ溶射被膜の密着性も高かった。   Specimen No. 2, and no. 4-7, and no. 11, no. No. 13 satisfies the desired surface roughness Ra and the maximum valley depth Rv, and further appropriately removes the blast powder remaining on the surface of the Al alloy (A5083) plate material, so that the thermal spray coating swells even after the corrosion cycle test. And the adhesion of the sprayed coating was high.

それに対して、供試材No.1については、適切なブラスト粒子を使用しなかったため、平均粗さRaおよび最大谷深さRvが所望の値を満たさず、溶射被膜の膨れが発生し、溶射被膜の密着性にも劣った。供試材No.3、No.8、No.12はAl合金(A5083)の板材の表面に残存したブラスト粉末を除去しなかったため、Al合金(A5083)の板材と溶射被膜の界面に多数のブラスト粒子が残存したため、溶射被膜の膨れが発生し、溶射被膜の密着性にも劣った。供試材No.9および10、No.14は、適切なブラスト粉末を使用しなかった例である。供試材No.9およびNo.14については、Alの含有率の高いブラスト粉末のため白色を呈しており、ブラスト処理後に除去処理を行ったが十分にブラスト粒子を除去出来なかったため、腐食試験後の溶射被膜の膨れが発生し、溶射被膜の密着性にも劣った。供試材No.10については、ブラスト処理の粒子材質としてガラスビーズを用いた例であり、Al合金(A5083)の板材の粗度は良好であったが、ブラスト粉末の除去を行ったが十分に除去し切れなかったため、腐食試験後の溶射被膜の膨れが発生し、溶射被膜の密着性にも劣った。 On the other hand, specimen No. For No. 1, since no suitable blast particles were used, the average roughness Ra and the maximum valley depth Rv did not satisfy the desired values, the thermal spray coating swelled, and the thermal spray coating had poor adhesion. Specimen No. 3, no. 8, no. No. 12 did not remove the blast powder remaining on the surface of the Al alloy (A5083) plate material, and a large number of blast particles remained at the interface between the Al alloy (A5083) plate material and the sprayed coating. Also, the adhesion of the sprayed coating was inferior. Specimen No. 9 and 10, no. No. 14 is an example in which an appropriate blast powder was not used. Specimen No. 9 and no. No. 14 is white due to the blast powder having a high content of Al 2 O 3 , and the removal treatment was performed after the blast treatment, but the blast particles could not be sufficiently removed. And the adhesion of the sprayed coating was poor. Specimen No. No. 10 is an example in which glass beads are used as the particle material of the blast treatment, and the roughness of the plate material of the Al alloy (A5083) was good, but the blast powder was removed but could not be removed sufficiently As a result, the sprayed coating swelled after the corrosion test and the adhesion of the sprayed coating was poor.

また、供試材No.15〜20は、板材をAl合金(A5052)とした例である。供試材No.17〜19は、いずれも所望の表面粗さRaと最大谷深さRvを満たし、さらに適切にAl合金(A5052)の板材表面に残存したブラスト粉末を除去したため、腐食サイクル試験後も溶射被膜の膨れが発生せず、かつ溶射被膜の密着性も高かった。   In addition, specimen No. 15 to 20 are examples in which the plate material is an Al alloy (A5052). Specimen No. Nos. 17 to 19 all satisfy the desired surface roughness Ra and the maximum valley depth Rv, and the blast powder remaining on the surface of the Al alloy (A5052) plate was appropriately removed. No blistering occurred, and the adhesion of the sprayed coating was high.

それに対して、供試材No.15については、適切なブラスト粒子を使用しなかったため、平均粗さRaおよび最大谷深さRvが所望の値を満たさず、溶射被膜の膨れが発生し、溶射被膜の密着性にも劣った。供試材No.16はAl合金(A5052)の板材の表面に残存したブラスト粉末を除去しなかったため、Al合金(A5052)の板材と溶射被膜の界面に多数のブラスト粒子が残存したため、溶射被膜の膨れが発生し、溶射被膜の密着性にも劣った。また、供試材No.20については、Alの含有率の高いブラスト粉末のため白色を呈しており、ブラスト処理後に除去処理を行ったが十分にブラスト粒子を除去出来なかったため、腐食試験後の溶射被膜の膨れが発生し、溶射被膜の密着性にも劣った。 On the other hand, specimen No. For No. 15, since no suitable blast particles were used, the average roughness Ra and the maximum valley depth Rv did not satisfy the desired values, the thermal spray coating swelled, and the thermal spray coating had poor adhesion. Specimen No. No. 16 did not remove the blasting powder remaining on the surface of the Al alloy (A5052) plate, and a large number of blast particles remained at the interface between the Al alloy (A5052) plate and the thermal sprayed coating. Also, the adhesion of the sprayed coating was inferior. In addition, specimen No. No. 20 is white due to the blast powder having a high content of Al 2 O 3 , and the removal treatment was performed after the blast treatment, but the blast particles could not be sufficiently removed. And the adhesion of the sprayed coating was poor.

また、供試材No.21〜26は、板材をAl合金(A7072)にした例である。供試材No.23〜25は、いずれも所望の表面粗さRaと最大谷深さRvを満たし、さらに適切にAl合金(A7072)の板材表面に残存したブラスト粉末を除去したため、腐食サイクル試験後も溶射被膜の膨れが発生せず、かつ溶射被膜の密着性も高かった。   In addition, specimen No. 21 to 26 are examples in which the plate material is an Al alloy (A7072). Specimen No. Nos. 23 to 25 satisfy the desired surface roughness Ra and the maximum valley depth Rv, and furthermore, the blast powder remaining on the surface of the Al alloy (A7072) plate was appropriately removed. No blistering occurred, and the adhesion of the sprayed coating was high.

それに対して、供試材No.21については、適切なブラスト粒子を使用しなかったため、平均粗さRaおよび最大谷深さRvが所望の値を満たさず、溶射被膜の膨れが発生し、溶射被膜の密着性にも劣った。供試材No.22はAl合金(A7072)の板材表面に残存したブラスト粉末を除去しなかったため、Al合金(A7072)の板材と溶射被膜の界面に多数のブラスト粒子が残存したため、溶射被膜の膨れが発生し、溶射被膜の密着性にも劣った。また、供試材No.26についてはAlの含有率の高いブラスト粉末のため白色を呈しており、ブラスト処理後に除去処理を行ったが十分にブラスト粒子を除去出来なかったため、腐食試験後の溶射被膜の膨れが発生し、溶射被膜の密着性にも劣った。 On the other hand, specimen No. For No. 21, since no appropriate blast particles were used, the average roughness Ra and the maximum valley depth Rv did not satisfy the desired values, the thermal spray coating swelled, and the thermal spray coating had poor adhesion. Specimen No. No. 22 did not remove the blast powder remaining on the surface of the Al alloy (A7072) plate, and therefore a large number of blast particles remained at the interface between the plate of the Al alloy (A7072) and the sprayed coating. The adhesion of the thermal spray coating was also poor. In addition, specimen No. No. 26 is white due to the blast powder having a high content of Al 2 O 3 , and although the removal treatment was performed after the blast treatment, the blast particles could not be removed sufficiently, so that the sprayed coating swelled after the corrosion test. Generated, and the adhesion of the sprayed coating was poor.

さらに、オープンラック式のLNG気化器の使用条件を摸擬するため、図4に示すような奥行(D)170mm×幅(W)430mm×高さ(H)500mmのオープンラック式のLNG気化器の摸擬試験体5を作製した。この摸擬試験体は、5本の伝熱管1(本体部1aと本体部1aの下端に機械加工により形成された細径部1bから構成されている)がヘッダ4に溶接により接続された構造である。   Furthermore, in order to simulate the usage conditions of the open rack type LNG vaporizer, an open rack type LNG vaporizer of depth (D) 170 mm × width (W) 430 mm × height (H) 500 mm as shown in FIG. A fake specimen 5 was prepared. This simulated specimen has a structure in which five heat transfer tubes 1 (consisting of a main body portion 1a and a small diameter portion 1b formed by machining at the lower end of the main body portion 1a) are connected to a header 4 by welding. It is.

以下に、上述した摸擬試験体5の作成手順の概要を説明する。   Below, the outline | summary of the preparation procedure of the above-mentioned simulation specimen 5 is demonstrated.

上記摸擬試験体5における伝熱管1の本体部1aおよび細径部1bの各母材は、それぞれAl合金(A5052)からなり、ヘッダ4の母材は、Al合金(A5083)からなる。さらに、本体部1aに外表面には犠牲陽極層としてのAl合金(A7072)がクラッドされているが、細径部1bの外表面は機械加工により犠牲陽極層のAl合金(A7072)が削り取られているため犠牲陽極層を有していない。   Each base material of the main body portion 1a and the small diameter portion 1b of the heat transfer tube 1 in the simulated specimen 5 is made of an Al alloy (A5052), and a base material of the header 4 is made of an Al alloy (A5083). Further, the outer surface of the main body 1a is clad with an Al alloy (A7072) as a sacrificial anode layer, but the outer surface of the narrow-diameter portion 1b is scraped off the Al alloy (A7072) of the sacrificial anode layer by machining. Therefore, it does not have a sacrificial anode layer.

また、上記各母材の耐食性確保の目的で、上記ヘッダ4並びに上記細径部1bおよび上記Al合金(A7072)がクラッドされた上記本体部1a{ただし、細径部1bと本体部1aの境界から本体部1aの軸方向上方に向かって所定の位置まで(例えば、図4に示すL=30mmまで)}の各表面を粗面化するために、下記表2に示すようなブラスト条件下で、摸擬試験体5(No.31〜No.34)に対して、ショットブラストを行った。   For the purpose of ensuring the corrosion resistance of each base material, the main body 1a clad with the header 4, the small diameter portion 1b and the Al alloy (A7072) {however, the boundary between the small diameter portion 1b and the main body portion 1a) In order to roughen the surfaces of the main body 1a in the axial direction upward to a predetermined position (for example, up to L = 30 mm shown in FIG. 4)} under blast conditions as shown in Table 2 below In addition, shot blasting was performed on the dummy specimen 5 (No. 31 to No. 34).

Figure 0006075782
Figure 0006075782

なお、上記表2に示すように、摸擬試験体5のNo.31、No.33およびNo.34に関しては、所定の除去処理を施した(すなわち、ブラスト処理後に表面に残存するブラスト粉末を、先端がプラスチック製のデッキブラシで刷き落として除去した。さらに、表面に食い込んでいる大きなブラスト片については、鋼製の錐で掻き出して除去した。)。ただし、摸擬試験体5のNo.32に関しては、前記所定の除去処理が施されていない。   In addition, as shown in Table 2 above, No. 31, no. 33 and no. As for No. 34, a predetermined removal treatment was performed (that is, the blast powder remaining on the surface after the blast treatment was removed by scraping off with a plastic deck brush at the tip. Further, a large blast piece biting into the surface Was removed by scraping with a steel cone.) However, no. No. 32 is not subjected to the predetermined removal process.

次に、上述したショットブラスト後の摸擬試験体No.31〜No.34の各表面上に犠牲陽極被膜層3に相当するフレーム溶射法(熱源:プロパン−酸素)によるAl−2%Zn合金の溶射被膜を形成した。   Next, the above-mentioned shot blasting specimen No. 31-No. A sprayed coating of an Al-2% Zn alloy was formed on each surface of 34 by a flame spraying method (heat source: propane-oxygen) corresponding to the sacrificial anode coating layer 3.

以上のようにして作成した摸擬試験体5のNo.31〜No.34に対して、30℃に調整した海水を3m/秒の流速で図4に示す伝熱管1の本体部1aの上部から掛け流した。さらに、実際のオープンラック式のLNG気化器での熱サイクルを考慮して、4回/日の頻度で各摸擬試験体5(No.31〜No.34)内に液体窒素を充填する工程を合計6カ月間行った。該工程が2週間終了する毎に、各摸擬試験体5(No.31〜No.34)の外観(特に、犠牲陽極被膜層3としての上記Al−2%Zn合金の溶射皮膜が施工された箇所)を観察した。そして、各摸擬試験体5(No.31〜No.34)の溶射皮膜の膨れ発生時期(定義:100cmあたりの膨れ数が5個以上になった時期)の評価を行った。そして、この溶射皮膜の膨れ発生時期が2ヶ月未満を「×」、2ヶ月以上4ヶ月未満を「△」、4ヶ月以上6ヶ月未満を「○」、6ヶ月以上を「◎」として評価した。この評価結果を上記表2の耐久試験の評価結果の欄にまとめて示す。 No. 5 of the dummy specimen 5 prepared as described above. 31-No. 34, seawater adjusted to 30 ° C. was poured from the upper part of the main body 1a of the heat transfer tube 1 shown in FIG. 4 at a flow rate of 3 m / sec. Further, in consideration of the thermal cycle in an actual open rack type LNG vaporizer, the step of filling each simulated specimen 5 (No. 31 to No. 34) with liquid nitrogen at a frequency of 4 times / day For a total of 6 months. Each time the process is completed for 2 weeks, the appearance of each simulated specimen 5 (No. 31 to No. 34) (particularly, the thermal spray coating of the Al-2% Zn alloy as the sacrificial anode coating layer 3 is applied). Were observed). And evaluation of the blister generation | occurrence | production time (definition: the time when the number of blisters per 100 cm < 2 > became 5 or more) of each thermal spray test body 5 (No.31-No.34) was evaluated. The blistering occurrence time of this thermal spray coating was evaluated as “×” for less than 2 months, “△” for 2 months or more and less than 4 months, “◯” for 4 months or more and less than 6 months, and “◎” for 6 months or more. . The evaluation results are collectively shown in the column of evaluation results of the durability test in Table 2 above.

上述したショットブラスト後の摸擬試験体5のNo.33およびNo.34の各表面は、いずれも所望の表面粗さRaと最大谷深さRvを満たし、さらに適切にAl合金(A7072)の表面に残存したブラスト粉末を除去したため、耐久試験によっても、溶射被膜の膨れが4ヶ月以上発生しなかった(上記表2参照)。   No. of the above-mentioned shot pseudo blasting specimen 5 after shot blasting. 33 and no. Each surface of 34 satisfies the desired surface roughness Ra and the maximum valley depth Rv, and further appropriately removes the blast powder remaining on the surface of the Al alloy (A7072). No blistering occurred for more than 4 months (see Table 2 above).

それに対して、ショットブラスト後の摸擬試験体5のNo.31の表面は、適切なブラスト粒子を使用しなかったため、平均粗さRaおよび最大谷深さRvが所望の値を満たさず、耐久試験により、溶射被膜の膨れが2ヶ月未満で発生した(上記表2参照)。また、ショットブラスト後の摸擬試験体5のNo.32の表面は、適切なブラスト粒子を使用したものの、Al合金(A7072)の表面に残存したブラスト粉末を除去しなかったため、Al合金(A7072)と溶射被膜の界面に多数のブラスト粒子が残存し、耐久試験により、溶射被膜の膨れが2ヶ月未満で発生した(上記表2参照)。   On the other hand, the No. 5 of the dummy specimen 5 after shot blasting. Since the surface of No. 31 did not use appropriate blast particles, the average roughness Ra and the maximum valley depth Rv did not satisfy the desired values, and a blistering of the sprayed coating occurred in less than 2 months by the endurance test (described above) (See Table 2). In addition, the No. 5 of the dummy specimen 5 after shot blasting. Although the surface of 32 used appropriate blast particles but did not remove the blast powder remaining on the surface of the Al alloy (A7072), a large number of blast particles remained at the interface between the Al alloy (A7072) and the sprayed coating. According to the durability test, swelling of the sprayed coating occurred in less than 2 months (see Table 2 above).

1 Al合金製のLNG気化器用伝熱管
1a 伝熱管1の本体部
1b 伝熱管1の細径部
2 伝熱管1の母材
3 犠牲陽極被膜層
4 ヘッダ
5 オープンラック式のLNG気化器の摸擬試験体
DESCRIPTION OF SYMBOLS 1 Heat exchanger tube for LNG vaporizer made from Al alloy 1a Main part of heat transfer tube 1 1 Small diameter part of heat transfer tube 1 Base material of heat transfer tube 1 3 Sacrificial anode coating layer 4 Header 5 Imitation of open rack type LNG vaporizer Specimen

Claims (6)

Al合金製伝熱管母材の外表面にAl合金からなる犠牲陽極被膜層が形成され、この伝熱管母材の断面を解析したとき、前記伝熱管母材と犠牲陽極被膜層の界面の粗さが、平均粗さRa:5〜50μm、最大谷深さRv:30〜400μmであるオープンラック式のLNG気化器用伝熱管の製造方法であって、粒度#14〜24の内の少なくともいずれか1つの粒度を選択し、その選択した粒度中の粒子の粒径1000μm以上の構成率が80%以上になるようにさらに調整されたブラスト粉末を用いて、Al合金製伝熱管母材の外表面をブラスト処理することを特徴とするLNG気化器用伝熱管の製造方法。   A sacrificial anode coating layer made of an Al alloy is formed on the outer surface of the Al alloy heat transfer tube base material, and when the cross section of the heat transfer tube base material is analyzed, the roughness of the interface between the heat transfer tube base material and the sacrificial anode coating layer is Is an open rack type LNG vaporizer heat transfer tube having an average roughness Ra of 5 to 50 μm and a maximum valley depth Rv of 30 to 400 μm, and at least one of the particle sizes # 14 to 24 The outer surface of the Al alloy heat transfer tube base material is selected using a blast powder further selected so that the composition ratio of particles having a particle size of 1000 μm or more in the selected particle size is 80% or more. A method for producing a heat transfer tube for an LNG vaporizer, characterized by performing blasting. 前記ブラスト粉末がアルミナであって、前記ブラスト処理後に伝熱管母材上に残存するブラスト粉末を除去する除去処理を行なうことを特徴とする請求項1に記載のLNG気化器用伝熱管の製造方法。   2. The method for producing a heat transfer tube for an LNG vaporizer according to claim 1, wherein the blast powder is alumina, and a removal treatment is performed to remove the blast powder remaining on the heat transfer tube base material after the blast treatment. 前記アルミナの純度が、90〜96質量%であることを特徴とする請求項2に記載のLNG気化器用伝熱管の製造方法。   The method for producing a heat transfer tube for an LNG vaporizer according to claim 2, wherein the alumina has a purity of 90 to 96 mass%. 前記犠牲陽極被膜層が、Al−Zn合金およびAl−Mg合金の少なくともいずれか1つからなることを特徴とする請求項1〜3のいずれか1項に記載のLNG気化器用伝熱管の製造方法。   The said sacrificial anode coating layer consists of at least any one of an Al-Zn alloy and an Al-Mg alloy, The manufacturing method of the heat exchanger tube for LNG vaporizers of any one of Claims 1-3 characterized by the above-mentioned. . Al合金製伝熱管母材の外表面にAl合金からなる犠牲陽極被膜層が形成されたオープンラック式のLNG気化器用伝熱管であって、前記伝熱管母材の断面を解析したとき、前記伝熱管母材と犠牲陽極被膜層の界面の粗さが、平均粗さRa:5〜50μm、最大谷深さRv:30〜400μmであり、かつ、前記犠牲陽極被膜層の膨れ数が、100cmあたり10個未満であり、かつ、1mm×1mmの視野範囲において間隔10μmの格子点法により各格子点にて前記界面の密着または非密着を判定し、非密着点の3つ隣りの格子点までに非密着点が存在する場合、それら2つの非密着点間の密着している格子点も非密着点とする非密着点評価法によって求めた非密着界面率の10視野の平均値が20%未満であることを特徴とするLNG気化器用伝熱管。 An open rack type LNG vaporizer heat transfer tube in which a sacrificial anode coating layer made of an Al alloy is formed on the outer surface of an Al alloy heat transfer tube base material, and when the cross section of the heat transfer tube base material is analyzed, The roughness of the interface between the heat pipe base material and the sacrificial anode coating layer is an average roughness Ra: 5 to 50 μm, a maximum valley depth Rv: 30 to 400 μm, and the sacrificial anode coating layer has a swelling number of 100 cm 2. The contact point or non-contact state of the interface is determined at each lattice point by a lattice point method with an interval of 10 μm in a visual field range of 1 mm × 1 mm, and up to three lattice points adjacent to the non-contact point. When there are non-adhering points, the average value of 10 fields of non-adhering interface ratio determined by the non-adhering point evaluation method in which the lattice points adhering between these two non-adhering points are also non-adhering points is 20%. LNG characterized by being less than Of dexterity heat transfer tube. 前記犠牲陽極被膜層が、Al−Zn合金およびAl−Mg合金の少なくともいずれか1つからなることを特徴とする請求項5に記載のLNG気化器用伝熱管。   6. The heat transfer tube for an LNG vaporizer according to claim 5, wherein the sacrificial anode coating layer is made of at least one of an Al—Zn alloy and an Al—Mg alloy.
JP2013251225A 2012-12-05 2013-12-04 Method for manufacturing heat transfer tube for LNG vaporizer and heat transfer tube for LNG vaporizer Expired - Fee Related JP6075782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013251225A JP6075782B2 (en) 2012-12-05 2013-12-04 Method for manufacturing heat transfer tube for LNG vaporizer and heat transfer tube for LNG vaporizer

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012266551 2012-12-05
JP2012266551 2012-12-05
JP2013005529 2013-01-16
JP2013005529 2013-01-16
JP2013251225A JP6075782B2 (en) 2012-12-05 2013-12-04 Method for manufacturing heat transfer tube for LNG vaporizer and heat transfer tube for LNG vaporizer

Publications (2)

Publication Number Publication Date
JP2014157009A JP2014157009A (en) 2014-08-28
JP6075782B2 true JP6075782B2 (en) 2017-02-08

Family

ID=51577973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013251225A Expired - Fee Related JP6075782B2 (en) 2012-12-05 2013-12-04 Method for manufacturing heat transfer tube for LNG vaporizer and heat transfer tube for LNG vaporizer

Country Status (1)

Country Link
JP (1) JP6075782B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6662585B2 (en) * 2015-06-23 2020-03-11 日本発條株式会社 Clad pipe and method for manufacturing clad pipe
JP6838864B2 (en) * 2016-03-17 2021-03-03 株式会社神戸製鋼所 Aluminum alloy LNG vaporizer member and LNG vaporizer
JP6793467B2 (en) * 2016-05-25 2020-12-02 株式会社神戸製鋼所 Aluminum alloy parts and LNG vaporizer
JP7045231B2 (en) * 2018-03-22 2022-03-31 住友精密工業株式会社 Thermal spraying method of open rack heat exchanger
JP7045230B2 (en) * 2018-03-22 2022-03-31 住友精密工業株式会社 How to operate the open rack heat exchanger and the open rack heat exchanger

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3013831B2 (en) * 1998-01-26 2000-02-28 日本電気株式会社 MMIC package
JP2005265393A (en) * 2004-03-22 2005-09-29 Kobe Steel Ltd Heat transfer pipe for open rack type vaporizer
JP4287798B2 (en) * 2004-07-28 2009-07-01 株式会社神戸製鋼所 Al-alloy heat transfer tube for open rack type vaporizer and method for manufacturing the Al-alloy heat transfer tube
JP4834513B2 (en) * 2006-10-31 2011-12-14 株式会社神戸製鋼所 Heat transfer tube for LNG vaporizer, manufacturing method thereof, and LNG vaporizer using the same
JP2008190656A (en) * 2007-02-06 2008-08-21 Jtekt Corp Supporting device and method of manufacturing same
JP5144629B2 (en) * 2009-11-27 2013-02-13 株式会社神戸製鋼所 Heat transfer tube and header tube of open rack type vaporizer
JP5572128B2 (en) * 2011-02-04 2014-08-13 株式会社神戸製鋼所 Corrosion-resistant aluminum alloy member and open rack type vaporizer heat transfer tube or header tube

Also Published As

Publication number Publication date
JP2014157009A (en) 2014-08-28

Similar Documents

Publication Publication Date Title
JP6075782B2 (en) Method for manufacturing heat transfer tube for LNG vaporizer and heat transfer tube for LNG vaporizer
JP4796362B2 (en) Heat transfer tube for LNG vaporizer and method for manufacturing the same
CN107761035A (en) A kind of corrosion resistant fine and close thermal spray metal alloy coat and preparation method thereof completely
JP2007131951A (en) Spray deposit film covered member having excellent plasma erosion resistance, and its manufacturing method
Wang et al. Effect of laser energy density on surface physical characteristics and corrosion resistance of 7075 aluminum alloy in laser cleaning
Astarita et al. Repairing of an engine block through the cold gas dynamic spray technology
JP5144629B2 (en) Heat transfer tube and header tube of open rack type vaporizer
Aminazad et al. Investigation on corrosion behaviour of copper brazed joints
Singh et al. Influence of laser texturing along with PTFE topcoat on slurry and cavitation erosion resistance of HVOF sprayed VC coating
JP4834513B2 (en) Heat transfer tube for LNG vaporizer, manufacturing method thereof, and LNG vaporizer using the same
JP5572128B2 (en) Corrosion-resistant aluminum alloy member and open rack type vaporizer heat transfer tube or header tube
JP2017166771A (en) Aluminum alloy member and LNG vaporizer
JP4751260B2 (en) Continuous casting mold and manufacturing method thereof
JP5385754B2 (en) Heat exchange member
Diao et al. Microstructure, mechanical properties, and cavitation erosion performances of cold sprayed CuZn35 coatings
JP2005265393A (en) Heat transfer pipe for open rack type vaporizer
JP5756414B2 (en) Heat transfer tube or header tube of open rack type vaporizer
CN102345100B (en) Aluminum cerium metal target material and method for manufacturing aluminum cerium film by using same
JP2014237864A (en) Manufacturing method of coated member and coated member
Kumar et al. Cavitation-corrosion analysis of HVOF-sprayed WC-Co-Cr-graphene nanoplatelets coatings with LST pre-treatment
JP4287798B2 (en) Al-alloy heat transfer tube for open rack type vaporizer and method for manufacturing the Al-alloy heat transfer tube
JP5089874B2 (en) Plasma processing apparatus member and manufacturing method thereof
JP6151228B2 (en) Heat transfer tube for open rack type vaporizer and manufacturing method thereof
Xu et al. Corrosive-wear and Electrochemical Performance of Laser Thermal Sprayed Co 30 Cr 8 W 1.6 C 3 Ni 1.4 Si Coating on Ti6Al4V Alloy
JP2010071491A (en) Heat transfer tube and header tube for open rack type carburetor and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170105

R150 Certificate of patent or registration of utility model

Ref document number: 6075782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees