JP4795019B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4795019B2
JP4795019B2 JP2005380230A JP2005380230A JP4795019B2 JP 4795019 B2 JP4795019 B2 JP 4795019B2 JP 2005380230 A JP2005380230 A JP 2005380230A JP 2005380230 A JP2005380230 A JP 2005380230A JP 4795019 B2 JP4795019 B2 JP 4795019B2
Authority
JP
Japan
Prior art keywords
positive electrode
fluorine atom
active material
nonaqueous electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005380230A
Other languages
Japanese (ja)
Other versions
JP2006236981A (en
Inventor
正樹 出口
徹 松井
浩司 芳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005380230A priority Critical patent/JP4795019B2/en
Publication of JP2006236981A publication Critical patent/JP2006236981A/en
Application granted granted Critical
Publication of JP4795019B2 publication Critical patent/JP4795019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池に関し、詳しくは非水電解質の改良に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of a non-aqueous electrolyte.

近年、非水電解質を含む二次電池(非水電解質二次電池)、なかでも高電圧で高エネルギー密度を有するリチウムイオン二次電池の研究が盛んである。現在、市販されているリチウム二次電池の大半は、正極活物質として、高い充放電電圧を示すLiCoO2を用いている。また、非水電解質には、溶質を溶解させた非水溶媒が一般的に用いられている。非水溶媒には、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが用いられている。溶質には、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)などが用いられている。 In recent years, research on secondary batteries including non-aqueous electrolytes (non-aqueous electrolyte secondary batteries), in particular, lithium ion secondary batteries having a high voltage and a high energy density has been actively conducted. Currently, most of the commercially available lithium secondary batteries use LiCoO 2 exhibiting a high charge / discharge voltage as a positive electrode active material. In addition, a nonaqueous solvent in which a solute is dissolved is generally used for the nonaqueous electrolyte. As the non-aqueous solvent, a cyclic carbonate, a chain carbonate, a cyclic carboxylic acid ester or the like is used. As the solute, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), or the like is used.

非水電解質二次電池の高容量化に対する要望は強く、LiCoO2に代わる更に高容量の正極活物質についての研究開発が盛んに行われている。その中でも、ニッケルを主成分とするニッケル含有リチウム複合酸化物(例えばLiNiO2)の研究が精力的に行われ、既に商品化されているものもある。 There is a strong demand for higher capacity of non-aqueous electrolyte secondary batteries, and research and development on a positive electrode active material with higher capacity in place of LiCoO 2 has been actively conducted. Among them, research on nickel-containing lithium composite oxide (for example, LiNiO 2 ) whose main component is nickel has been vigorously conducted, and some have already been commercialized.

非水電解質二次電池の高信頼性化および長寿命化も望まれている。しかし、LiNiO2を用いた電池は、LiCoO2を用いた電池に比べて、一般にサイクル特性および熱的安全性が低い。よって、LiNiO2を用いた電池は、未だ市場を占有するに至っていない。 High reliability and long life of non-aqueous electrolyte secondary batteries are also desired. However, a battery using LiNiO 2 generally has lower cycle characteristics and thermal safety than a battery using LiCoO 2 . Therefore, the battery using LiNiO 2 has not yet occupied the market.

そこで、ニッケル含有リチウム複合酸化物の改良が活発に行われている。例えばLiabNicCode(元素Mは、Al、Mn、Sn、In、Fe、V、Cu、Mg、Ti、ZnおよびMoよりなる群から選択される少なくとも1種、0<a<1.3、0.02≦b≦0.5、0.02≦d/c+d≦0.9、1.8<e<2.2、b+c+d=1)を用いることが提案されている。この活物質は、結晶構造の変化を生じにくく、そのため高容量化が可能であり、熱的安定性も向上すると報告されている(特許文献1参照)。 Therefore, improvement of nickel-containing lithium composite oxide is being actively carried out. For example, Li a Mb Ni c Co d O e (element M is at least one selected from the group consisting of Al, Mn, Sn, In, Fe, V, Cu, Mg, Ti, Zn and Mo, 0 < a <1.3, 0.02 ≦ b ≦ 0.5, 0.02 ≦ d / c + d ≦ 0.9, 1.8 <e <2.2, b + c + d = 1) is proposed. . It has been reported that this active material is less likely to change the crystal structure, and therefore can be increased in capacity and improved in thermal stability (see Patent Document 1).

また、正極活物質、負極活物質および非水電解質に、種々の添加剤を混合することも試みられている。例えば、フッ素原子含有芳香族化合物を非水電解質に添加することが提案されている(特許文献2、3参照)。特許文献2の目的は、充放電サイクル特性の向上である。フッ素原子含有芳香族化合物は、負極表面に吸着し、または負極表面と反応して、被膜を形成する。よって、非水電解質と負極活物質との副反応が抑制されると報告されている。また、特許文献3では、フッ素原子含有芳香族化合物は、連続充電時のガス発生を抑制するために用いられている。
特開平5−242891号公報 特開2003−132950号公報 特開2004−139963号公報
In addition, attempts have been made to mix various additives into the positive electrode active material, the negative electrode active material, and the nonaqueous electrolyte. For example, it has been proposed to add a fluorine atom-containing aromatic compound to a non-aqueous electrolyte (see Patent Documents 2 and 3). The purpose of Patent Document 2 is to improve charge / discharge cycle characteristics. The fluorine atom-containing aromatic compound is adsorbed on the negative electrode surface or reacts with the negative electrode surface to form a film. Therefore, it is reported that a side reaction between the nonaqueous electrolyte and the negative electrode active material is suppressed. Moreover, in patent document 3, the fluorine atom containing aromatic compound is used in order to suppress the gas generation at the time of continuous charge.
Japanese Patent Laid-Open No. 5-242891 JP 2003-132950 A JP 2004-139963 A

上述のように、ニッケル含有リチウム複合酸化物の改良が進められているが、現状では十分なサイクル特性は得られていない。また、フッ素原子含有芳香族化合物を非水電解質に含有させても、依然としてサイクル特性を改善することは困難である。特に高温環境下においては、非水電解質と正極活物質との副反応が激しくなり、サイクル特性が大きく低下するという知見が得られている。
特許文献2は、非水電解質と負極活物質との副反応を抑制することを意図したものである。よって、高温下で充放電サイクルを繰り返す場合の非水電解質と正極活物質との副反応の抑制に関しては、有効な提案がなされていない。
また、特許文献3は、正極活物質が一般的なLiCoO2である電池の連続充電(静的なトリクル充電)時のガス発生の抑制を意図したものである。よって、高温下で動的な充放電サイクルを繰り返す場合の非水電解質と正極活物質との副反応の抑制に関しては、有効な提案がなされていない。
As described above, the nickel-containing lithium composite oxide has been improved, but at present, sufficient cycle characteristics have not been obtained. Moreover, even if a non-aqueous electrolyte contains a fluorine atom-containing aromatic compound, it is still difficult to improve cycle characteristics. In particular, in a high temperature environment, it has been found that the side reaction between the non-aqueous electrolyte and the positive electrode active material becomes intense and the cycle characteristics are greatly deteriorated.
Patent Document 2 intends to suppress a side reaction between a nonaqueous electrolyte and a negative electrode active material. Therefore, no effective proposal has been made regarding the suppression of side reactions between the nonaqueous electrolyte and the positive electrode active material when the charge / discharge cycle is repeated at a high temperature.
Patent Document 3 intends to suppress gas generation during continuous charging (static trickle charging) of a battery whose positive electrode active material is general LiCoO 2 . Therefore, no effective proposal has been made regarding the suppression of side reactions between the nonaqueous electrolyte and the positive electrode active material when a dynamic charge / discharge cycle is repeated at a high temperature.

本発明は、上記を鑑みてなされたものであり、正極活物質として、ニッケル含有リチウム複合酸化物を用いる場合において、高温環境下においても良好な充放電サイクル特性を示す高容量タイプの非水電解質二次電池を提供するものである。   The present invention has been made in view of the above, and in the case of using a nickel-containing lithium composite oxide as a positive electrode active material, a high capacity type non-aqueous electrolyte exhibiting good charge / discharge cycle characteristics even in a high temperature environment A secondary battery is provided.

本発明は、正極活物質としてニッケル含有リチウム複合酸化物を含む正極と、充放電が可能な負極と、正極と負極との間に介在するセパレータと、溶質を溶解させた非水溶媒を含む非水電解質とを具備し、非水電解質が、フッ素原子含有芳香族化合物を含む非水電解質二次電池に関する。   The present invention includes a positive electrode including a nickel-containing lithium composite oxide as a positive electrode active material, a negative electrode capable of charge / discharge, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous solvent in which a solute is dissolved. The present invention relates to a non-aqueous electrolyte secondary battery including a water electrolyte, wherein the non-aqueous electrolyte includes a fluorine atom-containing aromatic compound.

ニッケル含有リチウム複合酸化物は、一般式(1):LiNix1-x-yy2で表され、元素Mは、CoおよびMnよりなる群から選ばれた少なくとも1種であり、元素Lは、Al、Sr、Y、Zr、Ta、Mg、Ti、Zn、B、Ca、Cr、Si、Ga、Sn、P、V、Sb、Nb、Mo、WおよびFeよりなる群から選ばれた少なくとも1種であり、xおよびyは、0.1≦x≦1および0≦y≦0.1を満たすことが好ましい。 Nickel-containing lithium composite oxide is represented by the general formula (1): is represented by LiNi x M 1-xy L y O 2, element M is at least one selected from the group consisting of Co and Mn, the element L Was selected from the group consisting of Al, Sr, Y, Zr, Ta, Mg, Ti, Zn, B, Ca, Cr, Si, Ga, Sn, P, V, Sb, Nb, Mo, W and Fe Preferably, x and y satisfy at least 0.1 ≦ x ≦ 1 and 0 ≦ y ≦ 0.1.

フッ素原子含有芳香族化合物は、一般式(2):   The fluorine atom-containing aromatic compound has the general formula (2):

Figure 0004795019
Figure 0004795019

で表されることが好ましい。ここで、R1、R2、R3、R4、R5およびR6は、それぞれ独立して、フッ素原子または水素原子であり、R1、R2、R3、R4、R5およびR6の少なくとも1つは、フッ素原子である。 It is preferable to be represented by Here, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a fluorine atom or a hydrogen atom, and R 1 , R 2 , R 3 , R 4 , R 5 and At least one of R 6 is a fluorine atom.

非水電解質に含まれるフッ素原子含有芳香族化合物の量は、非水溶媒100重量部あたり、1〜30重量部である。
非水電解質は、さらに、ビニレンカーボネートおよびビニルエチレンカーボネートよりなる群から選ばれる少なくとも1種を含む。非水電解質に含まれるビニレンカーボネートおよびビニルエチレンカーボネートよりなる群から選ばれる少なくとも1種の量は、非水溶媒100重量部あたり、0.5〜10重量部である。
The amount of the fluorine atom-containing aromatic compound contained in the non-aqueous electrolyte is 1 to 30 parts by weight per 100 parts by weight of the non-aqueous solvent.
Non-aqueous electrolyte further comprises at least one of including selected from the group consisting of vinylene carbonate and vinyl ethylene carbonate. The amount of at least one selected from the group consisting of vinylene carbonate and vinyl ethylene carbonate contained in the nonaqueous electrolyte is 0.5 to 10 parts by weight per 100 parts by weight of the nonaqueous solvent.

本発明者らは、検討を重ねた結果、フッ素原子含有芳香族化合物は、ニッケル含有リチウム複合酸化物からなる正極活物質に対して、特に有効に作用し、非水電解質と正極活物質との副反応が顕著に抑制されることを見出した。この理由は以下のように考えられる。   As a result of repeated studies, the inventors of the present invention have found that the fluorine atom-containing aromatic compound acts particularly effectively on the positive electrode active material composed of the nickel-containing lithium composite oxide, and the non-aqueous electrolyte and the positive electrode active material It has been found that side reactions are significantly suppressed. The reason is considered as follows.

正極活物質の結晶構造中にNiを固溶させることにより、正極活物質表面には金属酸化物であるNiOが生成する。NiOは塩基性酸化物であるため、NiOの酸素原子上の電子密度は高くなっている。一方、フッ素原子含有芳香族化合物の芳香環は、フッ素の強い電子吸引力により、正の四極子モーメントを持っており、芳香環上の電子密度は低くなっている。このため、非水電解質中のフッ素原子含有芳香族化合物は、NiOの酸素原子に引き寄せられ、正極活物質表面に吸着して被膜を形成する。この被膜により、高温環境下においても、非水電解質と正極活物質との副反応が抑制され、サイクル特性が向上すると考えられる。   By dissolving Ni in the crystal structure of the positive electrode active material, NiO that is a metal oxide is generated on the surface of the positive electrode active material. Since NiO is a basic oxide, the electron density on the oxygen atoms of NiO is high. On the other hand, the aromatic ring of the fluorine atom-containing aromatic compound has a positive quadrupole moment due to the strong electron attractive force of fluorine, and the electron density on the aromatic ring is low. For this reason, the fluorine atom-containing aromatic compound in the non-aqueous electrolyte is attracted to the oxygen atoms of NiO and adsorbs on the surface of the positive electrode active material to form a film. It is considered that this coating suppresses the side reaction between the nonaqueous electrolyte and the positive electrode active material even under a high temperature environment, and improves the cycle characteristics.

本発明によれば、高容量化のためにニッケル含有リチウム複合酸化物を正極活物質に用いる場合でも、高温環境下における非水電解質と正極活物質との副反応が抑制され、サイクル特性の劣化が回避される。よって、良好な特性を有する非水電解質二次電池を得ることができる。   According to the present invention, even when nickel-containing lithium composite oxide is used as a positive electrode active material for increasing the capacity, side reactions between the nonaqueous electrolyte and the positive electrode active material in a high temperature environment are suppressed, and cycle characteristics are deteriorated. Is avoided. Therefore, a non-aqueous electrolyte secondary battery having good characteristics can be obtained.

本発明の非水電解質二次電池は、正極活物質としてニッケル含有リチウム複合酸化物を含む正極を具備する。ニッケル含有リチウム複合酸化物を用いる場合、LiCoO2を用いる場合に比べて、安価で高容量の電池を得ることが可能である。ただし、ニッケル含有リチウム複合酸化物を用いるだけでは、高容量は得られても、十分なサイクル特性を得ることは困難である。そこで、本発明では、非水電解質に、フッ素原子含有芳香族化合物を含ませている。 The nonaqueous electrolyte secondary battery of the present invention includes a positive electrode including a nickel-containing lithium composite oxide as a positive electrode active material. When nickel-containing lithium composite oxide is used, it is possible to obtain an inexpensive and high-capacity battery as compared with the case of using LiCoO 2 . However, if only a nickel-containing lithium composite oxide is used, it is difficult to obtain sufficient cycle characteristics even if a high capacity is obtained. Therefore, in the present invention, the non-aqueous electrolyte contains a fluorine atom-containing aromatic compound.

ニッケル含有リチウム複合酸化物は、一般式(1):LiNix1-x-yy2で表されることが望ましい。ここで、結晶構造を安定化させるとともに、良好な電池特性を得る観点から、元素Mは、CoおよびMnよりなる群から選ばれた少なくとも1種であり、元素Lは、Al、Sr、Y、Zr、Ta、Mg、Ti、Zn、B、Ca、Cr、Si、Ga、Sn、P、V、Sb、Nb、Mo、WおよびFeよりなる群から選ばれた少なくとも1種であることが望ましい。元素Mには、容量をあまり低下させずに結晶構造を安定化させる働きがあり、元素Lには、結晶構造を安定化させるとともに、正極活物質表面のNiOの電子供与性を高める働きがある。正極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Nickel-containing lithium composite oxide is represented by the general formula (1): It is desirable represented by LiNi x M 1-xy L y O 2. Here, from the viewpoint of stabilizing the crystal structure and obtaining good battery characteristics, the element M is at least one selected from the group consisting of Co and Mn, and the element L is Al, Sr, Y, Desirably, at least one selected from the group consisting of Zr, Ta, Mg, Ti, Zn, B, Ca, Cr, Si, Ga, Sn, P, V, Sb, Nb, Mo, W, and Fe. . The element M has a function of stabilizing the crystal structure without significantly reducing the capacity, and the element L has a function of stabilizing the crystal structure and improving the electron donating property of NiO on the surface of the positive electrode active material. . A positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.

元素Lの中では、特にAl、Sr、Y、ZrおよびTaが好ましい。これらの元素から生成する金属酸化物(例えばAl23やSrO)は、正極活物質表面のNiOの電子供与性を高める効果が大きく、正極表面上に良質な保護被膜が形成される。よって、特に良好なサイクル特性を得るためには、元素Lが、Al、Sr、Y、ZrおよびTaよりなる群から選ばれた少なくとも1種であることが望ましい。 Among the elements L, Al, Sr, Y, Zr and Ta are particularly preferable. Metal oxides generated from these elements (for example, Al 2 O 3 and SrO) have a large effect of increasing the electron donating property of NiO on the surface of the positive electrode active material, and a good quality protective film is formed on the surface of the positive electrode. Therefore, in order to obtain particularly good cycle characteristics, it is desirable that the element L is at least one selected from the group consisting of Al, Sr, Y, Zr and Ta.

元素Mの効果を得るとともに、高容量を維持する観点から、一般式(1)中のxは、0.1≦x≦1を満たすことが望ましく、0.3≦x≦0.9を満たすことが更に望ましく、0.7≦x≦0.9を満たすことが特に望ましい。   From the viewpoint of obtaining the effect of the element M and maintaining a high capacity, x in the general formula (1) desirably satisfies 0.1 ≦ x ≦ 1, and satisfies 0.3 ≦ x ≦ 0.9. It is more desirable that 0.7 ≦ x ≦ 0.9 is satisfied.

元素Lは必須ではないが、元素Lの効果を得るとともに、高容量を維持する観点から、一般式(1)中のyは、0<y≦0.1を満たすことが望ましく、0.02≦y≦0.08を満たすことが更に望ましく、0.02≦y≦0.06を満たすことが特に望ましい。なお、yが0.1を超えると、NiOの電子供与性が活性化し過ぎて、高温でのサイクル特性が若干ながら低下する。   The element L is not essential, but from the viewpoint of obtaining the effect of the element L and maintaining a high capacity, y in the general formula (1) desirably satisfies 0 <y ≦ 0.1, and 0.02 It is further desirable to satisfy ≦ y ≦ 0.08, and it is particularly desirable to satisfy 0.02 ≦ y ≦ 0.06. When y exceeds 0.1, the electron donating property of NiO is excessively activated, and the cycle characteristics at high temperature are slightly lowered.

本発明の非水電解質二次電池は、充放電が可能な負極を具備する。充放電が可能な負極は、負極活物質としてリチウムの吸蔵および放出が可能な材料やリチウム金属を含む。リチウムの吸蔵および放出が可能な材料には、金属、炭素材料、酸化物、窒化物、錫化合物、珪化物などを用いることができる。金属には、金属単体、合金、金属繊維などが含まれる。炭素材料には、例えば黒鉛類、難黒鉛化炭素、カーボンブラック類、炭素繊維などが含まれる。黒鉛類には、天然黒鉛(鱗片状黒鉛など)および人造黒鉛が含まれる。カーボンブラック類には、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等が含まれる。負極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   The nonaqueous electrolyte secondary battery of the present invention includes a negative electrode that can be charged and discharged. The negative electrode capable of charge / discharge includes a material capable of inserting and extracting lithium or lithium metal as a negative electrode active material. As a material capable of inserting and extracting lithium, a metal, a carbon material, an oxide, a nitride, a tin compound, a silicide, or the like can be used. Metals include simple metals, alloys, metal fibers and the like. Examples of the carbon material include graphites, non-graphitizable carbon, carbon blacks, and carbon fibers. Graphite includes natural graphite (such as flake graphite) and artificial graphite. Carbon blacks include acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and the like. A negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.

正極および負極は、それぞれ上記の正極活物質および負極活物質を必須成分として含み、任意成分として結着剤、導電材、増粘剤などを含む。結着剤には、例えばポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体などが用いられる。導電材には、例えば黒鉛類、カーボンブラック類、炭素繊維、金属繊維などが用いられる。   Each of the positive electrode and the negative electrode includes the positive electrode active material and the negative electrode active material as essential components, and includes a binder, a conductive material, a thickener, and the like as optional components. Examples of the binder include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and vinylidene fluoride-hexafluoropropylene copolymer. Etc. are used. As the conductive material, for example, graphites, carbon blacks, carbon fibers, metal fibers and the like are used.

正極は、例えば、正極活物質と任意成分からなる正極合剤を液状成分と混合して正極合剤スラリーを調製し、得られたスラリーを正極集電体に塗布し、乾燥させて作製する。負極も、同様に、負極活物質と任意成分からなる負極合剤を液状成分と混合して負極合剤スラリーを調製し、得られたスラリーを負極集電体に塗布し、乾燥させて作製する。   The positive electrode is produced, for example, by mixing a positive electrode mixture composed of a positive electrode active material and an optional component with a liquid component to prepare a positive electrode mixture slurry, applying the obtained slurry to a positive electrode current collector, and drying. Similarly, the negative electrode is prepared by mixing a negative electrode mixture composed of a negative electrode active material and an optional component with a liquid component to prepare a negative electrode mixture slurry, applying the obtained slurry to a negative electrode current collector, and drying the mixture. .

正極集電体には、例えばステンレス鋼、アルミニウム、チタンなどからなるシート(箔)が用いられる。また、負極集電体には、例えばステンレス鋼、ニッケル、銅などからなるシート(箔)が用いられる。これら集電体の厚さは、特に限定されないが、1〜500μmが好適である。   For the positive electrode current collector, for example, a sheet (foil) made of stainless steel, aluminum, titanium, or the like is used. For the negative electrode current collector, for example, a sheet (foil) made of stainless steel, nickel, copper, or the like is used. Although the thickness of these electrical power collectors is not specifically limited, 1-500 micrometers is suitable.

本発明の非水電解質二次電池は、溶質を溶解させた非水溶媒を含む非水電解質を具備し、非水電解質は、フッ素原子含有芳香族化合物を含む。非水電解質における溶質濃度は、特に限定されないが、例えば0.5〜1.5mol/Lが好適である。
ここで、フッ素原子含有芳香族化合物には、一般式(2):
The non-aqueous electrolyte secondary battery of the present invention includes a non-aqueous electrolyte including a non-aqueous solvent in which a solute is dissolved, and the non-aqueous electrolyte includes a fluorine atom-containing aromatic compound. Although the solute concentration in the nonaqueous electrolyte is not particularly limited, for example, 0.5 to 1.5 mol / L is preferable.
Here, the fluorine atom-containing aromatic compound includes the general formula (2):

Figure 0004795019
Figure 0004795019

で表されるフッ素原子含有芳香族化合物を用いることが好ましい。R1、R2、R3、R4、R5およびR6は、それぞれ独立して、フッ素原子または水素原子であるが、R1、R2、R3、R4、R5およびR6の少なくとも1つは、フッ素原子である。一般式(2)で表される化合物では、芳香環に、電子吸引力の強いフッ素原子が直接結合しているため、芳香環の電子密度は低くなりやすい。よって、芳香環が正極活物質表面に引き寄せられやすく、正極表面上に強固な被膜を形成することができる。フッ素原子含有芳香族化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 It is preferable to use the fluorine atom containing aromatic compound represented by these. R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a fluorine atom or a hydrogen atom, but R 1 , R 2 , R 3 , R 4 , R 5 and R 6 At least one of is a fluorine atom. In the compound represented by the general formula (2), since a fluorine atom having a strong electron withdrawing force is directly bonded to the aromatic ring, the electron density of the aromatic ring tends to be low. Therefore, the aromatic ring is easily attracted to the surface of the positive electrode active material, and a strong film can be formed on the surface of the positive electrode. A fluorine atom containing aromatic compound may be used individually by 1 type, and may be used in combination of 2 or more type.

一般式(2)において、ベンゼン環に結合するフッ素原子の数は、1〜6個のいずれでもよいが、少ない方が好ましい。フッ素原子数が多くなると、フッ素原子含有芳香族化合物が過剰に正極表面に吸着し、充放電反応が阻害される場合がある。従って、フッ素原子含有芳香族化合物としては、フルオロベンゼン(FB)を用いることが最も好ましい。FBの場合、芳香環に直接結合しているフッ素原子が1個であるため、芳香環の電子密度が適度に低くなる。よって、FBは、正極表面に吸着しやすく、かつ、正極表面に過剰に吸着することがない。   In general formula (2), the number of fluorine atoms bonded to the benzene ring may be any one of 1 to 6, but is preferably smaller. When the number of fluorine atoms increases, the fluorine atom-containing aromatic compound may be excessively adsorbed on the surface of the positive electrode and the charge / discharge reaction may be inhibited. Accordingly, it is most preferable to use fluorobenzene (FB) as the fluorine atom-containing aromatic compound. In the case of FB, since there is one fluorine atom directly bonded to the aromatic ring, the electron density of the aromatic ring becomes moderately low. Therefore, FB is easily adsorbed on the surface of the positive electrode and is not excessively adsorbed on the surface of the positive electrode.

非水電解質に含まれるフッ素原子含有芳香族化合物の量は、非水溶媒100重量部あたり、1〜30重量部であり、5〜20重量部が好ましい。フッ素原子含有芳香族化合物の量が1重量部未満では、正極表面に被膜を形成する能力が小さくなり、30重量部を超えると、被膜が厚くなり過ぎ、充放電反応が阻害される場合がある。 The amount of fluorine-containing aromatic compound contained in the non-aqueous electrolyte, a non-aqueous solvent per 100 parts by weight, 1 to 30 parts by weight, good preferable 5 to 20 parts by weight. When the amount of the fluorine atom-containing aromatic compound is less than 1 part by weight, the ability to form a coating on the surface of the positive electrode is reduced, and when it exceeds 30 parts by weight, the coating becomes too thick and the charge / discharge reaction may be inhibited. .

非水溶媒には、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが用いられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などが挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。環状カルボン酸エステルとしては、γ−ブチロラクトン(GBL)、γ−バレロラクトン(GVL)などが挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   As the non-aqueous solvent, for example, a cyclic carbonate, a chain carbonate, a cyclic carboxylic acid ester or the like is used. Examples of the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC). Examples of the chain carbonate include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC). Examples of the cyclic carboxylic acid ester include γ-butyrolactone (GBL) and γ-valerolactone (GVL). A non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.

非水溶媒に溶解させる溶質には、例えばLiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、ホウ酸塩類、イミド塩類などを用いることができる。ホウ酸塩類としては、ビス(1,2−ベンゼンジオレート(2−)−O,O’)ホウ酸リチウム、ビス(2,3−ナフタレンジオレート(2−)−O,O’)ホウ酸リチウム、ビス(2,2’−ビフェニルジオレート(2−)−O,O’)ホウ酸リチウム、ビス(5−フルオロ−2−オレート−1−ベンゼンスルホン酸−O,O’)ホウ酸リチウム等が挙げられる。イミド塩類としては、ビストリフルオロメタンスルホン酸イミドリチウム((CF3SO22NLi)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム(LiN(CF3SO2)(C49SO2))、ビスペンタフルオロエタンスルホン酸イミドリチウム((C25SO22NLi)等が挙げられる。溶質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Solutes to be dissolved in the non-aqueous solvent include, for example, LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiAsF 6 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, LiCl, LiBr, LiI, chloroborane lithium, borates, imide salts, and the like can be used. Examples of borates include lithium bis (1,2-benzenediolate (2-)-O, O ') and bis (2,3-naphthalenedioleate (2-)-O, O') boric acid. Lithium, bis (2,2′-biphenyldiolate (2-)-O, O ′) lithium borate, bis (5-fluoro-2-olate-1-benzenesulfonic acid-O, O ′) lithium borate Etc. Examples of the imide salts include lithium bistrifluoromethanesulfonate imide ((CF 3 SO 2 ) 2 NLi), lithium trifluoromethanesulfonate nonafluorobutanesulfonate (LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) ), Lithium bispentafluoroethanesulfonate imide ((C 2 F 5 SO 2 ) 2 NLi), and the like. A solute may be used individually by 1 type, and may be used in combination of 2 or more type.

非水電解質には、更に、炭素−炭素不飽和結合を少なくとも1つ有する環状炭酸エステルを含ませることができる。炭素−炭素不飽和結合を少なくとも1つ有する環状炭酸エステルとしては、例えば、ビニレンカーボネート(VC)、3−メチルビニレンカーボネート、3,4−ジメチルビニレンカーボネート、3−エチルビニレンカーボネート、3,4−ジエチルビニレンカーボネート、3−プロピルビニレンカーボネート、3,4−ジプロピルビニレンカーボネート、3−フェニルビニレンカーボネート、3,4−ジフェニルビニレンカーボネート、ビニルエチレンカーボネート(VEC)、ジビニルエチレンカーボネート等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらも電極表面で被膜を形成し、副反応を抑制する作用を有する。   The non-aqueous electrolyte may further contain a cyclic carbonate having at least one carbon-carbon unsaturated bond. Examples of the cyclic carbonate having at least one carbon-carbon unsaturated bond include vinylene carbonate (VC), 3-methyl vinylene carbonate, 3,4-dimethyl vinylene carbonate, 3-ethyl vinylene carbonate, 3,4-diethyl. Examples include vinylene carbonate, 3-propyl vinylene carbonate, 3,4-dipropyl vinylene carbonate, 3-phenyl vinylene carbonate, 3,4-diphenyl vinylene carbonate, vinyl ethylene carbonate (VEC), and divinyl ethylene carbonate. These may be used alone or in combination of two or more. These also have a function of forming a film on the electrode surface and suppressing side reactions.

本発明では、炭素−炭素不飽和結合を少なくとも1つ有する環状炭酸エステルこれらの中では、特にビニレンカーボネート(VC)およびビニルエチレンカーボネート(VEC)よりなる群から選ばれる少なくとも1種を用いる。VCおよびVECは、負極表面で分解して被膜を形成することが知られているが、正極表面でも薄い被膜を形成していると考えられる。正極がニッケル含有リチウム複合酸化物を含む場合、正極表面には、フッ素原子含有芳香族化合物に由来するユニットと、VCやVECに由来するユニットとを含む混成被膜(コポリマー)が形成される。この混成被膜は、正極とセパレータとの密着性を大幅に高める働きがある。 In the present invention, carbon - Among these carbon unsaturated bonds having at least one cyclic ester carbonate, Ru using at least one selected especially from vinylene carbonate (VC) and the group consisting of vinyl ethylene carbonate (VEC). Although VC and VEC are known to decompose on the negative electrode surface to form a film, it is considered that a thin film is also formed on the positive electrode surface. When the positive electrode includes a nickel-containing lithium composite oxide, a hybrid coating (copolymer) including a unit derived from a fluorine atom-containing aromatic compound and a unit derived from VC or VEC is formed on the surface of the positive electrode. This hybrid film has a function of greatly improving the adhesion between the positive electrode and the separator.

フッ素原子含有芳香族化合物に由来する被膜は、強固で硬く、正極表面から剥がれにくいが、その反面、柔軟性に乏しい。よって、正極とセパレータとの密着性が低下しやすい。一方、VCやVECに由来するユニットを含む混成被膜(コポリマー)は、ガラス転移温度が低く、低温から高温領域にかけての弾性率が低いため、柔軟性を有する。よって、正極とセパレータとの密着性が向上する。これにより、過充電や高温に電池が晒され、セパレータがシャットダウンする際に、セパレータの収縮を抑制することができ、負極と正極とが接触する内部短絡を防止することができる。なお、セパレータのシャットダウンとは、電池が高温に曝された際に、セパレータの細孔が閉塞する現象のことである。   The coating derived from the fluorine atom-containing aromatic compound is strong and hard and difficult to peel off from the surface of the positive electrode, but it is poor in flexibility. Therefore, the adhesiveness between the positive electrode and the separator tends to decrease. On the other hand, a hybrid coating (copolymer) containing units derived from VC or VEC has flexibility because it has a low glass transition temperature and a low elastic modulus from a low temperature to a high temperature region. Therefore, the adhesion between the positive electrode and the separator is improved. Thereby, when a battery is exposed to overcharge or high temperature, and a separator shuts down, the shrinkage | contraction of a separator can be suppressed and the internal short circuit which a negative electrode and a positive electrode contact can be prevented. The shutdown of the separator is a phenomenon that the pores of the separator are blocked when the battery is exposed to a high temperature.

非水電解質に含まれる炭素−炭素不飽和結合を少なくとも1つ有する環状炭酸エステルの量は、非水溶媒100重量部あたり、0.5〜10重量部が好適であり、0.5〜7重量部が特に好ましい。炭素−炭素不飽和結合を少なくとも1つ有する環状炭酸エステルの量が0.5重量部未満では、正極とセパレータとの密着性を改善する効果が小さくなり、10重量部を超えると、混成被膜が厚くなり過ぎ、充放電反応が阻害される場合がある。   The amount of the cyclic carbonate having at least one carbon-carbon unsaturated bond contained in the nonaqueous electrolyte is preferably 0.5 to 10 parts by weight, and 0.5 to 7 parts by weight per 100 parts by weight of the nonaqueous solvent. Part is particularly preferred. If the amount of the cyclic carbonate having at least one carbon-carbon unsaturated bond is less than 0.5 parts by weight, the effect of improving the adhesion between the positive electrode and the separator is reduced. It may become too thick and the charge / discharge reaction may be inhibited.

非水溶媒には、過充電時に分解して電極上に被膜を形成し、電池を不活性化させる添加剤を少量含ませることができる。このような添加剤には、フェニル基およびフェニル基に隣接する環状化合物基からなるベンゼン誘導体を用いることが好ましい。ここで、環状化合物基としては、フェニル基、環状エーテル基、環状エステル基、シクロアルキル基、フェノキシ基などが好ましい。ベンゼン誘導体の具体例としては、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテルなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。ただし、ベンゼン誘導体の含有率は、非水溶媒全体の10体積%以下であることが好ましい。   The non-aqueous solvent can contain a small amount of an additive that decomposes during overcharge to form a film on the electrode and inactivates the battery. As such an additive, a benzene derivative composed of a phenyl group and a cyclic compound group adjacent to the phenyl group is preferably used. Here, as the cyclic compound group, a phenyl group, a cyclic ether group, a cyclic ester group, a cycloalkyl group, a phenoxy group, and the like are preferable. Specific examples of the benzene derivative include cyclohexylbenzene, biphenyl, diphenyl ether and the like. These may be used alone or in combination of two or more. However, it is preferable that the content rate of a benzene derivative is 10 volume% or less of the whole non-aqueous solvent.

正極と負極との間に介在するセパレータには、大きなイオン透過度と、所定の機械的強度と、絶縁性とを兼ね備えた微多孔薄膜、織布、不織布などが用いられる。セパレータの材質としては、例えば、ポリプロピレン、ポリエチレンなどのポリオレフィンが好ましいが、ガラス繊維などを用いてもよい。特に、シャットダウン機能を有するポリオレフィン製の微多孔薄膜が好ましく用いられる。セパレータの厚さは、一般的に10〜300μmである。   As the separator interposed between the positive electrode and the negative electrode, a microporous thin film, a woven fabric, a non-woven fabric, or the like having both high ion permeability, predetermined mechanical strength, and insulation is used. As a material of the separator, for example, polyolefin such as polypropylene and polyethylene is preferable, but glass fiber or the like may be used. In particular, a polyolefin microporous thin film having a shutdown function is preferably used. The thickness of the separator is generally 10 to 300 μm.

次に、本発明を実施例に基づいて具体的に説明するが、以下の実施例は本発明を限定するものではない。
参考例1》
(i)非水電解質の調製
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(体積比1:4)に、1.0mol/Lの濃度でLiPF6を溶解した。得られた溶液に対し、非水溶媒100重量部あたり、5重量部のフルオロベンゼン(FB)を添加し、非水電解質を得た。
EXAMPLES Next, although this invention is demonstrated concretely based on an Example, a following example does not limit this invention.
<< Reference Example 1 >>
(I) Preparation of non-aqueous electrolyte LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (volume ratio 1: 4) at a concentration of 1.0 mol / L. To the obtained solution, 5 parts by weight of fluorobenzene (FB) was added per 100 parts by weight of the non-aqueous solvent to obtain a non-aqueous electrolyte.

(ii)正極の作製
正極活物質のLiNi0.8Co0.22粉末85重量部と、導電材のアセチレンブラック10重量部と、結着剤のポリフッ化ビニリデン5重量部とを混合した正極合剤を、脱水N−メチル−2−ピロリドン(NMP)に分散させて、正極合剤スラリーを調製した。このスラリーをアルミニウム箔からなる正極集電体の両面に塗布し、乾燥後、圧延して、正極を得た。
(Ii) Production of positive electrode A positive electrode mixture in which 85 parts by weight of LiNi 0.8 Co 0.2 O 2 powder as a positive electrode active material, 10 parts by weight of acetylene black as a conductive material, and 5 parts by weight of polyvinylidene fluoride as a binder was mixed. Then, the mixture was dispersed in dehydrated N-methyl-2-pyrrolidone (NMP) to prepare a positive electrode mixture slurry. This slurry was applied to both surfaces of a positive electrode current collector made of an aluminum foil, dried and rolled to obtain a positive electrode.

(iii)負極の作製
負極活物質の人造黒鉛粉末75重量部と、導電材のアセチレンブラック20重量部と、結着剤のポリフッ化ビニリデン5重量部とを混合した負極合剤を、脱水NMPに分散させて、負極合剤スラリー状を調製した。このスラリーを銅箔からなる負極集電体の両面に塗布し、乾燥後、圧延して、負極を得た。
(Iii) Production of Negative Electrode A negative electrode mixture obtained by mixing 75 parts by weight of artificial graphite powder of a negative electrode active material, 20 parts by weight of acetylene black as a conductive material and 5 parts by weight of polyvinylidene fluoride as a binder was added to dehydrated NMP. The mixture was dispersed to prepare a negative electrode mixture slurry. This slurry was applied to both sides of a negative electrode current collector made of copper foil, dried and rolled to obtain a negative electrode.

(iv)円筒型電池の製造
図1に示す概略縦断面を有する円筒型電池を以下の要領で作製した。
正極11と負極12とを、セパレータ13を介して渦巻状に捲回して、極板群を作製した。極板群はニッケルメッキを施した鉄製電池ケース18内に収納した。正極11にはアルミニウム製正極リード14の一端を接続し、他端を正極端子20に導通した封口板19の裏面に接続した。負極12にはニッケル製負極リード15の一端を接続し、他端を電池ケース18の底部に接続した。極板群の上部には絶縁板16を、下部には絶縁板17をそれぞれ配した。そして、所定の非水電解質を電池ケース18内に注液し、封口板19を用いて電池ケース18の開口部を密封した。
(Iv) Production of Cylindrical Battery A cylindrical battery having a schematic longitudinal section shown in FIG. 1 was produced in the following manner.
The positive electrode 11 and the negative electrode 12 were wound around the separator 13 in a spiral shape to produce an electrode plate group. The electrode plate group was housed in a nickel-plated iron battery case 18. One end of the positive electrode lead 14 made of aluminum was connected to the positive electrode 11, and the other end was connected to the back surface of the sealing plate 19 that was conducted to the positive electrode terminal 20. One end of a nickel negative electrode lead 15 was connected to the negative electrode 12, and the other end was connected to the bottom of the battery case 18. An insulating plate 16 is disposed above the electrode plate group, and an insulating plate 17 is disposed below the electrode plate group. A predetermined nonaqueous electrolyte was poured into the battery case 18, and the opening of the battery case 18 was sealed using the sealing plate 19.

(v)電池の評価
得られた電池に対して、充放電サイクルを45℃で繰り返した。そして、3サイクル目の放電容量を100%とみなし、500サイクルを経過した電池の放電容量の割合を百分率で求め、容量維持率とした。結果を表1に示す。
(V) Evaluation of battery The charging / discharging cycle was repeated at 45 degreeC with respect to the obtained battery. Then, the discharge capacity at the third cycle was regarded as 100%, and the ratio of the discharge capacity of the battery after 500 cycles was obtained as a percentage to obtain the capacity maintenance rate. The results are shown in Table 1.

充放電サイクルでは、最大電流1050mA、上限電圧4.2Vの条件で、2時間30分の定電流・定電圧充電を行い、10分の休止後、放電電流1500mA、放電終止電圧3.0Vの条件で定電流放電を行い、10分の休止を行った。このサイクルを繰り返した。   In the charge / discharge cycle, a constant current / constant voltage charge is performed for 2 hours and 30 minutes under the conditions of a maximum current of 1050 mA and an upper limit voltage of 4.2 V, and after a pause of 10 minutes, a discharge current of 1500 mA and a discharge end voltage of 3.0 V Then, a constant current discharge was performed and a pause for 10 minutes was performed. This cycle was repeated.

《比較例1》
非水電解質中にFBを含ませなかったこと以外、参考例1と同様の電池を作製し、同様に評価した。結果を表1に示す。
<< Comparative Example 1 >>
A battery was prepared in the same manner as in Reference Example 1 except that FB was not included in the nonaqueous electrolyte, and was similarly evaluated. The results are shown in Table 1.

《比較例2》
正極活物質として、コバルト酸リチウム(LiCoO2)を用いたこと以外、参考例1と同様の電池を作製し、同様に評価した。結果を表1に示す。
<< Comparative Example 2 >>
A battery similar to that of Reference Example 1 was prepared and evaluated in the same manner except that lithium cobalt oxide (LiCoO 2 ) was used as the positive electrode active material. The results are shown in Table 1.

《比較例3》
比較例1と同じ非水電解質を用い、更に、比較例2と同じ正極活物質を用いたこと以外、参考例1と同様の電池を作製し、同様に評価した。結果を表1に示す。
《比較例4〜8》
比較例1と同じ非水電解質を用い、正極活物質として、表1記載の組成を有するニッケル含有リチウム複合酸化物を用いたこと以外、参考例1と同様の電池を作製し、同様に評価した。結果を表1に示す。
<< Comparative Example 3 >>
A battery was prepared in the same manner as in Reference Example 1 except that the same nonaqueous electrolyte as in Comparative Example 1 was used and the same positive electrode active material as in Comparative Example 2 was used. The results are shown in Table 1.
<< Comparative Examples 4-8 >>
A battery similar to that of Reference Example 1 was prepared and evaluated in the same manner except that the same non-aqueous electrolyte as in Comparative Example 1 was used, and the nickel-containing lithium composite oxide having the composition shown in Table 1 was used as the positive electrode active material. . The results are shown in Table 1.

Figure 0004795019
Figure 0004795019

表1より、ニッケル含有リチウム複合酸化物を正極活物質に用い、FBを非水電解質に含ませた場合のみ、良好なサイクル特性が得られることがわかる。これは、電子密度が高いNiOを含む正極活物質表面上に、電子密度が低い非水電解質中のFBが吸着し、正極表面上に保護被膜が形成されたためと推察できる。   From Table 1, it can be seen that good cycle characteristics can be obtained only when nickel-containing lithium composite oxide is used as the positive electrode active material and FB is included in the nonaqueous electrolyte. This can be inferred that FB in the non-aqueous electrolyte having a low electron density was adsorbed on the surface of the positive electrode active material containing NiO having a high electron density, and a protective film was formed on the surface of the positive electrode.

参考例2》
正極活物質として、表2に示す組成のニッケル含有リチウム複合酸化物を用いたこと以外、参考例1と同様の電池を作製し、同様に評価した。結果を表2に示す。
<< Reference Example 2 >>
A battery similar to that of Reference Example 1 was prepared and evaluated in the same manner except that a nickel-containing lithium composite oxide having the composition shown in Table 2 was used as the positive electrode active material. The results are shown in Table 2.

Figure 0004795019
Figure 0004795019

表2より、一般式(1):LiNix1-x-yy2で表され、元素Mが、CoおよびMnよりなる群から選ばれた少なくとも1種であり、元素Lが、Al、Sr、Y、Zr、Ta、Mg、Ti、Zn、B、Ca、Cr、Si、Ga、Sn、P、V、Sb、Nb、Mo、WおよびFeよりなる群から選ばれた少なくとも1種であり、xおよびyが、0.1≦x≦1および0≦y≦0.1を満たすニッケル含有リチウム複合酸化物と、FBを含ませた非水電解質とを組み合わせることにより、高温でのサイクル特性に優れた電池が得られることがわかる。 From Table 2, the general formula (1): is represented by LiNi x M 1-xy L y O 2, the element M is at least one selected from the group consisting of Co and Mn, the element L is, Al, At least one selected from the group consisting of Sr, Y, Zr, Ta, Mg, Ti, Zn, B, Ca, Cr, Si, Ga, Sn, P, V, Sb, Nb, Mo, W and Fe A combination of a nickel-containing lithium composite oxide in which x and y satisfy 0.1 ≦ x ≦ 1 and 0 ≦ y ≦ 0.1, and a non-aqueous electrolyte containing FB, and a cycle at a high temperature It can be seen that a battery having excellent characteristics can be obtained.

また、正極活物質中のNi含有量を示すx値は、0.1≦x≦0.9の範囲が好ましく、0.3≦x≦0.9の範囲が更に好ましく、0.7≦x≦0.9の範囲が特に好ましいことがわかる。   The x value indicating the Ni content in the positive electrode active material is preferably in the range of 0.1 ≦ x ≦ 0.9, more preferably in the range of 0.3 ≦ x ≦ 0.9, and 0.7 ≦ x It can be seen that a range of ≦ 0.9 is particularly preferable.

また、表2より、一般式(1)中の元素Lが、Al、Sr、Y、ZrおよびTaよりなる群から選ばれる少なくとも1種である場合に、特に高温サイクル特性に優れた電池が得られることがわかる。   Further, from Table 2, when the element L in the general formula (1) is at least one selected from the group consisting of Al, Sr, Y, Zr and Ta, a battery particularly excellent in high-temperature cycle characteristics is obtained. I understand that

参考例3》
非水電解質に含ませるフッ素原子含有芳香族化合物として、表3に示す化合物を用いたたこと以外、参考例1と同様の電池を作製し、同様に評価した。結果を表3に示す。
<< Reference Example 3 >>
A battery similar to that of Reference Example 1 was prepared and evaluated in the same manner except that the compounds shown in Table 3 were used as the fluorine atom-containing aromatic compound contained in the nonaqueous electrolyte. The results are shown in Table 3.

Figure 0004795019
Figure 0004795019

表3より、フッ素原子含有芳香族化合物の種類にかかわらず、ニッケル含有リチウム複合酸化物からなる正極活物質と、フッ素原子含有芳香族化合物を含む非水電解質とを組み合わせることにより、高温でのサイクル特性に優れた電池が得られることがわかる。   From Table 3, regardless of the type of fluorine atom-containing aromatic compound, a cycle at a high temperature can be achieved by combining a positive electrode active material composed of a nickel-containing lithium composite oxide and a non-aqueous electrolyte containing a fluorine atom-containing aromatic compound. It can be seen that a battery having excellent characteristics can be obtained.

フッ素原子含有芳香族化合物の中では、一般式(2)で表される化合物、具体的にはFB、1,2−ジフルオロベンゼン、1,2,3−トリフルオロベンゼン、1,2,3,4−テトラフルオロベンゼン、ペンタフルオロベンゼンおよびヘキサフルオロベンゼンを用いた場合に、特に高温でのサイクル特性が優れていた。これらのフッ素原子含有芳香族化合物では、芳香環に電子吸引力の強いフッ素原子が直接結合しているため、芳香環の電子密度が低くなりやすい。そのため、正極活物質表面に引き寄せられて吸着するフッ素原子含有芳香族化合物の量が増加し、強固な被膜が形成されたものと考えられる。   Among the fluorine atom-containing aromatic compounds, compounds represented by the general formula (2), specifically FB, 1,2-difluorobenzene, 1,2,3-trifluorobenzene, 1,2,3, When 4-tetrafluorobenzene, pentafluorobenzene and hexafluorobenzene were used, the cycle characteristics at high temperature were particularly excellent. In these fluorine atom-containing aromatic compounds, since a fluorine atom having a strong electron attractive force is directly bonded to the aromatic ring, the electron density of the aromatic ring tends to be low. Therefore, it is considered that the amount of the fluorine atom-containing aromatic compound attracted to and adsorbed on the surface of the positive electrode active material increased, and a strong film was formed.

また、一般式(2)で示される化合物の中でも、FBを用いた場合が、特にサイクル特性に優れていた。FBの場合、芳香環に直接結合しているフッ素原子が1個であるため、芳香環の電子密度が過度に低くなって正極表面に過剰に吸着することがないと考えられる。よって、充放電反応が阻害されることがないため、良好なサイクル特性が得られたと考えられる。   Further, among the compounds represented by the general formula (2), when FB was used, the cycle characteristics were particularly excellent. In the case of FB, since there is one fluorine atom directly bonded to the aromatic ring, it is considered that the electron density of the aromatic ring is too low to be excessively adsorbed on the positive electrode surface. Therefore, it is considered that good cycle characteristics were obtained because the charge / discharge reaction was not hindered.

参考例4》
非水電解質に含ませるFBの量(重量部)を、非水溶媒100重量に対して表4記載のように変化させたこと以外、参考例1と同様の電池を作製し、同様に評価した。結果を表4に示す。
<< Reference Example 4 >>
A battery similar to that of Reference Example 1 was prepared and evaluated in the same manner except that the amount (parts by weight) of FB contained in the nonaqueous electrolyte was changed as shown in Table 4 with respect to 100 weights of the nonaqueous solvent. . The results are shown in Table 4.

Figure 0004795019
Figure 0004795019

表4より、FBの量が、非水溶媒100重量部あたり1重量部未満では、サイクル特性を向上させる効果が小さくなることがわかる。また、FBの量が、30重量部を超える場合にも、正極表面に形成される被膜が厚くなり過ぎて、充放電反応が阻害されるため、サイクル特性を向上させる効果が小さくなることがわかる。フッ素原子含有芳香族化合物の量は、非水溶媒100重量部あたり、1〜30重量部が好適であり、5〜20重量部が特に好適であった。   From Table 4, it can be seen that when the amount of FB is less than 1 part by weight per 100 parts by weight of the nonaqueous solvent, the effect of improving the cycle characteristics becomes small. In addition, even when the amount of FB exceeds 30 parts by weight, the coating formed on the surface of the positive electrode becomes too thick and the charge / discharge reaction is hindered, so that the effect of improving the cycle characteristics is reduced. . The amount of the fluorine atom-containing aromatic compound is preferably 1 to 30 parts by weight and particularly preferably 5 to 20 parts by weight per 100 parts by weight of the nonaqueous solvent.

《実施例
非水電解質に含ませるフッ素原子含有芳香族化合物として、表5に示す化合物を用い、更に、非水溶媒100重量に対して表5記載の量(重量部)のビニレンカーボネート(VC)または/およびビニルエチレンカーボネート(VEC)を非水電解質に含ませたこと以外、参考例1と同様の電池を作製し、同様に評価した。結果を表5に示す。
Example 1
As the fluorine atom-containing aromatic compound contained in the nonaqueous electrolyte, the compounds shown in Table 5 were used, and further, vinylene carbonate (VC) in an amount (part by weight) described in Table 5 with respect to 100 weights of the nonaqueous solvent, and / or A battery was prepared in the same manner as in Reference Example 1 except that vinyl ethylene carbonate (VEC) was included in the nonaqueous electrolyte, and was evaluated in the same manner. The results are shown in Table 5.

Figure 0004795019
Figure 0004795019

次に、実施例の電池に対して、150℃での耐熱試験を実施し、セパレータの収縮時間を測定した。試験方法は以下の通りである。
まず、電池に対し、最大電流1050mA、上限電圧4.2Vの条件で、2時間30分の定電流・定電圧充電を行った。次に、充電状態の電池を、5℃/分の一定速度で20℃から150℃まで昇温させ、150℃到達後はその温度で3時間保持した。このとき、セパレータがシャットダウンし、セパレータの収縮が起こると、負極と正極とが接触(短絡)するため、電池電圧は約4.2Vから約0Vまで急激に低下する。そこで、150℃で保持中の電池の電圧を常にモニタし、試験開始から電池電圧が急激に低下するまでの時間を測定し、収縮時間とした。結果を表5に示す。
Next, a heat resistance test at 150 ° C. was performed on the battery of Example 1 , and the shrinkage time of the separator was measured. The test method is as follows.
First, the battery was charged with a constant current and a constant voltage for 2 hours and 30 minutes under the conditions of a maximum current of 1050 mA and an upper limit voltage of 4.2 V. Next, the battery in a charged state was heated from 20 ° C. to 150 ° C. at a constant rate of 5 ° C./min, and held at that temperature for 3 hours after reaching 150 ° C. At this time, when the separator is shut down and contraction of the separator occurs, the negative electrode and the positive electrode come into contact (short-circuit), so that the battery voltage rapidly decreases from about 4.2V to about 0V. Therefore, the voltage of the battery being held at 150 ° C. was constantly monitored, and the time from the start of the test until the battery voltage suddenly decreased was measured and used as the contraction time. The results are shown in Table 5.

《比較例9》
非水電解質中にフッ素原子含有芳香族化合物を含ませず、非水溶媒100重量に対して表5記載の量(重量部)のビニレンカーボネート(VC)または/およびビニルエチレンカーボネート(VEC)を非水電解質に含ませたこと以外、参考例1と同様の電池を作製し、実施例と同様に評価した。結果を表5に示す。
<< Comparative Example 9 >>
The non-aqueous electrolyte does not contain a fluorine atom-containing aromatic compound, and the amount (parts by weight) of vinylene carbonate (VC) and / or vinyl ethylene carbonate (VEC) shown in Table 5 with respect to 100 weight of the non-aqueous solvent A battery was prepared in the same manner as in Reference Example 1 except that it was included in the water electrolyte, and was evaluated in the same manner as in Example 1 . The results are shown in Table 5.

表5より、フッ素原子含有芳香族化合物と、VCおよび/またはVECとを併用することにより、高温でのサイクル特性が更に向上するだけでなく、電池の耐熱性が大幅に改善されることがわかる。耐熱性が大幅に改善されたのは、ニッケル含有リチウム複合酸化物からなる正極活物質の表面に、フッ素原子含有芳香族化合物に由来するユニットと、VCやVECに由来するユニットとを含む混成被膜が形成されたためと考えられる。すなわち、混成被膜が、正極とセパレータとの密着性を大幅に高めたため、セパレータのシャットダウン時にセパレータの収縮が抑制され、負極と正極との接触(短絡)が防止され、安全性が向上したものと考えられる。   From Table 5, it can be seen that the combined use of a fluorine atom-containing aromatic compound and VC and / or VEC not only further improves the cycle characteristics at high temperature, but also greatly improves the heat resistance of the battery. . The heat resistance is greatly improved because the surface of the positive electrode active material made of a nickel-containing lithium composite oxide has a hybrid coating containing a unit derived from a fluorine atom-containing aromatic compound and a unit derived from VC or VEC. This is thought to be due to the formation of That is, the hybrid coating greatly improved the adhesion between the positive electrode and the separator, so that the shrinkage of the separator was suppressed during the shutdown of the separator, the contact (short circuit) between the negative electrode and the positive electrode was prevented, and safety was improved. Conceivable.

本発明は、正極活物質としてニッケル含有リチウム複合酸化物を用いる非水電解質二次電池全般に適用可能であるが、特に高温での寿命特性に優れた非水電解質二次電池を提供する場合に有用である。本発明の非水電解質二次電池は、例えば小型携帯機器用電源として有用である。   The present invention is applicable to all non-aqueous electrolyte secondary batteries using nickel-containing lithium composite oxide as a positive electrode active material, but particularly when providing a non-aqueous electrolyte secondary battery having excellent life characteristics at high temperatures. Useful. The nonaqueous electrolyte secondary battery of the present invention is useful as a power source for small portable devices, for example.

円筒型非水電解質二次電池の概略縦断面図である。It is a schematic longitudinal cross-sectional view of a cylindrical nonaqueous electrolyte secondary battery.

符号の説明Explanation of symbols

11 正極
12 負極
13 セパレータ
14 正極リード
15 負極リード
16 上部絶縁板
17 下部絶縁板
18 電池ケース
19 封口板
20 正極端子

DESCRIPTION OF SYMBOLS 11 Positive electrode 12 Negative electrode 13 Separator 14 Positive electrode lead 15 Negative electrode lead 16 Upper insulating plate 17 Lower insulating plate 18 Battery case 19 Sealing plate 20 Positive electrode terminal

Claims (5)

正極活物質としてニッケル含有リチウム複合酸化物を含む正極と、充放電が可能な負極と、前記正極と前記負極との間に介在するセパレータと、溶質を溶解させた非水溶媒を含む非水電解質とを具備し、
前記非水電解質が、前記非水溶媒100重量部あたり1〜30重量部のフッ素原子含有芳香族化合物を含み、かつ、前記非水溶媒100重量部あたり0.5〜10重量部の、ビニレンカーボネートおよびビニルエチレンカーボネートよりなる群から選ばれる少なくとも1種を含む、非水電解質二次電池。
A non-aqueous electrolyte comprising a positive electrode including a nickel-containing lithium composite oxide as a positive electrode active material, a negative electrode capable of charge / discharge, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous solvent in which a solute is dissolved And
The nonaqueous electrolyte is seen containing a fluorine atom-containing aromatic compound of the nonaqueous solvent to 30 parts by weight per 100 parts by weight, and the nonaqueous solvent 0.5 to 10 parts by weight per 100 parts by weight, vinylene at least one of including a non-aqueous electrolyte secondary batteries selected from the group consisting of carbonate and vinyl ethylene carbonate.
前記ニッケル含有リチウム複合酸化物は、一般式(1):LiNix1-x-yy2で表され、
元素Mは、CoおよびMnよりなる群から選ばれた少なくとも1種であり、
元素Lは、Al、Sr、Y、Zr、Ta、Mg、Ti、Zn、B、Ca、Cr、Si、Ga、Sn、P、V、Sb、Nb、Mo、WおよびFeよりなる群から選ばれた少なくとも1種であり、
xおよびyは、0.1≦x≦1および0≦y≦0.1を満たす、請求項1記載の非水電解質二次電池。
It said nickel-containing lithium composite oxide is represented by the general formula (1): is represented by LiNi x M 1-xy L y O 2,
The element M is at least one selected from the group consisting of Co and Mn,
The element L is selected from the group consisting of Al, Sr, Y, Zr, Ta, Mg, Ti, Zn, B, Ca, Cr, Si, Ga, Sn, P, V, Sb, Nb, Mo, W, and Fe. At least one kind,
The nonaqueous electrolyte secondary battery according to claim 1, wherein x and y satisfy 0.1 ≦ x ≦ 1 and 0 ≦ y ≦ 0.1.
元素Lは、Al、Sr、Y、ZrおよびTaよりなる群から選ばれた少なくとも1種である、請求項2記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 2, wherein the element L is at least one selected from the group consisting of Al, Sr, Y, Zr, and Ta. 前記フッ素原子含有芳香族化合物は、一般式(2):
Figure 0004795019
で表され、
1、R2、R3、R4、R5およびR6は、それぞれ独立して、フッ素原子または水素原子であり、
1、R2、R3、R4、R5およびR6の少なくとも1つは、フッ素原子である、請求項1記載の非水電解質二次電池。
The fluorine atom-containing aromatic compound has the general formula (2):
Figure 0004795019
Represented by
R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a fluorine atom or a hydrogen atom;
The nonaqueous electrolyte secondary battery according to claim 1, wherein at least one of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 is a fluorine atom.
前記フッ素原子含有芳香族化合物は、フルオロベンゼンである、請求項1記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the fluorine atom-containing aromatic compound is fluorobenzene.
JP2005380230A 2005-01-26 2005-12-28 Nonaqueous electrolyte secondary battery Active JP4795019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005380230A JP4795019B2 (en) 2005-01-26 2005-12-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005018068 2005-01-26
JP2005018068 2005-01-26
JP2005380230A JP4795019B2 (en) 2005-01-26 2005-12-28 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2006236981A JP2006236981A (en) 2006-09-07
JP4795019B2 true JP4795019B2 (en) 2011-10-19

Family

ID=37044361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005380230A Active JP4795019B2 (en) 2005-01-26 2005-12-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4795019B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135974A1 (en) * 2006-05-19 2007-11-29 Panasonic Corporation Nonaqueous electrolyte secondary battery
US8637177B2 (en) 2009-03-18 2014-01-28 Hitachi Maxell, Ltd. Electrochemical device
JP5629609B2 (en) * 2011-02-28 2014-11-26 株式会社日立製作所 Lithium secondary battery
US11437646B2 (en) 2014-09-26 2022-09-06 Lg Energy Solution, Ltd. Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
KR101802018B1 (en) * 2014-09-26 2017-11-27 주식회사 엘지화학 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
JP6572565B2 (en) * 2015-03-11 2019-09-11 株式会社Gsユアサ Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4045644B2 (en) * 1998-05-18 2008-02-13 宇部興産株式会社 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4296620B2 (en) * 1998-11-18 2009-07-15 ソニー株式会社 Non-aqueous electrolyte battery
JP4145407B2 (en) * 1999-02-01 2008-09-03 三井化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP4710099B2 (en) * 1999-12-28 2011-06-29 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
KR100325868B1 (en) * 2000-03-06 2002-03-07 김순택 Organic electrolytic solution and lithium secondary battery adopting the same
KR20030023290A (en) * 2001-09-13 2003-03-19 삼성에스디아이 주식회사 Organic liquid electrolytes containing carbonates having carbon-carbon double bond and polymer electrolytes and lithium secondary batteries manufactured by employing the same
JP4067824B2 (en) * 2001-12-28 2008-03-26 三井化学株式会社 Non-aqueous electrolyte and lithium secondary battery including the same
KR100467435B1 (en) * 2002-09-06 2005-01-24 삼성에스디아이 주식회사 An electrolyte for a lithium battery and a lithium battery comprising the same

Also Published As

Publication number Publication date
JP2006236981A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
US7879489B2 (en) Non-aqueous electrolyte secondary battery
JP7116311B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
KR100872258B1 (en) Nonaqueous electrolyte for secondary battery and secondary battery comprising same
US10050262B2 (en) Negative electrode for nonaqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP4837614B2 (en) Lithium secondary battery
US20090087740A1 (en) Non-aqueous electrolyte secondary battery
JP5160088B2 (en) Nonaqueous electrolyte secondary battery
JP4949223B2 (en) Nonaqueous electrolyte and secondary battery including the same
JP2009277597A (en) Nonaqueous electrolyte secondary battery
JP5036141B2 (en) Non-aqueous electrolyte secondary battery
CN113748553B (en) Nonaqueous electrolyte secondary battery
JP4795019B2 (en) Nonaqueous electrolyte secondary battery
JP4417649B2 (en) Nonaqueous electrolyte secondary battery
JP6119641B2 (en) Cylindrical non-aqueous electrolyte secondary battery
KR102186402B1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
US20220123367A1 (en) Nonaqueous electrolyte secondary battery and electrolyte solution used in same
JP2022528055A (en) Compounds, electrolytes for lithium secondary batteries containing them and lithium secondary batteries
US20200076000A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2008123732A (en) Nonaqueous electrolyte secondary battery
KR20180031466A (en) Additive for lithium battery electrolytic solution, Organic electrolytic solution and Lithium battery comprising additive
KR20180042739A (en) Additive for electrolyte of lithium secondary battery and electrolyte of lithium secondary battery and lithium secondary battery including the same
JP4767501B2 (en) Non-aqueous electrolyte secondary battery
WO2017169145A1 (en) Non-aqueous electrolyte secondary battery
KR20120125144A (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
JP2004103464A (en) Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent or registration of utility model

Ref document number: 4795019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3