JP4794768B2 - ソレノイド駆動装置 - Google Patents

ソレノイド駆動装置 Download PDF

Info

Publication number
JP4794768B2
JP4794768B2 JP2001235621A JP2001235621A JP4794768B2 JP 4794768 B2 JP4794768 B2 JP 4794768B2 JP 2001235621 A JP2001235621 A JP 2001235621A JP 2001235621 A JP2001235621 A JP 2001235621A JP 4794768 B2 JP4794768 B2 JP 4794768B2
Authority
JP
Japan
Prior art keywords
solenoid
capacitor
power supply
terminal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001235621A
Other languages
English (en)
Other versions
JP2003049687A (ja
Inventor
孝直 丹澤
茂 山崎
三浦  磨
邦彦 早川
宏和 廣澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP2001235621A priority Critical patent/JP4794768B2/ja
Priority to TW091116762A priority patent/TW536583B/zh
Priority to EP02751822A priority patent/EP1424477A4/en
Priority to PCT/JP2002/007848 priority patent/WO2003014556A1/ja
Priority to KR10-2004-7001308A priority patent/KR20040018531A/ko
Priority to US10/485,216 priority patent/US7154729B2/en
Priority to CNB028149572A priority patent/CN1314892C/zh
Publication of JP2003049687A publication Critical patent/JP2003049687A/ja
Application granted granted Critical
Publication of JP4794768B2 publication Critical patent/JP4794768B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08142Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2006Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost capacitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1816Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Magnetically Actuated Valves (AREA)
  • Power Conversion In General (AREA)
  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジン等に燃料を供給する電子制御式の燃料噴射装置に用いられる燃料噴射用ソレノイドの駆動装置に関し、特にソレノイドの駆動を停止したときにソレノイドに蓄えられた電力を一時的にコンデンサに蓄え、再度ソレノイドを駆動するときにコンデンサに蓄えた電力をソレノイドに供給する方式のソレノイド駆動装置に関する。
【0002】
【従来の技術】
図8は、一般的なソレノイド駆動装置の構成を示すブロック図である。このソレノイド駆動装置は、ソレノイド11、ソレノイド11を駆動するためのソレノイド駆動素子12、外部から入力される制御信号に基づいてソレノイド駆動素子12のオン、オフを制御するソレノイド駆動素子制御回路13、およびソレノイド11の駆動停止時にソレノイド11に蓄えられた電力を消費するためのスナバ回路14により構成される。図8において、符号15は、電源電圧(バッテリ電圧)VBが印加される電源端子であり、符号16は制御信号入力端子である。
【0003】
図8に示す構成のソレノイド駆動装置では、ソレノイド駆動素子12がオン状態になると、ソレノイド11に電流が流れて一定時間後に燃料が噴射される。その状態で一定時間が経過すると、燃料噴射を停止するためにソレノイド駆動素子12はオフ状態に切り替わる。その際、ソレノイド11に流れていた電流はスナバ回路14に流れ、そこで電力が消費される。それによって、ソレノイド11に流れる電流は徐々に減少し、やがてゼロになって燃料の噴射が停止する。
【0004】
図9は、図8に示すソレノイド駆動装置の具体的な構成を示す回路図である。ソレノイド駆動素子12はNチャンネルの電界効果トランジスタ(以下、FETとする)121で構成される。ソレノイド駆動素子制御回路13はnpnトランジスタ131および4個の抵抗132,133,134,135により構成される。スナバ回路14はツェナーダイオード141により構成される。
【0005】
ソレノイド11の一端は電源端子15に接続され、他端はFET121のドレイン端子およびツェナーダイオード141のカソード端子に接続される。FET121のソース端子およびツェナーダイオード141のアノード端子は接地される。FET121のゲート端子にはnpnトランジスタ131のコレクタ端子が接続される。そのコレクタ端子と電源端子15との間には第1の抵抗132が接続される。npnトランジスタ131のベース端子は第2の抵抗133を介して制御信号入力端子16に接続される。制御信号入力端子16は第3の抵抗134により電源電圧VCCにプルアップされている。npnトランジスタ131のエミッタ端子は第4の抵抗135を介してベース端子に接続されているとともに、接地されている。
【0006】
図10は、図8に示すソレノイド駆動装置の具体的な構成のほかの例を示す回路図である。図10に示すソレノイド駆動装置は、図9に示す装置においてツェナーダイオード141のアノード端子を接地する代わりに、第5の抵抗136を介してnpnトランジスタ131のコレクタ端子に接続するとともに、ツェナーダイオード141のカソード端子とソレノイド11との間に、ソレノイド11からツェナーダイオード141へ電流が流れる向きにダイオード142を接続したものである。
【0007】
しかし、図8〜図10に示す構成のソレノイド駆動装置では、ソレノイド11の容量が大きくなると、スナバ回路14で消費される電力がかなり大きくなり、発熱が問題となる。そこで、この発熱を低減し、電力の有効活用と駆動の高速化を図るため、ソレノイドに流れるコイル電流を止めるときのエネルギーを一旦コンデンサに蓄え、再度ソレノイドにコイル電流を流すときに、コンデンサに蓄えたエネルギーを利用してコイル電流を急激に増加させる構成のソレノイド駆動装置が公知である。
【0008】
図11は、従来のコンデンサに蓄えたエネルギーを利用してソレノイドの再駆動をおこなうタイプのソレノイド駆動装置の構成を示すブロック図である。このソレノイド駆動装置は、ソレノイド11、ソレノイド駆動素子12、ソレノイド駆動素子制御回路13、ソレノイド11の駆動停止時のエネルギーを一時的に蓄えるコンデンサ21、コンデンサ21の放電を制御する放電制御素子22、放電制御素子22のオン、オフを制御する放電制御回路23、電源電圧VBを昇圧して放電制御回路23に高電圧を供給するDC−DCコンバータ回路24、コンデンサ21に蓄えられた高電圧をソレノイド11に印加したときにその電圧が電源側に回り込むのを防ぐ電流逆流防止回路25、およびコンデンサ21に蓄えられた高電圧によりコンデンサ21からソレノイド駆動素子12に直接電流が流れ込むのを防ぐ整流素子26により構成される。なお、図8に示す装置と同様の構成については同じ符号を付して説明を省略する。
【0009】
図11に示す構成のソレノイド駆動装置の作用について説明する。まず、ソレノイド駆動素子制御回路13の制御によりソレノイド駆動素子12がオフ状態からオン状態に切り替えられると、電源端子15から電流逆流防止回路25を通ってソレノイド11に電流が流れ始める。そして、一定時間が経過すると燃料噴射が始まる。さらに一定時間が経過すると、燃料噴射を停止させるため、ソレノイド駆動素子12がオフ状態に切り替えられる。その際、ソレノイド11に流れていた電流は整流素子26を通ってコンデンサ21へ流れる。コンデンサ21の電圧VCは電流が流れ込むと同時に上昇していき、ソレノイド11に蓄えられた電力がコンデンサ21に吸収されていく。コンデンサ21に流れ込む電流がゼロになると同時にコンデンサ21の電圧VCの上昇が停止する。
【0010】
この状態の後に再び燃料噴射をおこなうときには、ソレノイド駆動素子12がオン状態に切り替えられると同時に放電制御素子22がオン状態に切り替えられる。それによって、ソレノイド11の高電位側の電圧VSHはコンデンサ21の充電により発生する電圧VCと同じになり、電源電圧VBよりも高くなる。したがって、ソレノイド11に急激に電流が流れ始める。この電流はコンデンサ21から流れ出るため、コンデンサ21の電圧VC、すなわちソレノイド11の高電位側の電圧VSHは降下していく。そして、ソレノイド11の高電位側の電圧VSHが電源電圧VBより低くなった時点で、コンデンサ21から流れ出る電流はゼロとなり、その一方で、電源電圧VBからソレノイド11へ電流が流れ始める。その際、ソレノイド11に流れる電流は、ソレノイド11の巻線抵抗で制限される電圧まで増加し続ける。
【0011】
このように、初回の燃料噴射を除いて、二回目以降の燃料噴射の際には、ソレノイド11に流れる電流は、コンデンサ21の充電によって発生する電圧によって急激に増加する。その急激な増加の間は、電源端子15から流れる電流はゼロである。このため、全体的に電源端子15から流れる電流量が減少し、消費電力が低減される。また、ソレノイド11を流れる電流が必要電流の近くまで急激に立ち上がるため、応答性が向上する。
【0012】
【発明が解決しようとする課題】
しかしながら、上述した従来のコンデンサに蓄えたエネルギーを利用してソレノイドの再駆動をおこなうタイプのソレノイド駆動装置では、図11に示すように、放電制御回路23に高電圧を供給するためのDC−DCコンバータ回路24が必要であり、回路の複雑化や回路規模の増大を招くという問題点がある。また、通常、電流逆流防止回路25はダイオードで構成されるため、ここに大きな電源電流が流れると、ダイオードの0.7V程度の電圧降下により発熱量が大きくなるという問題点もある。さらには、ソレノイド駆動素子12とコンデンサ21との間の整流素子26もダイオードで構成されるため、ここを流れる電流による発熱が問題となる。
【0013】
本発明は、上記問題点に鑑みてなされたものであって、コンデンサに蓄えたエネルギーを利用してソレノイドの再駆動をおこなうタイプのソレノイド駆動装置において、DC−DCコンバータ回路が不要で、電源端子への電流の逆流を防ぐ電流逆流防止回路での発熱を抑え、またコンデンサへ流れる電流が通る整流素子での発熱を抑えることができるソレノイド駆動装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するため、本発明にかかるソレノイド駆動装置は、ソレノイドの駆動停止時にソレノイドに蓄えられた電力をコンデンサに一時的に蓄え、そのコンデンサの放電を制御するための放電制御回路の電源として、コンデンサのピーク電圧を利用した充電により発生する高電圧を利用するものである。この発明によれば、コンデンサに発生する高電圧により放電制御回路が駆動される。
【0015】
また、本発明にかかるソレノイド駆動装置は、電流逆流防止回路をFET等のスイッチング素子で構成するものである。この発明によれば、電源端子からソレノイドへ電流が流れる際に電流逆流防止回路での電圧降下が小さくなり、ここでの発熱が抑えられる。
【0016】
また、本発明にかかるソレノイド駆動装置は、コンデンサへ流れる電流が通る整流素子をFET等のスイッチング素子で構成するものである。この発明によれば、ソレノイドからコンデンサへ電流が流れる際に整流素子での電圧降下が小さくなり、ここでの発熱が抑えられる。
【0017】
【発明の実施の形態】
以下に、本発明の実施の形態にかかるソレノイド駆動装置について図面を参照しつつ詳細に説明する。
【0018】
実施の形態1.
図1は、本発明の実施の形態1にかかるソレノイド駆動装置の構成を示すブロック図である。このソレノイド駆動装置は、ソレノイド31、ソレノイド駆動素子32、ソレノイド駆動素子制御回路33、コンデンサ34、電源端子35、制御信号入力端子36、放電制御素子37、放電制御回路38、ピーク電圧保持回路39、電流逆流防止回路40、および整流素子41により構成される。
【0019】
ピーク電圧保持回路39は、コンデンサ34の充電により発生するピーク電圧を保持して放電制御回路38に供給する。ピーク電圧保持回路39を除く構成は、図11に示す従来構成のソレノイド駆動装置と同様である。また、このソレノイド駆動装置のソレノイド31の駆動および駆動停止時の動作は、図11に示す従来構成のソレノイド駆動装置と同様である。
【0020】
図2は、本発明の実施の形態1にかかるソレノイド駆動装置の構成の一例を示す回路図である。このソレノイド駆動装置は、ソレノイド31、2個のコンデンサ34,51、2個のNチャンネルFET52,53、npnトランジスタ54、5個のダイオード55,56,57,58,59、ツェナーダイオード60、8個の抵抗61,62,63,64,65,66,67,68、電源端子35および制御信号入力端子36を有する。第1のNチャンネルFET52はソレノイド駆動素子32を構成する。第2のNチャンネルFET53は放電制御素子37を構成する。第1のダイオード55は整流素子41を構成する。第2のダイオード56は電流逆流防止回路40を構成する。
【0021】
電源端子35には第2のダイオード56のアノード端子が接続される。第2のダイオード56のカソード端子はソレノイド31の一端に接続される。ソレノイド31の他端は第1のNチャンネルFET52のドレイン端子および第1のダイオード55のアノード端子に接続される。第1のNチャンネルFET52のソース端子は接地される。第1のダイオード55のカソード端子は第1のコンデンサ34の正極の端子に接続される。第1のコンデンサ34の負極の端子は接地される。また、第1のコンデンサ34の正極の端子は第2のNチャンネルFET53のドレイン端子に接続される。第2のNチャンネルFET53のソース端子はソレノイド31の、第2のダイオード56を介して電源端子35に接続される側の一端に接続される。
【0022】
また、電源端子35には第1の抵抗61を介して第3のダイオード58のアノード端子が接続される。第3のダイオード58のカソード端子はnpnトランジスタ54のコレクタ端子に接続される。npnトランジスタ54のエミッタ端子は接地される。npnトランジスタ54のベース端子は第2の抵抗62を介して制御信号入力端子36に接続される。制御信号入力端子36は第3の抵抗63により電源電圧VCCにプルアップされている。npnトランジスタ54のベース端子とエミッタ端子との間には第4の抵抗64が接続される。第1の抵抗61と第3のダイオード58との接続ノードには第5の抵抗65を介して第1のNチャンネルFET52のベース端子が接続される。npnトランジスタ54、第1〜第5の抵抗61,62,63,64,65および第3のダイオード58はソレノイド駆動素子制御回路33を構成する。
【0023】
また、電源端子35にはツェナーダイオード60のアノード端子が接続される。ツェナーダイオード60のカソード端子は、第6の抵抗66を介して第1のコンデンサ34の正極の端子に接続されるとともに、第4のダイオード59のアノード端子に接続される。第4のダイオード59のカソード端子と第2のダイオード56のカソード端子との間には第2のコンデンサ51が接続される。ツェナーダイオード60、第6の抵抗66、第4のダイオード59および第2のコンデンサ51はピーク電圧保持回路39を構成する。
【0024】
第4のダイオード59と第2のコンデンサ51との接続ノードと、第2のNチャンネルFET53のゲート端子との間には、第7の抵抗67および第8の抵抗68が直列に接続されている。第7の抵抗67と第8の抵抗68との接続ノードはnpnトランジスタ54のコレクタ端子に接続される。第5のダイオード57は、そのアノード端子を第2のNチャンネルFET53のソース端子に接続し、かつそのカソード端子を第2のNチャンネルFET53のゲート端子に接続する。npnトランジスタ54、第2〜第4の抵抗62,63,64、第7および第8の抵抗67,68、並びに第5のダイオード57は放電制御回路38を構成する。
【0025】
一例として、各素子の特性値を例示する。第1のコンデンサ34および第2のコンデンサ51の容量はたとえばそれぞれ100μFおよび0.1μFである。ツェナーダイオード60の出力電圧はたとえば9Vである。第1の抵抗61の抵抗値はたとえば3.3kΩである。第2の抵抗62の抵抗値はたとえば4.7kΩである。第3の抵抗63、第6の抵抗66および第7の抵抗67の抵抗値はたとえば10kΩである。第4の抵抗64の抵抗値はたとえば47kΩである。第5の抵抗65の抵抗値はたとえば1kΩである。第8の抵抗68の抵抗値はたとえば2kΩである。
【0026】
図2に示す構成のソレノイド駆動装置の作用について、図3を参照しながら説明する。図3は、ソレノイド31の低電位側の電圧VSL、第1のコンデンサ34の電圧VC、ソレノイド31の高電位側の電圧VSHおよびソレノイド31に流れる電流Iの各波形を示す図である。
【0027】
まず、制御信号入力端子36から入力された制御信号に基づいて、npnトランジスタ54がオン状態からオフ状態に切り替わると、第1のNチャンネルFET52がオフ状態からオン状態に切り替わり、電源端子35から第2のダイオード56を通ってソレノイド31に電流が流れ始める。そして、一定時間が経過すると燃料噴射が始まる。このとき、第2のNチャンネルFET53は、第2のコンデンサ51が充電されていないため、オフ状態のままである。
【0028】
一定時間経過した時点で、npnトランジスタ54がオフ状態からオン状態に切り替わり、第1のNチャンネルFET52がオフ状態に切り替わる。その際、ソレノイド31に流れていた電流は第1のダイオード55を通って第1のコンデンサ34へ流れる。それによって、第1のコンデンサ34の電圧VCは上昇し、ソレノイド31に蓄えられた電力が第1のコンデンサ34に吸収されていく。第1のコンデンサ34に流れ込む電流がゼロになると同時に第1のコンデンサ34の電圧VCの上昇が停止する。この第1のコンデンサ34の充電とともに、第2のコンデンサ51も充電される。この時点でソレノイド31には電流が流れなくなるので、燃料噴射が停止する。
【0029】
この状態の後に再び燃料噴射をおこなうときには、npnトランジスタ54がオン状態からオフ状態に切り替わり、第1のNチャンネルFET52がオン状態に切り替わる(図3、時刻t0)。このとき第2のコンデンサ51が充電されているため、第2のNチャンネルFET53のゲート電位がHレベルとなるので、同時に第2のNチャンネルFET53もオン状態に切り替わる。それによって、ソレノイド31の高電位側の電圧VSHは第1のコンデンサ34の電圧VCと同じになり、電源電圧VBよりも高くなるので、第1のコンデンサ34からソレノイド31に急激に電流が流れ始める。この電流が流れることによって、第1のコンデンサ34の電圧VC、すなわちソレノイド31の高電位側の電圧VSHは降下していく。
【0030】
そして、ソレノイド31の高電位側の電圧VSHが電源電圧VBより低くなった時点(図3、時刻t1)で、第1のコンデンサ34から流れ出る電流はゼロとなり、それに代わって電源端子35から第2のダイオード56を通ってソレノイド31へ電流が流れ始める。このときのソレノイド31に流れる電流は、ソレノイド31の巻線抵抗で制限される電圧まで増加し続ける。ソレノイド31に電流が流れている間は、燃料噴射が継続しておこなわれる。
【0031】
この状態で一定時間が経過すると、npnトランジスタ54がオフ状態からオン状態に切り替わる。それによって、第1のNチャンネルFET52がオフ状態に切り替わり(図3、時刻t2)、上述したように、ソレノイド31に流れていた電流が第1のコンデンサ34へ流れ、ソレノイド31に蓄えられた電力が第1のコンデンサ34に蓄えられることになる。このとき、第2のコンデンサ51も充電される。そして、第1のコンデンサ34に流れ込む電流がゼロになる(図3、時刻t3)と燃料噴射が停止する。再び燃料噴射をおこなうときには、上述したように、第1のコンデンサ34に蓄えられた電力がソレノイド31に供給されることになり、これを繰り返す。
【0032】
上述した実施の形態1によれば、ソレノイド31の駆動停止時にソレノイド31に流れていた電流により第1のコンデンサ34が充電され、それによってピーク電圧保持回路39の第2のコンデンサ51が充電され、その第2のコンデンサ51の充電により発生する電圧により放電制御素子37の第2のNチャンネルFET53が駆動されるので、DC−DCコンバータ回路が不要となり、回路の簡素化および回路規模の縮小を図ることができる。また、放電制御素子37として、Pチャンネルより安価で高性能のNチャンネルのFET(第2のNチャンネルFET53)を用いることができる。
【0033】
実施の形態2.
図4は、本発明の実施の形態2にかかるソレノイド駆動装置の構成の一例を示す回路図である。実施の形態2のソレノイド駆動装置が、図2に示す実施の形態1と異なるのは、実施の形態1の電流逆流防止回路40を構成する第2のダイオード56の代わりに、電流逆流防止回路としてスイッチング素子を設けたものである。このスイッチング素子は、特に限定しないが、たとえばNチャンネルのFET(以下、第3のNチャンネルFETとする)69により構成される。
【0034】
また、実施の形態2では、第3のNチャンネルFET69のオン、オフを制御するためのスイッチング素子制御回路としてnpnトランジスタ(以下、第2のnpnトランジスタとする)70、第3のコンデンサ71、第5のダイオード72、および第9〜第12の抵抗73,74,75,76が設けられている。実施の形態2のその他の構成は実施の形態1と同じであるので、実施の形態1と同じ符号を付して説明を省略する。
【0035】
第3のNチャンネルFET69のソース端子は電源端子35に接続される。第3のNチャンネルFET69のドレイン端子は、ソレノイド31と第2のNチャンネルFET53との接続ノードに接続される。第5のダイオード72のアノード端子は、ツェナーダイオード60のカソード端子と第6の抵抗66との接続ノードに接続される。第5のダイオード72のカソード端子は第3のコンデンサ71を介してツェナーダイオード60のアノード端子(電源端子35)に接続される。第5のダイオード72、第3のコンデンサ71、ツェナーダイオード60および第6の抵抗66は、スイッチング素子制御回路を駆動するために、第1のコンデンサ34の充電により発生するピーク電圧を保持する。
【0036】
第5のダイオード72と第3のコンデンサ71との接続ノードは第9の抵抗73に接続され、この第9の抵抗73は第10の抵抗74を介して第3のNチャンネルFET69のベース端子に接続される。第9の抵抗73と第10の抵抗74との接続ノードには、第2のnpnトランジスタ70のコレクタ端子が接続される。第2のnpnトランジスタ70のエミッタ端子は電源端子35に接続される。第2のnpnトランジスタ70のベース端子は第11の抵抗75を介して第1のコンデンサ34の正極の端子に接続される。第2のnpnトランジスタ70のベース端子とエミッタ端子との間には第12の抵抗76が接続される。
【0037】
一例として、各素子の特性値を例示する。第3のコンデンサ71の容量はたとえば0.1μFである。第9の抵抗73の抵抗値はたとえば10kΩである。第10の抵抗74の抵抗値はたとえば100Ωである。第11の抵抗75の抵抗値はたとえば20kΩである。第12の抵抗76の抵抗値はたとえば10kΩである。
【0038】
図4に示す構成のソレノイド駆動装置では、第1のコンデンサ34の電圧VCが、電源端子35に印加される電源電圧VBよりも高い場合には、第2のnpnトランジスタ70がオン状態となり、それによって第3のNチャンネルFET69がオフ状態となる。したがって、第1のNチャンネルFET52と第2のNチャンネルFET53がともにオン状態となって、第1のコンデンサ34からソレノイド31に急激に電流が流れるときに、その電流が電源端子35へ向かって逆流するのを防ぐことができる。
【0039】
第1のコンデンサ34の電圧VCが電源電圧VBよりも低くなると、第2のnpnトランジスタ70がオフ状態となり、第3のNチャンネルFET69がオン状態になる。それによって、電源端子35からソレノイド31へ電流が流れる。燃料噴射を停止するためにソレノイド駆動素子制御回路33のnpnトランジスタ54がオン状態に切り替えられると、第2のnpnトランジスタ70がオン状態となって第3のNチャンネルFET69がオフ状態となる。このとき、電源端子35からソレノイド31および第1のダイオード55を通って第1のコンデンサ34へ流れる電流は、第3のNチャンネルFET69に内蔵されたダイオードを通る。
【0040】
上述した実施の形態2によれば、DC−DCコンバータ回路の不要によって回路の簡素化および回路規模の縮小を図ることができるという効果と、放電制御素子37にNチャンネルのFET(第2のNチャンネルFET53)を用いることができるという効果のほかに、電流逆流防止回路がスイッチング素子で構成されていることによって、ここを流れる電流による発熱を抑えることができるという効果が得られる。また、スイッチング素子としてPチャンネルより安価で高性能のNチャンネルのFET(第3のNチャンネルFET69)を用いることができる。
【0041】
実施の形態3.
図5は、本発明の実施の形態3にかかるソレノイド駆動装置の構成の一例を示す回路図である。実施の形態3のソレノイド駆動装置は、図4に示す実施の形態2において第3のNチャンネルFET69のオン、オフ制御を、外部から入力される制御信号(以下、逆流防止制御信号とする)に基づいておこなうようにしたものである。なお、実施の形態2と同じ構成については、実施の形態2と同じ符号を付して説明を省略し、異なる構成についてのみ以下に説明する。
【0042】
第2のnpnトランジスタ70のベース端子は、実施の形態2では第11の抵抗75を介して第1のコンデンサ34の正極の端子に接続されていたが、実施の形態3では抵抗75を介して、逆流防止制御信号が入力される端子(逆流防止制御信号入力端子)77に接続される。逆流防止制御信号入力端子77は第13の抵抗78により電源電圧VCCにプルアップされている。また、実施の形態3では、第2のnpnトランジスタ70のエミッタ端子は接地される。
【0043】
また、第14の抵抗79および第15の抵抗80が電源端子35と接地点との間に直列に接続されており、その分圧点には、外部の制御装置等に電源電圧値を出力するための端子(電源電圧入力端子)81が接続されている。また、第16の抵抗82および第17の抵抗83が第1のコンデンサ34の正極の端子と接地点との間に直列に接続されており、その分圧点には、外部の制御装置等に第1のコンデンサ34の電圧VCを出力するための端子(コンデンサ電圧入力端子)84が接続されている。また、第3のNチャンネルFET69のソース端子には第6のダイオード85のアノード端子が接続され、第6のダイオード85のカソード端子は第3のNチャンネルFET69のゲート端子に接続される。
【0044】
一例として、各素子の特性値を例示する。第10の抵抗74の抵抗値はたとえば2kΩである。第11の抵抗75の抵抗値はたとえば4.7kΩである。第12の抵抗76の抵抗値はたとえば47kΩである。第13の抵抗78の抵抗値はたとえば10kΩである。第14の抵抗79および第16の抵抗82の抵抗値はたとえば19kΩである。第15の抵抗80および第17の抵抗83の抵抗値はたとえば1kΩである。
【0045】
図5に示す構成のソレノイド駆動装置では、外部の制御装置等により、第1のコンデンサ34の電圧VCが電源電圧VBよりも高い場合には、第2のnpnトランジスタ70をオン状態にして、第3のNチャンネルFET69をオフ状態にする。それによって、第1のコンデンサ34からソレノイド31に急激に流れる電流が電源端子35へ向かって逆流するのを防ぐ。第1のコンデンサ34の電圧VCが電源電圧VBよりも低いときには、第2のnpnトランジスタ70をオフ状態にして、第3のNチャンネルFET69をオン状態とし、電源端子35からソレノイド31へ電流が流れるようにする。燃料噴射を停止するためにソレノイド31の駆動を停止したときにも、第2のnpnトランジスタ70をオフ状態にして、第3のNチャンネルFET69をオン状態とし、電源端子35からソレノイド31へ電流が流れるようにする。
【0046】
上述した実施の形態3によれば、DC−DCコンバータ回路の不要によって回路の簡素化および回路規模の縮小を図ることができるという効果と、NチャンネルのFET53,69を用いることができるという効果のほかに、第1のコンデンサ34に充電している間も第3のNチャンネルFET69がオン状態となるので、実施の形態2よりもさらに電流逆流防止回路での発熱を抑えることができるという効果が得られる。
【0047】
実施の形態4.
図6は、本発明の実施の形態4にかかるソレノイド駆動装置の構成の一例を示す回路図である。実施の形態4のソレノイド駆動装置が、図5に示す実施の形態3と異なるのは、実施の形態3の整流素子を構成する第1のダイオード55の代わりに、スイッチング素子を設けたものである。このスイッチング素子は、特に限定しないが、たとえばNチャンネルのFET(以下、第4のNチャンネルFETとする)86により構成され、外部から入力される制御信号(以下、コンデンサ充電制御信号とする)によりオン、オフ制御される。また、実施の形態4では、第4のNチャンネルFET86のオン、オフを制御するためのスイッチング素子制御回路としてnpnトランジスタ(以下、第3のnpnトランジスタとする)87、第4のコンデンサ88、第7および第8のダイオード89,90、第2のツェナーダイオード91、並びに第18〜第23の抵抗92,93,94,95,96,97が設けられている。実施の形態4のその他の構成は実施の形態3と同じであるので、実施の形態3と同じ符号を付して説明を省略する。
【0048】
第4のNチャンネルFET86のソース端子は、ソレノイド31と第1のNチャンネルFET52との接続ノードに接続される。第4のNチャンネルFET86のドレイン端子は第1のコンデンサ34の正極の端子に接続される。第2のツェナーダイオード91は、そのアノード端子を第4のNチャンネルFET86のソース端子に接続し、カソード端子を第18の抵抗92を介して第4のNチャンネルFET86のドレイン端子に接続する。第7のダイオード89のアノード端子は、第2のツェナーダイオード91のカソード端子と第18の抵抗92との接続ノードに接続される。第7のダイオード89のカソード端子は第4のコンデンサ88を介して第2のツェナーダイオード91のアノード端子に接続される。第7のダイオード89、第4のコンデンサ88、第2のツェナーダイオード91および第18の抵抗92は、スイッチング素子制御回路を駆動するために、第1のコンデンサ34の充電により発生するピーク電圧を保持する。
【0049】
第7のダイオード89と第4のコンデンサ88との接続ノードは第19の抵抗93に接続され、この第19の抵抗93は第20の抵抗94を介して第4のNチャンネルFET86のベース端子に接続される。第19の抵抗93と第20の抵抗94との接続ノードには、第3のnpnトランジスタ87のコレクタ端子が接続される。第3のnpnトランジスタ87のエミッタ端子は接地される。第3のnpnトランジスタ87のベース端子は、第21の抵抗95を介して、コンデンサ充電制御信号が入力される端子(コンデンサ充制御信号入力端子)98に接続される。コンデンサ充制御信号入力端子98は第22の抵抗96により電源電圧VCCにプルアップされている。第3のnpnトランジスタ87のベース端子とエミッタ端子との間には第23の抵抗97が接続される。また、第4のNチャンネルFET86のソース端子には第8のダイオード90のアノード端子が接続され、第8のダイオード90のカソード端子は第4のNチャンネルFET86のゲート端子に接続される。
【0050】
一例として、各素子の特性値を例示する。第4のコンデンサ88の容量はたとえば0.1μFである。第2のツェナーダイオード91の出力電圧はたとえば9Vである。第18、第19および第22の抵抗92,93,96の抵抗値はたとえば10kΩである。第20の抵抗94の抵抗値はたとえば2kΩである。第21の抵抗95の抵抗値はたとえば4.7kΩである。第23の抵抗97の抵抗値はたとえば47kΩである。
【0051】
図7は、ソレノイド31の低電位側の電圧VSL、第1のコンデンサ34の電圧VC、ソレノイド31の高電位側の電圧VSH、ソレノイド31に流れる電流I、制御信号入力端子36を介して入力されるインジェクタ駆動パルス、逆流防止制御信号、およびコンデンサ充電制御信号の各波形を示す図である。図6に示す構成のソレノイド駆動装置では、外部の制御装置等により、第1のコンデンサ34の電圧VCが電源電圧VBよりも高い場合に、逆流防止制御信号をHレベルにして第2のnpnトランジスタ70をオン状態にする。それによって第3のNチャンネルFET69がオフ状態となり、第1のコンデンサ34からソレノイド31に急激に流れる電流が電源端子35へ向かって逆流するのを防ぐ。
【0052】
第1のコンデンサ34の電圧VCが電源電圧VBよりも低いときには、逆流防止制御信号をLレベルにして第2のnpnトランジスタ70をオフ状態にする。それによって、第3のNチャンネルFET69がオン状態となり、電源端子35からソレノイド31へ電流が流れる。燃料噴射を停止させるためにインジェクタ駆動パルスをLレベルからHレベルに切り替えた時点で、コンデンサ充電制御信号をHレベルからLレベルに切り替え、オン状態にあった第3のnpnトランジスタ87をオフ状態にする。それによって、第4のNチャンネルFET86がオフ状態からオン状態に切り替わり、第1のコンデンサ34に電流が流れる。第1のコンデンサ34の充電期間中は、逆流防止制御信号をLレベルに保ち、第3のNチャンネルFET69をオン状態にして、電源端子35からソレノイド31へ電流を流す。第1のコンデンサ34の充電がほぼ終了した時点で逆流防止制御信号およびコンデンサ充電制御信号をHレベルに戻し、第3および第4のNチャンネルFET69,86をオフ状態にする。
【0053】
上述した実施の形態4によれば、DC−DCコンバータ回路の不要によって回路の簡素化および回路規模の縮小を図ることができるという効果と、NチャンネルのFET53,69を用いることができるという効果と、電流逆流防止回路での発熱を抑えることができるという効果と、整流素子が第4のNチャンネルFET86よりなるスイッチング素子で構成されているため、ここでの発熱を抑えることができるという効果が得られる。また、スイッチング素子としてPチャンネルより安価で高性能のNチャンネルのFET(第4のNチャンネルFET86)を用いることができる。
【0054】
また、上述した実施の形態1〜4によれば、第1のコンデンサに蓄えたエネルギーを利用してソレノイド31のコイル電流を急激に増加させるため、高速駆動が可能となり、また消費電流が減少するという効果が得られる。消費電流が減少するため、ソレノイド31の発熱が抑制される。コイル電流の立ち上がりが速くなると、インジェクタ駆動パルス幅に対して実際に燃料が噴射される時間の割合としてのダイナミックレンジが広くなるため、燃料噴射の制御が容易となる。また、電流逆流防止回路をFETで構成したことによって、電流逆流防止回路での電圧降下が0.1V程度となり、ダイオードを用いた場合の電圧降下(0.7〜1.0V)よりも小さくなるので、ソレノイドの駆動電圧が実質的に増え、燃料噴射性能が向上するという効果が得られる。
【0055】
以上において本発明は、上述した実施の形態に限らず、種々変更可能である。
たとえば、電流逆流防止回路や整流素子を構成するスイッチング素子は、NチャンネルFETに限らず、PチャンネルFETでもよいし、またnpnやpnpのバイポーラトランジスタでもよい。また、ソレノイド駆動素子や放電制御素子についても、NチャンネルFETに限らず、PチャンネルFETでもよいし、またnpnやpnpのバイポーラトランジスタでもよい。さらには、本発明は、燃料ポンプやレギュレータにより加圧されて送られてきた燃料を噴射する従来タイプのインジェクタはもちろん、インジェクタが燃料ポンプを兼ね、燃料を加圧しながら噴射する新しいタイプのインジェクタ装置にも適用できる。インジェクタが燃料ポンプを兼ねたシステムでは、前記ダイナミックレンジが従来タイプのインジェクタに比較して小さくなる傾向があるため、本発明は特に有効である。
【0056】
【発明の効果】
本発明によれば、放電制御回路が、コンデンサに発生する高電圧により駆動されるため、DC−DCコンバータ回路が不要となり、回路の簡素化および回路規模の縮小を図ることができる。また、本発明によれば、電源端子からソレノイドへ電流が流れる際に電流逆流防止回路での電圧降下が小さくなり、ここでの発熱が抑えられる。また、本発明によれば、ソレノイドからコンデンサへ電流が流れる際に整流素子での電圧降下が小さくなり、ここでの発熱が抑えられる。
【図面の簡単な説明】
【図1】本発明の実施の形態1にかかるソレノイド駆動装置の構成を示すブロック図である。
【図2】本発明の実施の形態1にかかるソレノイド駆動装置の構成の一例を示す回路図である。
【図3】本発明の実施の形態1にかかるソレノイド駆動装置の各部の波形の一例を示す波形図である。
【図4】本発明の実施の形態2にかかるソレノイド駆動装置の構成の一例を示す回路図である。
【図5】本発明の実施の形態3にかかるソレノイド駆動装置の構成の一例を示す回路図である。
【図6】本発明の実施の形態4にかかるソレノイド駆動装置の構成の一例を示す回路図である。
【図7】本発明の実施の形態4にかかるソレノイド駆動装置の各部の波形の一例を示す波形図である。
【図8】従来の一般的なソレノイド駆動装置の構成を示すブロック図である。
【図9】図8に示すソレノイド駆動装置の具体的な構成を示す回路図である。
【図10】図8に示すソレノイド駆動装置の具体的な構成のほかの例を示す回路図である。
【図11】従来のコンデンサに蓄えたエネルギーを利用してソレノイドの再駆動をおこなうタイプのソレノイド駆動装置の構成を示すブロック図である。
【符号の説明】
31 ソレノイド
34 第1のコンデンサ
35 電源端子
38 放電制御回路
53 第2のNチャンネルFET(放電制御素子)
69 第3のNチャンネルFET(スイッチング素子、第1のスイッチング素子)
70〜76 スイッチング素子制御回路
86 第4のNチャンネルFET(第2のスイッチング素子)

Claims (8)

  1. 燃料噴射用のソレノイドと、
    前記ソレノイドの駆動を停止したときに前記ソレノイドに蓄えられた電力を一時的に蓄え、再度前記ソレノイドを駆動するときに放電して、その蓄えた電力を前記ソレノイドに供給するコンデンサと、
    前記コンデンサの放電を制御する放電制御素子と、
    前記コンデンサのピーク電圧を利用した充電により発生する電圧を電源とし、前記放電制御素子を制御する放電制御回路と、
    を具備することを特徴とするソレノイド駆動装置。
  2. 前記放電制御素子は電界効果トランジスタであることを特徴とする請求項1に記載のソレノイド駆動装置。
  3. 燃料噴射用のソレノイドと、
    電源電圧が印加される電源端子と、
    前記ソレノイドの駆動を停止したときに前記ソレノイドに蓄えられた電力を一時的に蓄え、再度前記ソレノイドを駆動するときに放電して、その蓄えた電力を前記ソレノイドに供給するコンデンサと、
    前記コンデンサの放電を制御する放電制御素子と、
    前記コンデンサのピーク電圧を利用した充電により発生する電圧を電源とし、前記放電制御素子を制御する放電制御回路と、
    前記コンデンサの充電により発生する電圧が電源電圧よりも高いときに前記電源端子と前記ソレノイドとの間を遮断するスイッチング素子と、
    を具備することを特徴とするソレノイド駆動装置。
  4. 前記コンデンサのピーク電圧を利用した充電により発生する電圧を電源とし、前記スイッチング素子のオン、オフを制御するスイッチング素子制御回路をさらに具備することを特徴とする請求項に記載のソレノイド駆動装置。
  5. 前記スイッチング素子は電界効果トランジスタであることを特徴とする請求項3または4に記載のソレノイド駆動装置。
  6. 前記スイッチング素子は、外部から入力される制御信号に基づいて、前記電源端子から前記ソレノイドへ電流が流れるときに前記電源端子と前記ソレノイドとの間の電流経路をつなぐように制御されることを特徴とする請求項に記載のソレノイド駆動装置。
  7. 燃料噴射用のソレノイドと、
    電源電圧が印加される電源端子と、
    前記ソレノイドの駆動を停止したときに前記ソレノイドに蓄えられた電力を一時的に蓄え、再度前記ソレノイドを駆動するときに放電して、その蓄えた電力を前記ソレノイドに供給するコンデンサと、
    前記コンデンサの放電を制御する放電制御素子と、
    前記コンデンサのピーク電圧を利用した充電により発生する電圧を電源とし、前記放電制御素子を制御する放電制御回路と、
    前記コンデンサの充電により発生する電圧が電源電圧よりも高いときに前記電源端子と前記ソレノイドとの間を遮断する第1のスイッチング素子と、
    前記ソレノイドの駆動を停止したときに前記ソレノイドに蓄えられた電力を前記コンデンサに蓄えるときに前記ソレノイドと前記コンデンサとの間の電流経路をつなぎ、前記コンデンサに蓄えた電力を前記ソレノイドに供給するときに前記ソレノイドと前記コンデンサとの間を遮断する第2のスイッチング素子と、
    を具備することを特徴とするソレノイド駆動装置。
  8. 前記第2のスイッチング素子は電界効果トランジスタであることを特徴とする請求項に記載のソレノイド駆動装置。
JP2001235621A 2001-08-02 2001-08-02 ソレノイド駆動装置 Expired - Fee Related JP4794768B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001235621A JP4794768B2 (ja) 2001-08-02 2001-08-02 ソレノイド駆動装置
TW091116762A TW536583B (en) 2001-08-02 2002-07-26 Solenoid drive device
PCT/JP2002/007848 WO2003014556A1 (fr) 2001-08-02 2002-08-01 Appareil d'attaque de solenoide
KR10-2004-7001308A KR20040018531A (ko) 2001-08-02 2002-08-01 솔레노이드구동장치
EP02751822A EP1424477A4 (en) 2001-08-02 2002-08-01 ELEKTROMAGNETANSTEUERVORRICHTUNG
US10/485,216 US7154729B2 (en) 2001-08-02 2002-08-01 Solenoid drive apparatus
CNB028149572A CN1314892C (zh) 2001-08-02 2002-08-01 电磁线圈驱动装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001235621A JP4794768B2 (ja) 2001-08-02 2001-08-02 ソレノイド駆動装置

Publications (2)

Publication Number Publication Date
JP2003049687A JP2003049687A (ja) 2003-02-21
JP4794768B2 true JP4794768B2 (ja) 2011-10-19

Family

ID=19067036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001235621A Expired - Fee Related JP4794768B2 (ja) 2001-08-02 2001-08-02 ソレノイド駆動装置

Country Status (7)

Country Link
US (1) US7154729B2 (ja)
EP (1) EP1424477A4 (ja)
JP (1) JP4794768B2 (ja)
KR (1) KR20040018531A (ja)
CN (1) CN1314892C (ja)
TW (1) TW536583B (ja)
WO (1) WO2003014556A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279773B2 (en) * 2005-03-15 2007-10-09 Delphi Technologies, Inc. Protection device for handling energy transients
JP2007146798A (ja) * 2005-11-30 2007-06-14 Mitsubishi Electric Corp エンジンの燃料噴射装置
JP5373257B2 (ja) * 2006-08-04 2013-12-18 日立オートモティブシステムズ株式会社 エンジン用高圧ポンプ駆動回路
US20090309054A1 (en) * 2008-06-11 2009-12-17 Automatic Switch Company System and method of operating a solenoid valve at minimum power levels
US8373373B2 (en) * 2010-06-28 2013-02-12 Eaton Corporation Input circuit for alternating current signal, and motor starter including the same
US8214132B2 (en) 2010-09-17 2012-07-03 Caterpillar Inc. Efficient wave form to control fuel system
KR101498809B1 (ko) * 2012-09-05 2015-03-04 나부테스코 가부시키가이샤 전자기 밸브의 구동 회로
JP6066531B2 (ja) * 2013-04-25 2017-01-25 日立オートモティブシステムズ株式会社 電磁コイルの駆動制御装置
JP6240511B2 (ja) * 2014-01-09 2017-11-29 日立オートモティブシステムズ株式会社 電子制御ユニット
JP6800586B2 (ja) * 2016-01-27 2020-12-16 株式会社小糸製作所 車両用灯具
JP6522228B2 (ja) * 2016-02-25 2019-05-29 三菱電機株式会社 直流電源装置および冷凍サイクル適用機器
KR101877299B1 (ko) * 2016-04-07 2018-07-11 (주)모토닉 고압연료펌프용 유량제어밸브의 제어장치 및 제어방법
US10727737B2 (en) * 2017-09-08 2020-07-28 Woodward, Inc. System and method for using solenoid flyback to provide a low voltage solenoid driver power supply
US11621134B1 (en) 2020-06-02 2023-04-04 Smart Wires Inc. High speed solenoid driver circuit
JP7446197B2 (ja) * 2020-09-30 2024-03-08 日立Astemo株式会社 電磁弁駆動装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3708726A (en) * 1971-08-02 1973-01-02 Ncr Inductor drive means
DE3244940A1 (de) * 1982-12-04 1984-06-07 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und schaltungsanordnung zur auswertung von ausgangssignalen eines an einer brennkraftmaschine befindlichen messwertaufnehmers
US5303138A (en) * 1993-04-29 1994-04-12 At&T Bell Laboratories Low loss synchronous rectifier for application to clamped-mode power converters
JP3222012B2 (ja) 1994-06-28 2001-10-22 株式会社日本自動車部品総合研究所 電磁弁駆動回路
JP3844091B2 (ja) * 1996-07-02 2006-11-08 株式会社小松製作所 誘導負荷駆動装置
US5796223A (en) * 1996-07-02 1998-08-18 Zexel Corporation Method and apparatus for high-speed driving of electromagnetic load
US5717562A (en) * 1996-10-15 1998-02-10 Caterpillar Inc. Solenoid injector driver circuit
JP3616223B2 (ja) * 1996-12-27 2005-02-02 株式会社ボッシュオートモーティブシステム 電磁弁駆動装置
US6031702A (en) * 1997-10-22 2000-02-29 Siliconix Incorporated Short circuit protected DC-DC converter using disconnect switching and method of protecting load against short circuits
DE19808780A1 (de) 1998-03-03 1999-09-09 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung eines Verbrauchers
JP3534167B2 (ja) * 1998-05-25 2004-06-07 国産電機株式会社 インジェクタ駆動方法及び駆動回路
JP2000028027A (ja) 1998-07-09 2000-01-25 Zexel Corp 電磁弁駆動方法
JP3387456B2 (ja) * 1998-10-29 2003-03-17 株式会社村田製作所 スイッチング電源装置
IT1303596B1 (it) * 1998-12-09 2000-11-14 Magneti Marelli Spa Dispositivo circuitale di pilotaggio di carichi induttivi.
JP2001012285A (ja) * 1999-06-29 2001-01-16 Denso Corp 電磁負荷駆動装置
JP3633378B2 (ja) * 1999-06-30 2005-03-30 株式会社デンソー 電磁弁の制御装置

Also Published As

Publication number Publication date
US7154729B2 (en) 2006-12-26
EP1424477A4 (en) 2008-10-01
CN1535355A (zh) 2004-10-06
WO2003014556A1 (fr) 2003-02-20
TW536583B (en) 2003-06-11
JP2003049687A (ja) 2003-02-21
CN1314892C (zh) 2007-05-09
EP1424477A1 (en) 2004-06-02
KR20040018531A (ko) 2004-03-03
US20040212944A1 (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP4794768B2 (ja) ソレノイド駆動装置
US5349269A (en) Power supply having dual inverters for electroluminescent lamps
TW200305683A (en) Fuel injection controller and controlling method
US20170111041A1 (en) Methods for overdriving a base current of an emitter switched bipolar junction transistor and corresponding circuits
US5523632A (en) Method and device to recover energy from driving inductive loads
US5107292A (en) Electronic flash unit
CN105888865B (zh) 螺线管驱动装置
JPH1189215A (ja) ターンオフサイリスタを駆動する方法及び装置
JP3140308B2 (ja) 昇圧型チョッパレギュレータ
JP2003299369A (ja) 圧電素子駆動回路
JP3334754B2 (ja) スイッチング電源装置
JP2863614B2 (ja) スイッチング電源回路
JP2004346808A (ja) 電磁弁駆動装置
JP2522386B2 (ja) トランジスタのベ―ス駆動回路
JP2004169763A (ja) 電磁弁駆動装置
JPH11187648A (ja) 昇圧回路
JP3598896B2 (ja) 電源装置
JP3043320U (ja) Rcc方式スイッチング電源
JPS6262619A (ja) トランジスタのスピ−ドアツプ回路
JP3613886B2 (ja) L負荷駆動装置
JP2813798B2 (ja) ステツピングモータ
KR910006308B1 (ko) 초퍼 · 리니어 연속형 직류전원장치
JPH1022124A (ja) 電磁負荷駆動装置
JPH11141721A (ja) 電磁弁駆動装置
JP3657623B2 (ja) Dc−dcコンバータ回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees