JP4781205B2 - Test gas accumulation type gas sensor - Google Patents

Test gas accumulation type gas sensor Download PDF

Info

Publication number
JP4781205B2
JP4781205B2 JP2006240167A JP2006240167A JP4781205B2 JP 4781205 B2 JP4781205 B2 JP 4781205B2 JP 2006240167 A JP2006240167 A JP 2006240167A JP 2006240167 A JP2006240167 A JP 2006240167A JP 4781205 B2 JP4781205 B2 JP 4781205B2
Authority
JP
Japan
Prior art keywords
gas
test
gas sensor
test gas
detection electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006240167A
Other languages
Japanese (ja)
Other versions
JP2008064492A (en
Inventor
四郎 山内
光仁 亀井
智恵子 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006240167A priority Critical patent/JP4781205B2/en
Publication of JP2008064492A publication Critical patent/JP2008064492A/en
Application granted granted Critical
Publication of JP4781205B2 publication Critical patent/JP4781205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、被検ガス蓄積型ガスセンサに関し、詳しくは例えば六フッ化硫黄(SF6)の分解ガスや大気中の汚染ガスなどの被検ガスに就き、所望の所定期間における当該被検ガスの蓄積量を測定可能な被検ガス蓄積型ガスセンサに関するものである。 The present invention relates to a test gas accumulation type gas sensor, and more particularly to a test gas such as a sulfur hexafluoride (SF 6 ) decomposition gas or a pollutant gas in the atmosphere. The present invention relates to a test gas accumulation type gas sensor capable of measuring an accumulation amount.

ガス絶縁開閉装置に充填されているSF6は、当該装置内における放電や局部加熱により分解して、SF、SOF、HF、SOなどの分解ガスを発生する。かかる分解ガスの検出は、万一にも地絡や短絡等の事故が発生した場合、その事故発生位置を判別する故障点標定やSF6の健全性の確認手段として必要不可欠な要素となっている。 SF 6 filled in the gas-insulated switchgear is decomposed by electric discharge or local heating in the device to generate decomposition gases such as SF 4 , SOF 2 , HF, and SO 2 . Such detection of cracked gas is an indispensable element for fault location and SF 6 soundness confirmation means to determine the location of the accident in the event of an accident such as a ground fault or short circuit. Yes.

従来から、上記分解ガスの検知装置として、後記の特許文献1から、固体電解質と、当該固体電解質の一方の面に密着して設け、被検出ガスと接する検出電極と、上記固体電解質の他方の面に密着して設けた対向電極と、上記両電極間に電圧を印加する、または、電気信号を取り出すリード線を備え、上記両電極を構成する材料として、被検出ガスとの反応生成物を形成し難い不活性物質が用いられていることを特徴とするガスセンサが公知である。   Conventionally, as a detection apparatus for the cracked gas, from Patent Document 1 described later, a solid electrolyte, a detection electrode provided in close contact with one surface of the solid electrolyte, and in contact with a gas to be detected, and the other of the solid electrolyte are provided. A counter electrode provided in close contact with the surface and a lead wire for applying a voltage between the two electrodes or extracting an electric signal, and a reaction product with a gas to be detected as a material constituting the two electrodes. A gas sensor characterized by using an inert substance that is difficult to form is known.

ところで特許文献1のガスセンサは、ある一時点における被検ガス成分の濃度を検出することができ、繰り返し使用可能、電気信号出力可能という特徴はあるが、ある時点から別の時点までの所定期間における分解ガスの蓄積量を検出することができない問題がある。ガス絶縁機器の十全な保守管理上からは、刻々の分解ガスの濃度を知ることもさりながら、ある時点から別の時点までの所定期間内での発生全量、即ち蓄積量を知ることがガス絶縁機器の健全度を判定する上で一層重要である。
特開平10―26602号公報
By the way, the gas sensor of Patent Document 1 can detect the concentration of the gas component to be detected at a certain point in time, and can be used repeatedly, and can output an electric signal. However, in a predetermined period from one point to another point. There is a problem that the accumulated amount of cracked gas cannot be detected. From the standpoint of thorough maintenance and management of gas insulation equipment, it is not only possible to know the concentration of cracked gas every moment, but it is also possible to know the total amount generated from one point in time to another point in time, that is, the accumulated amount. It is even more important in determining the soundness of the insulation equipment.
JP-A-10-26602

本発明は、斯界における如上の問題に鑑みて、分解ガスの上記した蓄積量の測定が可能な被検ガス蓄積型ガスセンサを提供することを課題とするものである。   In view of the above problems in the art, an object of the present invention is to provide a test gas storage type gas sensor capable of measuring the above-described storage amount of cracked gas.

本発明に係る被検ガス蓄積型ガスセンサは、固体電解質、上記固体電解質の一方の側に被検ガスと接するように設置されると共に導電性金属と吸着剤とを含む材料から形成された検出電極、上記固体電解質の他方の側に上記被検ガスと接触しないように設置された対向電極を備え、上記導電性金属は、上記被検ガスと化学的に反応する反応性導電性金属であることを特徴とするものである。 A test gas accumulation type gas sensor according to the present invention is a detection electrode formed of a solid electrolyte and a material including a conductive metal and an adsorbent which is placed on one side of the solid electrolyte so as to be in contact with the test gas A counter electrode disposed on the other side of the solid electrolyte so as not to contact the test gas, and the conductive metal is a reactive conductive metal that chemically reacts with the test gas It is characterized by.

本発明の被検ガス蓄積型ガスセンサは、SF6が充填されたガス絶縁開閉装置などの検査対象装置の保守管理上から、分解ガスの少なくとも一種を被検ガスとして、それの所望の所定期間での蓄積量、特に長期間にわたる期間での蓄積量を定量することが可能であって、かかる蓄積量から当該検査対象装置を一定期間稼動した後における健全性を診断することができる。また本発明で使用される上記検出電極を複数使用することにより、後記実施の形態において説明するように、複数の分解ガス成分を検出することは可能であって、複数の分解ガス成分から検査対象装置内における放電や局部加熱などのガス分解の発生原因をも知ることができる。また、本発明の被検ガス蓄積型ガスセンサが請求項4に示す被検ガス非蓄積型ガスセンサを含む場合には、上記の蓄積量に加えて所望の時点での分解ガス量を定量することが可能であって、その時点での分解ガス量とそれまでの蓄積量とから、一層詳細な健全性の診断が可能となる。 The test gas accumulation type gas sensor of the present invention has at least one kind of cracked gas as a test gas in the desired predetermined period from the maintenance management of a device to be inspected such as a gas insulated switchgear filled with SF 6. It is possible to quantify the accumulated amount, especially the accumulated amount over a long period of time, and from this accumulated amount, it is possible to diagnose the soundness after operating the device to be inspected for a certain period. In addition, by using a plurality of the detection electrodes used in the present invention, it is possible to detect a plurality of cracked gas components as will be described later in the embodiment, and the inspection target is detected from the plurality of cracked gas components. It is also possible to know the cause of gas decomposition such as discharge and local heating in the apparatus. In addition, when the test gas accumulation type gas sensor of the present invention includes the test gas non-accumulation type gas sensor shown in claim 4, the amount of cracked gas at a desired time can be quantified in addition to the above accumulation amount. It is possible, and a more detailed diagnosis of soundness can be made from the amount of cracked gas at that time and the accumulated amount so far.

以下に示す諸図において、同一部分は、同一符号で示す。   In the drawings shown below, the same portions are denoted by the same reference numerals.

実施の形態1.
図1は、本発明の実施の形態1における被検ガス蓄積型ガスセンサの概略側断面図である。図1において、当該被検ガス蓄積型ガスセンサ10は、固体電解質11、固体電解質11の一方の側に設置された検出電極12、固体電解質11の他方の側に設置されて検出電極12と対向する対向電極13、電源14、電流検出器15、接続電線16、および筐体17から構成されている。矢印Aは、被検ガスの供給方向を示す。
Embodiment 1 FIG.
FIG. 1 is a schematic side cross-sectional view of a test gas accumulation type gas sensor according to Embodiment 1 of the present invention. In FIG. 1, the gas storage type gas sensor 10 is a solid electrolyte 11, a detection electrode 12 installed on one side of the solid electrolyte 11, and installed on the other side of the solid electrolyte 11 to face the detection electrode 12. The counter electrode 13, the power source 14, the current detector 15, the connecting wire 16, and the housing 17 are configured. An arrow A indicates the supply direction of the test gas.

固体電解質11としては、融点より低い温度で高いイオン導電性を示す、従来から公知あるいは周知のもの、例えばジルコニア、ヨウ化銀、ヨウ化銀にリチウム、ナトリウム、カリウム、銅あるいはその他のイオンを添加したもの、フッ化ランタン、水素イオン導電性の固体高分子電解質、電池で使用されているルビジウム−銅系化合物、などが例示される。   The solid electrolyte 11 has a high ionic conductivity at a temperature lower than the melting point and is conventionally known or well known, for example, zirconia, silver iodide, silver iodide is added with lithium, sodium, potassium, copper or other ions. Lanthanum fluoride, a hydrogen ion conductive solid polymer electrolyte, a rubidium-copper compound used in a battery, and the like.

検出電極12は、導電性金属と吸着剤とを含む多孔性の材料から形成されており、そのために電極としての導電性と前記被検ガスを吸着して蓄積保持する機能をなし、しかして対向電極13との間の電気抵抗の経時変化を測定することにより、検出対象物の所定期間における発生量を時間に関して積分した値、即ち、蓄積量を測定することができる。 The detection electrode 12 is formed of a porous material containing a conductive metal and an adsorbent. For this purpose, the detection electrode 12 has a function of adsorbing and accumulating and holding the conductivity and the gas to be detected. By measuring the change in electrical resistance with the electrode 13 with time, it is possible to measure a value obtained by integrating the generation amount of the detection target object over a predetermined period with respect to time, that is, the accumulation amount.

上記吸着剤としては、固気界面で気体を物理的にあるいは化学的に吸着あるいは収着する、従来から公知あるいは周知のものであってよく、例えばゼオライト、シリカゲル、アルミナなどが例示される。就中、吸着能の大きいゼオライトが好ましい。導電性金属としては、20℃における導電率が、20Ω−1・m−1以上の金属、例えば金、銀、銅、ニッケル、コバルト、錫、白金などが例示される。上記被検ガスが、SF4 、SOF2 、HF、SO2あるいはその他のSF6 の分解ガス、あるいはNO2などのNOxなどの反応性のガスである場合、上記導電性金属としては、かかる反応性ガスと化学的に反応するもの、特に銀、銅が後記する理由から好ましい。対向電極13は、上記した導電性金属で形成されて良い。 The adsorbent may be a conventionally known or well-known one that physically or chemically adsorbs or sorbs a gas at a solid-gas interface, and examples thereof include zeolite, silica gel, and alumina. Among them, zeolite having a large adsorption capacity is preferable. Examples of the conductive metal include metals having a conductivity at 20 ° C. of 20Ω −1 · m −1 or more, such as gold, silver, copper, nickel, cobalt, tin, and platinum. When the test gas is a reactive gas such as SF 4 , SOF 2 , HF, SO 2 or other SF 6 decomposition gas, or NO x such as NO 2 , the conductive metal may be such a reaction. Those which react chemically with the reactive gas, particularly silver and copper, are preferable for the reason described later. The counter electrode 13 may be formed of the conductive metal described above.

検出電極12が電極としての導電性と上記した蓄積保持機能を有する限り、上記吸着剤と上記導電性金属との検出電極12中における存在形態は任意であってよく、例えば両者の微粒子の均一な機械的混合物、吸着剤を導電性金属にて無電解メッキして吸着剤の内外表面に導電性金属の薄層を形成したもの、導電性金属の多孔性薄板と吸着剤の薄板との積層体、などであってよい。いずれの存在形態にせよ、吸着剤の量が過小であると被検ガスを吸着する能力が乏しくなり、一方、導電性金属の量が過小であると、電極としての導電性が乏しくなる。なお上記両成分の比率は、両成分の存在形態によって異なる。例えば両成分が上記した機械的混合物や積層体である場合には、吸着剤100重量部あたり、導電性金属は1〜500重量部、好ましくは10〜100重量部である。無電解メッキである場合には、吸着剤の全表面が導電性金属でめっきされると吸着剤としての機能を喪失するので、吸着剤100重量部あたり、導電性金属は0.01〜50重量部、好ましくは0.1〜10重量部である。   As long as the detection electrode 12 has conductivity as an electrode and the above-described accumulation and holding function, the presence form of the adsorbent and the conductive metal in the detection electrode 12 may be arbitrary. Mechanical mixture, electroless plating of adsorbent with conductive metal to form a thin layer of conductive metal on the inner and outer surfaces of adsorbent, laminate of conductive metal porous thin plate and adsorbent thin plate , Etc. In any existing form, if the amount of the adsorbent is too small, the ability to adsorb the test gas becomes poor. On the other hand, if the amount of the conductive metal is too small, the conductivity as the electrode becomes poor. In addition, the ratio of the said two components changes with the presence form of both components. For example, when both components are the above-described mechanical mixture or laminate, the conductive metal is 1 to 500 parts by weight, preferably 10 to 100 parts by weight per 100 parts by weight of the adsorbent. In the case of electroless plating, if the entire surface of the adsorbent is plated with a conductive metal, the function as the adsorbent is lost. Therefore, the conductive metal is 0.01 to 50 weight per 100 parts by weight of the adsorbent. Parts, preferably 0.1 to 10 parts by weight.

被検ガスは、図1の矢印Aで示す方向に供給され、検出電極12は、固体電解質11の一方の側で被検ガスと接するように設置されており、対向電極13は固体電解質11の他方の側で被検ガスと接しないように設置されている。筐体17は、検出電極12と対向電極13との各被検ガスとの上記した接触、非接触性を確保し得る構造であればよく、図1では一端が開口した、被検ガスに対して不活性な有機高分子製の筐体17の底近くに固体電解質11が筐体17の側壁に気密に固定されていて、対向電極13は固体電解質11の筐体底側の面に密着固定されており、検出電極12は、その反対側の面に密着固定されている。   The test gas is supplied in the direction indicated by the arrow A in FIG. 1, the detection electrode 12 is installed so as to be in contact with the test gas on one side of the solid electrolyte 11, and the counter electrode 13 is connected to the solid electrolyte 11. It is installed so as not to contact the test gas on the other side. The housing 17 may be of any structure that can ensure the contact and non-contact properties between the detection electrode 12 and the counter electrode 13 and each of the test gases. In FIG. The solid electrolyte 11 is airtightly fixed to the side wall of the casing 17 near the bottom of the casing 17 made of an inert organic polymer, and the counter electrode 13 is closely fixed to the bottom surface of the solid electrolyte 11. In addition, the detection electrode 12 is closely fixed to the opposite surface.

次に実施の形態1の動作に就き説明すると、被検ガス蓄積型ガスセンサ10は、検査対象機器、例えばSF6が充填されているガス絶縁開閉装置に取り付けられ、その際に充填ガスが絶えず検出電極12と循環接触するように取り付けられる。さらに定期的にあるいは連続して検出電極12と対向電極13との間に交流電圧、例えば100Hz〜5kHz程度の交流電圧が印加され、検出電極12と対向電極13との電極間抵抗が測定され、予め決定された電極間抵抗―被検ガス蓄積量の相関検量グラフから被検ガス蓄積量が求められる。 Next, the operation of the first embodiment will be described. The test gas accumulation type gas sensor 10 is attached to a device to be inspected, for example, a gas insulated switchgear filled with SF 6 , and at that time, the filled gas is continuously detected. The electrode 12 is attached so as to be in circulation contact. Further, an AC voltage, for example, an AC voltage of about 100 Hz to 5 kHz, is applied between the detection electrode 12 and the counter electrode 13 periodically or continuously, and the interelectrode resistance between the detection electrode 12 and the counter electrode 13 is measured. The amount of accumulated gas to be detected is obtained from a correlation calibration graph of the resistance between the electrodes and the amount of accumulated gas to be detected determined in advance.

実施の形態2.
図2〜図9は、本発明の実施の形態2を説明するものであって、図2は実施の形態2における被検ガス蓄積型ガスセンサおよび被検ガス非蓄積型ガスセンサの平面図、図3は図2のB−C断面図、図4は図2のB−D−E断面図、図5は被検ガス非蓄積型ガスセンサ20により検出されたHFの濃度と出力電流の経時変化を示すグラフ、図6は図5から求めたHF濃度と出力電流との定量的関係を示すグラフ、図7は被検ガス蓄積型ガスセンサにて検出されたF化合物およびS化合物についての各蓄積量と電極間抵抗との関係を示すグラフ、図8はF化合物とS化合物とが共存した場合における被検ガス蓄積型ガスセンサにより検出された蓄積量と電極間抵抗との関係を示すグラフ、図9は被検ガス蓄積型ガスセンサにおいて検出された蓄積量と被検ガス非蓄積型ガスセンサにおいて検出された検出量との各経時的変化を示すグラフ、である。
Embodiment 2. FIG.
2 to 9 illustrate a second embodiment of the present invention, and FIG. 2 is a plan view of a test gas accumulation type gas sensor and a test gas non-accumulation type gas sensor according to the second embodiment, FIG. 2 is a cross-sectional view taken along line B-C in FIG. 2, FIG. 4 is a cross-sectional view taken along line B-D-E in FIG. 2, and FIG. FIG. 6 is a graph showing the quantitative relationship between the HF concentration obtained from FIG. 5 and the output current. FIG. 7 is a graph showing the accumulated amounts and electrodes for the F compound and S compound detected by the gas storage type gas sensor. FIG. 8 is a graph showing the relationship between the accumulation amount detected by the gas accumulation type gas sensor when the F compound and the S compound coexist, and FIG. Accumulation detected in gas accumulation type gas sensor And it is a graph, showing the respective changes over time in the detected detected amount in the gas to be detected non-storage type gas sensor.

実施の形態2の被検ガス蓄積型ガスセンサは、二つの被検ガス蓄積型ガスセンサ10a、10bからなり、且つ被検ガス非蓄積型ガスセンサ−20を伴っている。図2から明らかなように、上記3つのガスセンサの検出電極12a、検出電極12b、および検出電極22の各平面図を合わせると円形であり、また検出電極12aおよび検出電極12bは、いずれも扇形であり、残る3/4弱の部分は検出電極22となっていて、図3および図4から明らかなように、それら3つのガスセンサは、共通の固体電解質11を用いて形成され、一つの円筒状の筐体17内に収められている。   The test gas storage gas sensor according to the second embodiment includes two test gas storage gas sensors 10a and 10b, and is accompanied by a test gas non-storage gas sensor-20. As is clear from FIG. 2, when the plan views of the detection electrode 12a, the detection electrode 12b, and the detection electrode 22 of the three gas sensors are combined, the detection electrode 12a and the detection electrode 12b are all fan-shaped. The remaining 3/4 is a detection electrode 22, and as is apparent from FIGS. 3 and 4, these three gas sensors are formed by using a common solid electrolyte 11, and have a single cylindrical shape. Is housed in a housing 17.

被検ガス蓄積型ガスセンサ10aは、検出電極12a、対向電極13a、電源14a、電流検出器15a、および接続電線16aから構成されており、被検ガス蓄積型ガスセンサ10bは、検出電極12b、対向電極13b、電源14b、電流検出器15b、および接続電線16bから構成されている。被検ガス非蓄積型ガスセンサ20は、請求項4における第二の検出電極の例としての検出電極22、第二の対向電極の例としての対向電極23、電源24、電流検出器25、および接続電線26から構成されている。被検ガス蓄積型ガスセンサ10a、10bは、所定期間内に蓄積された、換言すると概して多量の被検ガス量を測定対象とするので、電極面積はさほど大きくなくてもよく、これに対して被検ガス非蓄積型ガスセンサ20は、非蓄積の即ち一般的に少量の被検ガス量を測定対象とするので電極面積が大きいほど測定感度が向上する。よって図2に示すように電極の面積配分することが好ましく、さらに全体として円形とするとガスセンサがコンパクト化、小型化できる効果がある。   The gas storage type gas sensor 10a includes a detection electrode 12a, a counter electrode 13a, a power source 14a, a current detector 15a, and a connecting wire 16a. The gas storage type gas sensor 10b includes a detection electrode 12b and a counter electrode. 13b, a power source 14b, a current detector 15b, and a connecting wire 16b. The gas non-accumulation type gas sensor 20 includes a detection electrode 22 as an example of the second detection electrode in claim 4, a counter electrode 23 as an example of the second counter electrode, a power source 24, a current detector 25, and a connection. An electric wire 26 is used. The test gas accumulation type gas sensors 10a and 10b measure a large amount of test gas accumulated within a predetermined period, in other words, a large amount of test gas, so that the electrode area may not be so large. Since the non-accumulated gas sensor 20 is a non-accumulated gas sample, that is, generally has a small amount of gas to be measured, the measurement sensitivity improves as the electrode area increases. Therefore, it is preferable to distribute the area of the electrodes as shown in FIG. 2, and further, if the whole is circular, there is an effect that the gas sensor can be made compact and downsized.

被検ガス蓄積型ガスセンサ10a、10bのいずれもは、前記実施の形態1で説明した構成内に含まれるもののうちで、以下に具体的に説明するように一層好ましい構成を有する。即ち、固体電解質11は、0.3モル%のユウロピウムがドープされたフッ素イオン導電性のフッ化ランタン(LaF)から形成されており、その厚さは0.2mmである。検出電極12aは、固体電解質11の構成材料と同じ上記フッ化素ランタンの微粒子とゼオライト微粒子とが有機高分子の一例としての常温で液状のアタックチックポリプロピレンに分散された混合ペ−ストを固体電解質11の片面に塗布し、窒素下で焼結し、その際に上記混合ペ−スト内の上記アタックチックポリプロピレンが気化することにより多孔化され、次いで当該多孔性混合層の内外表面に銀を無電解めっきして形成されている。検出電極12aは、この無電解めっきにより導電性と多孔性とが付与されていて、厚さは30μmである。対向電極13aは、厚さ0.5nmの銀で形成されている。検出電極12bは、上記銀の無電解めっきに代えて被検ガスとの反応性の銅の無電解めっきが施された点のみ、上記検出電極12aと異なる。対向電極13bは、厚さ25nmの銅で形成されている。検出電極12aにおける銀の含有量は、ゼオライト微粒子(SEM観察による粒径:0.1μm)100重量部あたり0.54重量部であり、検出電極12bにおける銅の含有量は、ゼオライト微粒子100重量部あたり0.48重量部である。 Each of the gas storage gas sensors 10a and 10b to be detected has a more preferable configuration as will be described below, among those included in the configuration described in the first embodiment. That is, the solid electrolyte 11 is made of fluorine ion conductive lanthanum fluoride (LaF 3 ) doped with 0.3 mol% of europium and has a thickness of 0.2 mm. The detection electrode 12a is composed of a mixed paste in which fine particles of lanthanum fluoride and zeolite fine particles, which are the same as the constituent material of the solid electrolyte 11, are dispersed in attack polypropylene that is liquid at room temperature as an example of an organic polymer. 11 is applied to one side and sintered under nitrogen. At that time, the attacking polypropylene in the mixed paste is vaporized by vaporization, and then the inner and outer surfaces of the porous mixed layer have no silver. It is formed by electrolytic plating. The detection electrode 12a is provided with conductivity and porosity by this electroless plating, and has a thickness of 30 μm. The counter electrode 13a is made of silver having a thickness of 0.5 nm. The detection electrode 12b differs from the detection electrode 12a only in that a reactive copper electroless plating with a test gas is performed instead of the silver electroless plating. The counter electrode 13b is made of copper having a thickness of 25 nm. The silver content in the detection electrode 12a is 0.54 parts by weight per 100 parts by weight of zeolite fine particles (particle diameter by SEM observation: 0.1 μm), and the copper content in the detection electrode 12b is 100 parts by weight of zeolite fine particles. 0.48 parts by weight per unit.

検出電極12aおよび検出電極12bにおける銀や銅は、被検ガスと反応性であるので、ゼオライトによる被検ガスの吸着に基づく蓄積に加えて、銀や銅と被検ガスとの反応生成物の増加に基づく蓄積が生じ、それらが電極間抵抗の変化に寄与するので、分解ガスの定量感度を向上する効果がある。さらに分解ガスがHFなどのF化合物である場合、電極反応生成物はCuF2やAgFなどであり、分解ガスがSO2などのS化合物である場合、電極反応生成物は、Cu2S、Ag2Sなどであって、それら電極反応生成物はそれぞれ導電率が異なるので、各分解ガスの蓄積量に対する電極間抵抗は、電極反応生成物に固有のものとなっている。よって、各電極反応生成物ごとに固有の検量線を予め求めておくと、全分解ガス量の定量と分解ガスの成分分析も可能となる。 Since silver and copper in the detection electrode 12a and the detection electrode 12b are reactive with the test gas, in addition to accumulation based on adsorption of the test gas by zeolite, the reaction product of silver or copper and the test gas Accumulation based on the increase occurs and contributes to the change in inter-electrode resistance, so that the quantitative sensitivity of the cracked gas is improved. Further, when the decomposition gas is an F compound such as HF, the electrode reaction product is CuF 2 or AgF, and when the decomposition gas is an S compound such as SO 2 , the electrode reaction product is Cu 2 S, Ag. Since the electrode reaction products are different in conductivity, such as 2 S, the interelectrode resistance with respect to the accumulation amount of each decomposition gas is unique to the electrode reaction products. Therefore, if a calibration curve specific to each electrode reaction product is obtained in advance, it is possible to determine the total amount of cracked gas and analyze the components of the cracked gas.

被検ガス非蓄積型ガスセンサ20としては、従来公知のものであってよく、例えば前記の特許文献2などに記載されたものでよい。よって検出電極22は、被検ガスに対して金、白金などの不活性な導電性金属、例えば厚さ25nmの金で形成されており、対向電極23も厚さ25nmの金で形成されている。   The test gas non-accumulating gas sensor 20 may be a conventionally known gas sensor, for example, one described in Patent Document 2 mentioned above. Therefore, the detection electrode 22 is made of an inert conductive metal such as gold or platinum with respect to the test gas, for example, gold having a thickness of 25 nm, and the counter electrode 23 is also made of gold having a thickness of 25 nm. .

次に実施の形態2の動作に就き説明すると、被検ガス蓄積型ガスセンサ10a、10bおよび被検ガス非蓄積型ガスセンサ20は、SF6が充填されているガス絶縁開閉装置に取り付けられ、その際に充填ガスが絶えず検出電極12a、検出電極12b、および検出電極22と循環接触するように取り付けられる。さらに定期的または不定期に、あるいは連続して検出電極12aと対向電極13aとの間、および検出電極12bと対向電極13bとの間に各1kHzの交流電圧が印加され、上記各電極間抵抗が測定される。一方、検出電極22と対向電極23には、定期的または不定期に、2.5Vの直流電圧が検出電極22を陰極、対向電極23を陽極として印加され、電極間抵抗が測定される。 Next, the operation of the second embodiment will be described. The test gas accumulation type gas sensors 10a and 10b and the test gas non-accumulation type gas sensor 20 are attached to a gas insulated switchgear filled with SF 6. The filling gas is continuously attached to the detection electrode 12a, the detection electrode 12b, and the detection electrode 22 in circulation contact. Further, an alternating voltage of 1 kHz is applied between the detection electrode 12a and the counter electrode 13a and between the detection electrode 12b and the counter electrode 13b regularly, irregularly, or continuously, and the resistance between the electrodes is reduced. Measured. On the other hand, a DC voltage of 2.5 V is applied to the detection electrode 22 and the counter electrode 23 regularly or irregularly with the detection electrode 22 as a cathode and the counter electrode 23 as an anode, and the interelectrode resistance is measured.

図5は、被検ガス非蓄積型ガスセンサ20により検出されたSF6の分解ガスの一種であるHFの濃度に応じた出力電流の経時変化を示す。その際の上記ガス絶縁開閉装置の稼動時における内部のSF6は、そのガス圧力が0.1MPa程度であった。図6は、図5から求めたHF濃度と出力電流との定量的関係を示すグラフであって、当該グラフを利用して個々の時点での出力電流からSF6の分解ガス濃度を知ることができる。 FIG. 5 shows the change over time of the output current according to the concentration of HF, which is a kind of SF 6 decomposition gas, detected by the non-test gas storage gas sensor 20. At that time, the gas pressure of the internal SF 6 during operation of the gas insulated switchgear was about 0.1 MPa. FIG. 6 is a graph showing the quantitative relationship between the HF concentration obtained from FIG. 5 and the output current. By using this graph, the decomposition gas concentration of SF 6 can be known from the output current at each time point. it can.

検出電極12aは、銀とゼオライトとを含むので、そこでは前記したようにゼオライトによる被検ガスの吸着に基づく蓄積に加えて、AgFやAg2Sの蓄積も加わる。一方、検出電極12bは、銅とゼオライトとを含むので、そこでは前記したようにゼオライトによる被検ガスの吸着に基づく蓄積に加えて、CuF2やCu2Sの蓄積も加わる。図7は、被検ガス蓄積型ガスセンサ10aおよび被検ガス蓄積型ガスセンサ10bにおけるAgF、Ag2S、CuF2およびCu2Sの各蓄積量(X軸)と検出電極12aと対向電極13aの電極間抵抗(Y軸)、および検出電極12bと対向電極13bの電極間抵抗(Y軸)との関係を後記する実験により測定して得た定量的関係を表す4グラフ(グラフ1〜グラフ4)を示す。 Since the detection electrode 12a contains silver and zeolite, the accumulation of AgF and Ag 2 S is also added in addition to the accumulation based on the adsorption of the test gas by the zeolite as described above. On the other hand, since the detection electrode 12b contains copper and zeolite, in addition to the accumulation based on the adsorption of the test gas by the zeolite as described above, the accumulation of CuF 2 and Cu 2 S is also added. FIG. 7 shows the accumulated amounts (X-axis) of AgF, Ag 2 S, CuF 2 and Cu 2 S in the test gas storage gas sensor 10a and the test gas storage gas sensor 10b, the electrodes of the detection electrode 12a and the counter electrode 13a. 4 graphs (graphs 1 to 4) representing the quantitative relationship obtained by measuring the inter-resistance (Y-axis) and the relationship between the inter-electrode resistance (Y-axis) of the detection electrode 12b and the counter electrode 13b by experiments described later Indicates.

グラフ1は、検出電極12aにおいてAgFが蓄積された場合であって、下式(1)で表される。グラフ2は、検出電極12aにおいてAg2Sが蓄積された場合であって、下式(2)で表される。グラフ3は、検出電極12bにおいてCuF2が蓄積された場合であって、下式(3)で表される。グラフ4は、検出電極12bにおいてCu2Sが蓄積された場合であって、下式(4)で表される。
Y=3×10−8X−5×10−22・・・・・・・・・・・(1)
Y=2×10−5・・・・・・・・・・・・・・・・・・・(2)
Y=5×10−7X−8×10−21・・・・・・・・・・・(3)
Y=1.25×10−2X−3×10−16・・・・・・・・(4)
Graph 1 shows a case where AgF is accumulated in the detection electrode 12a and is represented by the following formula (1). Graph 2 shows a case where Ag 2 S is accumulated in the detection electrode 12a and is expressed by the following equation (2). Graph 3 is a case where CuF 2 is accumulated in the detection electrode 12b, and is represented by the following expression (3). Graph 4 is a case where Cu 2 S is accumulated in the detection electrode 12b, and is represented by the following expression (4).
Y = 3 × 10 −8 X-5 × 10 −22 (1)
Y = 2 × 10 −5 (2)
Y = 5 × 10 −7 X−8 × 10 −21 (3)
Y = 1.25 × 10 −2 X-3 × 10 −16 (4)

図8は、被検ガス蓄積型ガスセンサ10aにおけるAgFとAg2Sとが等モル存在する場合の合計蓄積量、および被検ガス蓄積型ガスセンサ10bにおけるCuF2とCu2Sとが等モル存在する場合の合計蓄積量の各蓄積量(X軸)と検出電極12aと対向電極13aの電極間抵抗(Y軸)、および検出電極12bと対向電極13bの電極間抵抗(Y軸)との関係を後記する実験により測定して得た定量的関係を示す2グラフ(グラフ5およびグラフ6)である。グラフ5は、検出電極12aにおいてAgFとAg2Sとが蓄積された場合であって、下式(5)で表される。グラフ6は、検出電極12bにおいてCuF2とCu2Sとが蓄積された場合であって、下式(6)で表される。
Y=2×10−5X−5×10−19・・・・・・・・・・・(5)
Y=1.25×10−2X−3×10−16・・・・・・・・(6)
FIG. 8 shows a total accumulation amount when equimolar amounts of AgF and Ag 2 S exist in the test gas storage gas sensor 10a, and equimolar amounts of CuF 2 and Cu 2 S exist in the test gas storage gas sensor 10b. The relationship between the accumulated amount (X axis) of the total accumulated amount, the interelectrode resistance (Y axis) of the detection electrode 12a and the counter electrode 13a, and the interelectrode resistance (Y axis) of the detection electrode 12b and the counter electrode 13b It is 2 graphs (graph 5 and graph 6) which show the quantitative relationship obtained by measuring by experiment mentioned below. Graph 5 shows a case where AgF and Ag 2 S are accumulated in the detection electrode 12a, and is expressed by the following equation (5). Graph 6 shows a case where CuF 2 and Cu 2 S are accumulated in the detection electrode 12b, and is represented by the following formula (6).
Y = 2 × 10 −5 X-5 × 10 −19 (5)
Y = 1.25 × 10 −2 X-3 × 10 −16 (6)

グラフ1およびグラフ3は、温度80℃、ガス圧力0.1MPaのHFガスが充填された一定容積のガス室内に被検ガス蓄積型ガスセンサ10aおよび被検ガス蓄積型ガスセンサ10bを設置し、各電極間に1kHzの交流電圧を印加した実験から得られたものであって、検出電極12および12bにそれぞれ蓄積されたAgFおよびCuF2の各重量を定量し、その重量からHFガスの温度80℃、ガス圧力0.1MPaにおける容量(cm)を求めた。グラフ2およびグラフ4は、HFガスに代えてSO2ガスを用いて上記と同様にして求め、グラフ5およびグラフ6は、HFガスとSO2ガスとの混合ガスを用いて上記と同様にして求めた。 Graphs 1 and 3 show that a test gas storage gas sensor 10a and a test gas storage gas sensor 10b are installed in a fixed volume gas chamber filled with HF gas at a temperature of 80 ° C. and a gas pressure of 0.1 MPa. It was obtained from an experiment in which an alternating voltage of 1 kHz was applied between them, and each weight of AgF and CuF 2 accumulated in the detection electrodes 12 and 12b was quantified, and the temperature of the HF gas was determined from the weight, 80 ° C., The capacity (cm 3 ) at a gas pressure of 0.1 MPa was determined. Graphs 2 and 4 are obtained in the same manner as described above using SO 2 gas instead of HF gas, and graphs 5 and 6 are obtained in the same manner as described above using a mixed gas of HF gas and SO 2 gas. Asked.

SF4、SOF2 、HF、SO2などのF化合物やS化合物の電極反応生成物であるCuF2、AgF、AgF、Ag2Sは、上記グラフ1〜グラフ4から明らかなように互いに導電率が異なるので、各分解ガス毎に蓄積量と電極間抵抗との関係、検量線が固有のものとなっていることが分かる。したがって未知の分解ガスに就き、電極間抵抗測定すると、図7および図8から大凡の分解ガス成分を推定することが出来る。 As is clear from the above graphs 1 to 4, the F compound such as SF 4 , SOF 2 , HF, and SO 2 and CuF 2 , AgF, AgF, and Ag 2 S which are electrode reaction products of the S compound are mutually conductive. Therefore, it can be seen that the relationship between the accumulated amount and the interelectrode resistance and the calibration curve are unique for each cracked gas. Accordingly, when the resistance between electrodes is measured for an unknown cracked gas, the approximate cracked gas component can be estimated from FIGS.

図9は、図2〜図4に示す被検ガス蓄積型ガスセンサ10と被検ガス非蓄積型ガスセンサ20とを有するガスセンサをSF6が充填されたガス絶縁開閉装置に設置して、複数のSF6分解ガス成分を含む被検ガスを対象に上記両ガスセンサによる被検ガスの経時的変化を実測した4グラフを示すものであって、グラフ7は被検ガス蓄積型ガスセンサ10により得られたF化合物の蓄積量(cm)を、グラフ8は被検ガス蓄積型ガスセンサ10により得られたS化合物の蓄積量(cm)を、グラフ9は被検ガス非蓄積型ガスセンサ20より得られたF化合物のガス濃度(容量ppm)を、グラフ10は被検ガス非蓄積型ガスセンサ20より得られたS化合物のガス濃度(容量ppm)を、それぞれ示す。同図から、被検ガス非蓄積型ガスセンサ20で実測された被検ガス量は、実測開始日から1500日あたり迄は増減はあるものの概して増加しているが、その後は概して逓減していることが分かる。これに対して、被検ガス蓄積型ガスセンサ10で実測された被検ガス量は、実測開始日から単調に逓増していることが分かる。 FIG. 9 shows a case where a gas sensor having the test gas accumulation type gas sensor 10 and the test gas non-accumulation type gas sensor 20 shown in FIGS. 2 to 4 is installed in a gas insulated switchgear filled with SF 6 and a plurality of SFs. 6 shows four graphs obtained by actually measuring the time-dependent change of the test gas by the above two gas sensors for the test gas containing the cracked gas component, and graph 7 shows the F obtained by the test gas storage gas sensor 10. The amount of accumulated compound (cm 3 ), the graph 8 obtained the accumulated amount of S compound (cm 3 ) obtained by the test gas accumulation type gas sensor 10, and the graph 9 obtained from the non-test gas accumulation type gas sensor 20. The graph 10 shows the gas concentration (volume ppm) of the S compound obtained from the non-accumulation type gas sensor 20 of the test gas. From the figure, the amount of test gas measured by the non-test gas non-accumulation type gas sensor 20 is generally increasing although there is an increase / decrease from the actual measurement start date to around 1500 days, but it is generally decreasing thereafter. I understand. On the other hand, it can be seen that the amount of the test gas actually measured by the test gas storage gas sensor 10 is monotonically increasing from the measurement start date.

比較例.
前記実施の形態2とは、被検ガス蓄積型ガスセンサにおける検出電極12aおよび検出電極12bが共にゼオライトを含有しない点においてのみ異なる比較例被検ガス蓄積型ガスセンサ(被検ガス非蓄積型ガスセンサ20は実施の形態2の場合と同じもの)を用いて、図9の場合と同様の条件でSF6が充填されたガス絶縁開閉装置に設置して、複数のSF6分解ガス成分を含む被検ガスを対象に上記両ガスセンサによる被検ガスの経時的変化を実測した。図10は、その実測から得られた4グラフを示すものであって、グラフ11は比較例被検ガス蓄積型ガスセンサにより得られたF化合物の蓄積量(cm)を、グラフ12は比較例被検ガス蓄積型ガスセンサにより得られたS化合物の蓄積量(cm)を、グラフ13は被検ガス非蓄積型ガスセンサ20より得られたF化合物のガス濃度(容量ppm)を、グラフ14は被検ガス非蓄積型ガスセンサ20より得られたS化合物のガス濃度(容量ppm)を、それぞれ示す。
Comparative example.
The second embodiment differs from the second embodiment only in that both the detection electrode 12a and the detection electrode 12b in the test gas storage type gas sensor do not contain zeolite. The test gas storage type gas sensor (the test gas non-accumulation type gas sensor 20 is different) The same gas as in the second embodiment) is installed in a gas insulated switchgear filled with SF 6 under the same conditions as in FIG. 9, and a test gas containing a plurality of SF 6 decomposition gas components is used. The change with time of the test gas was measured with the two gas sensors. FIG. 10 shows four graphs obtained from the actual measurement. Graph 11 shows the amount of F compound accumulated (cm 3 ) obtained by the comparative example gas storage type gas sensor, and graph 12 shows the comparative example. The accumulated amount (cm 3 ) of the S compound obtained by the test gas storage type gas sensor, the graph 13 shows the gas concentration (capacity ppm) of the F compound obtained from the test gas non-accumulation type gas sensor 20, and the graph 14 shows The gas concentration (volume ppm) of the S compound obtained from the test gas non-accumulating gas sensor 20 is shown.

グラフ11およびグラフ12から、比較例被検ガス蓄積型ガスセンサで実測された被検ガス量は、実測開始日から80日あたりまでは単調に増加しているが、その後は増加が止まっていることが分かる。初期のこの逓増は、電極に含まれている銀および銅とF化合物やS化合物との反応に基づき、その後の増加停止は、銀および銅による上記反応が飽和したことによることが明らかであって、グラフ11と前記グラフ8との対比、およびグラフ12と前記グラフ8との対比から、本発明の被検ガス蓄積型ガスセンサにおける吸着剤の効果が明白である。   From graphs 11 and 12, the amount of the sample gas measured by the comparative sample gas accumulation type gas sensor increased monotonically from the actual measurement start date to around 80 days, but the increase stopped thereafter. I understand. It is clear that this initial increase is based on the reaction of silver and copper contained in the electrode with F and S compounds, and the subsequent stop of the increase is due to the saturation of the above reaction with silver and copper. From the comparison between the graph 11 and the graph 8 and the comparison between the graph 12 and the graph 8, the effect of the adsorbent in the test gas accumulation type gas sensor of the present invention is clear.

実施の形態3.
実施の形態3は、前記実施の形態2とは、検出電極12aおよび検出電極12bの形成に用いられたゼオライトに代えてアルミナの微粉末が用いられた点において異なり、その他の構成は同じである。これをSF6が充填されたガス絶縁開閉装置に設置して、複数のSF6分解ガス成分を含む被検ガスを対象に被検ガスの経時的変化を実測したところ、前記図9のグラフ7およびグラフ8と対比すると、共に検出量は図9の場合より10%程度低かったが、それらグラフと略同様の蓄積曲線が得られた。
Embodiment 3 FIG.
The third embodiment is different from the second embodiment in that a fine powder of alumina is used instead of the zeolite used for forming the detection electrode 12a and the detection electrode 12b, and the other configurations are the same. . When this was installed in a gas insulated switchgear filled with SF 6 and the change over time of the test gas was measured for the test gas containing a plurality of SF 6 decomposition gas components, graph 7 in FIG. In comparison with graph 8, the detected amount was about 10% lower than in the case of FIG. 9, but accumulation curves almost similar to those graphs were obtained.

実施の形態4.
実施の形態4は、前記実施の形態2とは、検出電極12aおよび検出電極12bの形成に用いられたゼオライトに代えてシリカゲルの微粉末が用いられた点において異なり、その他の構成は同じである。これをSF6が充填されたガス絶縁開閉装置に設置して、複数のSF6分解ガス成分を含む被検ガスを対象に被検ガスの経時的変化を実測したところ、前記図9のグラフ7およびグラフ8と対比すると、共に検出量は図9の場合より13%程度低かったが、それらグラフと略同様の蓄積曲線が得られた。
Embodiment 4 FIG.
The fourth embodiment is different from the second embodiment in that a fine powder of silica gel is used in place of the zeolite used to form the detection electrode 12a and the detection electrode 12b, and other configurations are the same. . When this was installed in a gas insulated switchgear filled with SF 6 and the change over time of the test gas was measured for the test gas containing a plurality of SF 6 decomposition gas components, graph 7 in FIG. In comparison with graph 8, the detected amount was about 13% lower than that in FIG. 9, but accumulation curves substantially similar to those graphs were obtained.

実施の形態5.
実施の形態5は、前記実施の形態2とは、固体電解質11が厚さ0.2mmの水素イオン導電性の固体高分子電解質(デュポン社製、商品名;ナフィオン117)であり、検出電極22および対向電極23とも厚さ2nmの白金にて形成されている点において異なり、その他の構成は同じである。図11は、被検ガス蓄積型ガスセンサ10と被検ガス非蓄積型ガスセンサ20を有する実施の形態5を用いて、大気中のNOとSOの各濃度を実測した結果を表す4グラフを示すものであって、グラフ15は被検ガス蓄積型ガスセンサ10により得られたNOの蓄積量(cm)を、グラフ16は被検ガス蓄積型ガスセンサ10により得られたSOの蓄積量(cm)を、グラフ17は被検ガス非蓄積型ガスセンサ20より得られたNOのガス濃度(容量ppm)を、グラフ18は被検ガス非蓄積型ガスセンサ20より得られたSOのガス濃度(容量ppm)を、それぞれ示す。同図から、被検ガス非蓄積型ガスセンサ20で実測された被検ガス量は、実測開始日から約25日〜60日あたりで急増加し、その後は増減はあるが概して逓減していることが分かる。これに対して、被検ガス蓄積型ガスセンサ10で実測された被検ガス量は、実測開始日から増加が続いていることが分かる。
Embodiment 5 FIG.
The fifth embodiment is different from the second embodiment in that the solid electrolyte 11 is a hydrogen ion conductive solid polymer electrolyte having a thickness of 0.2 mm (trade name; Nafion 117, manufactured by DuPont). The counter electrode 23 is also made of platinum having a thickness of 2 nm, and the other configurations are the same. FIG. 11 shows four graphs showing the results of actually measuring the concentrations of NO 2 and SO 2 in the atmosphere using the fifth embodiment having the test gas accumulation type gas sensor 10 and the test gas non-accumulation type gas sensor 20. The graph 15 shows the accumulated amount (cm 3 ) of NO 2 obtained by the test gas storage gas sensor 10, and the graph 16 shows the stored amount of SO 2 obtained by the test gas storage gas sensor 10. (Cm 3 ), graph 17 shows the gas concentration (capacity ppm) of NO 2 obtained from the non-test gas storage gas sensor 20, and graph 18 shows SO 2 obtained from the test gas non-storage gas sensor 20. The gas concentration (volume ppm) is shown respectively. The figure shows that the amount of gas measured by the non-accumulated gas sensor 20 increases rapidly from about the 25th to the 60th day from the actual measurement start date, and after that there is an increase / decrease, but generally decreases gradually. I understand. On the other hand, it can be seen that the amount of the sample gas actually measured by the sample gas accumulation type gas sensor 10 continues to increase from the measurement start date.

以上、本発明を実施の形態1〜5により説明したが、本発明はそれらの実施の形態に限定されるものではなく、本発明における課題および解決手段の精神に沿った種々の変形形態を包含する。例えば固体電解質や吸着剤としては、実施の形態1〜5で使用した以外のものであってもよく、本発明が被検ガス非蓄積型ガスセンサを含む場合には、被検ガス蓄積型ガスセンサにおける固体電解質と被検ガス非蓄積型ガスセンサにおける固体電解質とは互いに別材料であっても良く、さらに上記両ガスセンサは互いに分離していてもよい。そうすることで、実施の形態の設計の自由度が大きくなる利点がある。   As mentioned above, although this invention was demonstrated by Embodiment 1-5, this invention is not limited to those embodiments, The various problems along with the subject in this invention and the mind of a solution means are included. To do. For example, the solid electrolyte and the adsorbent may be those other than those used in the first to fifth embodiments, and when the present invention includes a test gas non-accumulating gas sensor, The solid electrolyte and the solid electrolyte in the test gas non-accumulating gas sensor may be made of different materials, and the gas sensors may be separated from each other. By doing so, there is an advantage that the degree of freedom in designing the embodiment is increased.

本発明は、ガス絶縁開閉装置の診断手段として有用である。   The present invention is useful as a diagnostic means for a gas insulated switchgear.

実施の形態1における被検ガス蓄積型ガスセンサの概略側断面図である。1 is a schematic side cross-sectional view of a test gas accumulation type gas sensor in Embodiment 1. FIG. 実施の形態2における、被検ガス蓄積型ガスセンサおよび被検ガス非蓄積型ガスセンサの平面図である。6 is a plan view of a test gas storage type gas sensor and a test gas non-storage type gas sensor in Embodiment 2. FIG. 図2のB−C断面図である。It is BC sectional drawing of FIG. 図2のB−D−E断面図である。FIG. 3 is a B-D-E cross-sectional view of FIG. 2. 実施の形態2において、被検ガス非蓄積型ガスセンサ20にて検出されたHFの濃度と出力電流の経時変化を示すグラフである。6 is a graph showing temporal changes in HF concentration and output current detected by a gas non-accumulation type gas sensor 20 in the second embodiment. 図5から求めたHF濃度と出力電流との定量的関係を示すグラフである。6 is a graph showing a quantitative relationship between the HF concentration obtained from FIG. 5 and the output current. 実施の形態2において、被検ガス蓄積型ガスセンサにて検出されたF化合物およびS化合物についての各蓄積量と電極間抵抗との関係を示すグラフである。In Embodiment 2, it is a graph which shows the relationship between each accumulation amount and interelectrode resistance about F compound and S compound which were detected with the to-be-tested gas storage type gas sensor. 実施の形態2において、F化合物とS化合物とが共存した場合における被検ガス蓄積型ガスセンサにて検出された蓄積量と電極間抵抗との関係を示すグラフである。In Embodiment 2, it is a graph which shows the relationship between the amount of accumulation | storage detected with the to-be-tested gas storage type gas sensor in case F compound and S compound coexist, and resistance between electrodes. 実施の形態2において、被検ガス蓄積型ガスセンサにて検出された蓄積量と被検ガス非蓄積型ガスセンサにて検出された検出量との各経時的変化を示すグラフである。6 is a graph showing changes over time in an accumulation amount detected by a test gas storage gas sensor and a detection amount detected by a test gas non-storage gas sensor in the second embodiment. 比較例において、被検ガス蓄積型ガスセンサにて検出された蓄積量と被検ガス非蓄積型ガスセンサにて検出された検出量との各経時的変化を示すグラフである。In a comparative example, it is a graph which shows each time-dependent change of the accumulation amount detected with the to-be-tested gas storage type gas sensor, and the detection amount detected with the to-be-tested gas non-accumulation type gas sensor. 実施の形態5において、被検ガス蓄積型ガスセンサにて検出された蓄積量と被検ガス非蓄積型ガスセンサにて検出された検出量との各経時的変化を示すグラフである。In Embodiment 5, it is a graph which shows each time-dependent change of the accumulation | storage amount detected with the to-be-tested gas storage type gas sensor, and the detection amount detected with the to-be-tested gas non-accumulation type gas sensor.

符号の説明Explanation of symbols

10 被検ガス蓄積型ガスセンサ、11 固体電解質、12 検出電極、
13 対向電極、14 電源、15 電流検出器、16 接続電線、17 筐体、
10a 被検ガス蓄積型ガスセンサ、12a 検出電極、13a 対向電極、
14a 電源、15a 電流検出器、16a 接続電線、
10b 被検ガス蓄積型ガスセンサ、12b 検出電極、
13b 対向電極、14b 電源、15b 電流検出器、16b 接続電線、
20 被検ガス非蓄積型ガスセンサ、22 検出電極、23 対向電極、24 電源、
25 電流検出器、26 接続電線。
10 gas storage type gas sensor, 11 solid electrolyte, 12 detection electrode,
13 counter electrode, 14 power supply, 15 current detector, 16 connecting wire, 17 housing,
10a gas storage type gas sensor, 12a detection electrode, 13a counter electrode,
14a power supply, 15a current detector, 16a connecting wire,
10b Test gas accumulation type gas sensor, 12b Detection electrode,
13b Counter electrode, 14b Power supply, 15b Current detector, 16b Connecting wire,
20 non-accumulating gas sensor, 22 detection electrode, 23 counter electrode, 24 power supply,
25 Current detector, 26 Connecting wire.

Claims (6)

固体電解質、上記固体電解質の一方の側に被検ガスと接するように設置されると共に導電性金属と吸着剤とを含む材料から形成された検出電極、上記固体電解質の他方の側に上記被検ガスと接触しないように設置された対向電極を備え、上記導電性金属は、上記被検ガスと化学的に反応する反応性導電性金属であることを特徴とする被検ガス蓄積型ガスセンサ。 A solid electrolyte, a detection electrode formed on one side of the solid electrolyte so as to be in contact with the test gas and formed of a material containing a conductive metal and an adsorbent, and the test electrode on the other side of the solid electrolyte A test gas storage type gas sensor comprising a counter electrode installed so as not to come into contact with a gas, wherein the conductive metal is a reactive conductive metal that chemically reacts with the test gas. 上記反応性導電性金属は、銀または銅であり、上記吸着剤は、ゼオライトであることを特徴とする請求項に記載の被検ガス蓄積型ガスセンサ。 The test gas storage gas sensor according to claim 1 , wherein the reactive conductive metal is silver or copper, and the adsorbent is zeolite. 上記固体電解質の一方の側に上記被検ガスと接するように設置されると共に上記被検ガスに対して不活性な導電性金属から形成された第二の検出電極、上記固体電解質の他方の側に上記被検ガスと接触しないように設置されて上記第二の検出電極に対して対向する第二の対向電極とからなる被検ガス非蓄積型ガスセンサを備えたことを特徴とする請求項1または請求項2に記載の被検ガス蓄積型ガスセンサ。 A second detection electrode formed on one side of the solid electrolyte so as to be in contact with the test gas and made of a conductive metal inert to the test gas; and the other of the solid electrolyte claims, characterized in that it comprises a second gas to be detected non-storage type gas sensor comprising a counter electrode which is installed so as not to contact with the gas to be detected on the side opposite to said second detection electrodes The test gas accumulation type gas sensor according to claim 1 or 2 . 上記不活性な導電性金属は、金または白金であることを特徴とする請求項に記載の被検ガス蓄積型ガスセンサ。 The test gas storage gas sensor according to claim 3 , wherein the inert conductive metal is gold or platinum. 上記固体電解質は、フッ素イオン導電性のフッ化ランタンまたは水素イオン導電性の固体高分子電解質であることを特徴とする請求項1または請求項に記載の被検ガス蓄積型ガスセンサ。 The solid electrolyte, the gas to be detected accumulation type gas sensor according to claim 1 or claim 3, characterized in that a fluorine ion conductivity of lanthanum fluoride or hydrogen ion conductivity of the solid polymer electrolyte. 上記第二の検出電極と上記第二の対向電極が設置された部分の固体電解質は、上記被検ガス蓄積型ガスセンサにおける固体電解質とは異なる材料のものであることを特徴とする請求項3に記載の被検ガス蓄積型ガスセンサ。 The second detection electrode and the second solid electrolyte of the counter electrode is placed part of, to claim 3, characterized in that the solid electrolyte in the test gas storage type gas sensor of a different material The test gas accumulation type gas sensor described .
JP2006240167A 2006-09-05 2006-09-05 Test gas accumulation type gas sensor Active JP4781205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006240167A JP4781205B2 (en) 2006-09-05 2006-09-05 Test gas accumulation type gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006240167A JP4781205B2 (en) 2006-09-05 2006-09-05 Test gas accumulation type gas sensor

Publications (2)

Publication Number Publication Date
JP2008064492A JP2008064492A (en) 2008-03-21
JP4781205B2 true JP4781205B2 (en) 2011-09-28

Family

ID=39287351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006240167A Active JP4781205B2 (en) 2006-09-05 2006-09-05 Test gas accumulation type gas sensor

Country Status (1)

Country Link
JP (1) JP4781205B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105842408A (en) * 2016-06-20 2016-08-10 国家电网公司 SF6 (sulfur hexafluoride) biotoxicity testing device with video monitoring function

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840274B2 (en) * 2007-07-11 2011-12-21 トヨタ自動車株式会社 Method for detecting sulfur concentration in fuel and oil

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686346A (en) * 1979-12-17 1981-07-14 Mitsubishi Electric Corp Detecting apparatus for corrosive gas
JPS6258148A (en) * 1985-09-06 1987-03-13 Mitsubishi Electric Corp Apparatus for detecting decomposed gas
JPH01142453A (en) * 1987-11-30 1989-06-05 Hitachi Chem Co Ltd Sf6 decomposition gas sensor for high voltage ac load switch
JP2697362B2 (en) * 1991-05-29 1998-01-14 三菱電機株式会社 Discharge detector
JP2935963B2 (en) * 1995-08-04 1999-08-16 松下電器産業株式会社 NOx concentration detecting device and NOx sensor used therefor
JP3340028B2 (en) * 1996-07-12 2002-10-28 三菱電機株式会社 Gas sensor
JP2002350394A (en) * 2001-05-29 2002-12-04 Mitsubishi Electric Corp Electrochemical detecting device
JP2003090795A (en) * 2001-09-18 2003-03-28 Masahiro Kitada Environment evaluation apparatus
JP3855771B2 (en) * 2001-12-28 2006-12-13 株式会社豊田中央研究所 Porous electrode, electrochemical element including the same, gas concentration detection sensor, oxygen partial pressure control method, and combustible gas detection method
JP3981307B2 (en) * 2002-07-29 2007-09-26 京セラ株式会社 Oxygen sensor element
JP4063658B2 (en) * 2002-12-26 2008-03-19 フィガロ技研株式会社 Solid electrolyte carbon dioxide sensor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105842408A (en) * 2016-06-20 2016-08-10 国家电网公司 SF6 (sulfur hexafluoride) biotoxicity testing device with video monitoring function

Also Published As

Publication number Publication date
JP2008064492A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4616069B2 (en) Device for detecting moisture concentration in SF6 gas
AU2006335652A1 (en) Electrolytic capacitor comprising means for the sorption of harmful substances
CN102844656B (en) For determining the method and apparatus of the share of the adsorbed material comprised in sorbent material
Bondue et al. A Comprehensive study on oxygen reduction and evolution from lithium containing DMSO based electrolytes at gold electrodes
JP4201709B2 (en) Sulfur content detection sensor and sulfur content detection device
CA2374939C (en) Means for detecting and measuring the concentration of acetylene dissolved in a fluid
JP2009526235A (en) Total organic carbon analysis
JP4781205B2 (en) Test gas accumulation type gas sensor
KR0173140B1 (en) Method and apparatus for measuring insulation oil degradation
KR101772988B1 (en) Electrochemical carbon monoxide gas sensor
JP4773094B2 (en) Hydrogen detection apparatus and method
CN1080885C (en) Gas sensor
EP1039292B1 (en) Method of detecting the concentration of carbon dioxide in a gas mixture
Bhat et al. Mechanistic aspects of nitrate ion reduction on silver electrode: estimation of O–NO 2− bond dissociation energy using cyclic voltammetry
JP6917519B2 (en) Method for measuring the specific surface area of conductive materials
Suzuki et al. A galvanic solid-state sensor for monitoring ozone and nitrogen dioxide
Kek et al. Investigation of hydrogen oxidation reaction on a metal/perovskite proton conductor interface by impedance spectroscopy
KR20110012258A (en) Electrochemical hydrogen gas sensor
EP3146319B1 (en) Fuse for detecting failure of gas trap
JP4686726B2 (en) Hydrogen sensor
JP5332037B2 (en) Insulation deterioration monitoring device, electrical equipment, and insulation deterioration monitoring method
JPH06160343A (en) Solid electrolytic oxygen detector
SU1762214A1 (en) Transducer of chlorine condensation in air
JPH07209163A (en) Sensor for detecting gas
RU2665792C1 (en) Sensitive element for determining concentration of gas medium component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4781205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250