JPS6258148A - Apparatus for detecting decomposed gas - Google Patents

Apparatus for detecting decomposed gas

Info

Publication number
JPS6258148A
JPS6258148A JP19796385A JP19796385A JPS6258148A JP S6258148 A JPS6258148 A JP S6258148A JP 19796385 A JP19796385 A JP 19796385A JP 19796385 A JP19796385 A JP 19796385A JP S6258148 A JPS6258148 A JP S6258148A
Authority
JP
Japan
Prior art keywords
gas
silver
decomposed
oscillation
iodide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19796385A
Other languages
Japanese (ja)
Inventor
Shiro Yamauchi
四郎 山内
Koichi Hirooka
広岡 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19796385A priority Critical patent/JPS6258148A/en
Publication of JPS6258148A publication Critical patent/JPS6258148A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to detect the internal discharge of electric machinery, by changing the oscillation frequency of an oscillation element by a detection element of which the resistance value changes upon contact with decomposed gas. CONSTITUTION:A solar cell 7 generates predetermined power upon the reception of solar rays and this power is allowed to charge a secondary cell 6. When a switch is closed in this state, a detection element 4 and an oscillation element 5 are driven and the element 5 oscillates a radio wave with predetermined frequency when the insulating gas contacted with the Ag added platinum electrode of the element 4 is normal. This radio wave is received by a receiver 9 through an antenna to be recorded on a recorder 10. When internal discharge is generated in electric machinery 2, gas 3, for example, SF6 gas is decomposed and, when this decomposed gas is contacted with the element 4, the resistance value of the element 5 changes corresponding to the decomposition quantity of SF6 gas. By this method, the internal discharge of the machinery 2 can be detected at an early stage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、811’6ガス等の絶縁流体が充填された
容器内の電気機器の内部放電を検出する分解ガス測定装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a decomposed gas measuring device for detecting internal discharge of electrical equipment in a container filled with an insulating fluid such as 811'6 gas.

〔従来の技術〕[Conventional technology]

一般g、 SF’6等の絶縁ガスを封入した密封容器に
電気機器を収納したガス絶縁電気機器においては、電気
機器に内部放電が発生すると、封入した絶縁ガスが分解
する。
In gas-insulated electrical equipment in which the electrical equipment is housed in a sealed container filled with insulating gas such as General g, SF'6, when internal discharge occurs in the electrical equipment, the enclosed insulating gas decomposes.

この分解ガスの生成を検出することによって、ガス絶縁
電気機器の運転状態を監視するために、種々の分解ガス
検出手段が用いられており、大別して、湿式法と乾式法
がある。
Various decomposition gas detection means are used to monitor the operating status of gas-insulated electrical equipment by detecting the generation of decomposition gas, and are broadly classified into wet methods and dry methods.

湿式法は、例えば放電によってSF’8ガスから分解す
るsp’4等のガスを、アルカリ性吸収液に吸収させて
フッ素イオンを吸光光度法で測定する方法(工WC規格
48o)、又は酸分として水溶液を標準硫酸水溶液で逆
滴定で測定する方法(XZC規格376)である。
The wet method is, for example, a method in which a gas such as sp'4, which is decomposed from SF'8 gas by electric discharge, is absorbed into an alkaline absorption liquid and fluorine ions are measured by spectrophotometry (Engineering WC standard 48o), or a method in which a gas such as sp'4, which is decomposed from SF'8 gas by electric discharge, is measured by spectrophotometry (Engineering WC standard 48o), or as an acid content This is a method (XZC standard 376) in which an aqueous solution is measured by back titration with a standard sulfuric acid aqueous solution.

また、乾式法には、sFB分屏ガスに反応して変色する
素子を封入したガスチェック型検出器がある0 このような分解ガス測定手段は、湿式法では測定資料と
してガス絶縁電機器から絶縁ガスを採取し、採取した絶
縁ガスを吸収液に吸収させることKよって測定されるっ
一方、乾式法によるガスチェック型検出器では、ガス電
気機器中の絶縁ガスを直接測定する。
In addition, in the dry method, there is a gas check type detector containing an element that changes color in response to the sFB separation gas.In the wet method, such a decomposed gas measuring means is isolated from gas-insulated electrical equipment as a measurement material. While measurement is performed by sampling gas and absorbing the sampled insulating gas into an absorbing liquid, a gas check type detector using a dry method directly measures the insulating gas in gas electric equipment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の分解ガス測定は以上のように行われるので、測定
のためには必らず操作員がガス絶縁電気機器設置場所ま
で出向く必要があり、内部放電で特徴的に生成される分
解ガスを早期に検出することが困難であるという問題点
があった。
Conventional decomposed gas measurements are performed as described above, so it is necessary for an operator to go to the location where the gas-insulated electrical equipment is installed for measurement. The problem was that it was difficult to detect.

この発明は上記のような問題点を解消するためになされ
たもので、絶縁ガスの採取を必要とせず、微量の分解ガ
ス生成を検出できる分解ガス測定装置を得ることを目的
とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a decomposed gas measuring device that can detect minute amounts of decomposed gas production without requiring sampling of insulating gas.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この発明に係る分解ガス測定装置は、分解ガスが生成さ
れると抵抗値が変化して分解ガス生51号を出す検出要
素と、分解ガス生成信号を所定の周波数で発振する発振
要素を設けたものである。
The cracked gas measuring device according to the present invention includes a detection element whose resistance value changes when cracked gas is generated and produces cracked gas raw No. 51, and an oscillation element that oscillates a cracked gas generation signal at a predetermined frequency. It is something.

〔作用〕[Effect]

この発明における分解ガス測定装置は、内部放電の発生
で分解ガスが生成されると、分解ガス生flit!倦号
が発振される。
In the cracked gas measuring device according to the present invention, when cracked gas is generated due to the occurrence of internal discharge, the cracked gas is generated flit! A signal is emitted.

〔実施例〕〔Example〕

以下この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、(1)は密封容器、(2)は密封容器
(1)に収納された電気機器、(3)は密封容器(1)
に充填された絶縁ガス、例えばSFQガスである。(4
)は密封容器(1)内部に配置され分解ガス生成を検出
し険出備号を出力する噴出要素、(5)は検出要素(4
)の険出倦号を所定の周波数で発振する発振要素、(6
)は検出要素(4)と発振要素(5)とに駆動電力を供
給する二次電池、(7)は発電した電力を二次電池へ供
給する太陽電池、(8)はアンテナ、(9)はアンテナ
(8)を介して発振要素(5)から送られる信号を受け
る受信器、0Qは受信器(9)が受けた信号を記録する
記録器であるO ここで、検出要素(4)と発振要素(5)を第2図及び
第3図によって詳細に説明する。検出要素(4)を示す
第2図において、01)は可変抵抗素子で、銀の硫化物
、銀のテレル化物、銀の燐酸化物を固溶した化合物から
なる銀イオン、電子混合導電体で構成されている。(6
)は可変抵抗素子Qυの一方の面の両端部に設けられた
一対の電極で、金(Aσ)によって構成されている(至
)は可変抵抗素子01)の他方の面と接合された銀イオ
ン導電性固体電解質で、例えばヨウ化硫化銀(AgaS
工)で構成されている。(9)ハ銀イオン導電性固体電
解質(ハ)の他方の面と接合された銀添着白金電極、(
4a)、 (4b)はそれぞれ電極(ハ)と接続された
口出端子、(4c)は銀添着白金電極(ロ)と接続され
た口出端子である。
In Figure 1, (1) is a sealed container, (2) is the electrical equipment stored in the sealed container (1), and (3) is the sealed container (1).
is filled with an insulating gas, such as SFQ gas. (4
) is an ejection element that is placed inside the sealed container (1) and detects the generation of decomposed gas and outputs a warning signal, and (5) is a detection element (4).
) oscillator element that oscillates the oscillatory signal at a predetermined frequency, (6
) is a secondary battery that supplies driving power to the detection element (4) and the oscillation element (5), (7) is a solar battery that supplies generated power to the secondary battery, (8) is an antenna, and (9) is a receiver that receives the signal sent from the oscillating element (5) via the antenna (8), and 0Q is a recorder that records the signal received by the receiver (9). The oscillation element (5) will be explained in detail with reference to FIGS. 2 and 3. In FIG. 2 showing the detection element (4), 01) is a variable resistance element, which is composed of silver ions made of a compound containing silver sulfide, silver terelide, and silver phosphorus oxide as a solid solution, and an electronic mixed conductor. has been done. (6
) are a pair of electrodes provided at both ends of one surface of the variable resistance element Qυ, and are made of gold (Aσ). A conductive solid electrolyte, such as silver iodide sulfide (AgaS).
It is made up of (engineering). (9) A silver-impregnated platinum electrode bonded to the other surface of the silver ion conductive solid electrolyte (c);
4a) and (4b) are output terminals connected to the electrode (c), and (4c) is an output terminal connected to the silver-impregnated platinum electrode (b).

接続を示す第3図において、(51)はコンデンサ、(
52)は所定の値に調整できる抵抗、(53)はトラン
ジスタとコンデンサ及び複数個の抵抗からなる増幅回路
、上記(51)〜(53)で発振要素(5)が形成され
る。この発振要素(5)の抵抗(52)は、検出要素(
4)の可変抵抗素子I41)と並列に接続されている。
In Figure 3 showing the connections, (51) is a capacitor, (
52) is a resistor that can be adjusted to a predetermined value; (53) is an amplifier circuit consisting of a transistor, a capacitor, and a plurality of resistors; and (51) to (53) above form an oscillation element (5). The resistance (52) of this oscillation element (5) is connected to the detection element (
4) is connected in parallel with the variable resistance element I41).

なお第3図において、6℃はスイッチである。In addition, in FIG. 3, 6° C. is a switch.

つぎに動作について説明する。ガス絶縁電気装置に検出
要素を取付けだ第1図〜第3図に示すものにおいて、太
陽電池(7)は太陽光を受けて所定の電力を発電し、こ
の電力は二次電池(6)に充電されテイル。この状態で
スイッチαDを投入すると、検出要素(4)と発振要素
(5)とが駆動され、検出要素(4)のAg添着白金電
極−と接触した絶縁ガス(3)が正常である場合には、
発振要素(5)は所定の周波数の電波を発振している0
この電波をアンテナ(8)を介して受信H(9)で受け
、記録計αQで記録している。
Next, the operation will be explained. Attach the detection element to the gas-insulated electrical device. In the devices shown in Figures 1 to 3, the solar cell (7) receives sunlight and generates a predetermined amount of power, and this power is transferred to the secondary battery (6). Charged tail. When the switch αD is turned on in this state, the detection element (4) and the oscillation element (5) are driven, and if the insulating gas (3) in contact with the Ag-coated platinum electrode of the detection element (4) is normal, teeth,
The oscillation element (5) oscillates radio waves of a predetermined frequency.
This radio wave is received by a receiver H (9) via an antenna (8) and recorded by a recorder αQ.

このような状態で電気機tg (2)に内部放電が発生
すると、絶縁ガス(3)例えばSF6ガスが分解する。
When an internal discharge occurs in the electric machine tg (2) in such a state, the insulating gas (3), for example, SF6 gas, decomposes.

この分解ガスが検出要素(4)と接触すると、発振要素
(5)の抵抗部(52)の抵抗値はSF6ガス分解量に
8じて変化する。第2図において、日出端子(4a) 
−(4C)間に直流電流を通電中にSF6分解ガスが生
成され、SF6分解ガスがAg添着白金電極−と接触す
ると、分解ガスがAg添添着白金電極上上銀(Ag)と
反応して銀化合物が生成され、Ag添着白金電極(財)
の銀(Ag)量が減少する。これによって、Ag添着白
金電極−を流れる電気量は、Ag添着白金電極−に添着
されたAg添着量に比例した量だけ流れる。
When this decomposed gas comes into contact with the detection element (4), the resistance value of the resistance part (52) of the oscillation element (5) changes according to the amount of SF6 gas decomposed. In Figure 2, the sunrise terminal (4a)
SF6 decomposed gas is generated while direct current is being applied between (4C), and when the SF6 decomposed gas comes into contact with the Ag-impregnated platinum electrode, the decomposed gas reacts with the upper silver (Ag) on the Ag-impregnated platinum electrode. A silver compound is generated and Ag-impregnated platinum electrode (foundation)
The amount of silver (Ag) decreases. As a result, the amount of electricity flowing through the Ag-impregnated platinum electrode is proportional to the amount of Ag impregnated on the Ag-impregnated platinum electrode.

この添着されたAgがなくなると、日出端子(4a) 
−(4C)間に所定の電圧が印加されても、銀イオン導
電性固体電解質が電子導電を妨げるので、電荷担体がな
くな)、電流は流れなくなる。
When this attached Ag disappears, the sun terminal (4a)
Even if a predetermined voltage is applied between - (4C), the silver ion conductive solid electrolyte prevents electron conduction (there are no charge carriers) and no current flows.

一方、通電時に銀イオン導電性固体電解質(9)を通過
した銀イオンは、鋏イオンφ電子混合導電体(4υ中に
注入される。この銀イオンは、端子(4a)−(4C)
間に流れる電流によって、Ag添着白金電極−が分解ガ
スと接触時と非接触時とでは、Ag添着白金電極−1銀
イオン導電性面体電解質輪から銀イオン・電子混合導電
体CI)中に流れ込む銀イオンの量が接触時は非接触時
よりも少なくなる。これによって、銀イオンが多く注入
された時は鉄過剰のn型となり、電気的中性を保つため
に電子密変が増加し端子(4a)〜(4b)間の抵抗値
が減少する。
On the other hand, silver ions that have passed through the silver ion conductive solid electrolyte (9) during energization are injected into the scissors ion φ electron mixed conductor (4υ).
When the Ag-coated platinum electrode is in contact with the decomposed gas and when it is not in contact with the decomposed gas, the current flowing between the Ag-coated platinum electrode-1 and the silver ion conductive facepiece electrolyte ring flow into the silver ion/electron mixed conductor CI). The amount of silver ions is smaller when in contact than when not in contact. As a result, when a large number of silver ions are implanted, it becomes an iron-rich n-type, and in order to maintain electrical neutrality, electron density increases and the resistance value between terminals (4a) and (4b) decreases.

この抵抗値Rと通電された電気量の関係は次式の  −
ようになる。
The relationship between this resistance value R and the amount of electricity supplied is expressed by the following equation -
It becomes like this.

1/R1=A−BQ −−−−(1) A、B:定数 Q:電気量 一方、上記抵抗値R1と発振要素(5)の抵抗R2で発
振される周波数での関係は次式のように表される。
1/R1=A-BQ -----(1) A, B: constant Q: quantity of electricity On the other hand, the relationship between the above resistance value R1 and the frequency oscillated by the resistance R2 of the oscillation element (5) is expressed by the following equation. It is expressed as follows.

C:コンデンサ容量 R′:検出要素(4)中の抵抗R1と 発振要素(5)の抵抗R2との 合成抵抗 したがって、発振要素(5)の発振周波数(f)は検出
要素(4)の電気量(Q)の関数であシ、電気量(0は
s’p6分解ガス量ΔSF6の関数であるため、第4図
に示すように、発振周波数(f)の変化でSF6ガス分
解量ΔSF6の情報を得ることができる。
C: Capacitor capacitance R': Combined resistance of resistance R1 in the detection element (4) and resistance R2 of the oscillation element (5) Therefore, the oscillation frequency (f) of the oscillation element (5) is the electrical resistance of the detection element (4). Since the electrical quantity (0 is a function of the s'p6 decomposition gas amount ΔSF6, as shown in Figure 4, the SF6 gas decomposition amount ΔSF6 changes with the change in the oscillation frequency (f). You can get information.

このようK SF6分解ガスの生成で変化した発振周波
数(f)は、受信器(9)で受信され記録器α4で記録
される。したがって、絶縁ガス(3)が正常なときの発
振周波数では動作せず、周波数の変化で信号を出し、変
化の大きさK115じて出力信号が変化する周波数検出
器を受信器(9)と接続すると、分解ガスの検出はさら
に容易となる。
The oscillation frequency (f) thus changed due to the generation of KSF6 decomposed gas is received by the receiver (9) and recorded by the recorder α4. Therefore, a frequency detector is connected to the receiver (9) that does not operate at the oscillation frequency when the insulating gas (3) is normal, but outputs a signal by changing the frequency, and the output signal changes according to the magnitude of the change K115. Then, detection of decomposed gas becomes easier.

上記実施例においては、銀イオン導電性電解質に沃化硫
化銀(Ag3S工)を用いた場合について説明したが、
沃化銀ルビジュウム(RbAg4工5)、沃化タンクス
テン酸銀(Age工4WO4)、酸化銀アルミニウム(
AgA111017)、沃化燐酸銀(Ag19工15P
2O7)、沃化燐酸銀(Ag7エ4PO4)、沃化銀水
銀(AgHg工4)等を用いても上記実施例と同様の動
作を期待できる。
In the above example, a case was explained in which silver iodide sulfide (Ag3S technology) was used as the silver ion conductive electrolyte.
Silver rubidium iodide (RbAg4-5), silver iodide tankstate (Age4WO4), silver aluminum oxide (
AgA111017), silver iodophosphate (Ag19-15P)
Even if silver iodide phosphate (Ag7e4PO4), silver mercury iodide (AgHg4), etc. are used, the same operation as in the above embodiment can be expected.

なお、上記実施例では、絶縁流体として8F6ガスを用
いたガス絶縁電気装置における分解ガス検出について説
明したが、絶縁油を用いる油入電気機器においては、内
部放電の発生によってアセチレンガス(Cj 2H2)
が生成され、このアセチレンガス(C2H2)がAg添
着白金電極と接触すると、次式に示すようにAg添着白
金電極上のAgと不可逆的に反応する。
In addition, in the above embodiment, decomposition gas detection in a gas-insulated electrical device using 8F6 gas as the insulating fluid was explained. However, in an oil-filled electrical device using insulating oil, acetylene gas (Cj 2H2) is detected due to the occurrence of internal discharge.
is generated, and when this acetylene gas (C2H2) contacts the Ag-impregnated platinum electrode, it irreversibly reacts with Ag on the Ag-impregnated platinum electrode as shown in the following formula.

02H2+ 2ag−O2Ag2 + H2−−−−(
3)したがって、絶縁油の分解ガスすなわちアセチレン
ガス(02H2)を検出することにより、油入電気機器
の内部放電を検出することが出来る。
02H2+ 2ag-O2Ag2 + H2----(
3) Therefore, by detecting the decomposed gas of insulating oil, that is, acetylene gas (02H2), it is possible to detect internal discharge in oil-filled electrical equipment.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、分解ガスと接触して
抵抗値が変化する検出要素で発振要素の発振周波数を変
化させるので、電気機器の内部放電を早期に検出するこ
とができる。
As described above, according to the present invention, since the oscillation frequency of the oscillation element is changed by the detection element whose resistance value changes upon contact with the decomposed gas, internal discharge of the electrical equipment can be detected at an early stage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による分解ガス検出装置の
構放図、第2図は検出要素の詳細図、第3図は回路図、
第4図は%性図である。 図において、(1)は容器、(2)は電気機器、(3)
は絶縁流体、(4)は検出要素、(5)は発振要素であ
る。 なお、各図中同一符号は同−又は相当部分を示す0
FIG. 1 is a schematic diagram of a cracked gas detection device according to an embodiment of the present invention, FIG. 2 is a detailed diagram of a detection element, and FIG. 3 is a circuit diagram.
Figure 4 is a percentage sex chart. In the figure, (1) is a container, (2) is an electrical device, and (3) is a container.
is an insulating fluid, (4) is a detection element, and (5) is an oscillation element. In addition, the same symbols in each figure indicate the same or corresponding parts.

Claims (5)

【特許請求の範囲】[Claims] (1)絶縁流体が充填された容器内の電気機器の内部放
電で上記絶縁流体から生成される分解ガスを検出するも
のにおいて、分解ガスと接触すると抵抗値が変化する検
出要素と、この検出要素と並列に接続された抵抗を有す
る発振要素、及び上記検出要素と発振要素とに電力を供
給する電源装置を設け、上記絶縁ガスが正常なときは所
定の周波数で発振し分解ガスが生成する発振周波数が変
化することを特徴とする分解ガス検出装置。
(1) In a device that detects decomposed gas generated from the insulating fluid by internal discharge of an electrical device in a container filled with insulating fluid, a detection element whose resistance value changes when it comes into contact with the decomposed gas, and this detection element An oscillation element having a resistor connected in parallel with the oscillation element, and a power supply device that supplies power to the detection element and the oscillation element are provided, and when the insulating gas is normal, the oscillation occurs at a predetermined frequency and the decomposed gas is generated. A decomposition gas detection device characterized by changing frequency.
(2)絶縁流体はSF_6ガスで検出要素は分解ガスと
接触してAg量が変化するAg添着白金電極と、このA
g添着白金電極と接合された銀イオン導電性電解質、及
び上記銀イオン導電性電解質と接合された銀イオン・電
子混合導電体からなることを特徴とする特許請求の範囲
第1項記載の分解ガス検出装置。
(2) The insulating fluid is SF_6 gas, and the detection element is an Ag-impregnated platinum electrode that changes the amount of Ag when it comes into contact with the decomposed gas, and this A
The cracked gas according to claim 1, characterized in that it consists of a silver ion conductive electrolyte joined to a platinum electrode impregnated with it, and a silver ion/electron mixed conductor joined to the silver ion conductive electrolyte. Detection device.
(3)銀イオン導電性電解質は沃化硫化銀(Ag_3S
I)、沃化銀ルビジュウム(RbAg_4I_5)、沃
化タングステン酸銀(Ag_6I_4WO_4)、酸化
銀アルミニウム(AgAl_1_1O_1_7)、沃化
燐酸銀(Ag_1_9I_1_5P_2O_7)、沃化
燐酸銀(Ag_7I_4PO_4)、沃化銀水銀(Ag
_2HgI_4)の何れかであることを特徴とする特許
請求の範囲第2項記載の分解ガス検出装置。
(3) Silver ion conductive electrolyte is silver iodide sulfide (Ag_3S
I), silver rubidium iodide (RbAg_4I_5), silver tungstate iodide (Ag_6I_4WO_4), silver aluminum oxide (AgAl_1_1O_1_7), silver iodophosphate (Ag_1_9I_1_5P_2O_7), silver iodide phosphate (Ag_7I_4PO_4), silver mercury iodide (Ag
_2HgI_4) The cracked gas detection device according to claim 2, wherein the decomposition gas detection device is any one of _2HgI_4).
(4)銀イオン・電子混合導電体は銀の硫化物、銀のテ
レル化物、銀の燐酸化物を固溶して得た化合物であるこ
とを特徴とする特許請求の範囲第1項〜第3項記載の分
解ガス検出装置。
(4) Claims 1 to 3, characterized in that the silver ion/electronic mixed conductor is a compound obtained by solid dissolving silver sulfide, silver terelide, and silver phosphorus oxide. The cracked gas detection device described in Section 1.
(5)電源装置は太陽電池と薄型二次電池を一体とした
ものであることを特徴とする特許請求の範囲第1項〜第
4項記載の分解ガス検出装置。
(5) The decomposed gas detection device according to any one of claims 1 to 4, wherein the power supply device is a device that integrates a solar cell and a thin secondary battery.
JP19796385A 1985-09-06 1985-09-06 Apparatus for detecting decomposed gas Pending JPS6258148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19796385A JPS6258148A (en) 1985-09-06 1985-09-06 Apparatus for detecting decomposed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19796385A JPS6258148A (en) 1985-09-06 1985-09-06 Apparatus for detecting decomposed gas

Publications (1)

Publication Number Publication Date
JPS6258148A true JPS6258148A (en) 1987-03-13

Family

ID=16383228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19796385A Pending JPS6258148A (en) 1985-09-06 1985-09-06 Apparatus for detecting decomposed gas

Country Status (1)

Country Link
JP (1) JPS6258148A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280545A (en) * 1985-10-04 1987-04-14 Nittan Co Ltd Environmental abnormality detecting circuit
EP0484569A1 (en) * 1990-11-06 1992-05-13 Asea Brown Boveri Ag Apparatus for measuring sulphur hexafluoride decomposition products
JP2008064492A (en) * 2006-09-05 2008-03-21 Mitsubishi Electric Corp Test gas accumulation type gas sensor
CN105628771A (en) * 2015-12-25 2016-06-01 北京工业大学 Solar battery-powered direct current chemical application system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280545A (en) * 1985-10-04 1987-04-14 Nittan Co Ltd Environmental abnormality detecting circuit
EP0484569A1 (en) * 1990-11-06 1992-05-13 Asea Brown Boveri Ag Apparatus for measuring sulphur hexafluoride decomposition products
JP2008064492A (en) * 2006-09-05 2008-03-21 Mitsubishi Electric Corp Test gas accumulation type gas sensor
CN105628771A (en) * 2015-12-25 2016-06-01 北京工业大学 Solar battery-powered direct current chemical application system
CN105628771B (en) * 2015-12-25 2018-06-01 北京工业大学 A kind of direct current electrochemical applications system based on solar cell for supplying power

Similar Documents

Publication Publication Date Title
Kordesch et al. Sine wave pulse current tester for batteries
JPS6117102B2 (en)
GB1508969A (en) Arrangement for detecting high voltage
US3343083A (en) Nonself-destructive reversible electro-chemical coulometer
EP0427551A2 (en) A process and apparatus for testing the condition of an insulating system
US3720869A (en) Battery cell structure and method of determining state of charge
US5080775A (en) Gas detector
JPS6258148A (en) Apparatus for detecting decomposed gas
US3613002A (en) Coulometer and timing apparatus
Stromatt Studies on the Electroreduction of Uranyl (VI) in Molten Equimolar KCl‐NaCl by Chronopotentiometric and Electrode Impedance Measurements
JPH02114168A (en) Gas sensor
JPH1026602A (en) Gas sensor
US3825482A (en) Ion-selective electrodes using tungsten bronzes as active element
US4710848A (en) Solid state cell
JPS6486054A (en) Operation of electrochemical battery for higher detection sensitivity of specified gas in mixed gas
US2970264A (en) Elapsed time indicators
Perrot et al. Analysis of the response of ion sensing FETs with a chemically modified gate insulator
US3686566A (en) Method of operating a coulometric device
US3957611A (en) Atmosphere monitoring electrochemical cell
JP4141098B2 (en) Gas sensor
CN216013223U (en) Lithium ion concentration detection system
SU693208A1 (en) Device for measuring dielectric parameters of biological suspensions
WO2003016895A1 (en) Sensor for analysing oxidising gas, method for producing said gas and method for determining the concentration of the oxidising gas
JPS57154069A (en) Measuring device for electric resistance
JPH0560547B2 (en)