JP4779271B2 - catalyst - Google Patents

catalyst Download PDF

Info

Publication number
JP4779271B2
JP4779271B2 JP2001285597A JP2001285597A JP4779271B2 JP 4779271 B2 JP4779271 B2 JP 4779271B2 JP 2001285597 A JP2001285597 A JP 2001285597A JP 2001285597 A JP2001285597 A JP 2001285597A JP 4779271 B2 JP4779271 B2 JP 4779271B2
Authority
JP
Japan
Prior art keywords
catalyst
supported
exhaust gas
sintering
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001285597A
Other languages
Japanese (ja)
Other versions
JP2003088757A (en
Inventor
祐介 伊藤
一伸 石橋
慶治 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001285597A priority Critical patent/JP4779271B2/en
Publication of JP2003088757A publication Critical patent/JP2003088757A/en
Application granted granted Critical
Publication of JP4779271B2 publication Critical patent/JP4779271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高温雰囲気下での触媒成分のシンタリングが顕著に抑制され、高い耐久性能を有する触媒に関する。
【0002】
【従来の技術】
自動車用エンジン等の内燃機関から排出される排気ガスには、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOX)等が含まれ、これらの有害物質は、一般に、白金(Pt)、金(Au)、パラジウム(Pd)、ルテニウム(Ru)、ロジウム(Rh)等の貴金属を触媒成分とする排気ガス浄化用触媒によって浄化される。
【0003】
この排気ガス浄化用触媒は、通常、金属酸化物の担体に上記の触媒成分を担持して構成されるが、これらの有害物質の浄化反応を効率的に促進するためには、触媒成分が排気ガスとの高い接触面積を呈するように、担体上に触媒成分が高分散に担持されることが必要である。そして、この高分散の担持状態が、排気ガス雰囲気下で経時的に維持されることが必要である。
【0004】
例えば、自動車用エンジンの排気ガス浄化用触媒の場合、常温と約1000℃の間で温度が繰り返して変動し、かつ比較的HCとCOの濃度が高くてO2濃度が低い還元性雰囲気と、比較的HCとCOの濃度が低くてO2濃度が高い酸化性雰囲気が繰り返される条件下で、この高分散の担持状態が維持される必要がある。
【0005】
しかしながら、上記の貴金属の触媒成分には、こうした雰囲気に長期間曝されると、触媒成分が担体上を移動して肥大化した粒子を形成する、いわゆるシンタリングを生じる性質があり、このシンタリングは、特に高温の酸化性雰囲気下において促進されやすい。
このため、触媒成分は、排気ガスとの高い接触面積を維持することができず、排気ガスの浄化性能が経時的に低下するという問題がある。
【0006】
ところで、本出願人は、先に、触媒成分の金属を合金化することにより触媒活性を高めるといった着想に基づき、特開平11−156193号公報において、貴金属を含む合金触媒を提案している。しかし、この公報においては、合金触媒のシンタリング抑制に関する特段の開示はしていない。
【0007】
【発明が解決しようとする課題】
したがって、本発明は、かかるシンタリングが抑制され、経時的に安定して高い触媒性能を発揮する触媒を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の目的は、担体上にPtが担持された第1触媒、及び担体上にRhが担持された第2触媒を含んでなり、第1触媒と第2触媒の少なくとも一方にAuがさらに担持されたことを特徴とする触媒によって達成される。
即ち、本発明の触媒は、第1の態様において、Pt、Rh、及びAuが担体上に担持されてなる触媒であって、PtとRhが、それぞれ別々の担体に担持されて構成される触媒である。
【0009】
また、上記の目的は、担体上に、Pt、Rh、及びAuが共存する合金粒子が担持されてなることを特徴とする触媒によって達成される。
即ち、本発明の触媒は、第2の態様において、Pt、Rh、及びAuが、担体上で1つの合金粒子を形成した触媒である。
【0010】
こうした本発明の触媒において、シンタリングが抑制され、高い排気ガス浄化性能を継続して発揮することができるメカニズムは、以下のように考えられる。
第1の態様の触媒は、Pt、Rh、及びAuの触媒成分を、例えば、溶解性の貴金属化合物の溶液を用いて担体上に担持して調製することで、触媒成分は、担体の表面全体に、極めて微細な高分散の状態で担持されることができる。
【0011】
このようにして調製された触媒は、シンタリングが有意には進行していない使用開始後の一定期間は、高分散の担持状態の触媒成分により、高い初期活性の触媒性能を発揮することができる。
次いで、高温の排気ガスに長期間曝されることにより、触媒成分のシンタリングが生じるが、ここで、第1の態様の触媒は、シンタリングによって、第2の態様の触媒に移行し、この第2の態様の触媒においては、実質的にシンタリングが停止する。
【0012】
即ち、Pt、Rh、及びAuが担体上に担持され、PtとRhが、それぞれ別々の担体に高分散の状態で担持されたこれらの触媒成分は、高温の排気ガスに曝されることにより担体上を移動し、もしくは揮発性の酸化物を形成することにより気相を介した物質移動が生じ、Pt、Rh、及びAuが、担体上で合金粒子を形成する。この合金粒子は、高温の排気ガスにさらに曝されても、粒子径のそれ以上の肥大化が実質的に起こらず、触媒成分の高分散の担持状態が維持され、高い触媒性能を継続して発揮することができる。
また、この第2の態様の触媒への移行は、PtとRhを別々の担体に担持することで遅延され、それにより、初期活性の期間をより長くすることができる。
【0013】
こうした第1の態様の触媒から第2の態様の触媒に移行し、第2の態様の触媒においては実質的にシンタリングが停止することは、後述の実施例に記載するように、透過型電子顕微鏡(TEM)による形態観察によって実証されている。
このように、本発明は、Pt、Rh、及びAuが、シンタリングによって合金粒子を形成し、それによって以降のシンタリングが実質的に停止するといった特異な現象に基づくものである。
【0014】
このような現象が起きる理由は、必ずしも明らかではないが、AuとPt、AuとRhがそれぞれ合金を形成し、これらの合金は担体上を移動するが、この移動によりPtとRhとAuが合体すると高融点のPt-Rh-Au合金を形成するため、以降の移動が抑制されるものと推測される。
【0015】
【発明の実施の形態】
本発明の第1の態様は、担体上にPtが担持された第1触媒、及び担体上にRhが担持された第2触媒を含んでなり、第1触媒と第2触媒の少なくとも一方にAuがさらに担持されたことを特徴とする触媒である。
第1触媒は、担体上にPtが担持されて構成され、この担体は、アルミナ、シリカ、ジルコニアのような酸化物のほか、シリカ-アルミナ、ジルコニア-セリア、アルミナ-セリア-ジルコニア、セリア-ジルコニア-イットリア、ジルコニア-カルシアのような複合酸化物からなるものが好適に使用可能である。
【0016】
このような担体にPtを担持するのは、例えば、白金ジニトロジアンミンPt(NH3)2(NO2)2、塩化白金酸H2PtCl6・6H2O等の白金化合物を用い、蒸発乾固法、沈殿法、イオン交換法、吸着法、還元析出法等によって行うことができる。次いで、好ましくは、大気中で300〜700℃の温度に数時間加熱することにより、Ptの担持をより強固にすることができる。
【0017】
第2触媒は、担体上にRhが担持されて構成され、同様に、上記の酸化物又は複合酸化物の担体上に、硝酸ロジウムRh(NO3)3、塩化ロジウムRhCl3等のロジウム化合物を用いて蒸発乾固法、沈殿法、イオン交換法、吸着法、還元析出法等によってRhを担持することにより得ることができる。
なお、第1触媒の担体と第2触媒の担体は、第1触媒と第2触媒が別々に調製されるならば、同じ種類のものであることができる。
【0018】
Auは、第1触媒と第2触媒の少なくとも一方に担持され、上記のPt又はRhの担持の前又は後に、第1触媒と第2触媒の一方、あるいは第1触媒と第2触媒の双方に、蒸発乾固法、沈殿法、イオン交換法、吸着法、還元析出法等によって担持させることができる。
好ましくは、このAuの担持は、水溶液中でAuイオンを生成する金化合物の水溶液に還元剤を添加し、Auイオンを還元することによって不溶性にし、Au粒子を析出させることにより行う。
【0019】
具体的には、塩化金酸HAuCl4・4H2O、塩化金AuCl3等の金化合物を、第1触媒、第2触媒、又は第1触媒と第2触媒を分散させた水系スラリーに溶解させ、このスラリーに、チオ硫酸ナトリウムNa223、チオ硫酸カリウムK223、チオ硫酸アンモニウム(NH4)223、亜硫酸ナトリウムNa2SO3、メタ重亜硫酸ナトリウムNa225、メタ重亜硫酸カリウムK225、メタ重亜硫酸アンモニウム(NH4)225、ヒドラジンN24、テトラヒドロホウ酸ナトリウムNaBH4、ホウ水素化物、次亜リン酸塩、クエン酸塩等の還元剤と、L-アスコルビン酸ナトリウムC676Na、エチレンジアミン四酢酸塩等の緩衝剤を添加してAuイオンを還元し、Au微粒子を第1触媒、第2触媒、又は第1触媒と第2触媒の上に析出させる。
【0020】
こうした還元析出によれば、直径約1nm(ナノメートル)のレベルのAu微粒子を、実質的に全てPt又はRhの上に析出させることが比較的容易である。
第1触媒のみにAuを担持させた第1の態様の触媒は、このようにしてAuを担持させた第1触媒を調製し、次いで、第2触媒と、例えば、ボールミル、ヘンシェルミキサー等によって混合して得ることができ、第2触媒のみにAuを担持させた第1の態様の触媒は、同様に、Auを担持させた第2触媒と第1触媒を混合して得ることができる。
また、第1触媒と第2触媒の双方にAuを担持させた第1の態様の触媒は、第1触媒と第2触媒を、例えば、ボールミル、ヘンシェルミキサー等によって混合した後にAuを担持して得ることができる。
【0021】
このようにして得られる第1の態様の触媒は、好ましくは、Pt/Auのモル比が200/1〜1/1で、かつRh/Auのモル比が200/1〜1/1であり、より好ましくは、Pt/Auのモル比が200/1〜4/1で、かつRh/Auのモル比が200/1〜7/3となるように原料比を調節して調製される。
なお、Pt、Rh、及びAu以外の金属成分が、Pt、Rh、及びAuの合計質量を基準に数質量%以下の量で含まれていても、本発明の目的において許容されることができる。
【0022】
第2の態様の触媒は、第1の態様の触媒を高温雰囲気に長期間曝すことにより発現し、即ち、第1の態様の触媒に含まれる触媒成分のPt、Rh、及びAuは、移動してこれらが1つの粒子の中に共存する合金粒子を形成し、この合金粒子が第1触媒と第2触媒の双方の担体に担持された状態の第2の態様の触媒が形成される。
この第2の態様の触媒において、触媒成分のPt、Rh、及びAuは、これらの合計質量を基準に少なくとも50質量%、より好ましくは、少なくとも75質量%が、直径約5〜40nmの粒子径の粒子として存在し、Pt/Auのモル比とRh/Auのモル比は、第1の態様の触媒と同等である。
【0023】
この第2の態様の触媒は、第1の態様の触媒の初期活性に比較すると若干の触媒性能の低下を示すものの、通常シンタリングが促進される高温の酸化性雰囲気に曝した後でも、一定の粒子径を維持し、高い排気ガス浄化性能を持続することができる。
【0024】
本発明の触媒が適用された通常のハニカム型排気ガス浄化用触媒は、第1の態様の触媒をモノリス担体にウォッシュコート等により担持して調製することができ、排気ガス浄化用触媒として使用される過程で、又は場合によりこの調製時の焼成工程で、第2の態様の触媒が発現する。
以下、実施例によって本発明をより具体的に説明する。
【0025】
【実施例】
実施例1
硝酸アルミニウム、硝酸セリウム、及び硝酸ジルコニウムを原料として共沈・焼成によって調製したAl23-CeO2-ZrO2複合酸化物粉末(比表面積約100m2/g、Al23/CeO2/ZrO2モル比=2/1/1、表2中「ACZ」と示す。)を担体として用い、この複合酸化物粉末をイオン交換水に分散させ、得られたスラリーにジニトロジアンミン白金を溶解させ、次いで、蒸発乾固と大気中で500℃×2時間の熱処理を行い、Al23-CeO2-ZrO2複合酸化物粉末の上に5.0質量%のPtが担持された第1触媒を得た。
【0026】
別に、ZrO2粉末(比表面積約70m2/g)を担体として用い、このZrO2粉末をイオン交換水に分散させ、得られたスラリーに硝酸ロジウムを溶解させ、次いで、蒸発乾固させることにより、ZrO2粉末の上に1.0質量%のRhを担持させた。
【0027】
このRh担持ZrO2粉末の100gを500ccの60℃のイオン交換水に分散させたスラリーに、下記の濃度となる量で試薬を順次に添加し、穏やかな攪拌下に24時間置くことで塩化金酸からAuを還元析出させた。
HAuCl4・4H2O 2.00×10-2質量%
Na223・5H2O 1.00×10-1質量%
Na2SO3 3.00×10-1質量%
676Na 1.00質量%
【0028】
この還元析出の後、スラリーを濾過・洗浄し、大気中で120℃×2時間の乾燥を行い、次いで、大気中で500℃×2時間の熱処理を行った。これにより、ZrO2粉末の上に0.99質量%のRhと0.01質量%のAuが高分散で担持された第2触媒を得た。
上記の第1触媒と第2触媒を等質量で乳鉢を用いて混合し、圧縮・解砕して、直径約1〜3mmのペレット状の本発明の触媒Aを得た。
【0029】
比較例1
実施例1で調製した5.0質量%のPtを担持したAl23-CeO2-ZrO2複合酸化物粉末と、1.0質量%のRhを担持したZrO2粉末を、実施例1と同様にして、等質量で混合し、圧縮・解砕して、PtとRhを含む直径約1〜3mmのペレット状の比較例の触媒aを得た。
【0030】
−触媒性能評価(1)−
上記の実施例の触媒Aと比較例の触媒aの各2.0gを、実験室用の排気ガス浄化性能評価装置の反応管内部に設置した。次いで、表1に示す組成のA/F=14.4、14.7、又は20.0のモデル雰囲気ガスを流通させ、触媒床温度を20℃/分の速度で昇温させながら、700℃、800℃、又は900℃の温度に高め、それらの温度に3時間曝す耐久処理に供した。
次いで、A/F=14.6(ストイキ)のモデル雰囲気ガスを流通させ、触媒床温度を10℃/分の速度で降温させながら、C36の50%浄化温度(T50)を測定した。ストイキのモデル雰囲気ガスの流量は6.0リットル/分/0.03g貴金属とした。
【0031】
図1に、この耐久処理温度とモデル雰囲気ガスに対するT50の関係を示す。図1に示した結果より、比較例の触媒aでは、800℃の耐久処理により、特にA/F=14.7のスライトリーンと、A/F=20.0のリーンの雰囲気においてT50が顕著に高くなり、排気ガス浄化性能が大きく低下するのに対し、実施例の触媒Aでは、この低下が顕著に軽減されることが明らかに分かる。
【0032】
−合金触媒の形態観察−
上記の実施例の触媒Aと比較例の触媒aについて、透過型電子顕微鏡(TEM)による形態観察と、エネルギー分散型X線分光分析(EDX)による電子顕微鏡像のスポット領域における元素分析を行った。結果を図2〜4に示す。
図2(a)は、触媒Aの耐久処理前のTEM像であり、図2(b)は、触媒aの耐久処理前のTEM像である。金属粒子は、これらのTEM像からは観察されず、極めて微細な状態で担体上に担持されているものと判断される。
【0033】
図3(a)は、触媒AをA/F=14.7の条件で800℃×3時間の耐久処理に供した後のTEM像であり、シンタリングによって成長した直径約20nmの金属粒子が観察される。この金属粒子をEDXによって元素分析したところ、Pt、Rh、及びAuの3成分が分析され、1つの粒子の中にこれらの3成分が共存することが確認された。
図3(b)は、比較例1の触媒aをA/F=14.7の条件で800℃×3時間の耐久処理に供した後のTEM像であり、同様に、シンタリングによって成長した直径約100nmの金属粒子が観察される。この金属粒子をEDXによって元素分析したところPtのみが分析された。
【0034】
図4(a)は、触媒Aをより厳しいA/F=20.0の条件で800℃×3時間の耐久処理に供した後のTEM像であり、シンタリングによって成長した直径約20nm金属粒子が観察されるが、A/F=14.7での耐久処理後と同等の粒子径であることが分かる。この金属粒子をEDXによって元素分析したところ、同様に1つの粒子の中にPt、Rh、及びAuの3成分が共存することが確認された。
【0035】
図4(b)は、触媒aをより厳しいA/F=20.0の条件で800℃×3時間の耐久処理に供した後のTEM像であり、シンタリングによってさらに大きく成長した直径約400nmの金属粒子が観察される。この粒子をEDXによって元素分析したところPtのみが分析された。
【0036】
これらのTEM像とEDX分析より、触媒Aと触媒aは、いずれも、耐久処理前は触媒成分がTEM像によっては観察されない微細な状態で存在するが、耐久処理によって触媒成分がシンタリングし、TEM像によって観察される直径の粒子に成長することが分かる。しかしながら、触媒Aでは、直径約20nmを上回る粒子は観察されず、シンタリングは一定の粒子径になると停止するのに対し、触媒aでは、直径約400nmもの大粒子が観察され、シンタリングが継続することが分かる。
【0037】
また、PtとRhが別な担体に担持されて調製された第1の態様の触媒から、1つの粒子の中にPt、Rh、及びAuの3成分が共存する第2の態様の触媒が発現することが分かる。そして、この3成分の共存状態が、シンタリングの抑制作用を奏するものと推定され、図1に示すような、耐久処理によって顕著には排気ガス浄化性能が低下しない効果をもたらすものと考えられる。
【0038】
実施例2〜5
実施例1と同様にして、表2に摘要を示す実施例2〜5の第1の態様の触媒B〜Eを調製した。
第1触媒の調製として、実施例2〜5は、いずれもジニトロジアンミン白金の蒸発乾固によって、Al23-CeO2-ZrO2複合酸化物粉末の上にPtを担持させ、次いで、実施例2、3、5では、実施例1と同様にしてHAuCl4・4H2OからAuを還元析出させて第1触媒を調製し、実施例4では、この還元析出を行わずに、そのまま第1触媒とした。
【0039】
第2触媒の調製として、実施例2〜3では、担体にAl23粉末(比表面積約180m2/g)を用い、実施例4〜5では、実施例1で用いたものと同じZrO2粉末を用い、これらの担体に、実施例1と同様にして、硝酸ロジウムの蒸発乾固によってRhを担持させた。次いで、実施例1と同様にしてHAuCl4・4H2OからAuを還元析出させ、実施例2、4、5の第2触媒を調製した。実施例3ではAl23粉末の上にRhを担持させたものをそのまま第2触媒とした。
【0040】
得られた第1触媒と第2触媒をそれぞれ等質量で混合して、PtとRhとAuの3成分を含む第1の態様の触媒B〜Eを得た。
表2に示した摘要において、「担持量」は担体と貴金属の合計質量を基準にした貴金属の質量%であり、「比率」はPt又はRh/Auの質量比を示す。
【0041】
比較例2
実施例5におけるAu還元析出を行わない以外は実施例4と同様にして、表2に摘要を示すPtとRhの2成分を含む比較例の触媒bを得た。
【0042】
実施例6〜9
実施例1と同様にして、表3に摘要を示す実施例6〜9の第1の態様の触媒F〜Iを調製した。
第1触媒の調製として、担体はいずれも、硝酸セリウム、硝酸ジルコニウム、及び硝酸イットリウムを原料として共沈・焼成によって調製したCeO2-ZrO2-Y23複合酸化物粉末(比表面積約70m2/g、CeO2/ZrO2/Y23モル比=50/47/3、表3中「CZY」と示す。)とし、いずれもジニトロジアンミン白金の蒸発乾固によって、この複合酸化物粉末の上にPtを担持させた。
次いで、実施例6、7、9では、実施例1と同様にしてHAuCl4・4H2OからAuを還元析出させて第1触媒を調製し、実施例8では、この還元析出を行わずに、そのまま第1触媒とした。
【0043】
第2触媒の調製として、実施例6〜8では、担体として、硝酸ジルコニウム、及び硝酸カルシウムを原料として共沈・焼成によって調製しZrO2-CaO複合酸化物粉末(比表面積約80m2/g、ZrO2/CaOモル比=24/1、表3中「ZCO」と示す。)を用い、実施例9では、実施例1で用いたものと同じZrO2粉末を用い、これらの担体に、実施例1と同様にして、硝酸ロジウムの蒸発乾固によってRhを担持させた。
【0044】
次いで、実施例1と同様にしてHAuCl4・4H2OからAuを還元析出させ、実施例6、8、9の第2触媒を調製した。実施例7ではZrO2-CaO複合酸化物粉末の上にRhを担持させたものをそのまま第2触媒とした。
得られた第1触媒と第2触媒をそれぞれ等質量で混合して、PtとRhとAuの3成分を含む触媒F〜Iを得た。
比較例3
実施例9におけるAu還元析出を行わない以外は実施例9と同様にして、表2に摘要を示すPtとRhの2成分を含む比較例の触媒cを得た。
【0045】
−触媒性能評価(2)−
上記の実施例2〜9、比較例2〜3の各合金触媒の各100gに、40質量%硝酸アルミニウム水溶液を30g、ベーマイトを1.5g、イオン交換水を60cc加えてスラリーを作成した。
【0046】
このスラリーを直径30mm×長さ50mmのモノリス担体(壁厚75μm、セル密度93セル/cm2、六角セル)にウォッシュコートし、大気中で、100℃×2時間の仮乾燥と250℃×3時間の乾燥の後、550℃で2時間焼成し、モノリス担体に上記の各触媒がコートされた排気ガス浄化用触媒を得た。
これらの各排気ガス浄化用触媒を、常圧流通式の耐久処理装置に配置し、空気/燃料(A/F)の比が14.6/1のモデル排気ガス雰囲気下で900℃×5時間の加熱を行う耐久処理に供した。
【0047】
耐久処理後の各排気ガス浄化用触媒を、固定床流通反応装置に配置し、下記のリーン雰囲気とリッチ雰囲気が1秒間ごとに切り替わるモデル排気ガスを流通させ、触媒温度を高めながらC36の浄化率を測定した。
リッチ雰囲気のガス組成:
0.15%C36+1.05%CO+0.33%O2+0.3%NO
+0.35%H2+14.19%CO2+10%H2O (残余N2
リーン雰囲気のガス組成:
0.05%C36+0.14%CO+0.94%O2+0.34%NO
+14.27%CO2+10%H2O (残余N2
この排気ガス浄化性能試験において、モデル排気ガスの流量は30リットル/分、昇温速度は25℃/分とした。
【0048】
各触媒のC36の50%浄化率(T50)を図5〜6にまとめて示す。この結果より、PtとRhとAuの3成分を含む本発明の触媒は、PtとRhの2成分を含む比較例の触媒よりも、顕著に排気ガス浄化性能が高いことが分かり、この理由は、実施例1の触媒Aと同様に、触媒成分のシンタリングが抑制されたためと考えられる。また、このシンタリング抑制の効果は、第1触媒と第2触媒のいずれか一方又は双方にAuが担持されたときに得られることが分かる。
【0049】
【発明の効果】
触媒成分のシンタリングが抑制され、経時的に安定して触媒性能を発揮する触媒を提供することができる。
【0050】
【表1】

Figure 0004779271
【0051】
【表2】
Figure 0004779271
【0052】
【表3】
Figure 0004779271

【図面の簡単な説明】
【図1】耐久処理条件と触媒浄化性能の関係を示すグラフである。
【図2】触媒成分の粒子構造を示す透過型電子顕微鏡写真である。
【図3】触媒成分の粒子構造を示す透過型電子顕微鏡写真である。
【図4】触媒成分の粒子構造を示す透過型電子顕微鏡写真である。
【図5】触媒浄化性能を比較したグラフである。
【図6】触媒浄化性能を比較したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst having a high durability performance in which sintering of a catalyst component under a high temperature atmosphere is remarkably suppressed.
[0002]
[Prior art]
Exhaust gas discharged from internal combustion engines such as automobile engines includes carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO x ), etc. These harmful substances are generally platinum. It is purified by an exhaust gas purifying catalyst using a noble metal such as (Pt), gold (Au), palladium (Pd), ruthenium (Ru), rhodium (Rh) as a catalyst component.
[0003]
This exhaust gas purifying catalyst is usually configured by supporting the above catalyst component on a metal oxide support. However, in order to efficiently promote the purification reaction of these harmful substances, the catalyst component is exhausted. It is necessary that the catalyst component be supported in a highly dispersed manner on the support so as to exhibit a high contact area with the gas. This highly dispersed support state needs to be maintained over time in an exhaust gas atmosphere.
[0004]
For example, in the case of an exhaust gas purifying catalyst for an automobile engine, a reducing atmosphere in which the temperature repeatedly fluctuates between room temperature and about 1000 ° C., the HC and CO concentrations are relatively high, and the O 2 concentration is low, This highly dispersed support state needs to be maintained under conditions in which an oxidizing atmosphere having relatively low HC and CO concentrations and high O 2 concentration is repeated.
[0005]
However, the above-mentioned precious metal catalyst component has the property of causing so-called sintering, when the catalyst component is exposed to such an atmosphere for a long period of time, forming particles that are enlarged by moving on the support. Is easily promoted particularly in a high-temperature oxidizing atmosphere.
For this reason, the catalyst component cannot maintain a high contact area with the exhaust gas, and there is a problem that the exhaust gas purification performance decreases with time.
[0006]
By the way, the present applicant has previously proposed an alloy catalyst containing a noble metal in Japanese Patent Application Laid-Open No. 11-156193, based on the idea of increasing the catalytic activity by alloying the metal of the catalyst component. However, this publication does not disclose any particulars regarding suppression of sintering of the alloy catalyst.
[0007]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a catalyst in which such sintering is suppressed and which stably exhibits high catalyst performance over time.
[0008]
[Means for Solving the Problems]
The above object includes a first catalyst in which Pt is supported on a support and a second catalyst in which Rh is supported on a support, and Au is further supported on at least one of the first catalyst and the second catalyst. This is achieved by a catalyst characterized in that.
That is, the catalyst according to the present invention is a catalyst in which Pt, Rh, and Au are supported on a carrier in the first embodiment, and each of Pt and Rh is supported on separate carriers. It is.
[0009]
Further, the above object is achieved by a catalyst characterized in that alloy particles in which Pt, Rh, and Au coexist are supported on a support.
That is, in the second aspect, the catalyst of the present invention is a catalyst in which Pt, Rh, and Au form one alloy particle on the support.
[0010]
In such a catalyst of the present invention, the mechanism by which sintering is suppressed and high exhaust gas purification performance can be continuously exhibited is considered as follows.
The catalyst of the first aspect is prepared by supporting Pt, Rh, and Au catalyst components on a support using, for example, a solution of a soluble noble metal compound. Furthermore, it can be supported in a very fine and highly dispersed state.
[0011]
The catalyst prepared in this way can exhibit high initial activity catalyst performance due to the highly dispersed supported catalyst component for a certain period after the start of use in which sintering has not progressed significantly. .
Subsequently, sintering of the catalyst component occurs due to long-term exposure to high-temperature exhaust gas. Here, the catalyst of the first aspect is transferred to the catalyst of the second aspect by sintering. In the catalyst of the second aspect, sintering substantially stops.
[0012]
That is, Pt, Rh, and Au are supported on a carrier, and Pt and Rh, each of which is supported in a highly dispersed state on separate carriers, are exposed to a high-temperature exhaust gas. By moving up or forming volatile oxides, mass transfer occurs through the gas phase, and Pt, Rh, and Au form alloy particles on the support. Even if the alloy particles are further exposed to high-temperature exhaust gas, no further enlargement of the particle size occurs, the highly dispersed support state of the catalyst components is maintained, and high catalyst performance is maintained. It can be demonstrated.
In addition, the transition to the catalyst of the second aspect is delayed by loading Pt and Rh on separate carriers, thereby allowing a longer period of initial activity.
[0013]
The transition from the catalyst of the first aspect to the catalyst of the second aspect, and the sintering substantially stops in the catalyst of the second aspect, as described in Examples below. This is demonstrated by morphological observation with a microscope (TEM).
As described above, the present invention is based on a unique phenomenon in which Pt, Rh, and Au form alloy particles by sintering, thereby substantially stopping the subsequent sintering.
[0014]
The reason why such a phenomenon occurs is not necessarily clear, but Au and Pt, Au and Rh each form an alloy, and these alloys move on the carrier, but this movement causes Pt, Rh, and Au to coalesce. Then, since a high melting point Pt—Rh—Au alloy is formed, it is presumed that subsequent movement is suppressed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The first aspect of the present invention includes a first catalyst in which Pt is supported on a support, and a second catalyst in which Rh is supported on a support, and Au is provided on at least one of the first catalyst and the second catalyst. Is a catalyst further supported.
The first catalyst is formed by supporting Pt on a support, and this support includes oxides such as alumina, silica and zirconia, silica-alumina, zirconia-ceria, alumina-ceria-zirconia, and ceria-zirconia. A composite oxide such as yttria and zirconia-calcia can be preferably used.
[0016]
Pt is supported on such a carrier, for example, by using a platinum compound such as platinum dinitrodiammine Pt (NH 3 ) 2 (NO 2 ) 2 or chloroplatinic acid H 2 PtCl 6 .6H 2 O, and evaporating to dryness. It can be carried out by the method, precipitation method, ion exchange method, adsorption method, reduction precipitation method and the like. Next, it is preferable that the support of Pt be further strengthened by heating to a temperature of 300 to 700 ° C. for several hours in the atmosphere.
[0017]
The second catalyst is configured such that Rh is supported on a support. Similarly, a rhodium compound such as rhodium nitrate Rh (NO 3 ) 3 or rhodium chloride RhCl 3 is formed on the above oxide or composite oxide support. And can be obtained by carrying Rh by evaporation to dryness, precipitation, ion exchange, adsorption, reduction precipitation or the like.
Note that the carrier for the first catalyst and the carrier for the second catalyst can be of the same type as long as the first catalyst and the second catalyst are prepared separately.
[0018]
Au is supported on at least one of the first catalyst and the second catalyst. Before or after the above-described support of Pt or Rh, Au is applied to one of the first catalyst and the second catalyst, or both the first catalyst and the second catalyst. It can be supported by the evaporation to dryness method, precipitation method, ion exchange method, adsorption method, reduction precipitation method and the like.
Preferably, the loading of Au is performed by adding a reducing agent to an aqueous solution of a gold compound that generates Au ions in an aqueous solution, reducing the Au ions to insolubilize, and precipitating Au particles.
[0019]
Specifically, a gold compound such as chloroauric acid HAuCl 4 .4H 2 O and gold chloride AuCl 3 is dissolved in the first catalyst, the second catalyst, or an aqueous slurry in which the first catalyst and the second catalyst are dispersed. In this slurry, sodium thiosulfate Na 2 S 2 O 3 , potassium thiosulfate K 2 S 2 O 3 , ammonium thiosulfate (NH 4 ) 2 S 2 O 3 , sodium sulfite Na 2 SO 3 , sodium metabisulfite Na 2 S 2 O 5 , potassium metabisulfite K 2 S 2 O 5 , ammonium metabisulfite (NH 4 ) 2 S 2 O 5 , hydrazine N 2 H 4 , sodium tetrahydroborate NaBH 4 , borohydride, hypophosphorous acid A reducing agent such as acid salt and citrate and a buffer such as sodium L-ascorbate C 6 H 7 O 6 Na and ethylenediaminetetraacetate are added to reduce Au ions, and Au fine particles are converted into the first catalyst, Second catalyst Or deposited on the first catalyst and the second catalyst.
[0020]
According to such reduction deposition, it is relatively easy to deposit substantially all Au fine particles having a diameter of about 1 nm (nanometer) on Pt or Rh.
For the catalyst of the first mode in which Au is supported only on the first catalyst, the first catalyst supporting Au is prepared in this way, and then mixed with the second catalyst by, for example, a ball mill, a Henschel mixer, or the like. Similarly, the catalyst of the first aspect in which Au is supported only on the second catalyst can be obtained by mixing the second catalyst supporting Au and the first catalyst.
In addition, the catalyst of the first aspect in which Au is supported on both the first catalyst and the second catalyst, the Au catalyst is supported after the first catalyst and the second catalyst are mixed by, for example, a ball mill, a Henschel mixer or the like. Obtainable.
[0021]
The catalyst of the first aspect thus obtained preferably has a Pt / Au molar ratio of 200/1 to 1/1 and a Rh / Au molar ratio of 200/1 to 1/1. More preferably, the raw material ratio is adjusted so that the molar ratio of Pt / Au is 200/1 to 4/1 and the molar ratio of Rh / Au is 200/1 to 7/3.
In addition, even if a metal component other than Pt, Rh, and Au is contained in an amount of several mass% or less based on the total mass of Pt, Rh, and Au, it can be allowed for the purpose of the present invention. .
[0022]
The catalyst of the second aspect is expressed by exposing the catalyst of the first aspect to a high temperature atmosphere for a long period of time, that is, the catalyst components Pt, Rh, and Au contained in the catalyst of the first aspect move. Thus, the alloy particles coexisting in one particle are formed, and the catalyst of the second mode is formed in a state where the alloy particles are supported on both carriers of the first catalyst and the second catalyst.
In this second aspect of the catalyst, the catalyst components Pt, Rh, and Au are at least 50% by weight, more preferably at least 75% by weight, based on their total weight, with a particle size of about 5-40 nm in diameter. The Pt / Au molar ratio and the Rh / Au molar ratio are equivalent to those of the catalyst of the first aspect.
[0023]
Although the catalyst of the second aspect shows a slight decrease in the catalyst performance as compared with the initial activity of the catalyst of the first aspect, it remains constant even after exposure to a high-temperature oxidizing atmosphere in which sintering is usually promoted. Thus, the exhaust gas purification performance can be maintained.
[0024]
A normal honeycomb type exhaust gas purification catalyst to which the catalyst of the present invention is applied can be prepared by carrying the catalyst of the first aspect on a monolith support by a wash coat or the like, and is used as an exhaust gas purification catalyst. In this process, or in some cases, in the calcination step during the preparation, the catalyst of the second aspect is developed.
Hereinafter, the present invention will be described more specifically with reference to examples.
[0025]
【Example】
Example 1
Al 2 O 3 —CeO 2 —ZrO 2 composite oxide powder prepared by coprecipitation / firing using aluminum nitrate, cerium nitrate and zirconium nitrate as raw materials (specific surface area of about 100 m 2 / g, Al 2 O 3 / CeO 2 / ZrO 2 molar ratio = 2/1/1, indicated as “ACZ” in Table 2), this composite oxide powder was dispersed in ion-exchanged water, and dinitrodiammine platinum was dissolved in the resulting slurry. Next, evaporation to dryness and heat treatment at 500 ° C. for 2 hours in the atmosphere were performed, and a first mass in which 5.0 mass% of Pt was supported on the Al 2 O 3 —CeO 2 —ZrO 2 composite oxide powder. A catalyst was obtained.
[0026]
Separately, ZrO 2 powder (specific surface area of about 70 m 2 / g) was used as a carrier, this ZrO 2 powder was dispersed in ion-exchanged water, rhodium nitrate was dissolved in the resulting slurry, and then evaporated to dryness. Further, 1.0% by mass of Rh was supported on the ZrO 2 powder.
[0027]
Reagents were sequentially added in an amount of the following concentration to a slurry in which 100 g of this Rh-supported ZrO 2 powder was dispersed in 500 cc of ion-exchanged water at 60 ° C., and placed under gentle stirring for 24 hours. Au was reduced and precipitated from the acid.
HAuCl 4 · 4H 2 O 2.00 × 10 -2 mass%
Na 2 S 2 O 3 .5H 2 O 1.00 × 10 −1 mass%
Na 2 SO 3 3.00 × 10 −1 mass%
C 6 H 7 O 6 Na 1.00% by mass
[0028]
After this reduction precipitation, the slurry was filtered and washed, dried in air at 120 ° C. for 2 hours, and then heat-treated in air at 500 ° C. for 2 hours. As a result, a second catalyst in which 0.99% by mass of Rh and 0.01% by mass of Au were supported in a highly dispersed manner on the ZrO 2 powder was obtained.
Said 1st catalyst and 2nd catalyst were mixed with an equal mass using a mortar, and it compressed and crushed, and obtained the catalyst A of this invention of the pellet form of a diameter of about 1-3 mm.
[0029]
Comparative Example 1
The Al 2 O 3 —CeO 2 —ZrO 2 composite oxide powder supporting 5.0% by mass of Pt and the ZrO 2 powder supporting 1.0% by mass of Rh prepared in Example 1 were used in Example 1. In the same manner as above, they were mixed at an equal mass, and compressed and crushed to obtain pellets of comparative catalyst a having a diameter of about 1 to 3 mm containing Pt and Rh.
[0030]
-Catalyst performance evaluation (1)-
2.0 g of each of the catalyst A of the above example and the catalyst a of the comparative example was installed inside the reaction tube of the laboratory exhaust gas purification performance evaluation apparatus. Next, a model atmosphere gas of A / F = 14.4, 14.7, or 20.0 having the composition shown in Table 1 was circulated, and the catalyst bed temperature was raised at a rate of 20 ° C./min. , 800 ° C. or 900 ° C., and subjected to an endurance treatment by exposing to those temperatures for 3 hours.
Next, a 50% purification temperature (T50) of C 3 H 6 was measured while flowing a model atmosphere gas of A / F = 14.6 (Stoichi) and lowering the catalyst bed temperature at a rate of 10 ° C./min. . The Stiki model atmosphere gas flow rate was 6.0 liters / minute / 0.03 g noble metal.
[0031]
FIG. 1 shows the relationship between the endurance treatment temperature and T50 for the model atmosphere gas. From the results shown in FIG. 1, in the catalyst a of the comparative example, T50 is remarkable by the endurance treatment at 800 ° C., particularly in the atmosphere of light lean with A / F = 14.7 and lean with A / F = 20.0. It can be clearly seen that the exhaust gas purification performance is greatly reduced and the catalyst A of the embodiment is significantly reduced.
[0032]
-Morphological observation of alloy catalyst-
For the catalyst A of the above example and the catalyst a of the comparative example, morphological observation by transmission electron microscope (TEM) and elemental analysis in the spot region of the electron microscope image by energy dispersive X-ray spectroscopy (EDX) were performed. . The results are shown in FIGS.
2A is a TEM image before the endurance treatment of the catalyst A, and FIG. 2B is a TEM image before the endurance treatment of the catalyst a. The metal particles are not observed from these TEM images, and are judged to be supported on the carrier in a very fine state.
[0033]
FIG. 3 (a) is a TEM image after subjecting the catalyst A to an endurance treatment at 800 ° C. for 3 hours under the condition of A / F = 14.7, and metal particles having a diameter of about 20 nm grown by sintering. Observed. When this metal particle was subjected to elemental analysis by EDX, three components of Pt, Rh, and Au were analyzed, and it was confirmed that these three components coexist in one particle.
FIG. 3B is a TEM image after subjecting the catalyst a of Comparative Example 1 to an endurance treatment at 800 ° C. for 3 hours under the condition of A / F = 14.7. Similarly, the catalyst a grew by sintering. Metal particles with a diameter of about 100 nm are observed. When this metal particle was elementally analyzed by EDX, only Pt was analyzed.
[0034]
FIG. 4 (a) is a TEM image after subjecting the catalyst A to an endurance treatment at 800 ° C. for 3 hours under a more severe condition of A / F = 20.0, and a metal particle having a diameter of about 20 nm grown by sintering. However, it can be seen that the particle diameter is the same as that after the durability treatment at A / F = 14.7. Elemental analysis of the metal particles by EDX confirmed that three components of Pt, Rh, and Au coexist in one particle.
[0035]
FIG. 4 (b) is a TEM image after subjecting the catalyst a to endurance treatment at 800 ° C. for 3 hours under more severe A / F = 20.0 conditions. Metal particles are observed. When this particle was subjected to elemental analysis by EDX, only Pt was analyzed.
[0036]
From these TEM images and EDX analysis, both catalyst A and catalyst a exist in a fine state where the catalyst component is not observed by the TEM image before the durability treatment, but the catalyst component is sintered by the durability treatment, From the TEM image, it can be seen that the particles grow to the diameters observed. However, in Catalyst A, particles having a diameter of more than about 20 nm are not observed, and sintering stops when the particle diameter becomes constant, whereas in Catalyst a, large particles having a diameter of about 400 nm are observed and sintering continues. I understand that
[0037]
In addition, from the catalyst of the first aspect prepared by supporting Pt and Rh on different carriers, the catalyst of the second aspect in which three components of Pt, Rh, and Au coexist in one particle is expressed. I understand that The coexistence state of these three components is presumed to have a sintering suppressing effect, and it is considered that the exhaust gas purification performance is not significantly reduced by the durability treatment as shown in FIG.
[0038]
Examples 2-5
In the same manner as in Example 1, Catalysts B to E of the first embodiment of Examples 2 to 5 which are summarized in Table 2 were prepared.
As the preparation of the first catalyst, Examples 2 to 5 were all carried out by supporting Pt on the Al 2 O 3 —CeO 2 —ZrO 2 composite oxide powder by evaporation to dryness of dinitrodiammine platinum. In Examples 2, 3, and 5, the first catalyst was prepared by reducing and precipitating Au from HAuCl 4 · 4H 2 O in the same manner as in Example 1. In Example 4, the first catalyst was used as it was without performing this reduction and precipitation. One catalyst was used.
[0039]
As the preparation of the second catalyst, in Examples 2 to 3, Al 2 O 3 powder (specific surface area of about 180 m 2 / g) was used as the carrier, and in Examples 4 to 5, the same ZrO as that used in Example 1 was used. Using these two powders, Rh was supported on these carriers by evaporation to dryness of rhodium nitrate in the same manner as in Example 1. Subsequently, Au was reduced and precipitated from HAuCl 4 .4H 2 O in the same manner as in Example 1 to prepare second catalysts of Examples 2, 4, and 5. In Example 3, a material in which Rh was supported on Al 2 O 3 powder was used as the second catalyst as it was.
[0040]
The obtained first catalyst and second catalyst were mixed in equal masses to obtain first to fifth catalysts B to E containing three components of Pt, Rh and Au.
In the summary shown in Table 2, “supported amount” is the mass% of the noble metal based on the total mass of the support and the noble metal, and “ratio” indicates the mass ratio of Pt or Rh / Au.
[0041]
Comparative Example 2
Except not performing Au reduction precipitation in Example 5, it carried out similarly to Example 4, and obtained the catalyst b of the comparative example containing 2 components of Pt and Rh which are summary in Table 2.
[0042]
Examples 6-9
In the same manner as in Example 1, Catalysts F to I of the first embodiment of Examples 6 to 9 which are summarized in Table 3 were prepared.
As for the preparation of the first catalyst, CeO 2 —ZrO 2 —Y 2 O 3 composite oxide powder (specific surface area of about 70 m) prepared by coprecipitation and calcination using cerium nitrate, zirconium nitrate, and yttrium nitrate as raw materials. 2 / g, CeO 2 / ZrO 2 / Y 2 O 3 molar ratio = 50/47/3, indicated as “CZY” in Table 3.), both of which were obtained by evaporating to dryness of dinitrodiammine platinum. Pt was supported on the powder.
Next, in Examples 6, 7, and 9, the first catalyst was prepared by reducing and precipitating Au from HAuCl 4 · 4H 2 O in the same manner as in Example 1. In Example 8, this reduction and precipitation was not performed. The first catalyst was used as it was.
[0043]
As the preparation of the second catalyst, in Examples 6 to 8, ZrO 2 —CaO composite oxide powder (specific surface area of about 80 m 2 / g, prepared by coprecipitation / calcination using zirconium nitrate as a carrier and calcium nitrate as raw materials) ZrO 2 / CaO molar ratio = 24/1, indicated as “ZCO” in Table 3.) In Example 9, the same ZrO 2 powder as used in Example 1 was used, and these carriers were used. In the same manner as in Example 1, Rh was supported by evaporation to dryness of rhodium nitrate.
[0044]
Subsequently, Au was reduced and precipitated from HAuCl 4 .4H 2 O in the same manner as in Example 1 to prepare second catalysts of Examples 6, 8, and 9. In Example 7, Rh supported on ZrO 2 —CaO composite oxide powder was used as the second catalyst as it was.
The obtained first catalyst and second catalyst were mixed in equal masses to obtain catalysts F to I containing three components of Pt, Rh, and Au.
Comparative Example 3
Except not performing Au reduction precipitation in Example 9, it carried out similarly to Example 9, and obtained the catalyst c of the comparative example containing 2 components of Pt and Rh which are shown in Table 2.
[0045]
-Catalyst performance evaluation (2)-
30 g of 40 mass% aluminum nitrate aqueous solution, 1.5 g of boehmite, and 60 cc of ion-exchanged water were added to 100 g of each of the alloy catalysts of Examples 2 to 9 and Comparative Examples 2 to 3 to prepare slurry.
[0046]
This slurry was wash-coated on a monolith carrier (diameter 30 mm × length 50 mm) (wall thickness 75 μm, cell density 93 cells / cm 2 , hexagonal cell), pre-dried at 100 ° C. × 2 hours and 250 ° C. × 3 in air. After drying for a period of time, it was calcined at 550 ° C. for 2 hours to obtain an exhaust gas purifying catalyst in which the above-mentioned catalyst was coated on a monolith support.
Each of these exhaust gas purifying catalysts is placed in a normal pressure flow type endurance treatment apparatus, and is 900 ° C. × 5 hours in a model exhaust gas atmosphere having an air / fuel (A / F) ratio of 14.6 / 1. This was subjected to an endurance treatment for heating.
[0047]
Each exhaust gas purifying catalyst after the durability treatment was placed in a fixed bed flow reactor, was circulated model exhaust gas lean atmosphere and the rich atmosphere of the following is changed every one second, C 3 H 6 while increasing the catalyst temperature The purification rate was measured.
Rich atmosphere gas composition:
0.15% C 3 H 6 + 1.05% CO + 0.33% O 2 + 0.3% NO
+ 0.35% H 2 + 14.19% CO 2 + 10% H 2 O (residual N 2 )
Lean atmosphere gas composition:
0.05% C 3 H 6 + 0.14% CO + 0.94% O 2 + 0.34% NO
+ 14.27% CO 2 + 10% H 2 O (residual N 2 )
In this exhaust gas purification performance test, the flow rate of the model exhaust gas was 30 liters / minute, and the temperature increase rate was 25 ° C./minute.
[0048]
The 50% purification rate (T50) of C 3 H 6 of each catalyst is summarized in FIGS. From this result, it can be seen that the catalyst of the present invention containing three components of Pt, Rh and Au has significantly higher exhaust gas purification performance than the catalyst of the comparative example containing two components of Pt and Rh. This is considered to be because the sintering of the catalyst component was suppressed as in the catalyst A of Example 1. It can also be seen that this sintering suppression effect is obtained when Au is supported on one or both of the first catalyst and the second catalyst.
[0049]
【The invention's effect】
It is possible to provide a catalyst in which sintering of the catalyst component is suppressed and the catalyst performance is stably exhibited over time.
[0050]
[Table 1]
Figure 0004779271
[0051]
[Table 2]
Figure 0004779271
[0052]
[Table 3]
Figure 0004779271

[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between durability treatment conditions and catalyst purification performance.
FIG. 2 is a transmission electron micrograph showing the particle structure of a catalyst component.
FIG. 3 is a transmission electron micrograph showing the particle structure of a catalyst component.
FIG. 4 is a transmission electron micrograph showing the particle structure of a catalyst component.
FIG. 5 is a graph comparing catalyst purification performance.
FIG. 6 is a graph comparing catalyst purification performance.

Claims (2)

担体上にPtが担持された第1触媒、及び担体上にRhが担持された第2触媒を含んでなり、第1触媒と第2触媒の少なくとも一方にAuがさらに担持されたことを特徴とする排気ガス浄化用触媒。A first catalyst having Pt supported on a carrier and a second catalyst having Rh supported on the carrier, and Au is further supported on at least one of the first catalyst and the second catalyst. Exhaust gas purification catalyst. Pt/Auのモル比が200/1〜1/1であり、かつRh/Auのモル比が200/1〜1/1である請求項1に記載の排気ガス浄化用触媒。The exhaust gas purifying catalyst according to claim 1, wherein the molar ratio of Pt / Au is 200/1 to 1/1, and the molar ratio of Rh / Au is 200/1 to 1/1.
JP2001285597A 2001-09-19 2001-09-19 catalyst Expired - Fee Related JP4779271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001285597A JP4779271B2 (en) 2001-09-19 2001-09-19 catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001285597A JP4779271B2 (en) 2001-09-19 2001-09-19 catalyst

Publications (2)

Publication Number Publication Date
JP2003088757A JP2003088757A (en) 2003-03-25
JP4779271B2 true JP4779271B2 (en) 2011-09-28

Family

ID=19108726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001285597A Expired - Fee Related JP4779271B2 (en) 2001-09-19 2001-09-19 catalyst

Country Status (1)

Country Link
JP (1) JP4779271B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4971918B2 (en) * 2007-01-25 2012-07-11 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP2008270180A (en) * 2007-03-28 2008-11-06 Univ Nagoya Electrode catalyst composition, electrode and fuel cell
JP2012179573A (en) * 2011-03-02 2012-09-20 Toyota Motor Corp Catalyst for purifying exhaust gas, and method for producing the same
US9115621B2 (en) 2011-03-04 2015-08-25 Toyota Jidosha Kabushiki Kaisha Metal particles, exhaust gas purifying catalyst comprising metal particles, and methods for producing them
US9114384B2 (en) 2011-08-23 2015-08-25 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst and method for producing it

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733342B2 (en) * 1989-02-21 1995-04-12 旭硝子株式会社 Method for producing 1,1,1,2-tetrafluoroethane
JP3872153B2 (en) * 1997-02-05 2007-01-24 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP3903598B2 (en) * 1997-09-24 2007-04-11 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP3861489B2 (en) * 1998-01-30 2006-12-20 マツダ株式会社 Exhaust gas purification catalyst and method for producing the same
JP2001205087A (en) * 2000-01-25 2001-07-31 Toyota Motor Corp Catalyst for cleaning exhaust gas

Also Published As

Publication number Publication date
JP2003088757A (en) 2003-03-25

Similar Documents

Publication Publication Date Title
US8404611B2 (en) Exhaust gas purifying catalyst and production method thereof
US6248688B1 (en) Catalyst composition containing oxygen storage components
US5898014A (en) Catalyst composition containing oxygen storage components
JP4715556B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2018511458A (en) Rhodium-containing catalyst for automobile exhaust gas treatment
WO1999032223A1 (en) Exhaust gas cleaning catalyst, process for producing the same, and exhaust gas cleaning method
WO2006068022A1 (en) Combustion catalyst for treating diesel exhaust gas and method for treating diesel exhaust gas
JPH04219140A (en) Catalyst composition containing separated platinum and rhodium
CN106984309A (en) Exhaust gas purifying catalyst and its manufacture method
US20070167319A1 (en) Heat-resistive catalyst and production method thereof
JP4831753B2 (en) Exhaust gas purification catalyst
JP6514112B2 (en) Exhaust gas purification catalyst
JP3275356B2 (en) Method for producing exhaust gas purifying catalyst
JP4779271B2 (en) catalyst
JP6637794B2 (en) Exhaust gas purification catalyst
CN113042047A (en) Catalyst for exhaust gas purification
JP2003290658A (en) Catalyst for cleaning exhaust gas and manufacture method therefor
WO2022249847A1 (en) Exhaust gas purification catalyst
JP2020131111A (en) Exhaust gas purifying catalyst
JP4348928B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2008238106A (en) Catalyst and method for treating exhaust gas
JP7099304B2 (en) Exhaust gas purification catalyst
JP3362532B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3222184B2 (en) Method for producing exhaust gas purifying catalyst
JP4075412B2 (en) Particulate combustion catalyst and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees