JP4765007B2 - Method for producing ferritic grain ultrafine steel plate - Google Patents

Method for producing ferritic grain ultrafine steel plate Download PDF

Info

Publication number
JP4765007B2
JP4765007B2 JP16555399A JP16555399A JP4765007B2 JP 4765007 B2 JP4765007 B2 JP 4765007B2 JP 16555399 A JP16555399 A JP 16555399A JP 16555399 A JP16555399 A JP 16555399A JP 4765007 B2 JP4765007 B2 JP 4765007B2
Authority
JP
Japan
Prior art keywords
workpiece
rolling
roll
cross
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16555399A
Other languages
Japanese (ja)
Other versions
JP2000351040A (en
Inventor
年裕 花村
宏 中嶋
史郎 鳥塚
寿 長井
正 斎藤
信夫 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Nippon Steel Corp
National Institute for Materials Science
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Nippon Steel Corp
National Institute for Materials Science
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Nippon Steel Corp, National Institute for Materials Science, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP16555399A priority Critical patent/JP4765007B2/en
Publication of JP2000351040A publication Critical patent/JP2000351040A/en
Application granted granted Critical
Publication of JP4765007B2 publication Critical patent/JP4765007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、平均粒径2μm以下のフェライト超微粒組織を有する厚さ10mm以上のフェライト粒超微細化鋼厚板の製造方法、並びにその厚板に関するものである。
【0002】
【従来の技術とその課題】
従来の一軸鍛造における、平均粒径2μmの超微細組織を有する厚さ10mm以上の厚板の鍛造工程では、通常非常に大きな圧下荷重が要求され、10000トンクラスの超大型の圧延機が必要とされている。このため、必然的にコストが掛かり、実用上の問題があった。
【0003】
また従来の鍛造機等において、大圧下による鍛造加工の際には、減面率を90%以上にしなければならないという制約をうけていた。
たとえば、Fe−0.15C−0.3Si−1.5Mnという組成を有する供試材を高周波溶解並びに加熱圧延(1523K加熱後、50%圧下)し、これをベースとして650℃で一軸鍛造により1パス加工(75%圧下)した後、直ちに水焼き入れを行ったときの試料断面のSEM組織写真が図9に示されるが、この図9の写真によれば、中心部では細粒化が起こっていることが認められるものの、その領域は精々中心部0.5mm幅の領域のみに過ぎず、その周囲の他の領域はすべて粗大粒が残ったままである。
【0004】
また、微細組織創製についての多軸加工の有効性を明らかにする中で、鍛造や穴型圧延に応用することを試みてきたが、厚板の厚さを大幅に減少させずに組織制御を行うことは難しかった。
そこで、この出願の発明は、以上のとおりの従来の技術的限界を克服し、平均粒径2μmの超微細組織を有する厚さ10mm以上の鋼材厚板であっても、圧下荷重をより軽減して厚板の大きさを大幅に減少させることなく、低コストに、しかもより実際的に均一組織鋼を製造可能とすることのできる、新しい厚板の製造方法と厚板を提供することを課題としている。
【0005】
この出願の発明は、上記の課題を解決するものとして、第1には、厚さ10mm以上で、フェライトの平均粒径が2μm以下である厚板をせん断歪を印加するクロス圧延により製造する方法であって、圧延ロールの軸心を、被加工材の幅方向に対して、該被加工材の送り方向に傾斜させ、かつ傾斜方向を上下において互いに逆にしてあるとともに、上下の圧延ロールの直径が長手方向中央に向かうほど漸減する鼓状である圧延装置により、被加工材を400℃以上Ac3以下の温度域で、クロス角を10°まで大きくしロール間距離をフラットにして多軸歪を与え、1パスにて圧延することを特徴とするフェライト粒超微細化鋼厚板の製造方法を提供する。
【0006】
以上のとおりのこの出願の発明は、厚板の厚さを大幅に減少させずに組織制御を行うための検討を行い、その結果に基づいて、多軸同時加圧加工により、多方向の変形を同時に導入し、圧下率を大きくとらなくても、すなわち、厚板の厚さを大幅に減少させることなく、加工可能としている。
【0007】
【発明の実施の形態】
この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。
まずこの出願の発明の方法において特徴的なことは、鋼材等の被加工材に対して、歪み応力を3軸以上の多軸方向より同時に加えて加圧加工することである。そしてこの出願の発明は、その装置として、被加工材に対して歪み応力を3軸以上の多軸方向より同時に加える加圧加工手段を備えていることである。
【0008】
ここで、「多軸方向」の規定に表現されている「軸方向」とは、鍛造やロール圧延等の加圧(圧縮)加工において慣用されているものであって、加圧加工手段の被加工材への接触面と垂直、もしくはロール接触点の接線と垂直の方向であることを意味している。つまり歪み応力の加わる方向である。
このような歪み応力が加わる方向としての軸方向が多軸方向であって、しかも歪み応力はこの多軸方向より同時に加えることがこの発明の本質的な特徴である。この点において、この出願の発明は、従来の鍛造やロール圧縮とは本質的に相違しているのである。
【0009】
軸同時加圧加工は、(A)一方の型には多角溝が、また他方の型には平坦面もしくは多角溝が設けられている一対の加圧型を加圧加工手段として備え、この加圧型の間に被加工材を挿入し、多角溝の各々の面もしくはさらにこれに加えて平坦面からなる加工面より歪み応力を加える方法として可能とされる。
【0010】
また、多軸同時加圧加工は、(B)回転軸中心の平面配置が相互に非平行であって、被加工材の挿入方向の面側の一方に1以上、そして他方に2以上配置されたロールを加圧加工手段とて備え、このロールを回転させて歪み応力を加える方法や、(C)長手方向中心部の径が両端部よりも細くなるように周面が長手方向に湾曲したロールを被加工材の挿入方向の両側にクロス角を大きくして一対で配置して加圧加工手段とし、このロールの回転によって歪み応力を加える方法等として可能とされる。
本発明における加工は、(C)の加工(圧延)を対象としている。
【0011】
前記(A)の場合には、より具体的には鍛造として具体化される。この鍛造のための加圧型としては、たとえば、参考例として図1に例示したV溝を持った下型と平坦面の上型とからなる加圧型や、図2(a)(b)(c)に例示したようなオーバル、四角形、あるいは六角形の多角溝を持った加圧型等の各種のものが考慮される。
たとえば、図1の加圧加工型の場合には、一方の型にはV溝が形成され、他方の型は平坦面を有し、被加工材について、V溝と平坦面とにより断面三角形の加工面を形成可能とし、被加工材を圧縮・塑性変形加工するときに、V溝の各々の辺および平坦面の加工面から垂直に応力が加えられ、三軸方向から同時に加圧可能とされている。従って、3方向からの歪みを丸棒や角棒材等の被加工材に導入することができ、1回のパスにおいて多軸加工が可能である。そして、加工時に被加工材をたとえば60°回転させて挿入すると、さらに多軸効果は高まることになる。また、局所的な格子回転を容易に可能とできるので、結果として材料の組織微細化が容易かつ簡略に可能とされるという利点をもつ。
【0012】
また、前記(B)のロールによる加圧加工の場合には、たとえば、参考例として図3に例示したように、被加工材(α)の挿入方向(β)の両側たとえば上下・あるいは左右等の一方に1以上の、そして他方に2以上のロールを配置し、しかも、各々のロールが独自に相対的な角度を変更可能として、その回転軸中心の平面配置が相互に非平行となる状態で回転させて加圧加工することが例示される。図3の参考例では3軸方向同時加工が可能とされる。
【0013】
図4は、参考例として、4軸方向同時の加圧加工について例示したものである。
いずれの場合も、たとえば各ロールの回転軸に対してユニバーサルジョイントにより動力伝達が行われ、各回転軸中心の相対角度を変化させ、歪み導入方向を独立に変更可能とすることができる。また、各ロールのユニバーサルジョイントの反対側はハウジングに固定したベアリング止めとすることができる。
【0014】
また、図3および図4の参考例では、各ロールには、加熱用の高周波コイルを配置し、ロール抜熱による被加工材の温度低下を防止するようにしている。これらの加熱手段は、他の加圧加工手段においても同様に適用することができる。
前記(C)の本発明におけるロールによる加圧加工では、図5に例示したように、基本的には各ロールの回転軸中心の相対的角度(クロス角度)を変更可能としているとともに、ロールそのものについては、図6に示したように、長手方向中心部の径が両端部よりも細くなるように周面が長手方向に湾曲したものとし、これによって、クロス角度をたとえば10°となるように大きくして加圧加工する。このようにして、ロール間距離がフラットになり、しかもたとえば摩擦系数0.3のせん断応力(多軸歪)を加えることが可能となる。
なお、本発明において、各ロールの回転軸中心の相対的角度であるクロス角度は、一般的に定義されるクロス角度であって、圧延方向に直角な方向とロールの回転軸中心のなす角度を意味する。
【0015】
たとえば以上のような方法、そして装置を用いることによって、厚み10mm以上の厚板鋼材として、たとえば平均粒径2μm以下の超微細組織の鋼材を製造することができる。このための方法は、加圧加工は、たとえば、400℃以上Ac3以下の温度域での加工として可能とされる。
具体的には、たとえば、参考例としての図1の方法、装置によるフエライト粒超微細化鋼の製造方法では、断面三角形の鉄鋼材料を正立させた状態で加工位置に配置し、400℃以上Ac3以下の温度域で1パスの三軸鍛造を加え、断面を正立三角形から逆三角形に形状変化させて塑性変形させることができる。これによって、平均粒径2μm以下の超微細組織を有する厚さ10mm以上の厚板が製造される。加工温度400℃以上Ac3以下とする理由は、400℃未満では、加工中またはパス間での転位再配列が困難であり、単にフェライト組織となり、等軸化しないためであり、Ac3以上では結晶粒の成長速度が速いために粗大が進行するためである。
【0016】
なお、平均粒径2μm以下の超微細組織を有する厚さ10mm以上の厚板を鍛造する場合には、被加工材の断面積変化(減面率)をゼロとして加工する必要がある。一方、ロールによる加圧加工では僅かな断面積変化は発生するものの、従来方法・装置ほどの大きな変化は生じない。
上記製造方法により製造されるこの出願の発明の厚さ10mm以上の厚板は、平均粒径2μm以下の超微細組織を有することができる。この厚板の化学成分としては、たとえばセメンタイトを含む炭化物の体積率が0%〜20%となる量のC、0.80mass%以下のSi、0.05〜3.0mass%のMn、0.10mass%以下のAl、0.02mass%以下のSを含有し、残部がFeおよび不可避不純物からなるものが例示される。一般に、炭化物が20vol.%を超えると、靱性が劣化する。
【0017】
もちろん、この出願の発明においては、以上の組成に限定されることなしに、各種鋼材等について超微細組織をもつものを実現することが可能となる。
たとえば、参考例の加圧型として図7に示したような、平坦面をもつ上型(1)とV溝(4)をもつ下型(2)を備えた鍛造装置を用いて加工する。上型(1)の下面は平坦な加工面(F1)であり、下型(2)のV溝(4)の各溝面は加工面(F2)(F3)となっている。
【0018】
これら加工面(F1)(F2)(F3)で互いに相補的に断面三角形をなす加工面が形成され、多軸加工を可能にしている。被加工材(3a)としては例示的に丸棒材が示されている。
鍛造加工に際して、被加工材(3a)は、断面逆三角形のV溝(4)内に挿入され、3つの加工面(F1)(F2)(F3)により三軸方向から同時に歪みが加えられ鍛造される。被加工材(3a)には、各加工面(F1)(F2)(F3)から垂直に応力(歪)が加えられることになる。
【0019】
鍛造された加工品は、V溝(4)に倣って断面逆三角形に成形される。
次いで、この断面逆三角形の鍛造加工品を、V溝(4)から引き出し、図7(b)に示すように、軸線の回りに60°回転して正置した正立三角形の姿勢として再度鍛造する。この加工によって、被加工材(3a)の局所的な格子回転を容易とし、材料の組織微細化が容易かつ簡略に実現される。
【0020】
実際に、Fe−0.15C−0.3Si−1.5Mn合金を高周波溶解し、その後加熱圧延(1523Kで加熱後、減面率50%圧下)加工したものを被加工材とし、650℃の加熱温度下で三軸鍛造を1パスにより行い、直ちに水焼き入れを行った。
さらに、この試料を減面率ゼロで一辺10mmの三角柱に加工した。SEM観察から三角柱は、C断面において、図8に示したような平均粒径2μm以下の等軸微細粒が形成され、L断面では圧延方向に伸張した組織を有していた。バルク全体に渡って均一に超微細粒組織が得られている。
【0021】
【発明の効果】
以上詳しく説明した通り、この出願の発明により、多軸方向から同時に歪みを加えることが可能で、1回のパスで多軸加工することができる。圧下率を多くとらずに、多軸加工が可能となる。
被加工材の断面積変化が少ない状態を保ちながら、実質的に試料を強加工することも可能となる。コスト的にも有利となる。
【図面の簡単な説明】
【図1】 V溝と平坦面をもつ加圧型を例示した斜視図である。
【図2】 (a)(b)(c)は、各々、オーバル、四角形、大角形の多角溝をもつ加圧型を例示した斜視図である。
【図3】 3軸方向同時加圧を可能とするロール加圧装置の構成概要図である。
【図4】 4軸方向同時加圧を可能とするロール加圧装置の構成概要図である。
【図5】 一対のロールの配置関係を例示した斜視概要図である。
【図6】 クロス角を大きくとってのロール加圧による多軸加工を例示した概要図である。
【図7】 (a)、(b)は、各々、この出願の発明の実施例としての厚板の製造例を示した構成図である。
【図8】 三軸鍛造後のC断面に代わる組織SEM写真である。
【図9】 従来の一軸鍛造後の図面に代わるC断面の組織SEM写真である。
【符号の説明】
1 上型
2 下型
3a、3b 被加工材
4 V溝
F1、F2、F3 加工面
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a method for producing a ferrite grain ultrafine steel plate having a thickness of 10 mm or more having a ferrite ultrafine grain structure having an average grain size of 2 μm or less, and the thick plate.
[0002]
[Prior art and its problems]
In a conventional forging process of a thick plate having a thickness of 10 mm or more having an ultrafine structure with an average particle diameter of 2 μm in a uniaxial forging, a very large rolling load is usually required, and a very large rolling mill of 10,000 ton class is required. Has been. For this reason, the cost is inevitably increased and there is a practical problem.
[0003]
Further, in a conventional forging machine or the like, there has been a restriction that the area reduction rate must be 90% or more when forging by large reduction.
For example, a test material having a composition of Fe-0.15C-0.3Si-1.5Mn is subjected to high-frequency melting and heat rolling (1523K heating and then reduced by 50%), and uniaxial forging is performed at 650 ° C. using this as a base. FIG. 9 shows a SEM micrograph of the cross section of the sample when water quenching is immediately performed after pass processing (75% reduction). According to the photo of FIG. Although it is recognized that the region is only a region having a width of 0.5 mm at the center, coarse particles are left in all other regions around the region.
[0004]
In addition, while clarifying the effectiveness of multi-axis machining for microstructural creation, we have tried to apply it to forging and hole rolling, but we have made it possible to control the structure without significantly reducing the thickness of the thick plate. It was difficult to do.
Therefore, the invention of this application overcomes the conventional technical limitations as described above, and further reduces the rolling load even with a steel plate having a thickness of 10 mm or more having an ultrafine structure with an average particle diameter of 2 μm. It is an object of the present invention to provide a new method for producing a thick plate and a thick plate capable of producing a steel having a uniform structure at a low cost and more practically without significantly reducing the size of the thick plate. It is said.
[0005]
In order to solve the above-described problems, the invention of this application is firstly a method of manufacturing a thick plate having a thickness of 10 mm or more and an average ferrite particle size of 2 μm or less by cross rolling applying a shear strain. The axis of the rolling roll is inclined in the feed direction of the work material with respect to the width direction of the work material, and the inclination directions are opposite to each other in the upper and lower directions. Multiaxial strain with a rolling device that has a drum shape that gradually decreases in diameter toward the center in the longitudinal direction, with the workpiece being made at a temperature range of 400 ° C to Ac3, the cross angle being increased to 10 °, and the distance between the rolls being flat. Is provided, and a method for producing a ferritic grain ultrafine steel plate is provided .
[0006]
As described above, the invention of this application has been studied to control the structure without significantly reducing the thickness of the plank, and based on the result, multi-directional deformation by multi-axis simultaneous pressing. Can be processed without increasing the rolling reduction, that is, without significantly reducing the thickness of the thick plate.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The invention of this application has the features as described above, and an embodiment thereof will be described below.
First, what is characteristic in the method of the invention of this application is that a stress is simultaneously applied to a workpiece such as a steel material from three or more axes in a multiaxial direction. The invention of this application is that the apparatus includes pressure processing means for simultaneously applying strain stress to a workpiece from three or more axes.
[0008]
Here, the “axial direction” expressed in the definition of “multi-axial direction” is commonly used in pressure (compression) processing such as forging and roll rolling, and is covered by the pressure processing means. It means that the direction is perpendicular to the contact surface to the workpiece or perpendicular to the tangent of the roll contact point. That is, it is a direction in which strain stress is applied.
It is an essential feature of the present invention that the axial direction as the direction in which such strain stress is applied is a multiaxial direction, and the strain stress is applied simultaneously from the multiaxial direction. In this respect, the invention of this application is essentially different from conventional forging and roll compression.
[0009]
In multi- axis simultaneous pressing, (A) a pair of pressing dies provided with a polygonal groove on one mold and a flat surface or a polygonal groove on the other mold are provided as pressure processing means. It is possible to insert a work material between the pressing dies and apply a strain stress from each surface of the polygonal groove or a processing surface made of a flat surface in addition to this.
[0010]
In the multi-axis simultaneous pressing, (B) the plane arrangement of the rotation axis centers is not parallel to each other, and one or more are arranged on one side of the surface in the insertion direction of the workpiece, and two or more are arranged on the other side. roll provided with a pressure processing unit has, a method of adding distortion stress by rotating the rolls, (C) a curved peripheral surface so the diameter of the longitudinal central portion is thinner than both end portions in the longitudinal direction The rolls are arranged in pairs on both sides in the insertion direction of the work piece to form a pair of pressure processing means, and a method of applying strain stress by rotating the roll is possible.
The processing in the present invention is directed to the processing (rolling) of (C).
[0011]
In the case of (A), more specifically, it is embodied as forging. As a pressurizing die for this forging, for example , a pressurizing die comprising a lower die having a V groove exemplified in FIG. 1 as an example of reference and an upper die of a flat surface, or FIGS. 2 (a) (b) (c) Various types such as a pressure type having an oval, square or hexagonal polygonal groove as exemplified in FIG.
For example, in the case of the pressurizing die shown in FIG. 1, one die has a V-groove, the other die has a flat surface, and the workpiece has a triangular cross section due to the V-groove and the flat surface. It is possible to form a machined surface, and when compressing or plastically deforming a workpiece, stress is applied perpendicularly from each side of the V groove and the machined surface of the flat surface, and pressure can be applied simultaneously from three axes. ing. Therefore, distortion from three directions can be introduced into a workpiece such as a round bar or a square bar, and multi-axis machining can be performed in one pass. If the workpiece is inserted by being rotated by 60 °, for example, during processing, the multiaxial effect is further enhanced. Further, since local lattice rotation can be easily performed, as a result, there is an advantage that the structure can be easily refined and simplified.
[0012]
Further, in the case of pressure processing by the roll (B), for example, as illustrated in FIG. 3 as a reference example , both sides of the workpiece (α) in the insertion direction (β), for example, up and down, left and right, etc. One or more rolls are arranged on one side and two or more rolls are arranged on the other side, and each roll can independently change the relative angle, and the plane arrangements of the rotation axis centers are not parallel to each other. It is illustrated that the pressure processing is carried out by rotating the material. In the reference example shown in FIG. 3, simultaneous machining in three axial directions is possible.
[0013]
FIG. 4 shows an example of pressure processing in the four-axis direction at the same time as a reference example .
In any case, for example, power is transmitted to the rotating shaft of each roll by a universal joint, and the relative angle of the center of each rotating shaft is changed, so that the strain introduction direction can be changed independently. Moreover, the other side of the universal joint of each roll can be a bearing stop fixed to the housing.
[0014]
In the reference examples of FIGS. 3 and 4, a high-frequency coil for heating is disposed on each roll to prevent a temperature drop of the workpiece due to heat removal from the roll. These heating means can be similarly applied to other pressure processing means.
In the pressing process using the roll in the present invention of (C), as shown in FIG. 5, basically, the relative angle (cross angle) of the rotation axis center of each roll can be changed, and the roll itself. 6, as shown in FIG. 6, the peripheral surface is curved in the longitudinal direction so that the diameter of the central portion in the longitudinal direction is thinner than both end portions, so that the cross angle becomes, for example, 10 °. Enlarge and pressurize. In this way, the distance between the rolls becomes flat, and it is possible to apply, for example, a shear stress (multiaxial strain) having a friction system number of 0.3.
In the present invention, the cross angle, which is the relative angle of the rotation axis center of each roll, is a generally defined cross angle, and the angle formed between the direction perpendicular to the rolling direction and the rotation axis center of the roll. means.
[0015]
For example, by using the above-described method and apparatus, a steel material having an ultrafine structure having an average particle diameter of 2 μm or less can be manufactured as a thick steel plate having a thickness of 10 mm or more. As a method for this, the pressurizing process can be performed, for example, as a process in a temperature range of 400 ° C. or higher and Ac 3 or lower.
Specifically, for example , in the method of FIG. 1 as a reference example and the method for producing a ferrite grain ultrafine steel using an apparatus, a steel material having a triangular cross-section is placed in an upright position at a processing position and is 400 ° C. or higher. One pass of triaxial forging can be applied in a temperature range of Ac3 or lower, and the cross section can be plastically deformed by changing the shape from an upright triangle to an inverted triangle. As a result, a thick plate with a thickness of 10 mm or more having an ultrafine structure with an average particle size of 2 μm or less is produced. The reason why the processing temperature is 400 ° C. or more and Ac 3 or less is that dislocation rearrangement during processing or between passes is difficult when the processing temperature is less than 400 ° C., and simply becomes a ferrite structure and does not become equiaxed. This is because coarseness proceeds because of the high growth rate.
[0016]
In addition, when forging a thick plate with a thickness of 10 mm or more having an ultrafine structure with an average particle size of 2 μm or less, it is necessary to process the cross-sectional area change (area reduction rate) of the workpiece to zero. On the other hand, a slight change in the cross-sectional area occurs in the press working with a roll, but a change as large as that in the conventional method / apparatus does not occur.
The thick plate having a thickness of 10 mm or more of the invention of this application manufactured by the above manufacturing method can have an ultrafine structure having an average particle size of 2 μm or less. The chemical components of the thick plate include, for example, C in such an amount that the volume fraction of carbide containing cementite is 0% to 20%, Si of 0.80 mass% or less, 0.05 to 3.0 mass% of Mn,. Examples thereof include 10 mass% or less of Al and 0.02 mass% or less of S, with the balance being Fe and inevitable impurities. Generally, the carbide is 20 vol. When it exceeds%, toughness deteriorates.
[0017]
Of course, in the invention of this application, it is possible to realize various steel materials having an ultrafine structure without being limited to the above composition.
For example, as shown in FIG. 7 as a pressurized reference example, it is processed using a forging apparatus having a lower mold (2) having an upper mold (1) and V-groove (4) having a flat surface. The lower surface of the upper mold (1) is a flat processed surface (F1), and each groove surface of the V groove (4) of the lower mold (2) is a processed surface (F2) (F3).
[0018]
These processed surfaces (F1), (F2), and (F3) form processed surfaces having a triangular cross section in a complementary manner, enabling multi-axis processing. As the workpiece (3a), a round bar is exemplarily shown.
In the forging process, the workpiece (3a) is inserted into the V-shaped groove (4) having an inverted triangular cross section, and strain is applied simultaneously from the three axial directions by the three processed surfaces (F1), (F2), and (F3). Is done. Stress (strain) is applied to the workpiece (3a) perpendicularly from the respective processed surfaces (F1), (F2), and (F3).
[0019]
The forged workpiece is formed into a cross-section inverted triangle following the V groove (4).
Next, the forged product having an inverted triangular cross section is pulled out of the V-groove (4), and as shown in FIG. 7 (b), it is forged again in an upright triangle posture rotated by 60 ° around the axis. To do. By this processing, the local lattice rotation of the workpiece (3a) is facilitated, and the structure refinement of the material is easily and simply realized.
[0020]
Actually, an Fe-0.15C-0.3Si-1.5Mn alloy was melted at high frequency and then heated and rolled (heated at 1523 K and reduced by 50% reduction in surface area) was used as a workpiece, and the temperature was 650 ° C. Triaxial forging was performed in one pass at the heating temperature, and water quenching was immediately performed.
Further, this sample was processed into a triangular prism having a reduction in area of zero and a side of 10 mm. From the SEM observation, the triangular prism had an equiaxed fine grain having an average grain size of 2 μm or less as shown in FIG. 8 in the C section, and had a structure extending in the rolling direction in the L section. An ultrafine grain structure is obtained uniformly throughout the bulk.
[0021]
【The invention's effect】
As described in detail above, according to the invention of this application, it is possible to simultaneously apply strain from the multiaxial direction, and multiaxial machining can be performed in one pass. Multi-axis machining is possible without increasing the rolling reduction.
The sample can be substantially strongly processed while maintaining a state in which the cross-sectional area change of the workpiece is small. This is advantageous in terms of cost.
[Brief description of the drawings]
FIG. 1 is a perspective view illustrating a pressure mold having a V groove and a flat surface.
FIGS. 2A, 2B, and 2C are perspective views exemplifying pressure molds having polygonal grooves of oval, square, and large angle, respectively.
FIG. 3 is a schematic configuration diagram of a roll pressurizing device that enables simultaneous pressurization in three axial directions.
FIG. 4 is a schematic configuration diagram of a roll pressurizing device that enables simultaneous pressurization in four axial directions.
FIG. 5 is a schematic perspective view illustrating the arrangement relationship between a pair of rolls.
FIG. 6 is a schematic view illustrating multi-axis machining by roll pressing with a large cross angle.
FIGS. 7A and 7B are configuration diagrams showing an example of manufacturing a thick plate as an embodiment of the invention of this application. FIG.
FIG. 8 is a structure SEM photograph replacing a C cross section after triaxial forging.
FIG. 9 is a structure SEM photograph of a C cross-section instead of a drawing after conventional uniaxial forging.
[Explanation of symbols]
1 Upper mold 2 Lower mold 3a, 3b Work material 4 V-groove F1, F2, F3 Work surface

Claims (1)

厚さ10mm以上で、フェライトの平均粒径が2μm以下である厚板をせん断歪を印加するクロス圧延により製造する方法であって、圧延ロールの軸心を、被加工材の幅方向に対して、該被加工材の送り方向に傾斜させ、かつ傾斜方向を上下において互いに逆にしてあるとともに、上下の圧延ロールの直径が長手方向中央に向かうほど漸減する鼓状である圧延装置により、被加工材を400℃以上Ac3以下の温度域で、クロス角を10°まで大きくしロール間距離をフラットにして多軸歪を与え、1パスにて圧延することを特徴とするフェライト粒超微細化鋼厚板の製造方法。A method of manufacturing a thick plate having a thickness of 10 mm or more and an average grain size of ferrite of 2 μm or less by cross rolling that applies a shear strain, wherein the axis of the rolling roll is set to the width direction of the workpiece. In addition, the rolling apparatus is inclined in the feed direction of the workpiece, and the tilting directions are reversed in the vertical direction, and the diameter of the upper and lower rolling rolls gradually decreases toward the center in the longitudinal direction. Ferritic grain ultra refined steel characterized in that the material is rolled in one pass in a temperature range of 400 ° C. or more and Ac 3 or less, the cross angle is increased to 10 °, the distance between rolls is flattened and multiaxial strain is applied. A manufacturing method for thick plates.
JP16555399A 1999-06-11 1999-06-11 Method for producing ferritic grain ultrafine steel plate Expired - Fee Related JP4765007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16555399A JP4765007B2 (en) 1999-06-11 1999-06-11 Method for producing ferritic grain ultrafine steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16555399A JP4765007B2 (en) 1999-06-11 1999-06-11 Method for producing ferritic grain ultrafine steel plate

Publications (2)

Publication Number Publication Date
JP2000351040A JP2000351040A (en) 2000-12-19
JP4765007B2 true JP4765007B2 (en) 2011-09-07

Family

ID=15814563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16555399A Expired - Fee Related JP4765007B2 (en) 1999-06-11 1999-06-11 Method for producing ferritic grain ultrafine steel plate

Country Status (1)

Country Link
JP (1) JP4765007B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467942B1 (en) * 2001-06-08 2005-01-24 김용석 Method of Fabricating High Strength Ultrafine Grained Aluminum Alloys Plates by Constrained Groove Pressing(CGP)
US7905965B2 (en) * 2006-11-28 2011-03-15 General Electric Company Method for making soft magnetic material having fine grain structure
JP5525769B2 (en) * 2009-07-06 2014-06-18 学校法人 工学院大学 Strong processing method and strong processing apparatus
CN107546025B (en) * 2017-07-10 2020-10-16 北京工业大学 Shearing force thermal deformation mold and preparation method of neodymium iron boron magnet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118303A (en) * 1983-12-01 1985-06-25 Nippon Kokan Kk <Nkk> Three-roll rolling method of steel shape
JPS61273230A (en) * 1985-05-29 1986-12-03 Japan Steel Works Ltd:The Forging device providing four way tap
JPS62158544A (en) * 1985-12-28 1987-07-14 Komatsu Ltd Multiple spindle forging machine
JPH0230351A (en) * 1988-02-09 1990-01-31 Matsuda Kogyo Kk Manufacture of square washer
JPH035004A (en) * 1989-05-31 1991-01-10 Sumitomo Metal Ind Ltd Method for rolling reduction of unsolidified slab
JP2829697B2 (en) * 1993-08-26 1998-11-25 新日本製鐵株式会社 Plate rolling method
JP3622499B2 (en) * 1997-05-15 2005-02-23 Jfeスチール株式会社 Steel pipe manufacturing method

Also Published As

Publication number Publication date
JP2000351040A (en) 2000-12-19

Similar Documents

Publication Publication Date Title
JP3268639B2 (en) Strong processing equipment, strong processing method and metal material to be processed
US20020088506A1 (en) Method for producing ultrafine-grained materials using repetitive corrugation and straightening
EP1027463A1 (en) Metal article with fine uniform structures and textures and process of making same
EP0912270B1 (en) Method for producing axially symmetric parts
CN110695089B (en) Rolling method of bimetal composite plate with good plate shape
WO1997048509A9 (en) Method for producing axially symmetric parts and the article
JP4765007B2 (en) Method for producing ferritic grain ultrafine steel plate
KR20010044765A (en) Production method of grain refinement of difficult-to-work materials using double equal channel angular processing
EP0610510B1 (en) Method of radial forging of blank
JP4305163B2 (en) Unbiased torsion extrusion of materials
US4749410A (en) Elongated tungsten heavy metal aritcle and method for producing same
JP2010047840A (en) Material produced by powder metallurgy with improved isotropy of the mechanical property
WO2006049348A1 (en) Method of machining metal plate material
JPH0569075A (en) Form rolling of short cylinder
PL224271B1 (en) Method and tool for skew rolling of balls with concave rollers
US2446892A (en) Method of shaping bimetallic articles
CN1080151C (en) Static-pressure forge technology for cast wheel
JP3266053B2 (en) Anvil for free forging
JP3822282B2 (en) Manufacturing method of angle
JP3796536B2 (en) Large strain uniform introduction processing method
RU2240199C1 (en) Radial forging tool
JP3332216B2 (en) Pipe forming apparatus and forming method using bending roll
JPH0413041B2 (en)
JPH0255605A (en) Manufacture of very thick steel plate of excellent internal quality
Segal Equal-channel angular extrusion

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091014

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees