JP4761988B2 - 沸騰水型原子力発電設備 - Google Patents

沸騰水型原子力発電設備 Download PDF

Info

Publication number
JP4761988B2
JP4761988B2 JP2006025717A JP2006025717A JP4761988B2 JP 4761988 B2 JP4761988 B2 JP 4761988B2 JP 2006025717 A JP2006025717 A JP 2006025717A JP 2006025717 A JP2006025717 A JP 2006025717A JP 4761988 B2 JP4761988 B2 JP 4761988B2
Authority
JP
Japan
Prior art keywords
reactor
water
pressure vessel
pipe
emergency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006025717A
Other languages
English (en)
Other versions
JP2007205923A (ja
Inventor
幹英 中丸
良洋 小島
健司 新井
政彦 黒木
克征 星野
貴司 保志
和弘 大高
秀明 日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Japan Atomic Power Co Ltd
Original Assignee
Toshiba Corp
Japan Atomic Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Japan Atomic Power Co Ltd filed Critical Toshiba Corp
Priority to JP2006025717A priority Critical patent/JP4761988B2/ja
Publication of JP2007205923A publication Critical patent/JP2007205923A/ja
Application granted granted Critical
Publication of JP4761988B2 publication Critical patent/JP4761988B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

本発明は、配管破断事故時等に原子炉炉心及び原子炉格納容器を長期に渡って冷却することが可能で、かつ、原子炉緊急停止失敗事象(ATWS事象)発生時に原子炉格納容器内の急激な圧力上昇を防止することが可能な沸騰水型原子力発電設備に関する。
高耐圧型の原子炉格納容器を備えた沸騰水型原子力発電設備において、非特許文献1及び2に記載されるように、原子炉格納容器内部で原子炉圧力容器に接続される配管が破断するような事故が発生した際に、原子炉圧力容器から破断口を介して流出する蒸気を原子炉格納容器内部に閉じ込めるとともに、原子炉圧力容器と原子炉格納容器とを比較的高圧で均圧させ、蒸気の流出を停止させる。
この蒸気の流出を停止させた状態で、原子炉炉心の崩壊熱によって発生する蒸気を非常用復水器へ導き、非常用復水器の伝熱管内部を蒸気が通過する過程で予め蓄えられた水と熱交換させて凝縮させ、原子炉圧力容器に戻す。
そして、予め原子炉圧力容器内部に冷却水として保有していた自己保有水による冠水維持によって原子炉炉心が冷却される。
さらに、原子炉炉心の冠水維持を長期的に継続するために、原子炉圧力容器から流出した冷却水(自己保有水)により原子炉格納容器の下部を冠水させた上で、原子炉圧力容器を減圧させて原子炉格納容器と均圧させ、かつ原子炉炉心より上部に配置した配管によって高耐圧型原子炉格納容器に流出した冷却水を重力差により再び原子炉圧力容器に還流させる。
H. Heki, et al., "DEVELOPMENT OF STATU OF CONTAINMENT BWR", Proceedings of ICONE13, 13th International Conference on Nuclear Engineering, Beijing, China, May 15-19, 2005 H. Heki, et al., "DEVELOPMENT OF SIMPLIFIED COMPACT CONTAINMENT BWR PLANT", Proceedings of ICONE12, 12th International Conference on Nuclear Engineering, April 25-29, 2004, Arlington, Viginia USA
高耐圧型の原子炉格納容器を備えた沸騰水型原子力発電設備において、均圧注入配管の高さまでの原子炉格納容器の冠水を原子炉圧力容器の自己保有水のみで達成しようとすると、原子炉圧力容器が非現実的に大きくなってしまう。
このため、予め水を蓄えた外部タンクを設置して、この外部タンクを原子炉圧力容器及び原子炉格納容器と均圧させて、外部タンク内の水を原子炉圧力容器及び高耐圧型原子炉格納容器へ補給する必要があった。
また、原子炉格納容器の内部に封入された窒素等の非凝縮性ガスが、配管破断事故時等に破断口を介して非常用復水器の伝熱管内部に流入して蓄積した場合に、非常用復水器の除熱性能が大幅に劣化してしまう。
非常用復水器の除熱性能劣化を回避するために、原子炉格納容器の外部にガス排出(ベント)のための外部タンクを設置して、非常用復水器からの非凝縮性ガスのベントを継続的に行うことが考えられる。
しかし、原子炉圧力容器及び原子炉格納容器からタンク側への一方的なベントでは、外部タンクが原子炉圧力容器と一旦均圧すると、それ以上はガスのベントができなくなり、事故発生から数日後以降に及ぶ長期の冷却ができなくなる。
このため、非常用復水器からの継続的かつ長期的な非凝縮ガスのベント機構の確立が必要となっていた。
さらに、異常事態が発生した場合の原子炉緊急停止(スクラム)失敗事象、いわゆるATWS(Anticipated Transient Without Scram)事象が発生した際に、原子炉炉心で発生した蒸気を放出する場所がなく、この蒸気によって原子炉格納容器内部の圧力が急激に上昇して、許容圧力を超えてしまうことを防止する必要があった。
本発明は、上記課題を鑑みなされたものであり、高耐圧型の原子炉格納容器を有する沸騰水型原子力発電設備において、配管破断事故時等に長期の原子炉炉心及び原子炉格納容器の冷却を達成するための外部から原子炉炉心及び原子炉格納容器への冷却水の補給系を有し、かつ非常用復水器の非凝縮性ガスによる除熱性能劣化を最小限に抑えるための継続的かつ長期的な非凝縮性ガスのベント機構を有し、さらにATWS事象発生時の原子炉格納容器内部の急激な圧力上昇を抑制する手段を備えた沸騰水型原子力発電設備を提供することを目的とする。
上記課題を解決するために、本発明に係る沸騰水型原子力発電設備は、請求項1に記載したように、過圧防護用の安全弁を有する原子炉圧力容器を収納した原子炉格納容器と、前記原子炉圧力容器内で発生した蒸気を蒸気タービンに送り込む主蒸気系と、蒸気タービンからの蒸気を復水器により凝縮する原子炉復水系と、この原子炉復水系で凝縮された復水を前記原子炉圧力容器に戻す原子炉給水系とを備えた沸騰水型原子力発電設備において、前記原子炉圧力容器からの蒸気を凝縮して再び前記原子炉圧力容器に戻す非常用復水系と、前記非常用復水系からの復水を貯蔵する外部貯蔵系とを備え、前記外部貯蔵系は、前記非常用復水系からの復水を貯蔵する外部タンクと、この外部タンク内の水を前記原子炉圧力容器へ注水する原子炉冷却用補給水配管と、前記外部タンク内の水を前記原子炉格納容器へ注水する原子炉格納容器冠水用配管とを有し、前記原子炉冷却用補給水配管が前記原子炉圧力容器及び外部タンクに接続される高さは、前記原子炉格納容器冠水用配管が前記原子炉格納容器及び外部タンクに接続される高さに対して異なるように設定されて、前記原子炉圧力容器への注水量と注水開始タイミング、及び、前記原子炉格納容器への注水量と注水開始タイミングが、それぞれ重力により駆動制御されることを特徴とする。
本発明に係る沸騰水型原子力発電設備によると、配管破断事故時等に原子炉炉心及び原子炉格納容器の冷却を長期的に維持でき、かつ、ATWS事象発生時の原子炉格納容器内部の急激な圧力上昇を抑制することが可能となる。
本発明に係る沸騰水型原子力発電設備の実施形態について、添付図面に基づいて説明する。
〔第1実施形態〕
図1に、本発明に係る沸騰水型原子力発電設備の第1実施形態の構成図を示す。
沸騰水型原子力発電設備1は、小型(例えば300〜500MWe級)でドライコンテナ方式の沸騰水型原子力発電設備であり、図1に示すように、密閉された高耐圧の原子炉格納容器2を備えるとともに、原子炉格納容器2には原子炉圧力容器3が収納される。
この時、原子炉格納容器2は、原子炉建屋の床面に固定された台座である格納容器支持ペデスタル4に支持され固定されるとともに、原子炉圧力容器3は、原子炉格納容器2内で固定された台座である圧力容器支持ペデスタル5に支持される。
また、沸騰水型原子力発電設備1は、原子炉圧力容器3内で発生した蒸気を、発電を行う蒸気タービン(図示せず)に送り込む例えば2系統の主蒸気系6と、蒸気タービンからの蒸気を復水器(図示せず)により凝縮する原子炉復水系(図示せず)と、原子炉復水系で凝縮された復水を給水ポンプ7aを介して原子炉圧力容器3に戻す原子炉給水系7と、配管破断事故時等やATWS事象発生時に安全を確保する安全系システム8とを備える。
原子炉圧力容器3は下部に原子炉炉心9を備え、この原子炉炉心9は炉心シュラウド10で囲まれる。原子炉給水系7から原子炉圧力容器3内に戻された給水は炉水となり、ダウンカマー11を通って炉心下部プレナム12に案内され、この炉心下部プレナム12で反転して原子炉炉心9を通り上昇する。
この炉水は、原子炉炉心9を上昇する際に核反応熱を受けて蒸発し、気液二相流となり、原子炉炉心9の上方へ流され、気水分離器13によって蒸気と水とに分離される。
気水分離器13で分離された蒸気は、トーラス状あるいはスリーブ状の蒸気乾燥器14によってさらに湿分が除去され、主蒸気隔離弁15を介して主蒸気系6に案内される。また、気水分離器13で分離された水は、炉心シュラウド10と原子炉圧力容器との間の環状領域であるダウンカマー11を流下して再び原子炉炉心9に戻される。
原子炉格納容器2の形状は、原子炉圧力容器3廻りの冠水量を最小限に抑えることを目的として、原子炉圧力容器3の下部を近接状態で覆っている。原子炉圧力容器3の下部に原子炉炉心9が備えられ、原子炉格納容器2において原子炉炉心9の周囲は円筒状に設計される。原子炉格納容器2の高さ方向中央部には、原子炉圧力容器3からの配管や弁が配置されるため、原子炉格納容器2の中央領域は、原子炉圧力容器3から外周方向に大きく膨出する膨出球状に、例えば球状に設計され、さらに原子炉格納容器2の高さ方向上部の領域は半球状に設計される。
原子炉圧力容器3の上部には制御棒駆動装置16が設けられ、この制御棒駆動装置16は、原子炉炉心9の上部の制御棒収納スペース17に収納された制御棒18を、原子炉炉心9に対して上部から挿入するように駆動制御される。
制御棒18を原子炉炉心9の上部から挿入することにより、重力を利用して早急に制御棒18を原子炉炉心9内に挿入することが可能となる。
次に、沸騰水型原子力発電設備1に備えられる安全系システム8について説明する。
安全系システム8は、非常時に原子炉圧力容器3からの蒸気を凝縮して再び原子炉圧力容器3に戻す非常用復水系19と、非常用復水系19からの復水を貯蔵する外部貯蔵系20と、原子炉圧力容器3にホウ酸水等のポイズンを注入するポイズン注入系21とを備える。
原子炉圧力容器3の上部には、原子炉圧力容器3内が異常高圧になった際に、内部の蒸気を原子炉格納容器2内に放出する安全弁22が備えられる。この安全弁22を介して高圧の蒸気が原子炉格納容器2内に放出されるため、原子炉格納容器2は高耐圧設計に構成される。
また、原子炉格納容器2及び原子炉圧力容器3には、原子炉格納容器2及び原子炉圧力容器3が同圧になった際の水位の高低差(重力差)を利用して原子炉格納容器2から原子炉圧力容器3へ冷却水を補給する連通配管23が備えられる。
なお、原子炉圧力容器3には、原子炉炉心9の上端より下方に配管等のノズルを設けないようにする。
非常用復水系19は、熱を吸収する非常用復水器プール24を有し、この非常用復水器プール24の内部には、蒸気を凝縮する非常用復水器25が備えられる。この非常用復水器25は、原子炉圧力容器3からの蒸気が流入する入口水室26、蒸気と接触して蒸気から熱を奪う伝熱管、伝熱管から復水が流入する出口水室27を備える。
また、非常用復水器25には、原子炉圧力容器3内の蒸気を吸い込む非常用復水器蒸気吸込み配管28、非常用復水器25により凝縮された冷却水を原子炉圧力容器3に注入する非常用復水器凝縮水戻り配管29が設置される。
非常用復水器25には、非常用復水系19からの復水とともに流入する非凝縮性ガスが伝熱管に蓄積して除熱性能を劣化させることを防止するために非凝縮性ガスを排出する非常用復水器ガスベント配管30と、非常用復水系19からの復水を外部貯蔵系20に排出する非常用復水器主ベント配管31とが設けられる。
なお、非常用復水器主ベント配管31は、原子炉格納容器2の圧力が瞬時に上昇するのを防ぐため、非常用復水器ガスベント配管30より大口径に設定される。すなわち、非常用復水器25から外部タンク34に注水する非常用復水器ベント配管として、口径の異なる配管が複数並列に設置される。
非常用復水器ガスベント配管30には、管内を流れる非凝縮性ガスの流量を制御する絞りである非常用復水器ガスベント流量制限オリフィス32が設けられ、非常用復水器主ベント配管31の一端には、非常用復水器主ベント配管用スパージャ33が設けられる。非常用復水器主ベント配管31からの外部タンク34の貯留水への吐き出し口をスパージャ構造にすることにより、蒸気の凝縮効果が高まるからである。
また、非常用復水器主ベント配管31の外部貯蔵系20側となる吐き出し口の高さは、非常用復水系19側となる吸込み口の高さより下方に設定される。
外部貯蔵系20は、予め蓄えられた冷却水、非常用復水器主ベント配管31から流出する復水、及び非凝縮ガスを貯蔵する外部タンク34を備える。外部タンク34内には冷却水が蓄えられ、冷却水は、外部タンク34の上方から原子炉冷却用補給水A、原子炉格納容器冠水用水B、ベント蒸気凝縮用水Cとして使用される。
外部タンク34は、原子炉圧力容器3に原子炉冷却用補給水Aを注入する原子炉冷却用補給水配管35と、原子炉格納容器2に原子炉格納容器冠水用水Bを注入する原子炉格納容器冠水用配管36とを備える。
すなわち、外部タンク34内において、重力駆動により、原子炉冷却用補給水配管35より上部に蓄えられた冷却水が原子炉冷却用補給水Aとして使用されるとともに、原子炉格納容器冠水用配管36より上部の冷却水が原子炉格納容器冠水用水Bとして、原子炉格納容器冠水用配管36より下部の冷却水がベント蒸気凝縮用水Cとして使用される。
また、外部タンク34は、この外部タンク34内の冷却水を残留熱除去系配管37を通して吸い上げる残留熱除去系ポンプ38と、残留熱除去系ポンプ38が吸い上げた冷却水から残留熱を奪う残留熱除去系熱交換器39と、残留熱除去系ポンプ38が吸い上げた冷却水を分散する外部タンクスプレイスパージャ40とからなる冷却配管を備える。
さらに、外部タンク34から原子炉圧力容器3へ注水する高圧補給水配管41には高圧補給水ポンプ42が備えられ、この高圧補給水配管41の冷却水の出口部分は原子炉給水系7に接続される。
ポイズン注入系21は、緊急時に原子炉圧力容器3に注入するためのホウ酸水等のポイズンを貯蔵するポイズン注入系蓄圧貯蔵タンク43と、ポイズンを原子炉圧力容器3に注入するポイズン注入系ポイズン注入配管44とから構成される。
次に、本発明に係る沸騰水型原子力発電設備1の実施例1について、図2〜図6に基づいて説明する。
実施例1では、原子炉格納容器2の内部で原子炉圧力容器3に接続される配管等が破断するような事故が発生した場合等により生じる冷却材喪失事故時の事象について説明する。
図2〜図4に、原子炉冷却材喪失時における沸騰水型原子力発電設備1の事象推移の状態を、時間軸に沿って示す。また、図5及び図6に、原子炉冷却材喪失時の原子炉圧力容器内の水位L1等の主要パラメータの変動を示すグラフを示す。
沸騰水型原子力発電設備1において、通常、原子炉圧力容器3内で発生した蒸気は主蒸気系6を経由して蒸気タービンに到達し、発電に利用される。そして、蒸気タービンから出てきた蒸気は原子炉復水系により凝縮されて復水となり、この復水が原子炉給水系7により再び原子炉圧力容器3に給水として戻される。
しかしながら、原子炉圧力容器3に接続された配管等に破断事故が発生した場合には、破断口45を介して原子炉圧力容器3から原子炉格納容器2に蒸気が流出し、この蒸気が原子炉格納容器2の内部に閉じ込められる。
この時、図2に示すように、原子炉圧力容器3内の水位が低下するとともに、原子炉格納容器2内の圧力や温度、及び原子炉格納容器2の容器壁の温度が上昇する。また、原子炉格納容器2内に流出した蒸気の一部は凝縮して原子炉格納容器2の底部に蓄積し、原子炉格納容器2内の冷却水の水位が上昇する。
原子炉圧力容器3内の蒸気が原子炉格納容器2内に流出した結果、原子炉圧力容器3と原子炉格納容器2の圧力は速やかに均圧して、破断口45からの蒸気の流出は停止する。
蒸気を原子炉格納容器2に閉じ込めた状態で、原子炉炉心9の崩壊熱によって発生する蒸気を非常用復水器蒸気吸込み配管28を介して非常用復水器25へ導き、非常用復水器25の伝熱管内部を蒸気が通過する過程で非常用復水器プール24に蓄えられた水との熱交換によって凝縮させ、非常用復水器凝縮水戻り配管29から原子炉圧力容器3に戻す。
このように、事故発生直後、すなわち事故発生後の比較的早期においては、原子炉炉心9の冷却は、原子炉格納容器2及び原子炉圧力容器3を減圧冷却し、事故発生前に原子炉圧力容器3の内部に冷却水として保有していた自己保有水により冠水維持することによって達成される。
この時、非常用復水器25の除熱能力が原子炉格納容器2から外部への放熱量に勝るため、原子炉圧力容器3の圧力の低下の方が原子炉格納容器2の圧力低下よりも早く、事故発生前に原子炉格納容器2の内部に封入されていた窒素ガスが破断口45を通じて原子炉圧力容器3へ流れ込む。
この窒素ガスは、非常用復水器蒸気吸込み配管28を介して非常用復水器25に蒸気とともに吸込まれ、非常用復水器ガスベント配管30を通じて外部タンク34へ排出(ベント)されるとともに、非常用復水器25により凝縮された復水の流れに随伴して原子炉圧力容器3へ再循環される(図5の(I)の状態)。
一方、非常用復水器25に流入した蒸気や窒素ガス等の非凝縮性ガスの混合流体が非常用復水器25の伝熱管内を流れる際に、混合気体のうちの蒸気が凝縮して非凝縮性ガスの分圧が上昇するため、非常用復水器25の除熱性能は伝熱管下流に行くに従って劣化する。
非常用復水器25の伝熱管の出口で非凝縮性ガスの分圧は最大となって、出口水室27に残りの蒸気と凝縮水とともに吐き出される。この非凝縮性ガス分圧の高い混合流体を外部タンク34へ選択的にベントすることで、外部タンク34内の貯留水の加熱を最小限に抑えた上で、その気相部圧力を徐々に増加させ、事故発生後数時間から1日程度をかけて最終的に原子炉格納容器2及び原子炉圧力容器3を均圧させる。
事故発生から長時間が経過すると、図3に示すように、蒸気流出によって、原子炉圧力容器3内の水位L1は徐々に低下して、原子炉炉心9の上端にまで近付く。原子炉圧力容器3内の水位L1を回復させるために、原子炉圧力容器3と均圧した外部タンク34から原子炉冷却用補給水配管35を介して重力差によって原子炉圧力容器3に注水させる(図5の(II)の状態)。
なお、この原子炉冷却用補給水配管35の吸込みは、必要な量が補給できるように外部タンク34の所定の高さに開口しており、場合によっては原子炉圧力容器3への注水が行われないこともある。図6に、外部タンク34から原子炉炉心9への注水が行われなかった場合の、原子炉冷却材喪失時の主要パラメータの変動を表したグラフを示す。
外部タンク34から原子炉圧力容器3への注水の後、さらに長時間が経過すると、原子炉格納容器2の外部への放熱が継続するため、このまま放置すると原子炉圧力容器3内の水位L1は徐々に低下し続け、何らかの手段をとらなければ原子炉炉心9の露出に至る可能性がある。
そこで、原子炉炉心9を安定な冷却状態へ移行させるため、図4に示すように、外部タンク34から原子炉格納容器冠水用配管36を介して原子炉格納容器2を重力差によって原子炉圧力容器3と非常用復水器凝縮水戻り配管29との接続高さよりも上まで冠水させる。
原子炉格納容器2から連通配管23を介して重力差により原子炉圧力容器3へ補給することで、原子炉圧力容器内の水位L1を原子炉炉心9より上に維持させる。
この原子炉格納容器冠水用配管36の吸込みは、必要な量が補給できるように、外部タンク34の原子炉冷却用補給水配管35より下方の所定の高さに開口している。
連通配管23を介した冷却循環経路が一旦形成されると、非常用復水器25内の滞留ガスの定常的な排出により、その所定の除熱が行われる限り、これらの系統以外からの水を補給することなしに、原子炉炉心9を継続的に冷却することが可能となる(図5の(III)の状態)。
また、連通配管23は、原子炉格納容器2の外部に配置されるため、事故時に高温あるいは高圧となる原子炉格納容器2内の雰囲気条件を考慮せずに設計することができ、高い信頼性を持ってこの開動作が実現される。
非常用復水器25内に滞留する非凝縮性ガスを凝縮水に随伴させて原子炉圧力容器3へ戻すことは、非常用復水器凝縮水戻り配管29の配管サイジングと原子炉圧力容器3との接続部手前のUシール(U字配管)の高さ設定を適切に行うことで可能となる。
一般に、凝縮水の流速が高速である程随伴される非凝縮性ガスは排出されやすくなるが、一方、水及びガスの流速が早い程、非常用復水器凝縮水戻り配管29での圧力損失が大きくなる。
非常用復水器25に流入する蒸気流量、すなわち非常用復水器25の除熱性能は、非常用復水器蒸気吸込み配管28と原子炉圧力容器3との接続端及び非常用復水器凝縮水戻り配管29と原子炉圧力容器3との接続端、この2つの接続端間での原子炉圧力容器3側と非常用復水器25側の水頭差及び非常用復水器25の系統配管の圧力損失で決定されることから、非常用復水器凝縮水戻り配管29の圧力損失が増大することは非常用復水器25の除熱性能を阻害する可能性がある。
よって、非常用復水器25の除熱を阻害することなく、なおかつ事故時に非常用復水器25から非凝縮性ガスを凝縮水に随伴させて効率よく排出させるためには、非常用復水器凝縮水戻り配管29の口径を適切に選択する必要がある。
原子炉定格運転圧力近傍の7MPaの高圧条件で、非常用復水器25が所定の除熱性能を満たす条件において非常用復水器凝縮水戻り配管29が凝縮水で満たされて流れる場合に、その凝縮水の平均流速が所定値以上、例えば1メートル毎秒以上となる非常用復水器凝縮水戻り配管29の口径では、除熱性能を維持しつつ効率的に非凝縮性ガスを排出する2つの要求を満たすことができる。
また、非常用復水器凝縮水戻り配管29と原子炉圧力容器3の接続部から非常用復水器25に向けて蒸気の逆流を防止する必要があり、このため、非常用復水器凝縮水戻り配管29はU字状の配管(Uシール)として原子炉圧力容器3と接続するが、一方、非常用復水器25からの非凝縮性ガスの排出という観点からはUシールの高さが影響する。
このことから、Uシールの高さを配管直径(1D)に一致させることにより、Uシールの効果を維持しつつ、非常用復水器25からの非凝縮性ガスの排気を促進することができる。
なお、この機能により、万一、原子炉炉心9の冷却不全によって炉心損傷に至り、燃料被覆管材料であるジルコニウムと蒸気が反応して大量の水素が発生した場合においても、非常用復水器25に流入した水素ガスは伝熱管内に蓄積することなしに原子炉圧力容器3へ継続的に排出される。
よって、実施例1によると、非常用復水器25の除熱性能は極端な劣化をせず、原子炉格納容器2からの継続的な除熱が可能となる。
次に、本発明に係る沸騰水型原子力発電設備1の実施例2について、図7〜図10に基づいて説明する。
実施例2では、原子炉緊急停止(スクラム)に失敗した事象(以下、ATWS事象という)が発生した場合の事象について説明する。
図7〜図9は、主蒸気隔離弁が閉鎖した場合を例に、ATWS事象が発生した場合の事象推移を時間軸に沿って示したものである。また、図10は、ATWS時の主要パラメータの変動を示すグラフである。
原子炉の運転中に何らかの要因で主蒸気隔離弁が閉鎖した場合には、通常、原子炉を自動でスクラムさせるインターロックが設けられている。しかしながら、このスクラムに失敗すると、原子炉炉心9から発生する蒸気によって原子炉圧力容器3の圧力が上昇し、さらには安全弁22から蒸気が噴出して原子炉格納容器2の圧力及び温度が急激に上昇してしまう。
原子炉格納容器2及び原子炉圧力容器3の圧力上昇に対処するために、従来、圧力抑制プールを用いて原子炉圧力容器3への給水流量を最大限絞る等の手段(圧力抑制方式)を用いて、原子炉圧力容器3内の水位を低下させることにより、原子炉の出力を低下させていた。
しかしながら、沸騰水型原子力発電設備1は、ドライコンテナ方式を採用しており圧力抑制プールを持たないため、原子炉格納容器2の圧力が、原子炉の出力L6が十分に低下しない事象発生後数分で原子炉圧力容器3の圧力にまで上昇する可能性がある。
このため、沸騰水型原子力発電設備1においては、非常用復水器25の出口水室に大口径の非常用復水器主ベント配管31を設けて、原子炉炉心9から発生した蒸気を外部タンク34の貯留水中に導いて凝縮させる構成とした。
ATWS事象が発生したことを検知して給水流量の絞込みを行うのとほぼ同時にこのベントを作動させることにより、非常用復水器25による除熱に加えて、外部タンク34での蒸気凝縮による除熱も実施することができる。
図10に示すように、ATWS事象発生時に、原子炉圧力容器3内の圧力L2及び原子炉格納容器6内の圧力L3も過度に上昇しないため、最低限、この圧力を維持するためには、原子炉圧力容器3内の水位L1の低下により原子炉の出力L6を低下させる(図10の(II)の状態)。
ここまでの期間で、運転員操作によるスクラムや他の手段を用いて制御棒18挿入などを試みることとなるが、これらがすべて失敗した場合には、次の段階に移行する。
また、ここまでの期間に外部タンク34の水位が上昇して、その気相部の容積が減少することで、その圧力が過度に上昇しないよう、図8に示すように、高圧補給水ポンプ42等を使用して外部タンク水位を調節する(図10の(III)の状態)。
さらに、外部タンク34に設けられた残留熱除去系ポンプ38、残留熱除去系熱交換器39、外部タンクスプレイスパージャ40を機能させることで、蒸気凝縮による外部タンク34の水温上昇を抑制する。
上記の時間が経過した後、最終的な原子炉停止手段として、ポイズン蓄圧貯蔵タンク24から原子炉炉心9の領域へポイズンを急速に注入する。これによって、原子炉を速やかに高温未臨界の状態へ移行させることができる(図10の(IV)の状態)。
ポイズン注入時間、非常用復水器ベント容量、外部タンク容量などを適切に設定することで、この段階までの期間でも外部タンク内水温及び圧力を所定の値以下することが可能である。
原子炉炉心9がポイズンにより高温未臨界の状態となって以降、さらにポイズンを注入することにより低温未臨界へ移行させることが可能である。
また、図9に示すように、高温未臨界到達以降は、非常用復水器25による除熱を行いつつ、原子炉圧力容器3内の水位L1を外部タンク34からの注水等で徐々に回復させることで安全な状態を維持することができる(図10の(V)の状態)。
なお、非常用復水器25の機能が全て喪失するような事象が発生した場合でも、原子炉炉心9から発生する蒸気をベントさせて原子炉圧力容器3を減圧させるのと同時に、外部タンク34の水を残留熱除去系ポンプ38で吸込み、残留熱除去系熱交換器39で冷却した後、外部タンクスプレイスパージャ40で戻すという経路を確保する。さらに、高圧補給水ポンプ42によって原子炉圧力容器3内の水位維持を組み合わせることにより、原子炉圧力容器3を残留熱除去系ポンプ38の停止時冷却用の運転が可能となる圧力まで安全に減圧することが可能となる。
〔第2実施形態〕
次に、本発明に係る沸騰水型原子力発電設備の第2実施形態について、図11に基づいて説明する。なお、第1実施形態と同一の構成には同一の符号を付し、詳細な説明を省略する。
第2実施形態の沸騰水型原子力発電設備1Aは、第1実施形態の沸騰水型原子力発電設備1において、ATWS時における原子炉格納容器2の圧力上昇を抑制するための、後備機能を追加したものである。
すなわち、沸騰水型原子力発電装備1Aの安全系システム8Aは、図11に示すように、原子炉格納容器2及び外部タンク34の圧力上昇を抑制するために、原子炉格納容器2の外部に配設される外部タンク34とは異なる水プール46を備える。
また、原子炉格納容器2に高耐圧型の原子炉格納容器安全弁47が設置されるとともに、この原子炉格納容器安全弁47には、原子炉格納容器2からの排気を水プール46の液相部46aへ導く排気管54が備えられる。この排気管54の水プール46側の開口部には、高耐圧型の原子炉格納容器安全弁排気管用スパージャ48が設けられる。
さらに、外部タンク34の気相部にも外部タンク安全弁49が設置されて、同様に、外部タンク安全弁49からの排気を排気管55から水プール46の液相部46aへ外部タンク安全弁排気管用スパージャ50を介して行う。
第2実施形態の沸騰水型原子力発電設備1Aにおいて、ATWS時に非常用復水器主ベント配管31から外部タンク34への蒸気排出に失敗した場合に、原子炉格納容器2内に安全弁22を介して放出された原子炉蒸気は原子炉格納容器安全弁47から水プール46に導かれて凝縮し、この蒸気とともに排出された原子炉格納容器2内部の窒素ガスも水プール46内部に格納できる。これにより、原子炉格納容器2の過度の圧力上昇を抑制できる。
また、非常用復水器主ベント配管31から外部タンク34への蒸気排出に成功した場合でも、外部タンク34に配設された残留熱除去系ポンプ38、残留熱除去系熱交換器39及び外部タンクスプレイスパージャ40を用いた外部タンク34内部の水の冷却に失敗すると外部タンク34の圧力は上昇するが、外部タンク34の圧力が外部タンク安全弁49の作動圧力にまで達すると、外部タンク34内部の蒸気や窒素ガスなどの非凝縮性ガスを水プール46へ移行させることで、外部タンク34の圧力上昇を抑制できるとともに、非常用復水器主ベント配管31による原子炉圧力容器3の圧力上昇抑制も可能となる。
この結果、ポイズン注入系蓄圧貯蔵タンク43から注入されたポイズン(ホウ酸水等)によって原子炉が停止されるまでの期間で、原子炉格納容器2の過度の圧力上昇を抑制することができ、原子炉停止後は非常用復水器25によって原子炉炉心9の崩壊熱によって発生する蒸気を凝縮することで、原子炉炉心9を冷却することが可能となる。
また、このような原子炉格納容器2の圧力上昇抑制方法は、ATWS時だけでなく、原子炉炉心9の冷却不全によって炉心損傷に至り、燃料被覆管材料であるジルコニウムと蒸気が反応して大量の水素が発生した場合に対しても利用可能である。
なお、水プール46は、例えば、原子炉圧力容器3内の燃料を交換する際に使用する復水貯蔵槽を利用することが可能である。この場合、第1実施形態の原子炉格納容器2の圧力上昇抑制方法を行うためには、原子炉格納容器安全弁47、外部タンク安全弁49、原子炉格納容器安全弁排気管用スパージャ48、外部タンク安全弁排気管用スパージャ50とこれらに付随する排気管54、55を追加するのみで、ATWS時の圧力上昇抑制のための後備機能が得られ、安全性をさらに高めることが可能となる。
〔第3実施形態〕
次に、本発明に係る沸騰水型原子力発電設備の第3実施形態について、図12に基づいて説明する。なお、第1実施形態及び第2実施形態と同一の構成には同一の符号を付し、詳細な説明を省略する。
第3実施形態の沸騰水型原子力発電設備1Bは、第1実施形態の沸騰水型原子力発電設備1において、全ての非常用復水器25の機能が何らかの原因で喪失した場合を想定して、その後備としての代替冷却手段を設けることにより、更に安全性を高めたものである。
すなわち、沸騰水型原子力発電設備1Bの安全系システム8Bは、図12に示すように、原子炉格納容器2の外部に外部タンク34とは異なる水プール46を備える。
また、安全系システム8Bは、全ての非常用復水器25の機能が喪失した場合に原子炉炉心9から発生する蒸気を外部タンク34へ排出する自動減圧機能附き安全弁51、自動減圧機能附き安全弁51からの排気を案内する自動減圧機能附き安全弁排気管52、自動減圧機能附き安全弁排気管52に案内された排気を外部タンク34内に分散して放出する自動減圧機能附き安全弁排気管用スパージャ53を備える。
原子炉炉心9から発生する蒸気は、この自動減圧機能附き安全弁51を介して外部タンク34へ排出され、原子炉圧力容器3が除熱される。
これにより、安全弁22あるいは破断口45から原子炉格納容器2への冷却水あるいは蒸気の流出が最小限に抑制され、原子炉格納容器2や原子炉圧力容器3の圧力及び温度の上昇が抑制される。
同時に、原子炉炉心9を冠水維持するために、高圧補給水ポンプ42を用いて外部タンク34の水を原子炉給水系7から原子炉圧力容器3へ注水するか、または、外部タンク34の水を原子炉格納容器冠水用配管36から原子炉格納容器2へ注水し、原子炉格納容器内連通配管23Bを開放させて原子炉圧力容器3内へ導くことで達成される。
残留熱除去系ポンプ38及び残留熱除去系熱交換器39により外部タンク34内の水は冷却され、この外部タンク34内の水の冷却によって原子炉圧力容器3及び原子炉格納容器2の冷却が行われる。
また、この代替冷却手段を設けたことにより、非常用復水器主ベント配管31を設ける必要がなくなる。
なお、第3実施形態の沸騰水型原子力発電設備1Bは、ATWS時の原子炉圧力容器3及び原子炉格納容器2の冷却手段としても用いることが可能である。
まず、スクラム失敗で原子炉隔離状態が続くと、原子炉圧力容器3内の圧力が上昇し自動減圧機能附き安全弁51の安全弁機能が働き、原子炉圧力容器3内の蒸気を外部タンク34へ自動的に排出する。
この排出機能だけでは容量が不足する場合には、さらに原子炉圧力容器3に設置された安全弁22が開き、原子炉圧力容器3内の蒸気を原子炉格納容器2内に排出し、その圧力を上昇させる。この際、原子炉格納容器2の圧力が設計圧力以下になるような十分な容量を持った安全弁22を設置する。
安全弁22を開いた後、原子炉圧力容器3内の蒸気の排出による原子炉圧力容器3内の水位低下で生じる原子炉出力の低下、及び、原子炉圧力容器3内の蒸気の排出後のポイズン注入により原子炉は停止し、非常用復水器25による冷却により原子炉高温待機状態に移行し、事象収束に至る。
本発明に係る沸騰水型原子力発電設備の第1実施形態を示す構成図。 第1実施形態の原子炉冷却材喪失時における事象水位の状態を示す第一の図。 第1実施形態の原子炉冷却材喪失時における事象水位の状態を示す第二の図。 第1実施形態の原子炉冷却材喪失時における事象水位の状態を示す第三の図。 第1実施形態における原子炉冷却材喪失時の主要パラメータの変動を示すグラフ。 第1実施形態における原子炉冷却材喪失時の主要パラメータの変動を示すグラフ。 第1実施形態におけるATWS時の事象推移を示す第一の図。 第1実施形態におけるATWS時の事象推移を示す第二の図。 第1実施形態におけるATWS時の事象推移を示す第三の図。 第1実施形態におけるATWS時の主要パラメータの変動を示すグラフ。 本発明に係る沸騰水型原子力発電設備の第2実施形態を示す構成図。 本発明に係る沸騰水型原子力発電設備の第3実施形態を示す構成図。
符号の説明
1、1A、1B 沸騰水型原子力発電設備
2 原子炉格納容器
3 原子炉圧力容器
4 格納容器支持ペデスタル
5 圧力容器支持ペデスタル
6 主蒸気系
7 原子炉給水系
7a 給水ポンプ
8、8A、8B 安全系システム
9 原子炉炉心
10 炉心シュラウド
11 ダウンカマー
12 炉心下部プレナム
13 気水分離器
14 蒸気乾燥器
15 主蒸気隔離弁
16 制御棒駆動装置
17 制御棒収納スペース
18 制御棒
19 非常用復水系
20 外部貯蔵系
21 ポイズン注入系
22 安全弁
23、23B 連通配管
24 非常用復水器プール
25 非常用復水器
26 入口水室
27 出口水室
28 非常用復水器蒸気吸込み配管
29 非常用復水器凝縮水戻り配管
30 非常用復水器ガスベント配管
31 非常用復水器主ベント配管
32 非常用復水器ガスベント流量制限オリフィス
33 非常用復水器主ベント配管用スパージャ
34 外部タンク
35 原子炉冷却用補給水配管
36 原子炉格納容器冠水用配管
37 残留熱除去系配管
38 残留熱除去系ポンプ
39 残留熱除去系熱交換器
40 外部タンクスプレイスパージャ
41 高圧補給水配管
42 高圧補給水ポンプ
43 ポイズン注入系蓄圧貯蔵タンク
44 ポイズン注入系ポイズン注入配管
45 破断口
46 水プール
46a 液相部
47 原子炉格納容器安全弁
48 原子炉格納容器安全弁排気管用スパージャ
49 外部タンク安全弁
50 外部タンク安全弁排気管用スパージャ
51 自動減圧機能附き安全弁
52 自動減圧機能附き安全弁排気管
53 自動減圧機能附き安全弁排気管用スパージャ
54、55 排気管
A 原子炉冷却用補給水
B 原子炉格納容器冠水用水
C ベント蒸気凝縮用水
L1 原子炉圧力容器内の水位
L2 原子炉圧力容器内の圧力
L3 原子炉格納容器内の圧力
L4 外部タンク内の圧力
L5 原子炉格納容器内の水位
L6 原子炉の炉出力
L7 外部タンク内の水温

Claims (13)

  1. 過圧防護用の安全弁を有する原子炉圧力容器を収納した原子炉格納容器と、前記原子炉圧力容器内で発生した蒸気を蒸気タービンに送り込む主蒸気系と、蒸気タービンからの蒸気を復水器により凝縮する原子炉復水系と、この原子炉復水系で凝縮された復水を前記原子炉圧力容器に戻す原子炉給水系とを備えた沸騰水型原子力発電設備において、
    前記原子炉圧力容器からの蒸気を凝縮して再び前記原子炉圧力容器に戻す非常用復水系と、
    前記非常用復水系からの復水を貯蔵する外部貯蔵系とを備え、
    前記外部貯蔵系は、前記非常用復水系からの復水を貯蔵する外部タンクと、この外部タンク内の水を前記原子炉圧力容器へ注水する原子炉冷却用補給水配管と、前記外部タンク内の水を前記原子炉格納容器へ注水する原子炉格納容器冠水用配管とを有し、
    前記原子炉冷却用補給水配管が前記原子炉圧力容器及び外部タンクに接続される高さは、前記原子炉格納容器冠水用配管が前記原子炉格納容器及び外部タンクに接続される高さに対して異なるように設定されて、前記原子炉圧力容器への注水量と注水開始タイミング、及び、前記原子炉格納容器への注水量と注水開始タイミングが、それぞれ重力により駆動制御されることを特徴とする沸騰水型原子力発電設備。
  2. 予め貯蔵されたポイズンを非常時に前記原子炉圧力容器に注入するポイズン注入系を備えた請求項1記載の沸騰水型原子力発電設備。
  3. 前記原子炉圧力容器が原子炉炉心及び上部挿入型の制御棒駆動装置を備えるとともに、前記原子炉炉心の上端より上方においてのみ前記原子炉冷却用補給水配管、前記原子炉給水系の配管、および前記非常用復水系の配管が前記原子炉圧力容器に接続された請求項1記載の沸騰水型原子力発電設備。
  4. 前記非常用復水系の復水を前記外部タンクに注入する非常用復水器ベント配管を備え、
    この非常用復水器ベント配管が、大口径の配管と小口径の配管とを並列に並べることにより構成された請求項1記載の沸騰水型原子力発電設備。
  5. 前記非常用復水器ベント配管の外部タンク内部への吐き出し口がスパージャ構造であるとともに、前記吐き出し口の高さが、前記非常用復水器ベント配管の前記非常用復水系側の吸込み口の高さより下方に設定された請求項4記載の沸騰水型原子力発電設備。
  6. 前記原子炉格納容器内の冠水を前記原子炉圧力容器内に注水するための連通配管を備え、
    この連通配管は、前記原子炉格納容器、及び前記非常用復水系からの復水を前記原子炉圧力容器に注水する非常用復水器凝縮水戻り配管に接続され、前記原子炉圧力容器への注水量と注水開始タイミングとが重力により駆動制御される請求項1記載の沸騰水型原子力発電設備。
  7. 前記外部タンクは、ポンプ、配管、熱交換器から構成される冷却配管を備えた請求項1記載の沸騰水型原子力発電設備。
  8. 前記非常用復水系からの復水を前記原子炉圧力容器に注水する非常用復水器凝縮水戻り配管の内部の凝縮水平均流速が1メートル毎秒以上となるように口径が設定された前記非常用復水器を有する請求項1記載の沸騰水型原子力発電設備。
  9. 前記非常用復水器凝縮水戻り配管の前記原子炉圧力容器に対する接続箇所に、高さが前記非常用復水器凝縮水戻り配管の直径程度のUシールを設けた請求項8記載の沸騰水型原子力発電設備。
  10. 前記原子炉格納容器の外部に前記外部タンクとは異なる水プールを備えるとともに、前記原子炉格納容器は、排気管が前記水プールの液相部に接続する原子炉格納容器安全弁を具備し、前記排気管の前記水プールに対する接続部先端をスパージャ構造とした請求項1記載の沸騰水型原子力発電設備。
  11. 前記外部タンクの気相部に、排気管が前記水プールの液相部に接続する外部タンク安全弁が備えられるとともに、前記排気管の前記水プールに対する接続部先端をスパージャ構造とした請求項10記載の沸騰水型原子力発電設備。
  12. 前記原子炉圧力容器は、排気管が前記外部タンクの液相部に接続する自動減圧機能附き安全弁を備え、前記非常用復水系の機能が喪失した場合に、原子炉炉心から発生する蒸気が前記排気管を通して前記外部タンクへ排出される請求項1記載の沸騰水型原子力発電設備。
  13. 前記原子炉格納容器に冠水された水を重力差により前記原子炉圧力容器内に注水するための連通配管を、前記原子炉圧力容器の原子炉炉心より上方に設置した請求項12記載の沸騰水型原子力発電設備。
JP2006025717A 2006-02-02 2006-02-02 沸騰水型原子力発電設備 Active JP4761988B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025717A JP4761988B2 (ja) 2006-02-02 2006-02-02 沸騰水型原子力発電設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025717A JP4761988B2 (ja) 2006-02-02 2006-02-02 沸騰水型原子力発電設備

Publications (2)

Publication Number Publication Date
JP2007205923A JP2007205923A (ja) 2007-08-16
JP4761988B2 true JP4761988B2 (ja) 2011-08-31

Family

ID=38485512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025717A Active JP4761988B2 (ja) 2006-02-02 2006-02-02 沸騰水型原子力発電設備

Country Status (1)

Country Link
JP (1) JP4761988B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4991598B2 (ja) * 2008-02-28 2012-08-01 株式会社東芝 原子力発電設備の自動減圧系
JP5911762B2 (ja) * 2012-06-29 2016-04-27 株式会社東芝 原子力プラントおよび静的格納容器冷却系
CN115910406B (zh) * 2022-11-22 2024-01-09 上海核工程研究设计院股份有限公司 一种非能动压水堆核电厂堆腔淹没分析方法及***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432797A (ja) * 1990-05-30 1992-02-04 Toshiba Corp 非常用原子炉冷却装置
JP2934341B2 (ja) * 1991-07-05 1999-08-16 株式会社日立製作所 原子炉格納容器冷却設備
JPH085772A (ja) * 1994-06-17 1996-01-12 Hitachi Ltd 原子炉格納容器
JPH09243779A (ja) * 1996-03-08 1997-09-19 Japan Atom Power Co Ltd:The 原子炉
JP2003185781A (ja) * 2001-12-17 2003-07-03 Mitsubishi Heavy Ind Ltd 原子炉容器およびその格納容器の非常用冷却機構

Also Published As

Publication number Publication date
JP2007205923A (ja) 2007-08-16

Similar Documents

Publication Publication Date Title
US5102616A (en) Full pressure passive emergency core cooling and residual heat removal system for water cooled nuclear reactors
US8824619B2 (en) Steam generator flow by-pass system
JP4675926B2 (ja) 沸騰水型原子炉
EP2096644A2 (en) Passive cooling and depressurization system and pressurized water nuclear power plant
US10319481B2 (en) Passive containment spray system
JP2007051929A (ja) 原子炉格納容器冷却設備および原子力プラント
WO2002073625A2 (en) Integral pwr with diverse emergency cooling and method of operating same
KR100813939B1 (ko) 안전보호용기를 구비한 일체형원자로의 피동형비상노심냉각설비
CZ124293A3 (en) Pressurized-water reactor and method of moderating effects of leakages
JP3159820B2 (ja) 原子炉格納設備
KR101250479B1 (ko) 안전보호용기를 구비한 피동형 비상노심냉각설비 및 이를 이용한 열 전달량 증가 방법
KR101559017B1 (ko) 중대사고방지 무인사고대처 원자로 및 그 동작 방법
JP4761988B2 (ja) 沸騰水型原子力発電設備
JP5279325B2 (ja) 沸騰水型原子炉のハイブリッド安全系
JP6359318B2 (ja) 静的原子炉格納容器冷却系および原子力発電プラント
KR20060020756A (ko) 다양한 비상냉각설비를 갖춘 일체형 가압 경수로 및 그운전방법
JP2001228280A (ja) 原子炉
JP2020173201A (ja) 非常用復水器システム
JP5513880B2 (ja) 炉心冷却システム
JP2548838B2 (ja) 加圧水型原子炉の炉心崩壊熱除去装置
JP7453062B2 (ja) 原子力発電プラント
KR102249809B1 (ko) 원전 장기 냉각 계통 및 이를 이용한 원전 장기 냉각 방법
KR101695363B1 (ko) 피동안전계통 및 이를 구비하는 원전
JPH08334584A (ja) 沸騰水型原子炉における凝縮器プールの水インベントリを管理するシステムおよび方法
JP7105719B2 (ja) Atws対策設備やそれを備えた自然循環型沸騰水型原子炉

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4761988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350