JP4759211B2 - Method for producing perovskite-type barium titanate powder - Google Patents

Method for producing perovskite-type barium titanate powder Download PDF

Info

Publication number
JP4759211B2
JP4759211B2 JP2002288673A JP2002288673A JP4759211B2 JP 4759211 B2 JP4759211 B2 JP 4759211B2 JP 2002288673 A JP2002288673 A JP 2002288673A JP 2002288673 A JP2002288673 A JP 2002288673A JP 4759211 B2 JP4759211 B2 JP 4759211B2
Authority
JP
Japan
Prior art keywords
barium
titanyl oxalate
particle size
barium titanyl
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002288673A
Other languages
Japanese (ja)
Other versions
JP2004123431A (en
Inventor
一男 落合
信司 田邉
敦 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2002288673A priority Critical patent/JP4759211B2/en
Priority to CNB03127269XA priority patent/CN100484879C/en
Publication of JP2004123431A publication Critical patent/JP2004123431A/en
Application granted granted Critical
Publication of JP4759211B2 publication Critical patent/JP4759211B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ペロブスカイト型チタン酸バリウム粉末の製造方法に関するものであり、特に、圧電体、オプトエレクトロニクス材、誘電体、半導体、センサー等の機能性セラミックの原料として有用なペロブスカイト型チタン酸バリウム粉末の製造方法に関するものである。
【0002】
【従来の技術】
ペロブスカイト型チタン酸バリウム粉末は、従来、圧電体、積層セラミックコンデンサ等の機能性セラミックの原料として用いられてきた。ところが、近年、積層セラミックコンデンサは、高容量化のために積層数の増加や高誘電率化が求められており、このため、原料であるペロブスカイト型チタン酸バリウム粉末には、1μm以下の微細で、粒径のバラツキが小さく、Tiに対するBaのモル比(以下、「Ba/Tiモル比」ともいう。)が略1で且つそのバラツキが小さく、高純度で、結晶性に優れることが求められている。
【0003】
ペロブスカイト型チタン酸バリウム粉末の製造方法としては、例えば、特開昭61−146710号公報に、水溶性バリウム塩と水溶性チタニウム塩及びシュウ酸の水溶液を同時に混合し、得られたゲルを短時間に強力攪拌解砕することにより得られた微細なシュウ酸バリウムチタニル(BaTiO(C)・4HO)の結晶を700〜900℃で仮焼する方法が提案されている。また、クラバフ・ダヴリュー・エス他は、TiClとBaClとの水溶液を約80℃のH水溶液に激しくかき混ぜながら滴下してシュウ酸バリウムチタニルを得、該シュウ酸バリウムチタニルを仮焼して一次粒子の粒径分布が0.3〜1.5μmでBa/Tiモル比が0.987〜1.003のBaTiOを製造する方法を提案している。
【0004】
【特許文献1】
特開昭61−146710号公報(第1頁)
【非特許文献1】
クラバフ・ダヴリュー・エス他(Clabaugh,W.S.,et al.)著,「高純度チタン酸バリウムへの転換用のシュウ酸バリウムチタニル四水和物の沈殿(Precipitation of Barium Titanyl Oxalate Tetrahydrate for Conversion to Barium Titanate of High Purity)」,「ジャーナル・オヴ・リサーチ・オヴ・ザ・ナショナル・ビュロー・オヴ・スタンダーズ(Journal of Research of the National Bureau of Standards)」,(米国),1956年,第56巻(Vol56),第5号(No.5),p.289−291
【0005】
【発明が解決しようとする課題】
しかしながら、特開昭61−146710号公報記載の方法で得られるペロブスカイト型チタン酸バリウム粉末は、その製造過程で結晶中に塩素がかなりの量取り込まれるため、洗浄を行っても塩素の含有量を数百ppm以下まで十分に低減させることが困難で純度に欠け、洗浄により組成のバラツキも大きくなり易いという問題がある。また、クラバフ・ダヴリュー・エス他が提案する方法では、平均粒径が1μm以下の微細で、粒径のバラツキが小さく、Ba/Tiモル比が略1で且つそのバラツキが小さく、結晶性の優れたペロブスカイト型チタン酸バリウム粉末が得られないという問題がある。
【0006】
従って、本発明の目的は、平均粒径が1μm以下の微細で、粒径のバラツキが小さく、Ba/Tiモル比が略1で且つそのバラツキが小さく、高純度で、結晶性の優れたペロブスカイト型チタン酸バリウム粉末の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、かかる実情において、鋭意研究を重ねた結果、特定の粒度特性を有するシュウ酸バリウムチタニルを洗浄処理すると、塩素等の不純物を容易に除去することができること、この洗浄処理後のシュウ酸バリウムチタニルを特定の粒径となるまで湿式粉砕処理し、仮焼すると、平均粒径が1μm以下の微細で、粒径のバラツキが小さく、Ba/Tiモル比が略1で且つそのバラツキが小さく、高純度で、結晶性に優れるペロブスカイト型チタン酸バリウム粉末が得られることを見出し本発明を完成するに至った。
【0008】
すなわち、本発明は、平均粒径100〜200μmのシュウ酸バリウムチタニルを水で洗浄する第一工程、該洗浄後のシュウ酸バリウムチタニルをスラリーとした後、エタノール溶媒中で湿式粉砕処理して、平均粒径0.05〜1μmのシュウ酸バリウムチタニルを得る第二工程、及び該平均粒径0.05〜1μmのシュウ酸バリウムチタニルを700〜1200℃で仮焼する第三工程を有し、前記平均粒径100〜200μmのシュウ酸バリウムチタニルが、四塩化チタン及び塩化バリウムを水に溶解してなるA液と、シュウ酸を水に溶解してなるB液とを、Tiに対するシュウ酸のモル比(シュウ酸/Ti)が2.1〜2.3となる添加量で、50〜90℃で接触させ、次いで、50〜90℃で0.5時間以上熟成した後、固液分離して得られたものであることを特徴とするペロブスカイト型チタン酸バリウム粉末の製造方法を提供するものである。
【0010】
【発明の実施の形態】
[ペロブスカイト型チタン酸バリウム粉末の製造方法]
(第一工程)
本発明に係るペロブスカイト型チタン酸バリウム粉末の製造方法の第一工程は、特定粒径のシュウ酸バリウムチタニル(BaTiO(C)・4HO)を水で洗浄し、該シュウ酸バリウムチタニル粒子中に取り込まれた塩素等の不純物を除去する工程である。本工程で用いられるシュウ酸バリウムチタニルは、平均粒径が通常50〜300μm、好ましくは100〜200μmである。平均粒径が該範囲内にあると、結晶粒が大きいために、水で洗浄したときにBa及びTiの溶出が少ない上、塩素等の不純物を効率的に除去することができるため好ましい。なお、シュウ酸バリウムチタニル粒子は、コンペイ糖状粒子であるが、本発明においてシュウ酸バリウムチタニルの平均粒径とは、走査型電子顕微鏡(SEM)で観察したコンペイ糖状粒子の突起先端部まで含めた最大径をコンペイ糖状粒子1個の粒径とし、複数個のコンペイ糖状粒子についての該粒径の相加平均値を示す。
【0011】
シュウ酸バリウムチタニルの平均粒径が上記範囲内であると、水で洗浄するとシュウ酸バリウムチタニル粒子中に取り込まれた塩素等の不純含有量を数百ppmレベルまで低減させることが容易になるため、また、得られるペロブスカイト型チタン酸バリウム粉末は洗浄の際にBa及びTiの溶出が少なくBa/Tiモル比が0.998〜1.002の範囲内の略1のものになり易いため好ましい。
【0012】
一方、シュウ酸バリウムチタニルの平均粒径が50μm未満であると、水で洗浄しても粒子中に取り込まれた塩素等の不純物を数百ppmレベルまで低減させ難く、また、Ba及びTiの溶出のために得られるペロブスカイト型チタン酸バリウムのBa/Tiモル比が0.998〜1.002の範囲内になり難いため好ましくない。また、平均粒径が300μmを越えると、粉砕効率が低下し後述の第二工程において湿式粉砕後の粒径のバラツキが大きくなり易いため好ましくない。
【0013】
また、第一工程において用いられるシュウ酸バリウムチタニルは、Ba/Tiモル比が、通常0.998〜1.002である。シュウ酸バリウムチタニルのBa/Tiモル比が該範囲内にあると、得られるペロブスカイト型チタン酸バリウムのBa/Tiモル比が0.998〜1.002で略1のものが得られるため好ましい。
【0014】
洗浄に用いられる水は、イオン等でシュウ酸バリウムチタニルが汚染されないようにするため、イオン交換水、純水、超純水等が好ましい。なお、洗浄効果を高めるために、初めに工業用水等で洗浄した後、イオン交換水等で再び洗浄してもよい。
【0015】
第一工程における洗浄方法としては特に限定されるものではないが、リパルプ等で洗浄を行うと洗浄効率がよいため好ましい。なお、リパルプとは、上澄み液を捨てた後、純水を加えて再び洗浄する方法である。また、洗浄は、該シュウ酸バリウムチタニルに含有される塩素濃度が500ppm以下、好ましくは200ppm以下になるまで充分に洗浄すると、高純度のペロブスカイト型チタン酸バリウム粉末を得易いため好ましい。
【0016】
洗浄処理後は、所望により乾燥を行い、洗浄後のシュウ酸バリウムチタニルを得る。本発明において洗浄後のシュウ酸バリウムチタニルの物性は、平均粒径が通常50〜300μm、好ましくは100〜200μmである。また、Ba/Tiモル比が、通常0.998〜1.002である。さらに、洗浄後のシュウ酸バリウムチタニルは、塩素含有量が通常500ppm以下、好ましくは200ppm以下である。なお、洗浄回数は一回に限定されるものでなく、洗浄後のシュウ酸バリウムチタニルの塩素含有量が上記範囲内になるように、複数回繰り返してもよい。
【0017】
(第二工程)
第二工程は、第一工程で洗浄後のシュウ酸バリウムチタニルをスラリーとした後、湿式粉砕処理して、平均粒径が特定範囲内のシュウ酸バリウムチタニルを得るものである。
【0018】
上記スラリーの調製に用いられる溶媒としては、シュウ酸バリウムチタニルに対して不活性であるものが用いられ、例えば、水、メタノール、エタノール、プロパノール、ブタノール、トルエン、キシレン、アセトン、塩化メチレン、酢酸エチル、ジメチルホルムアミド及びジエチルエーテル等が挙げられる。この中、メタノール、エタノール、プロパノール、ブタノール、トルエン、キシレン、アセトン、塩化メチレン、酢酸エチル、ジメチルホルムアミド及びジエチルエーテル等の有機溶媒で且つBaとTiの溶出が少ないものを用いると、結晶性の高いペロブスカイト型チタン酸バリウム粉末を得ることができるため好ましい。特にエタノールを用いると結晶性の優れたものが800〜950℃程度の低温域で安価に製造することができるため特に好ましい。上記溶媒は1種又は2種以上組み合わせて用いることができる。
【0019】
第二工程では、まずスラリーを調製する。スラリーは、洗浄後のシュウ酸バリウムチタニルを上記溶媒に混合して均一に分散させることにより得られる。スラリーの濃度は、湿式粉砕処理できる程度であればよく特に制限されるものではないが、通常10〜70重量%、好ましくは30〜50重量%であると、粉砕効率が高い。
【0020】
次に、該スラリーを用いて湿式粉砕処理を行う。湿式粉砕処理の方法としては、例えば、該スラリーを、湿式粉砕装置に装入して粉砕処理する方法が挙げられる。湿式粉砕装置としては、例えば、ボールミル、ビーズミル等が挙げられる。
【0021】
湿式粉砕処理は、走査型電子顕微鏡(SEM)から求められるシュウ酸バリウムチタニルの平均粒径が、通常0.05〜1μm、好ましくは0.05〜0.8μmとなるまで行う。平均粒径が0.05μm未満であると、技術的に粉砕が困難であり、また、取り扱いが難しくなるため好ましくない。また、平均粒径が1μmを超えると、得られるペロブスカイト型チタン酸バリウムの粒径のバラツキが大きくなり易いため好ましくない。
【0022】
粉砕処理の際に湿式粉砕装置に装入するビーズの材質としては、例えば、ジルコニア、アルミナ、シリカ、ゼオライト、炭化ケイ素、窒化ケイ素等が挙げられる。このうち、湿式粉砕時に不純物の混入が少ないため、ジルコニアが好ましい。
【0023】
上記ビーズの直径は、通常0.3〜5mm好ましくは0.3〜2mmである。直径が該範囲内にあると、粉砕効率がよいため好ましい。
【0024】
湿式粉砕処理終了後、得られる微細なシュウ酸バリウムチタニル粉末又はスラリーをそのまま乾燥する。乾燥方法は溶剤を回収できる方法であると製造コストを低くすることができるため好ましく、また、湿式粉砕処理後のスラリーを全量乾燥することができる噴霧乾燥機等で行うと、溶出成分を再びシュウ酸バリウムチタニル粉末中に含有させることができるためさらに好ましい。
【0025】
なお、第二工程における湿式粉砕処理前のスラリー又は湿式粉砕処理後のスラリーに、必要により副成分元素含有化合物を添加混合してもよい。このように副成分元素含有化合物を添加混合すると、粒子表面に副成分元素がほぼ均一に分散した状態で固溶したペロブスカイト型チタン酸バリウム粉末が得られ、例えばペロブスカイト型チタン酸バリウム粉末をセラミック化した後の該セラミックの誘電率等を調整することができるため好ましい。
【0026】
副成分元素含有化合物としては、例えば、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの希土類元素、Ba、Li、Bi、Zn、Mn、Al、Si、Ca、Sr、Co、Ni、Cr、Fe、Mg、Ti、V、Nb、Mo、W及びSnからなる群より選ばれる少なくとも1種の元素の化合物が挙げられる。
【0027】
副成分元素含有化合物は無機物又は有機物のいずれであってもよく、例えば、上記元素を含む酸化物、水酸化物、塩化物、硝酸塩、シュウ酸塩、カルボン酸塩及びアルコキシド等が挙げられる。なお、副成分元素含有化合物がSi元素を含有する化合物である場合は、上記酸化物等に加えて、シリカゾルや珪酸ナトリウム等も用いることができる。さらに、副成分元素含有化合物の元素が金属元素である場合は、副成分元素含有化合物としてアルコキシドを用いると、粒子表面に副成分元素が特に均一に分散したペロブスカイト型チタン酸バリウム粉末が得られるため好ましい。上記副成分元素含有化合物は1種又は2種以上組み合わせて用いることができる。
【0028】
湿式粉砕処理前のスラリーに、副成分元素含有化合物を添加混合する方法としては、例えば、副成分元素含有化合物を上記溶媒に溶解させた溶液又は分散させたスラリーを予め調製しておき、該溶液又はスラリーを湿式粉砕処理前のシュウ酸バリウムチタニルのスラリーと混合する方法、湿式粉砕処理前のシュウ酸バリウムチタニルのスラリーに副成分元素含有化合物を直接に添加混合する方法、第一工程で得られる洗浄後のシュウ酸バリウムチタニル、副成分元素含有化合物及び上記溶媒を同時に混合してスラリーを調製する方法等が挙げられる。また、湿式粉砕処理後のシュウ酸バリウムチタニルのスラリーに、副成分元素含有化合物を添加混合する方法としては、例えば、副成分元素含有化合物を上記溶媒に溶解させた溶液を予め調製しておき、該溶液を湿式粉砕処理後のシュウ酸バリウムチタニルのスラリーと混合する方法、湿式粉砕処理後のシュウ酸バリウムチタニルのスラリーに副成分元素含有化合物を直接に添加混合する方法が挙げられる。このうち、前者の方法は、分散が容易となるため好ましい。
【0029】
副成分元素含有化合物の添加量は、目的とする誘電特性に合わせて任意に設定することができるが、例えば、副成分元素含有化合物中の元素に積算した量が、シュウ酸バリウムチタニル100重量部に対して、通常0.01〜10重量部である。
【0030】
(第三工程)
第三工程は、前記第二工程で得られた平均粒径0.05〜1μmのシュウ酸バリウムチタニル粉末を所定温度で仮焼する工程であり、本工程を経ることにより、ペロブスカイト型チタン酸バリウム粉末が得られる。
【0031】
仮焼条件は、仮焼温度が700〜1200℃、好ましくは800〜1100℃である。仮焼温度を上記範囲内とする理由は、700℃未満であると単一相のペロブスカイト型チタン酸バリウム粉末が得られ難いため好ましくなく、一方、1200℃を越えると粒径のバラツキが大きくなり易いため好ましくないからである。また、本発明において、仮焼処理は、必要により何度行ってもよい。
【0032】
仮焼後、適宜冷却し、必要に応じ粉砕すると、ペロブスカイト型チタン酸バリウム粉末が得られる。なお、必要に応じて行われる粉砕は、仮焼して得られるペロブスカイト型チタン酸バリウム粉末がもろく結合したブロック状のものである場合等に適宜行うが、ペロブスカイト型チタン酸バリウム粉末の粒子自体は下記特定の平均粒径、BET比表面積を有するものである。
【0033】
すなわち、第三工程終了後に得られるペロブスカイト型チタン酸バリウム粉末は、走査型電子顕微鏡(SEM)から求めた平均粒径が通常0.05〜1μm、好ましくは0.05〜0.8μm、BET比表面積が1m/g以上、好ましくは2〜15m/gで、粒径のバラツキが少ないものである。さらに、上記物性に加え塩素含有量が通常500ppm以下、好ましくは200ppm以下であり、また、BaとTiのモル比が0.998〜1.002で略1の結晶性に優れたものである。
【0034】
かくして得られるペロブスカイト型チタン酸バリウム粉末は、平均粒径が上記のように0.05〜1μmと微細で、塩化物イオン等の不純物の含有量が少ない高純度のものであり、粒径のバラツキが小さく、結晶性の優れたものである。
【0035】
本発明に係るペロブスカイト型チタン酸バリウム粉末は、例えば、積層セラミックコンデンサを製造する上で従来公知の添加剤、有機系バインダ、可塑剤、分散剤等の配合剤と共に適当な溶媒中に混合分散させてスラリー化し、シート成形を行うことにより、積層セラミックコンデンサの製造に用いられるセラミックシートを得ることができる。
【0036】
該セラミックシートから積層セラミックコンデンサを作製するには、まず、該セラミックシートの一面に内部電極形成用導電ペーストを印刷し、乾燥後、複数枚の前記セラミックシートを積層し、厚み方向に圧着することにより積層体とする。次に、この積層体を加熱処理して脱バインダ処理を行い、焼成して焼成体を得る。さらに、該燒結体にNiペースト、Agペースト、ニッケル合金ペースト、銅ペースト、銅合金ペースト等を塗布して焼き付ければ積層コンデンサを得ることができる。
【0037】
また、例えば、本発明に係るペロブスカイト型チタン酸バリウム粉末を、エポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂等の樹脂に配合して、樹脂シート、樹脂フィルム、接着剤等とすると、プリント配線板や多層プリント配線板等の材料、内部電極と誘電体層との収縮差を抑制するための共材、電極セラミック回路基板、ガラスセラミックス回路基板及び回路周辺材料として用いることができる。
【0038】
また、本発明で得られるペロブスカイト型チタン酸バリウム粉末は、排ガス除去、化学合成等の反応時に使用される触媒や、帯電防止、クリーニング効果を付与する印刷トナーの表面改質材として好適に用いることができる。
【0039】
なお、本発明に係るペロブスカイト型チタン酸バリウム粉末の製造方法の第一工程において用いられるシュウ酸バリウムチタニルは、例えば、以下のシュウ酸バリウムチタニルの製造方法により製造することができる。
【0040】
[シュウ酸バリウムチタニルの製造方法]
第一工程において用いられる特定粒度のシュウ酸バリウムチタニルは、四塩化チタン及び塩化バリウムを水に溶解してなるA液と、シュウ酸を水に溶解してなるB液とを特定温度で接触させ、熟成した後、固液分離することにより製造することができる。
【0041】
該方法に用いることができる四塩化チタン、塩化バリウム及びシュウ酸は工業的に入手できるものであれば特に制限はないが、高純度のシュウ酸バリウムチタニル又はペロブスカイト型チタン酸バリウム粉末を得るために不純物含有量が少ないものを用いることが好ましい。
【0042】
反応操作は、まず、四塩化チタン及び塩化バリウムを水に溶解してなるA液と、シュウ酸を水に溶解してなるB液を調製する。A液は、四塩化チタン及び塩化バリウムを含む水溶液であるが、四塩化チタンと塩化バリウムとの溶解順序は特に限定されるものでなく、同時に溶解してもよいし、一方を溶解した後に他方を溶解してもよい。
【0043】
A液は、四塩化チタン中のTiに対する塩化バリウム中のBaのモル比(Ba/Ti)が通常1.0〜1.5、好ましくは1.0〜1.2であると、シュウ酸バリウムチタニルのBa/Tiモル比が0.998〜1.002になり易いため好ましい。
【0044】
また、A液中の塩化バリウムの濃度はBaClに換算した濃度が通常1〜10重量%、好ましくは5〜8重量%であると、シュウ酸バリウムチタニルが高収率で得られるため好ましい。また、A液中の四塩化チタンの濃度はTiClに換算した濃度が通常1〜10重量%、好ましくは5〜8重量%であると、シュウ酸バリウムチタニルが高収率で得られるため好ましい。
【0045】
また、前記B液はシュウ酸の濃度が通常5〜70重量%、好ましくは10〜40重量%であると、シュウ酸バリウムチタニルが高収率で得られるため好ましい。
【0046】
A液とB液との接触方法としては、A液攪拌下にB液を添加する方法、又はB液にA液を攪拌下に添加する方法が挙げられる。前記A液に対するB液の添加量又はB液に対するA液の添加量は、A液中のTiに対するB液中のシュウ酸のモル比(シュウ酸/Ti)が、通常2.1〜2.3となるように添加すると高収率でシュウ酸バリウムチタニルを得ることができるため好ましい。また、攪拌速度は、添加開始から反応終了までの間に生成するシュウ酸バリウムチタニルを含むスラリーが常に流動性を示す状態であればよく、特に限定されるものではない。
【0047】
本発明では、反応系に連続的又は断続的に供給するA液又はB液の添加時間を長くとったり、添加温度を高くしたりすることにより、生成するシュウ酸バリウムチタニルの粒径が大きくなり易い。このため、本発明において、このA液とB液との接触は、A液又はB液のうち添加する方の液の添加温度を通常50〜90℃、好ましくは50〜70℃とし、添加時間を0.5時間以上、好ましくは1時間以上で、一定速度で連続的に行うと、得られるシュウ酸バリウムチタニルはBa/Tiモル比が略1で且つバラツキが小さい安定した品質のものとなり、且つ、後述の熟成反応で上記範囲内の平均粒径のものを短時間で得ることができるため好ましい。なお、A液又はB液のうち添加される方の液の温度は特に限定されないが、上記添加温度と同様の範囲内にあると反応操作が容易になるため好ましい。
【0048】
A液とB液との接触終了後は、熟成反応を行う。この熟成反応を行うと、生成するシュウ酸バリウムチタニルの粒成長が促進されると共に反応が完結するため、上記範囲内の平均粒径を有し、Ba/Tiモル比が0.998〜1.002で組成のバラツキが少ないシュウ酸バリウムチタニルを得ることができる。
【0049】
熟成条件は、熟成温度が通常は50℃以上、好ましくは50〜90℃の温度で、0.5時間以上、好ましくは1時間以上熟成反応を行う。なお、熟成温度とは、A液とB液の接触後における混合物全体の温度をいう。熟成終了後は、常法により固液分離して平均粒径が通常50〜300μm、好ましくは100〜200μmのシュウ酸バリウムチタニルを得る。
【0050】
上記シュウ酸バリウムチタニルの製造方法は、例えば、上記ペロブスカイト型チタン酸バリウム粉末の製造方法の第一工程で用いられる平均粒径50〜300μmのシュウ酸バリウムチタニルの調製に用いることができる。
【0051】
【実施例】
以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0052】
実施例1
(シュウ酸バリウムチタニルの製造工程)
塩化バリウム2水塩600g(2.456モル)及び四塩化チタン444g(2.342モル)を水4100mlに溶解した混合溶液を調製し、これをA液とした。次にシュウ酸620gを70℃の温水1500mlに溶解しシュウ酸水溶液を調製し、これをB液とした。A液にB液を70℃に保持しながら攪拌下に120分かけて添加し、更に70℃で1時間攪拌下に熟成した。冷却後、ろ過してシュウ酸バリウムチタニルを回収した。得られたシュウ酸バリウムチタニルの物性値を表1に示す。平均粒径は走査型電子顕微鏡(SEM)写真により求めた。
【0053】
【表1】

Figure 0004759211
【0054】
(第一工程)
回収したシュウ酸バリウムチタニルを蒸留水4.5Lで3回リパルプして入念に洗浄した。次いで、105℃で乾燥してシュウ酸バリウムチタニル1000gを得た。得られたシュウ酸バリウムチタニルの物性値を表2に示す。
なお、Ba/Tiモル比は蛍光X線分析した値に基いて算出した。また、平均粒径は走査型電子顕微鏡(SEM)写真により求めた。塩素イオン濃度はイオンクロマトグラフィー法で測定した。
【0055】
【表2】
Figure 0004759211
【0056】
(第二工程)
容量が700mlのボールミルに、第一工程で調製したシュウ酸バリウムチタニル60gとエタノール140mlとを加えてスラリーとしたものを装入し、これに5mmφのジルコニアボール1070gを入れ、湿式粉砕処理を行った。次に湿式粉砕処理後のスラリーを105℃で全量乾燥して平均粒径が0.7μmのシュウ酸バリウムチタニルを得た。
【0057】
(第三工程)
第二工程で得られたシュウ酸バリウムチタニル試料の10gを、大気下で900℃で4時間仮焼処理してチタン酸バリウム試料を得た。
得られたチタン酸バリウム試料のBa/Tiモル比、BET比表面積、結晶化度、平均粒径、粒径のバラツキ及び塩素含有量を求めた。結果を表3及び表4に示す。また、チタン酸バリウムのX線回折図を図2に示す。
なお、Ba/Tiモル比は蛍光X線分析した値に基いて算出した。また、結晶化度は、線源としてCu−Kα線を用いてX線回折装置(日本フィリップス株式会社製、形式X′PartMPD)によりチタン酸バリウム試料を測定し、下記計算式により求めた。結晶化度は、大きい値をとるほど結晶性に優れていることを表すものである。下記式におけるaとbの求め方を図1に概念的に示す。
【0058】
【数1】
結晶化度=a/b
【0059】
(a:2θ=45.38°付近の格子面(200)面の回折ピークcの強度。b:2θ=44.86°付近の格子面(002)面の回折ピークdと上記格子面(200)面の回折ピークcとの間の谷部eの強度)。なお、回折ピークc、回折ピークd及び谷部eは、X線回折装置の機械的換算手段により求めた。
粒径のバラツキは、サンプルを倍率20000倍で電子顕微鏡観察したときに任意に抽出した粒子200個以上の粒径を測定したときの標準偏差σで評価した。この標準偏差σが小さい方が粒径のバラツキが少ないことを表す。また、チタン酸バリウムの塩素含有量はイオンクロマトグラフィー法で測定した。
【0060】
実施例2及び3
第三工程において、シュウ酸バリウムチタニル試料の仮焼温度を920℃(実施例2)又は940℃(実施例3)とした以外は実施例1と同様にして、チタン酸バリウム試料を得、Ba/Tiモル比、BET比表面積、結晶化度、平均粒径、粒径のバラツキ及び塩素含有量を求めた。結果を表3及び表4に示す。
【0061】
比較例1
(シュウ酸バリウムチタニルの製造工程及び第一工程)
実施例1と同様にシュウ酸バリウムチタニルの製造工程及び第一工程を実施し、表2に示す物性のシュウ酸バリウムチタニル試料1000gを得た。
【0062】
(第一工程後の工程)
このシュウ酸バリウムチタニル試料の200gを、大気下で900℃で4時間仮焼処理してチタン酸バリウム試料を得た。
次に容量が700mlのボールミルに、得られたチタン酸バリウム試料60gとエタノール140mlとを加えスラリーとし、これに5mmφのジルコニアボール1070gを入れ、湿式粉砕処理を行った。次に湿式粉砕処理後のスラリーを105℃で全量乾燥してチタン酸バリウム試料を得た。
得られたチタン酸バリウム試料について実施例1と同様な手法でBa/Tiモル比、BET比表面積、結晶化度、平均粒径、粒径のバラツキ及び塩素含有量を求めた。結果を表3及び表4に示す。また、得られたチタン酸バリウムのX線回折図を図2に示す。
【0063】
比較例2〜4
第一工程後の工程において、シュウ酸バリウムチタニル試料の仮焼温度を920℃(比較例2)、940℃(比較例3)又は1000℃(比較例4)とした以外は比較例1と同様にして、チタン酸バリウム試料を得、Ba/Tiモル比、BET比表面積、結晶化度、平均粒径、粒径のバラツキ及び塩素含有量を求めた。結果を表3及び表4に示す。
【0064】
【表3】
Figure 0004759211
【0065】
【表4】
Figure 0004759211
【0066】
表3及び表4の結果より、以下のことが判る。すなわち、実施例1〜3より、本発明に係る製造方法で得られたチタン酸バリウムは、粒径が1μm以下の微細な粒子であり、高純度で、結晶性が良く粒径のバラツキが少ない。また、比較例1〜4より、本発明の第二工程を行わない場合は、1000℃以上の高温で加熱処理しないと結晶性の良いチタン酸バリウムが得られない。また、比較例1〜4より、本発明の第二工程を行わない場合は、仮焼後に粉砕処理を行っても粗粒子や微粒子が多いためチタン酸バリウム中にシュウ酸バリウムチタニルの骨格が残っていることが判り、また、粉砕処理を行っても粗粒子や微粒子が多いため粒径のバラツキが大きく、また、X線回折分析で2θ=44.86°付近002面の回折ピークが検出されず、結晶性が劣る。
【0067】
実施例4
(シュウ酸バリウムチタニルの製造工程及び第一工程)
実施例1と同様にシュウ酸バリウムチタニルの製造工程及び第一工程を実施し、表2に示す物性のシュウ酸バリウムチタニル試料1000gを得た。
【0068】
(第二工程)
容量が700mlのボールミルに、エタノ−ル140mlとイットリウムブトキシドとを、イットリウムブトキシドが酸化イットリウム換算で生成するチタン酸バリウムに対して1重量%となる量で加えた。次に第一工程で調製したシュウ酸バリウムチタニル60g及び5mmφのジルコニアボール1070gをボールミル内に入れ、湿式粉砕処理を行った。
次に、湿式粉砕処理後のスラリーを105℃で全量乾燥して、平均粒径が0.7μmの表面にイットリウムが付着したシュウ酸バリウムチタニルを得た。
【0069】
(第三工程)
表面にイットリウムが付着したシュウ酸バリウムチタニルの10gを、大気下で1100℃で4時間仮焼処理して、酸化イットリウムが固溶したチタン酸バリウム試料を得た。
該チタン酸バリウム試料について実施例1と同様な手法でBa/Tiモル比、BET比表面積、結晶化度、平均粒径、粒径のバラツキ、塩素含有量及びイットリウム含有量を求めた。またYの量はICP分析法により求めた。結果を表5に示す。
【0070】
実施例5
(予備工程及び第一工程)
実施例1と同様に予備工程及び第一工程を実施し、表2に示す物性のシュウ酸バリウムチタニル試料1000gを得た。
【0071】
(第二工程)
容量が700mlのボールミルに、第一工程で得られたシュウ酸バリウムチタニル試料60g、酸化イットリウム(平均粒径0.1μm)0.6g、エタノール140ml及び5mmφのジルコニアボール1070gを入れ、湿式粉砕処理を行った。次に湿式粉砕処理後のスラリーを105℃で全量乾燥して酸化イットリウムと平均粒径が0.7μmのシュウ酸バリウムチタニルとの混合物を得た。
【0072】
(第三工程)
次に、得られた酸化イットリウムとシュウ酸バリウムチタニルの混合物を、大気下で1100℃で4時間仮焼処理して。表面に酸化イットリウムが付着したチタン酸バリウム試料を得た。
該チタン酸バリウム試料について実施例1と同様な手法でBa/Tiモル比、BET比表面積、結晶化度、平均粒径、粒径のバラツキ、塩素含有量及びイットリウム含有量を求めた。またYの量はICP分析法により求めた。結果を表5に示す。
【0073】
【表5】
Figure 0004759211
【0074】
実施例4及び実施例5で得られたイットニウムを含有したチタン酸バリウム試料についてSEM-EDX(日本電子社製)でイットリウムのマッピングを行った結果、実施例4及び実施例5は共にイットリウムの偏析は見られず、粉体表面に均一に分散していたが、実施例4のものの方が、実施例5のものに比べてよりイットリウムが均一に分散していることが分かった。
【0075】
【発明の効果】
本発明に係るペロブスカイト型チタン酸バリウム粉末の製造方法によれば、平均粒径が1μm以下の微細で、粒径のバラツキが小さく、Ba/Tiモル比が略1で且つそのバラツキが小さく、高純度で、結晶性に優れたペロブスカイト型チタン酸バリウム粉末を製造することができる。
【図面の簡単な説明】
【図1】数式1で用いるaとbを説明するX線回折曲線の模式図である。
【図2】実施例1で得られたチタン酸バリウムの2θ=44〜46°付近のX線回折図である。
【図3】比較例1で得られたチタン酸バリウムの2θ=44〜46°付近のX線回折図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a perovskite-type barium titanate powder, and in particular, a perovskite-type barium titanate powder useful as a raw material for functional ceramics such as piezoelectrics, optoelectronic materials, dielectrics, semiconductors, and sensors. It relates to a manufacturing method.
[0002]
[Prior art]
Perovskite-type barium titanate powder has been conventionally used as a raw material for functional ceramics such as piezoelectric bodies and multilayer ceramic capacitors. However, in recent years, multilayer ceramic capacitors have been required to have an increased number of layers and a higher dielectric constant in order to increase the capacity. For this reason, perovskite-type barium titanate powder as a raw material has a fineness of 1 μm or less. The particle size variation is small, the molar ratio of Ba to Ti (hereinafter also referred to as “Ba / Ti molar ratio”) is approximately 1, the variation is small, high purity, and excellent crystallinity. ing.
[0003]
As a method for producing a perovskite-type barium titanate powder, for example, in JP-A 61-146710, a water-soluble barium salt, a water-soluble titanium salt and an aqueous solution of oxalic acid are mixed at the same time, and the resulting gel is mixed for a short time. Fine barium titanyl oxalate (BaTiO (C 2 O 4 4H 2 A method of calcining O) crystals at 700 to 900 ° C. has been proposed. Also, Clavaf W. S. et al., TiCl 4 And BaCl 2 An aqueous solution of about 80 ° C. with H 2 C 2 O 4 Barium titanyl oxalate is dripped while stirring vigorously in an aqueous solution, and the barium titanyl oxalate is calcined to obtain a primary particle size distribution of 0.3 to 1.5 μm and a Ba / Ti molar ratio of 0.987 to 1.003 BaTiO 3 Has proposed a method of manufacturing.
[0004]
[Patent Document 1]
JP 61-146710 A (first page)
[Non-Patent Document 1]
Clabaugh, WS, et al., “Precipitation of Barium Titanyl Oxalate Tetrahydrate for Conversion to Barium Titanate of High Purity), “Journal of Research of the National Bureau of Standards”, (USA), 1956, Volume 56 (Vol56). , No. 5 (No. 5), p. 289-291
[0005]
[Problems to be solved by the invention]
However, the perovskite-type barium titanate powder obtained by the method described in JP-A-61-146710 has a significant amount of chlorine taken into the crystal during the production process, so that even if it is washed, the chlorine content is reduced. There is a problem that it is difficult to sufficiently reduce it to several hundred ppm or less, lacking in purity, and variation in composition tends to increase due to cleaning. In the method proposed by Clavaf D. W., et al., The average particle size is 1 μm or less, the particle size variation is small, the Ba / Ti molar ratio is approximately 1, the variation is small, and the crystallinity is excellent. In addition, there is a problem that perovskite-type barium titanate powder cannot be obtained.
[0006]
Therefore, the object of the present invention is a fine perovskite having an average particle size of 1 μm or less, a small variation in particle size, a Ba / Ti molar ratio of approximately 1, a small variation, high purity, and excellent crystallinity. Another object of the present invention is to provide a method for producing a type barium titanate powder.
[0007]
[Means for Solving the Problems]
In this situation, the present inventors have conducted extensive research, and as a result of washing treatment with barium titanyl oxalate having a specific particle size characteristic, impurities such as chlorine can be easily removed, and after this washing treatment, When barium titanyl oxalate is wet pulverized to a specific particle size and calcined, the average particle size is 1 μm or less, the particle size variation is small, the Ba / Ti molar ratio is approximately 1, and the variation The inventors have found that a perovskite-type barium titanate powder having a small size, high purity and excellent crystallinity can be obtained, and the present invention has been completed.
[0008]
That is, the present invention provides an average particle size 100-200 First step of washing μm of barium titanyl oxalate with water, and after making the washed barium titanyl oxalate into a slurry, In ethanol solvent A second step of wet pulverizing to obtain barium titanyl oxalate having an average particle size of 0.05 to 1 μm, and calcining the barium titanyl oxalate having an average particle size of 0.05 to 1 μm at 700 to 1200 ° C. Has 3 processes The barium titanyl oxalate having an average particle size of 100 to 200 μm is composed of a solution A in which titanium tetrachloride and barium chloride are dissolved in water, and a solution B in which oxalic acid is dissolved in water. After adding the acid at a molar ratio (oxalic acid / Ti) of 2.1 to 2.3 at 50 to 90 ° C. and then aging at 50 to 90 ° C. for 0.5 hour or longer, the solid liquid It was obtained by separating The present invention provides a method for producing a perovskite barium titanate powder.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
[Production method of perovskite-type barium titanate powder]
(First step)
The first step of the method for producing the perovskite-type barium titanate powder according to the present invention comprises a barium titanyl oxalate (BaTiO (C 2 O 4 4H 2 In this step, O) is washed with water to remove impurities such as chlorine incorporated in the barium titanyl oxalate particles. The barium titanyl oxalate used in this step has an average particle size of usually 50 to 300 μm, preferably 100 to 200 μm. When the average particle size is within this range, the crystal grains are large, so that the elution of Ba and Ti is small when washed with water, and impurities such as chlorine can be efficiently removed. The barium titanyl oxalate particles are complex sugar particles. In the present invention, the average particle diameter of barium titanyl oxalate refers to the tip of the protrusions of the compound sugar particles observed with a scanning electron microscope (SEM). The maximum diameter included is the particle diameter of one of the sugar particles, and the arithmetic average value of the particle diameters of the plurality of sugar particles is shown.
[0011]
When the average particle diameter of barium titanyl oxalate is within the above range, it is easy to reduce the impurity content of chlorine and the like incorporated into the barium titanyl oxalate particles to several hundred ppm level when washed with water. Further, the obtained perovskite-type barium titanate powder is preferable because it does not easily elute Ba and Ti during washing and tends to be about 1 in the range of Ba / Ti molar ratio of 0.998 to 1.002.
[0012]
On the other hand, when the average particle size of barium titanyl oxalate is less than 50 μm, it is difficult to reduce impurities such as chlorine incorporated into the particles to several hundred ppm level even when washed with water, and elution of Ba and Ti The perovskite-type barium titanate obtained for this reason is not preferred because the Ba / Ti molar ratio is unlikely to be in the range of 0.998 to 1.002. On the other hand, if the average particle size exceeds 300 μm, the pulverization efficiency decreases, and the variation in particle size after wet pulverization tends to increase in the second step described later, which is not preferable.
[0013]
The barium titanyl oxalate used in the first step usually has a Ba / Ti molar ratio of 0.998 to 1.002. It is preferable that the Ba / Ti molar ratio of barium titanyl oxalate be within this range because the obtained perovskite-type barium titanate has a Ba / Ti molar ratio of 0.998 to 1.002, which is approximately 1.
[0014]
The water used for washing is preferably ion-exchanged water, pure water, ultrapure water or the like in order to prevent barium titanyl oxalate from being contaminated by ions or the like. In order to enhance the cleaning effect, after first cleaning with industrial water or the like, cleaning may be performed again with ion exchange water or the like.
[0015]
Although it does not specifically limit as a washing | cleaning method in a 1st process, Since washing | cleaning efficiency is good when it wash | cleans with a repulp etc., it is preferable. Repulping is a method in which the supernatant is discarded, and then purified water is added and washed again. In addition, it is preferable that the washing is sufficiently performed until the concentration of chlorine contained in the barium titanyl oxalate is 500 ppm or less, preferably 200 ppm or less, because high-purity perovskite-type barium titanate powder is easily obtained.
[0016]
After the washing treatment, drying is performed as desired to obtain washed barium titanyl oxalate. In the present invention, the physical properties of barium titanyl oxalate after washing have an average particle size of usually 50 to 300 μm, preferably 100 to 200 μm. Further, the Ba / Ti molar ratio is usually 0.998 to 1.002. Furthermore, the barium titanyl oxalate after washing has a chlorine content of usually 500 ppm or less, preferably 200 ppm or less. In addition, the frequency | count of washing | cleaning is not limited to once, You may repeat in multiple times so that the chlorine content of the barium titanyl oxalate after washing | cleaning may exist in the said range.
[0017]
(Second step)
In the second step, the barium titanyl oxalate washed in the first step is made into a slurry, and then wet pulverized to obtain barium titanyl oxalate having an average particle size within a specific range.
[0018]
As the solvent used for the preparation of the slurry, those inert to barium titanyl oxalate are used, for example, water, methanol, ethanol, propanol, butanol, toluene, xylene, acetone, methylene chloride, ethyl acetate. , Dimethylformamide, diethyl ether and the like. Among these, when an organic solvent such as methanol, ethanol, propanol, butanol, toluene, xylene, acetone, methylene chloride, ethyl acetate, dimethylformamide, and diethyl ether is used, it has high crystallinity. A perovskite-type barium titanate powder can be obtained, which is preferable. In particular, when ethanol is used, one having excellent crystallinity is particularly preferable because it can be produced at low cost in a low temperature range of about 800 to 950 ° C. The said solvent can be used 1 type or in combination of 2 or more types.
[0019]
In the second step, a slurry is first prepared. The slurry is obtained by mixing the barium titanyl oxalate after washing with the above solvent and uniformly dispersing it. The concentration of the slurry is not particularly limited as long as it can be wet pulverized, but the pulverization efficiency is usually high when it is 10 to 70% by weight, preferably 30 to 50% by weight.
[0020]
Next, wet pulverization is performed using the slurry. Examples of the wet pulverization method include a method in which the slurry is charged into a wet pulverizer and pulverized. Examples of the wet pulverizer include a ball mill and a bead mill.
[0021]
The wet pulverization is performed until the average particle diameter of barium titanyl oxalate obtained from a scanning electron microscope (SEM) is usually 0.05 to 1 μm, preferably 0.05 to 0.8 μm. When the average particle size is less than 0.05 μm, it is not preferable because technically difficult to grind and difficult to handle. On the other hand, if the average particle size exceeds 1 μm, the variation in particle size of the obtained perovskite-type barium titanate tends to increase, such being undesirable.
[0022]
Examples of the material of the beads charged into the wet pulverizer during the pulverization treatment include zirconia, alumina, silica, zeolite, silicon carbide, silicon nitride, and the like. Of these, zirconia is preferred because it contains less impurities during wet grinding.
[0023]
The diameter of the beads is usually 0.3 to 5 mm, preferably 0.3 to 2 mm. It is preferable for the diameter to be within this range because the grinding efficiency is good.
[0024]
After completion of the wet pulverization treatment, the obtained fine barium titanyl oxalate powder or slurry is dried as it is. The drying method is preferably a method capable of recovering the solvent because the production cost can be reduced. When the drying method is carried out with a spray dryer or the like that can dry the entire slurry after the wet pulverization treatment, the eluted components are again removed. Since it can be contained in barium titanyl acid powder, it is more preferable.
[0025]
If necessary, an auxiliary component element-containing compound may be added to and mixed with the slurry before the wet pulverization treatment or the slurry after the wet pulverization treatment in the second step. By adding and mixing the subcomponent element-containing compound in this way, a perovskite-type barium titanate powder in which the subcomponent elements are substantially uniformly dispersed on the particle surface can be obtained. For example, the perovskite-type barium titanate powder is made into a ceramic. This is preferable because the dielectric constant and the like of the ceramic after the adjustment can be adjusted.
[0026]
Examples of the sub-component element-containing compound include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu rare earth elements, Ba, Li A compound of at least one element selected from the group consisting of Bi, Zn, Mn, Al, Si, Ca, Sr, Co, Ni, Cr, Fe, Mg, Ti, V, Nb, Mo, W and Sn. Can be mentioned.
[0027]
The subcomponent element-containing compound may be either an inorganic substance or an organic substance, and examples thereof include oxides, hydroxides, chlorides, nitrates, oxalates, carboxylates and alkoxides containing the above elements. In addition, when a subcomponent element containing compound is a compound containing Si element, in addition to the said oxide etc., a silica sol, sodium silicate, etc. can be used. Furthermore, when the element of the subcomponent element-containing compound is a metal element, use of an alkoxide as the subcomponent element-containing compound provides a perovskite-type barium titanate powder in which the subcomponent elements are particularly uniformly dispersed on the particle surface. preferable. The subcomponent element-containing compounds can be used alone or in combination of two or more.
[0028]
As a method of adding and mixing the subcomponent element-containing compound to the slurry before the wet pulverization treatment, for example, a solution in which the subcomponent element-containing compound is dissolved or a slurry in which the subcomponent element-containing compound is dissolved is prepared in advance. Or a method of mixing the slurry with the slurry of barium titanyl oxalate before the wet pulverization treatment, a method of directly adding and mixing the subcomponent element-containing compound to the slurry of barium titanyl oxalate before the wet pulverization treatment, obtained in the first step Examples thereof include a method of preparing a slurry by simultaneously mixing the washed barium titanyl oxalate, the subcomponent element-containing compound and the solvent. In addition, as a method of adding and mixing the subcomponent element-containing compound to the slurry of barium titanyl oxalate after the wet pulverization treatment, for example, a solution in which the subcomponent element-containing compound is dissolved in the solvent is prepared in advance. Examples thereof include a method of mixing the solution with the slurry of barium titanyl oxalate after the wet pulverization treatment, and a method of directly adding and mixing the subcomponent element-containing compound to the slurry of barium titanyl oxalate after the wet pulverization treatment. Of these, the former method is preferable because it facilitates dispersion.
[0029]
The addition amount of the subcomponent element-containing compound can be arbitrarily set according to the intended dielectric properties. For example, the amount added to the element in the subcomponent element-containing compound is 100 parts by weight of barium titanyl oxalate. The amount is usually 0.01 to 10 parts by weight.
[0030]
(Third process)
The third step is a step of calcining the barium titanyl oxalate powder having an average particle diameter of 0.05 to 1 μm obtained in the second step at a predetermined temperature. By passing through this step, the perovskite type barium titanate is obtained. A powder is obtained.
[0031]
The calcination conditions are such that the calcination temperature is 700 to 1200 ° C, preferably 800 to 1100 ° C. The reason for setting the calcining temperature within the above range is not preferable because it is difficult to obtain a single-phase perovskite-type barium titanate powder when the temperature is lower than 700 ° C. This is because it is not preferable because it is easy. In the present invention, the calcination treatment may be performed as many times as necessary.
[0032]
After calcination, the mixture is appropriately cooled and pulverized as necessary to obtain a perovskite barium titanate powder. In addition, the pulverization performed as necessary is appropriately performed when the perovskite-type barium titanate powder obtained by calcining is in a brittlely bonded block shape, etc., but the particles of the perovskite-type barium titanate powder itself are It has the following specific average particle diameter and BET specific surface area.
[0033]
That is, the perovskite-type barium titanate powder obtained after the completion of the third step has an average particle size determined from a scanning electron microscope (SEM) of usually 0.05 to 1 μm, preferably 0.05 to 0.8 μm, and a BET ratio. 1m surface area 2 / G or more, preferably 2 to 15 m 2 / G with little variation in particle size. Furthermore, in addition to the above physical properties, the chlorine content is usually 500 ppm or less, preferably 200 ppm or less, and the molar ratio of Ba to Ti is 0.998 to 1.002, which is excellent in crystallinity of about 1.
[0034]
The perovskite-type barium titanate powder thus obtained has a fine average particle size of 0.05 to 1 μm as described above, and has a high purity with a small content of impurities such as chloride ions. Is small and has excellent crystallinity.
[0035]
The perovskite-type barium titanate powder according to the present invention is mixed and dispersed in a suitable solvent together with compounding agents such as conventionally known additives, organic binders, plasticizers, and dispersants, for example, in the production of multilayer ceramic capacitors. A ceramic sheet used for manufacturing a multilayer ceramic capacitor can be obtained by slurrying and sheet forming.
[0036]
In order to produce a multilayer ceramic capacitor from the ceramic sheet, first, a conductive paste for forming an internal electrode is printed on one surface of the ceramic sheet, and after drying, a plurality of the ceramic sheets are laminated and pressure-bonded in the thickness direction. To obtain a laminate. Next, this laminate is heat treated to remove the binder, and fired to obtain a fired body. Furthermore, a multilayer capacitor can be obtained by applying Ni paste, Ag paste, nickel alloy paste, copper paste, copper alloy paste and the like to the sintered body and baking it.
[0037]
Further, for example, when the perovskite-type barium titanate powder according to the present invention is blended with a resin such as an epoxy resin, a polyester resin, or a polyimide resin to form a resin sheet, a resin film, an adhesive, or the like, a printed wiring board or a multilayer print It can be used as a material such as a wiring board, a co-material for suppressing a shrinkage difference between an internal electrode and a dielectric layer, an electrode ceramic circuit board, a glass ceramic circuit board, and a circuit peripheral material.
[0038]
In addition, the perovskite-type barium titanate powder obtained in the present invention is suitably used as a catalyst used in reactions such as exhaust gas removal and chemical synthesis, and as a surface modifier for printing toner that imparts antistatic and cleaning effects. Can do.
[0039]
In addition, the barium titanyl oxalate used in the 1st process of the manufacturing method of the perovskite type barium titanate powder based on this invention can be manufactured with the following manufacturing methods of barium titanyl oxalate, for example.
[0040]
[Method for producing barium titanyl oxalate]
Barium titanyl oxalate with a specific particle size used in the first step is a solution in which Titanium tetrachloride and barium chloride are dissolved in water and B liquid formed by dissolving oxalic acid in water at a specific temperature. It can be produced by solid-liquid separation after aging.
[0041]
Titanium tetrachloride, barium chloride, and oxalic acid that can be used in the method are not particularly limited as long as they are industrially available. To obtain high-purity barium titanyl oxalate or perovskite-type barium titanate powder. It is preferable to use one having a low impurity content.
[0042]
In the reaction operation, firstly, a liquid A formed by dissolving titanium tetrachloride and barium chloride in water and a liquid B formed by dissolving oxalic acid in water are prepared. Liquid A is an aqueous solution containing titanium tetrachloride and barium chloride, but the dissolution order of titanium tetrachloride and barium chloride is not particularly limited, and may be dissolved at the same time. May be dissolved.
[0043]
The liquid A has a molar ratio (Ba / Ti) of Ba in barium chloride to Ti in titanium tetrachloride of usually 1.0 to 1.5, preferably 1.0 to 1.2. Since the Ba / Ti molar ratio of titanyl tends to be 0.998 to 1.002, it is preferable.
[0044]
The concentration of barium chloride in the A liquid is BaCl. 2 It is preferable that the concentration converted to 1 is usually 1 to 10% by weight, preferably 5 to 8% by weight, because barium titanyl oxalate is obtained in a high yield. The concentration of titanium tetrachloride in the liquid A is TiCl 4 It is preferable that the concentration converted to 1 is usually 1 to 10% by weight, preferably 5 to 8% by weight, because barium titanyl oxalate is obtained in a high yield.
[0045]
In addition, it is preferable that the B liquid has a concentration of oxalic acid of usually 5 to 70% by weight, preferably 10 to 40% by weight, because barium titanyl oxalate can be obtained in a high yield.
[0046]
As a contact method of A liquid and B liquid, the method of adding B liquid with stirring of A liquid, or the method of adding A liquid to B liquid with stirring is mentioned. The addition amount of the B solution to the A solution or the addition amount of the A solution to the B solution is such that the molar ratio (oxalic acid / Ti) of oxalic acid in the B solution to Ti in the A solution is usually 2.1 to 2. It is preferable to add 3 so that barium titanyl oxalate can be obtained in high yield. The stirring speed is not particularly limited as long as the slurry containing barium titanyl oxalate produced between the start of addition and the end of the reaction always exhibits fluidity.
[0047]
In the present invention, the particle size of the generated barium titanyl oxalate is likely to be increased by increasing the addition time of the solution A or solution B supplied to the reaction system continuously or intermittently or by increasing the addition temperature. . For this reason, in the present invention, the contact between the A liquid and the B liquid is such that the addition temperature of the liquid A or B liquid to be added is usually 50 to 90 ° C., preferably 50 to 70 ° C., and the addition time For 0.5 hour or longer, preferably 1 hour or longer, at a constant rate, the resulting barium titanyl oxalate has a stable quality with a Ba / Ti molar ratio of approximately 1 and little variation, And since the thing of the average particle diameter in the said range can be obtained in a short time by the ripening reaction mentioned later, it is preferable. The temperature of the liquid A or B liquid to be added is not particularly limited, but is preferably in the same range as the above addition temperature because the reaction operation becomes easy.
[0048]
After completion of the contact between the liquid A and the liquid B, an aging reaction is performed. When this ripening reaction is carried out, grain growth of the generated barium titanyl oxalate is promoted and the reaction is completed, so that it has an average particle diameter within the above range and a Ba / Ti molar ratio of 0.998 to 1. At 002, barium titanyl oxalate with little composition variation can be obtained.
[0049]
The aging conditions are such that the aging temperature is usually 50 ° C. or higher, preferably 50 to 90 ° C., and the aging reaction is performed for 0.5 hours or longer, preferably 1 hour or longer. The aging temperature refers to the temperature of the entire mixture after the contact between the liquid A and the liquid B. After completion of aging, solid-liquid separation is performed by a conventional method to obtain barium titanyl oxalate having an average particle diameter of usually 50 to 300 μm, preferably 100 to 200 μm.
[0050]
The method for producing barium titanyl oxalate can be used, for example, for the preparation of barium titanyl oxalate having an average particle size of 50 to 300 μm used in the first step of the method for producing the perovskite barium titanate powder.
[0051]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
[0052]
Example 1
(Production process of barium titanyl oxalate)
A mixed solution in which 600 g (2.456 mol) of barium chloride dihydrate and 444 g (2.342 mol) of titanium tetrachloride were dissolved in 4100 ml of water was prepared. Next, 620 g of oxalic acid was dissolved in 1500 ml of warm water at 70 ° C. to prepare an aqueous oxalic acid solution, which was designated as solution B. The liquid B was added to the liquid A over 120 minutes with stirring while maintaining the liquid at 70 ° C., and further aged with stirring at 70 ° C. for 1 hour. After cooling, it was filtered to recover barium titanyl oxalate. The physical properties of the obtained barium titanyl oxalate are shown in Table 1. The average particle size was determined from a scanning electron microscope (SEM) photograph.
[0053]
[Table 1]
Figure 0004759211
[0054]
(First step)
The recovered barium titanyl oxalate was repulped three times with 4.5 L of distilled water and washed carefully. Subsequently, it dried at 105 degreeC and obtained 1000g of barium titanyl oxalates. Table 2 shows the physical property values of the obtained barium titanyl oxalate.
The Ba / Ti molar ratio was calculated based on the value obtained by fluorescent X-ray analysis. Moreover, the average particle diameter was calculated | required with the scanning electron microscope (SEM) photograph. Chlorine ion concentration was measured by ion chromatography.
[0055]
[Table 2]
Figure 0004759211
[0056]
(Second step)
A ball mill having a capacity of 700 ml was charged with 60 g of barium titanyl oxalate prepared in the first step and 140 ml of ethanol to prepare a slurry, and 1070 g of zirconia balls having a diameter of 5 mmφ were added thereto, followed by wet grinding. . Next, the entire slurry after the wet pulverization treatment was dried at 105 ° C. to obtain barium titanyl oxalate having an average particle diameter of 0.7 μm.
[0057]
(Third process)
10 g of the barium titanyl oxalate sample obtained in the second step was calcined at 900 ° C. for 4 hours in the air to obtain a barium titanate sample.
The Ba / Ti molar ratio, BET specific surface area, crystallinity, average particle size, particle size variation and chlorine content of the obtained barium titanate sample were determined. The results are shown in Tables 3 and 4. An X-ray diffraction diagram of barium titanate is shown in FIG.
The Ba / Ti molar ratio was calculated based on the value obtained by fluorescent X-ray analysis. The degree of crystallinity was obtained by measuring a barium titanate sample with an X-ray diffractometer (manufactured by Nippon Philips Co., Ltd., type X'PartMPD) using Cu-Kα rays as a radiation source, and calculating the crystallinity according to the following formula. The larger the crystallinity, the better the crystallinity. FIG. 1 conceptually shows how to obtain a and b in the following formula.
[0058]
[Expression 1]
Crystallinity = a / b
[0059]
(A: Intensity of diffraction peak c on the lattice plane (200) near 2θ = 45.38 °. B: Diffraction peak d on the lattice plane (002) near 2θ = 44.86 ° and the lattice plane (200 ) Intensity of trough e between the diffraction peak c of the surface). In addition, the diffraction peak c, the diffraction peak d, and the trough part e were calculated | required with the mechanical conversion means of the X-ray-diffraction apparatus.
The variation in particle size was evaluated by the standard deviation σ when measuring the particle size of 200 or more particles arbitrarily extracted when the sample was observed with an electron microscope at a magnification of 20000 times. A smaller standard deviation σ represents a smaller variation in particle size. The chlorine content of barium titanate was measured by ion chromatography.
[0060]
Examples 2 and 3
In the third step, a barium titanate sample was obtained in the same manner as in Example 1 except that the calcining temperature of the barium titanyl oxalate sample was 920 ° C. (Example 2) or 940 ° C. (Example 3). / Ti molar ratio, BET specific surface area, crystallinity, average particle size, particle size variation, and chlorine content were determined. The results are shown in Tables 3 and 4.
[0061]
Comparative Example 1
(Manufacturing process and first process of barium titanyl oxalate)
The production process and first step of barium titanyl oxalate were carried out in the same manner as in Example 1 to obtain 1000 g of a barium titanyl oxalate sample having physical properties shown in Table 2.
[0062]
(Step after the first step)
200 g of this barium titanyl oxalate sample was calcined at 900 ° C. for 4 hours in the atmosphere to obtain a barium titanate sample.
Next, 60 g of the obtained barium titanate sample and 140 ml of ethanol were added to a ball mill having a capacity of 700 ml to form a slurry, and 1070 g of 5 mmφ zirconia balls were added thereto, and wet pulverization was performed. Next, the whole slurry after the wet pulverization treatment was dried at 105 ° C. to obtain a barium titanate sample.
With respect to the obtained barium titanate sample, the Ba / Ti molar ratio, BET specific surface area, crystallinity, average particle size, particle size variation, and chlorine content were determined in the same manner as in Example 1. The results are shown in Tables 3 and 4. The X-ray diffraction pattern of the obtained barium titanate is shown in FIG.
[0063]
Comparative Examples 2-4
Comparative Example 1 except that the calcining temperature of the barium titanyl oxalate sample was set to 920 ° C. (Comparative Example 2), 940 ° C. (Comparative Example 3) or 1000 ° C. (Comparative Example 4) in the step after the first step. Thus, a barium titanate sample was obtained, and a Ba / Ti molar ratio, a BET specific surface area, a crystallinity, an average particle diameter, a variation in particle diameter, and a chlorine content were determined. The results are shown in Tables 3 and 4.
[0064]
[Table 3]
Figure 0004759211
[0065]
[Table 4]
Figure 0004759211
[0066]
From the results of Tables 3 and 4, the following can be understood. That is, from Examples 1 to 3, barium titanate obtained by the production method according to the present invention is a fine particle having a particle size of 1 μm or less, high purity, good crystallinity, and small variation in particle size. . Moreover, from Comparative Examples 1 to 4, when the second step of the present invention is not performed, barium titanate with good crystallinity cannot be obtained unless heat treatment is performed at a high temperature of 1000 ° C. or higher. Further, from Comparative Examples 1 to 4, when the second step of the present invention is not performed, the skeleton of barium titanyl oxalate remains in barium titanate because there are many coarse particles and fine particles even after calcination. In addition, even if pulverization is performed, there are many coarse particles and fine particles, so there is a large variation in particle size, and a diffraction peak on the 002 plane near 2θ = 44.86 ° is detected by X-ray diffraction analysis. The crystallinity is inferior.
[0067]
Example 4
(Manufacturing process and first process of barium titanyl oxalate)
The production process and first step of barium titanyl oxalate were carried out in the same manner as in Example 1 to obtain 1000 g of a barium titanyl oxalate sample having physical properties shown in Table 2.
[0068]
(Second step)
To a ball mill having a capacity of 700 ml, 140 ml of ethanol and yttrium butoxide were added in an amount of 1% by weight with respect to barium titanate produced by yttrium butoxide in terms of yttrium oxide. Next, 60 g of barium titanyl oxalate prepared in the first step and 1070 g of 5 mmφ zirconia balls were placed in a ball mill and subjected to a wet pulverization treatment.
Next, the entire slurry after the wet pulverization treatment was dried at 105 ° C. to obtain barium titanyl oxalate in which yttrium adhered to the surface having an average particle diameter of 0.7 μm.
[0069]
(Third process)
10 g of barium titanyl oxalate having yttrium adhered to the surface was calcined at 1100 ° C. for 4 hours in the atmosphere to obtain a barium titanate sample in which yttrium oxide was dissolved.
With respect to the barium titanate sample, the Ba / Ti molar ratio, BET specific surface area, crystallinity, average particle size, particle size variation, chlorine content and yttrium content were determined in the same manner as in Example 1. The amount of Y was determined by ICP analysis. The results are shown in Table 5.
[0070]
Example 5
(Preliminary process and first process)
The preliminary step and the first step were carried out in the same manner as in Example 1 to obtain 1000 g of a barium titanyl oxalate sample having the physical properties shown in Table 2.
[0071]
(Second step)
In a ball mill with a capacity of 700 ml, put 60 g of the barium titanyl oxalate sample obtained in the first step, 0.6 g of yttrium oxide (average particle size 0.1 μm), 140 ml of ethanol and 1070 g of 5 mmφ zirconia balls, and perform wet grinding treatment. went. Next, the entire slurry after the wet pulverization treatment was dried at 105 ° C. to obtain a mixture of yttrium oxide and barium titanyl oxalate having an average particle diameter of 0.7 μm.
[0072]
(Third process)
Next, the obtained mixture of yttrium oxide and barium titanyl oxalate was calcined at 1100 ° C. for 4 hours in the atmosphere. A barium titanate sample having yttrium oxide adhered to the surface was obtained.
With respect to the barium titanate sample, the Ba / Ti molar ratio, BET specific surface area, crystallinity, average particle size, particle size variation, chlorine content and yttrium content were determined in the same manner as in Example 1. The amount of Y was determined by ICP analysis. The results are shown in Table 5.
[0073]
[Table 5]
Figure 0004759211
[0074]
As a result of mapping yttrium with SEM-EDX (manufactured by JEOL Ltd.) for the barium titanate sample containing yttrium obtained in Example 4 and Example 5, both Example 4 and Example 5 were yttrium. No segregation was observed and the powder was uniformly dispersed on the powder surface, but it was found that the yttrium was more uniformly dispersed in the example 4 than in the example 5.
[0075]
【The invention's effect】
According to the method for producing a perovskite-type barium titanate powder according to the present invention, the average particle size is 1 μm or less, the particle size variation is small, the Ba / Ti molar ratio is approximately 1, and the variation is small. A perovskite-type barium titanate powder having high purity and excellent crystallinity can be produced.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an X-ray diffraction curve for explaining a and b used in Formula 1. FIG.
2 is an X-ray diffraction pattern of barium titanate obtained in Example 1 around 2θ = 44 to 46 °. FIG.
3 is an X-ray diffraction pattern of barium titanate obtained in Comparative Example 1 around 2θ = 44 to 46 °. FIG.

Claims (2)

平均粒径100〜200μmのシュウ酸バリウムチタニルを水で洗浄する第一工程、該洗浄後のシュウ酸バリウムチタニルをスラリーとした後、エタノール溶媒中で湿式粉砕処理して、平均粒径0.05〜1μmのシュウ酸バリウムチタニルを得る第二工程、及び該平均粒径0.05〜1μmのシュウ酸バリウムチタニルを700〜1200℃で仮焼する第三工程を有し、前記平均粒径100〜200μmのシュウ酸バリウムチタニルが、四塩化チタン及び塩化バリウムを水に溶解してなるA液と、シュウ酸を水に溶解してなるB液とを、Tiに対するシュウ酸のモル比(シュウ酸/Ti)が2.1〜2.3となる添加量で、50〜90℃で接触させ、次いで、50〜90℃で0.5時間以上熟成した後、固液分離して得られたものであることを特徴とするペロブスカイト型チタン酸バリウム粉末の製造方法。A first step of washing barium titanyl oxalate having an average particle size of 100 to 200 μm with water, and slurrying the washed barium titanyl oxalate into a slurry, followed by wet pulverization in an ethanol solvent to obtain an average particle size of 0. the second step to obtain the barium titanyl oxalate in 05~1Myuemu, and barium titanyl oxalate of the average particle size 0.05~1μm have a third step of calcining at 700 to 1200 ° C., said average particle size 100 ˜200 μm barium titanyl oxalate prepared by dissolving A liquid obtained by dissolving titanium tetrachloride and barium chloride in water and B liquid obtained by dissolving oxalic acid in water (molar ratio of oxalic acid to Ti (oxalic acid / Ti) with an addition amount of 2.1 to 2.3, contacted at 50 to 90 ° C., and then aged at 50 to 90 ° C. for 0.5 hour or longer, and then obtained by solid-liquid separation it is Method for producing a perovskite-type barium titanate powder wherein. 第二工程における湿式粉砕処理前のスラリー又は湿式粉砕処理後のスラリーに、希土類元素、Ba、Li、Bi、Zn、Mn、Al、Si、Ca、Sr、Co、Ni、Cr、Fe、Mg、Ti、V、Nb、Mo、W及びSnからなる群より選ばれる少なくとも1種の元素の化合物である副成分元素含有化合物を添加混合することを特徴とする請求項1項記載のペロブスカイト型チタン酸バリウム粉末の製造方法。In the slurry before the wet pulverization treatment or the slurry after the wet pulverization treatment in the second step, rare earth elements, Ba, Li, Bi, Zn, Mn, Al, Si, Ca, Sr, Co, Ni, Cr, Fe, Mg, Ti, V, Nb, Mo, perovskite titanate of claim 1, wherein said admixing at least a compound of one element subcomponent element-containing compound selected from the group consisting of W and Sn Production method of barium powder.
JP2002288673A 2002-10-01 2002-10-01 Method for producing perovskite-type barium titanate powder Expired - Lifetime JP4759211B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002288673A JP4759211B2 (en) 2002-10-01 2002-10-01 Method for producing perovskite-type barium titanate powder
CNB03127269XA CN100484879C (en) 2002-10-01 2003-09-27 Manufacturing method of perovskite barium titanate powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288673A JP4759211B2 (en) 2002-10-01 2002-10-01 Method for producing perovskite-type barium titanate powder

Publications (2)

Publication Number Publication Date
JP2004123431A JP2004123431A (en) 2004-04-22
JP4759211B2 true JP4759211B2 (en) 2011-08-31

Family

ID=32281096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288673A Expired - Lifetime JP4759211B2 (en) 2002-10-01 2002-10-01 Method for producing perovskite-type barium titanate powder

Country Status (2)

Country Link
JP (1) JP4759211B2 (en)
CN (1) CN100484879C (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4722530B2 (en) * 2004-05-11 2011-07-13 パナソニック株式会社 Light emitting element
JP4937637B2 (en) * 2005-05-17 2012-05-23 日本化学工業株式会社 Method for producing barium titanyl oxalate and method for producing barium titanate
JP5025100B2 (en) * 2005-06-27 2012-09-12 京セラ株式会社 Method for producing barium titanate powder
TW200838805A (en) 2007-02-20 2008-10-01 Nippon Chemical Ind Amorphous fine-particle powder, process for production thereof and perovskite-type barium titanate powder made by using the same
JP5119008B2 (en) * 2008-03-04 2013-01-16 日本化学工業株式会社 Method for producing perovskite-type barium titanate powder
JP2010047428A (en) * 2008-08-19 2010-03-04 Nippon Chem Ind Co Ltd Titanium composite salt powder, method for producing the same, and method for producing perovskite type titanium composite oxide powder using the same
JP5323537B2 (en) * 2009-03-05 2013-10-23 日本化学工業株式会社 Method for producing barium titanyl oxalate and method for producing barium titanate
KR101606932B1 (en) * 2009-04-29 2016-03-28 삼성전기주식회사 A method of preparing barium titanate powder by oxalate process and barium titanate powder prepared by same
CN101575545B (en) * 2009-06-03 2011-11-23 中国科学院宁波材料技术与工程研究所 Tin oxalate/titanium oxyoxalate composite powder electrorheological fluid and preparation method thereof
KR20120025431A (en) * 2010-09-07 2012-03-15 니폰 가가쿠 고교 가부시키가이샤 Barium titanyl oxalate particle, method for preparing the same and method for preparing barium titanate
WO2012137628A1 (en) 2011-04-01 2012-10-11 エム・テクニック株式会社 Processes for producing barium titanyl salt and barium titanate
JP5912583B2 (en) * 2012-01-30 2016-04-27 日本化学工業株式会社 Dielectric ceramic material and method for producing perovskite type complex oxide coarse particles used therefor
CN102653469B (en) * 2012-03-31 2013-10-23 国电龙源电气有限公司 Chip multilayer ceramic capacitor dielectric ceramic slurry and preparation method of dielectric
WO2014077176A2 (en) 2012-11-13 2014-05-22 関東電化工業株式会社 Coated barium titanate particulate and production method for same
JP5658295B2 (en) * 2013-03-05 2015-01-21 日本化学工業株式会社 Method for producing barium titanyl oxalate and method for producing barium titanate
CN103979955B (en) * 2014-05-13 2015-06-03 哈尔滨工业大学 Preparing method of barium titanate based leadless piezoceramic material doped and modified by lithium-aluminum ion pair
KR102581034B1 (en) 2015-10-09 2023-09-22 니폰 가가쿠 고교 가부시키가이샤 Method for producing barium titanate powder
CN107195729B (en) * 2017-06-26 2018-09-25 苏州科技大学 The preparation method of device for THz wave detection
JP6573653B2 (en) 2017-12-07 2019-09-11 日本化学工業株式会社 Method for producing perovskite-type barium titanate powder
CN112341190B (en) * 2019-08-06 2022-10-18 广州汽车集团股份有限公司 Barium titanate-based powder preparation method, barium titanate-based powder and supercapacitor
CN113956618B (en) * 2021-11-23 2023-05-30 成都先进金属材料产业技术研究院股份有限公司 Preparation method of three-dimensional porous barium titanate composite dielectric material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146710A (en) * 1984-12-19 1986-07-04 Central Glass Co Ltd Production of fine barium titanate particle of high purity
DE3635532A1 (en) * 1986-10-18 1988-04-28 Philips Patentverwaltung METHOD FOR PRODUCING BARIUM TITANATE BATIO (DOWN ARROW) 3 (DOWN ARROW)
JPS63218512A (en) * 1987-03-05 1988-09-12 Sekisui Plastics Co Ltd Production of tabular particle of metal titanate
JPH08236818A (en) * 1995-03-01 1996-09-13 Denki Kagaku Kogyo Kk Thermoelectric material
TW527321B (en) * 2000-08-09 2003-04-11 Samsung Electro Mech A method for producing barium titanate based powders by oxalate process

Also Published As

Publication number Publication date
CN1496961A (en) 2004-05-19
CN100484879C (en) 2009-05-06
JP2004123431A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP4759211B2 (en) Method for producing perovskite-type barium titanate powder
JP5270528B2 (en) Amorphous fine particle powder, method for producing the same, and perovskite-type barium titanate powder using the same
KR101904579B1 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP6580931B2 (en) Method for producing barium titanate powder
JP4684657B2 (en) Method for producing barium titanyl oxalate powder and method for producing titanium-based perovskite ceramic raw material powder
JP4638766B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP5658295B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP5323537B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP4638767B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP5119008B2 (en) Method for producing perovskite-type barium titanate powder
JP6573653B2 (en) Method for producing perovskite-type barium titanate powder
JP7110306B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP7110305B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP6005528B2 (en) Method for producing titanium dioxide solution and method for producing perovskite titanium composite oxide
JP4937637B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP7438867B2 (en) Me element-substituted organic acid barium titanyl, method for producing the same, and method for producing titanium-based perovskite ceramic raw material powder
WO2021010368A1 (en) Me ELEMENT-SUBSTITUTED ORGANIC ACID TITANYL BARIUM, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING TITANIUM-BASED PEROVSKITE-TYPE CERAMIC RAW MATERIAL POWDER
JP7102462B2 (en) Barium titanyl oxalate, its production method and barium titanate production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071114

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080110

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

R150 Certificate of patent or registration of utility model

Ref document number: 4759211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term